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Within many-body perturbation theory, we calculate band offsets for a set of epitaxial interfaces, including
AlP/GaP, AlAs/GaAs, Ge/AlAs, Ge/GaAs, Ge/ZnSe, Si/GaP, ZnSe/GaAs, and CaF2/Si. We consider various
quasiparticle self-consistent GW schemes with or without including vertex functions. In particular, we consider
two types of effective vertex functions complying with the Ward identity in the long range, one of which
additionally carries a short-range part, which has been found to improve ionization potentials. The obtained
band offsets correspond to model interface structures that match the experimental lattice parameters of the bulk
components. Strain, zero-phonon renormalization, and spin-orbit coupling effects are properly accounted for.
For the band offsets of the semiconductor-semiconductor interfaces, all the self-consistent GW schemes yield
similar mean absolute errors on the order of 0.2 eV. In the case of the CaF2/Si interface, the calculated band
offsets show large indetermination spanning an interval up to 1 eV, the discrepancy with respect to experiment
being correlated with the error by which the band gap of the insulator is described. Through GW calculations
for selected interface models, we further assess the effect of self-consistently updating the charge density. Our
result support the practice of relying on semilocal or hybrid-functional schemes for determining the line-up
potential.
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I. INTRODUCTION

Semiconductor-semiconductor and insulator-
semiconductor heterostructures are found in essentially
all modern electronic, photovoltaic, and photocatalytic
devices [1–6]. The interest in heterostructures stems from
the occurrence of valence and conduction band offsets,
which affect the dynamics of electrons and holes across
interfaces. The usefulness of accurate theoretical schemes
also underlies the determination of Schottky barrier heights at
metal-semiconductor interfaces in nanoelectronics, insofar no
Fermi-level pinning occurs due to uncharacterized interface
defects [7,8]. To design optimal devices, it is therefore
important to develop theoretical methods that are able to
provide accurate predictions of band offsets.

Numerous electronic-structure calculations can be found in
the literature [9–19]. Most of these studies are based on den-
sity functional theory (DFT) [20,21], either at the semilocal
or at hybrid functional level. In order to properly predict band
offsets, it is a prerequisite for the adopted electronic structure
method to achieve accurate band gaps [13,14]. This holds both
for conduction and valence band offsets despite the common
belief that ground-state DFT should be accurate for valence
band levels. Semilocal DFT is generally unsatisfactory due
to the well-known band-gap problem [22,23]. To overcome
this problem, one possibility is to turn to hybrid functionals
[24–26], which noticeably open up the band gap. Indeed,
an improvement in the calculated band offsets is found with
standard hybrid functionals, such as PBE0 and HSE [13,27].
However, to improve the accuracy further, it is generally nec-
essary to set the mixing parameters in an empirical fashion
in order to retrieve the correct band gaps of the interface

components [13,15,27]. In this context, the variation of the
optimal mixing parameter across the interface introduces a
supplementary problem associated with the use of spatial-
dependent hybrid functionals [28,29].

The state-of-the-art scheme for electronic-structure calcu-
lations presently relies on many-body perturbation theory,
which is based on a Green’s function formulation [30]. A
multitude of flavors have appeared in the literature. The sim-
plest one is the one-shot G0W0 approximation [31], in which
no self-consistent cycle is carried out, thereby leading to an
undesired dependence on the starting wave functions and en-
ergy levels [32]. The quasiparticle selfconsistent GW scheme,
denoted qsGW , suppresses the dependence on starting point
[33,34], but this method typically yields band-gap overesti-
mations of about 20% [32,33,35–37], which can be related to
the neglect of the vertex function [32,33,35–37]. Inclusion of
approximated vertex corrections [37–39] in the polarizability
has been shown to reduce this overestimation [35–37,40,41].
The nanoquanta vertex function was found to be very accurate
for band-gap evaluations, but requires the computationally de-
manding solution of the Bethe-Salpeter equation [35,38,40].
The empirical Bootstrap kernel [39] avoids the Bethe-Salpeter
equation and has been found to reproduce band gaps with
essentially the same accuracy as the nanoquanta vertex [36].
More recently, an effective vertex kernel could be constructed
in a nonempirical fashion by satisfying the Ward identity in
the long range, leading to the description of band gaps with
a mean absolute error of about 0.2 eV on an extended set of
materials [37].

The proper description of bulk band gaps is not a sufficient
condition to achieve accurate band offsets. It is also neces-
sary to obtain a reliable relative alignment of the electronic
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structures of the interface components. To achieve such an
alignment, several issues have to be addressed. The main issue
concerns the intrinsic accuracy of the adopted electronic-
structure theory. In this regard, the absolute alignment of the
band-edge energy with respect to the vacuum level has often
been taken as a convenient benchmark [32,36,37,41–43]. It
has been found that hybrid functionals generally give a very
good description of electron affinities and ionization poten-
tials when they accurately describe the band gap [32,42,43].
In many-body perturbation theory, achieving the correct align-
ment appears more challenging [32,36,37,41,42]. Grüneis
et al. have shown that the achievement of accurate ionization
potentials requires the treatment of the vertex function up to
second order [41] for improving upon ordinary GW schemes
[32,37,42]. It has been found that such an accuracy cannot be
achieved through the inclusion of effective vertex functions in
the sole polarizability [36,37]. However, noticeably improved
ionization potentials are obtained when a short-range vertex
is included in the self-energy [37,44]. When the effective
vertex includes both short-range and long-range parts like in
qsGŴ , the mean accuracy of ionization potentials amounts to
0.3 eV [37].

Several additional challenges need to be overcome to
achieve accurate band offsets at interfaces. The actual inter-
face structure used in the calculations is generally unknown
and needs to be modeled. Residual strain effects resulting
from structural mismatch to the substrate may also play a
role [16,18]. Furthermore, high-level GW calculations with
vertex corrections require a self-consistent treatment of the
charge density. The state-of-the-art approach to calculate band
offsets at interfaces relies on separate calculations of the bulk
interface components combined with an interface calcula-
tion for determining the line-up of the reference potential
[9,11]. One of the advantages of this scheme is that the
reference potential converges at small distance from the in-
terface, thereby allowing for the use of interface models of
affordable size. In addition, a further computational advantage
is that the line-up potential is generally determined at the
semilocal density-functional level [14–16,18,41,42,45]. Thus,
the self-consistency at interfaces has rarely been investigated
at the GW level of theory [14]. The justification for using a
semilocal scheme for determining the potential line-up rests
on the study of the Si/SiO2 interface, which remains so far the
sole case where this approximation has been validated through
self-consistent updates of the charge density [14]. Further
support to this practice also comes from hybrid-functional
calculations, which show that the band line-up only weakly
depends on the adopted fraction of Fock exchange [13,15,18].
Hence, the combination of such structural and electronic is-
sues makes of the calculation of band alignments at interfaces
a noticeable theoretical challenge.

In this paper, we determine band offsets for various epi-
taxial interfaces through quasiparticle self-consistent GW cal-
culations including vertex corrections. We adopt an approach
based on the line-up of bulk calculations through the electro-
static potential determined at the interface. The investigated
set includes semiconductor-semiconductor interfaces involv-
ing group III, IV, and V materials, viz., AlP/GaP, AlAs/GaAs,
Ge/AlAs, Ge/GaAs, Ge/ZnSe, Si/GaP, ZnSe/GaAs, as
well one insulator-semiconductor interface, namely CaF2/Si.

The study of the latter interface between wide and nar-
row band-gap materials is expected to be less subject to
error-cancellation effects resulting from the similar nature of
the bulk components, as is the case for the semiconductor-
semiconductor interfaces [15,18]. In particular, two types of
effective vertex functions complying with the Ward identity
in the long range [37] are used in this investigation. The first
one gives rise to qsGW̃ LR calculations, where the long-range
vertex function occurs in the polarizability and is effectively
canceled in the self-energy [34,37]. In qsGŴ calculations,
the vertex function intervenes in both the polarizability and
the self-energy. This vertex additionally carries a short-range
part derived from the adiabatic local density approximation
(ALDA) [46], which is expected to improve the accuracy of
ionization potentials [37,44]. The use of epitaxial interfaces
facilitates the construction of accurate model structures. The
determined band offsets are obtained for interface structures
matching experimental lattice parameters for the bulk com-
ponents. In this regard, attention is devoted to distinguishing
the substrate and overlayer components, whereby the strain
effects on the latter are taken into account [18]. Finally, for
two interfaces (AlP/GaP and CaF2/Si), we investigate at the
qsGŴ level to what extent the line-up potential is affected by
the self-consistent update of the charge density, in comparison
with semilocal and hybrid-functional results.

This article is organized as follows. In Sec. II, the GW
schemes and the methodology for obtaining band offsets are
described. The bands gaps and the alignment of the electronic
structure with respect to the average electrostatic potential for
the involved materials are the topic of Sec. III. In Sec. IV,
the line-up potentials are determined and the band offsets
calculated. The conclusions are drawn in Sec. V.

II. METHODOLOGY

A. GW schemes with effective vertices

Many-body perturbation theory is the state of the art for
describing the electronic structure of extended systems. This
theory relies on a set of equations involving the Green’s
function G, as first proposed by Hedin [30]. Within Hedin’s
equations, the self-energy is written as

� = iGW �, (1)

where W is the screened Coulomb potential. The vertex �

occurs in the calculation of both the self-energy � and the
screened potential W . When an effective vertex function is
included in the screening, the band gaps are found to improve
significantly [35–37,40,41]. It has also been shown that the
consideration of a vertex function in the self-energy primarily
leads to an overall shift of the energy levels, while leaving the
band gap relatively unchanged [14,47,48].

Recently, two effective vertex functions satisfying the
Ward identity in the long range have been introduced and
shown to give accurate band gaps and ionization potentials
for a large set of materials [49]. The Ward identity is an
exact constraint enforcing the conservation of the total charge
[50,51]. The vertex is then approximated as [52]

� = 1 + fxcχ, (2)
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where fxc is an effective exchange-correlation kernel and χ

is the irreducible polarizability. The exchange and correlation
kernel is split into a long-range and a short-range part, fxc =
f LR + f SR [49]. Using the Ward identity, the long-range part
of the kernel can be written as

f LR = 1 − Z

χ0
00

, (3)

where Z is the renormalization factor defined by Z = (1 −
∂�
∂ω

)−1 and χ0 is the independent particle polarizability. The
self-energy can then be rewritten as

� = iG0Ŵ , (4)

where G0 is the coherent part of the Green’s function, which
is reduced by a factor Z , G ≈ ZG0, and where the modified
screened potential is written as

Ŵ = v + (v + Z f SR)χ redv. (5)

Here, χ red is the reducible polarizability and f SR is the short-
range part of the exchange-correlation kernel, which is chosen
to be the adiabatic local density approximation (ALDA) [46].
This scheme is denoted qsGŴ . The qsGW̃ LR approximation
is similar to the qsGŴ one, but only includes the long-range
part of the exchange-correlation kernel (i.e., f SR = 0). The
self-energy then reads

� = iG0W̃ , (6)

with W̃ = v + vχ redv. In all cases, the reducible polarizability
χ red is determined from

χ red = χ0 + χ0(v + fxc)χ red, (7)

where the kernel fxc = f LR + f SR and fxc = f LR in the qsGŴ
and qsGW̃ LR schemes, respectively. In this way, the vertex
corrections are included in both the screening and the self-
energy. For completeness, we include in the present study
results achieved with the state-of-the-art NANOQUANTA kernel,
which we denote qsGW̃ NQ [35,38,40]. We also add qsGW̃ Boot

results achieved with the Bootstrap kernel [39], which has
been shown to give band gaps closely reproducing those ob-
tained with qsGW̃ NQ for a variety of materials [36].

In this paper, we carry out all the GW calculations with the
VASP suite [53,54], in particular taking advantage of the im-
plementation of the effective vertices described in Ref. [37].
We use the VASP suite also for performing semilocal and
hybrid-functional calculations. The pseudopotentials used are
specified in the Supplemental Material (SM) [55] (see also
references [37,41,56–59] therein). The semilocal calculations
are based on the exchange-correlation functional proposed
by Perdew, Burke, and Ernzerhof (PBE) [60]. The hybrid-
functional calculations are carried out with the PBEh(α)
functional, in which a fraction α of the semilocal PBE ex-
change is replaced by Fock exchange [25]. For α = 0.25, we
denote PBEh(0.25) = PBE0.

B. Scheme for band-offset calculations

In the present paper, we designate with the notation A/B
the interface between a material A as overlayer and a material
B as substrate. To compute the band offsets of the interface
A/B, we use the scheme proposed by Van de Walle and Martin

substrate overlayer

FIG. 1. Scheme of band alignment between substrate and over-
layer showing the evolution of the conduction band minimum (CBM)
and the valence band maximum (VBM). The red line represents the
average electrostatic potential V across the interface. The figure il-
lustrates various quantities defined in text. For the represented case,
the signs of �V , �Ec, and �Ev are taken to be positive. When the
alignment is such that an arrow points into the opposite direction, we
use a negative value for the corresponding physical quantity.

[9] and by Baldereschi et al. [11]. In this scheme, the band
offsets are obtained through a two-step procedure. In the first
step, the band edges of the overlayer A and the substrate B
are determined with respect to the local reference level in the
respective bulk materials, E s

c/v and Eo
c/v, where the subscript

c refers to the conduction band and the subscript v to the
valence band. These energy levels are determined through
calculations of bulk materials. It is convenient to take the
average electrostatic potential as local reference level, since
this level depends on the charge density and is found to con-
verge to constant values at short distances from the interface
[9,11,13,19]. In the second step, an interface model structure
is considered to extract the line-up of the average electrostatic
potential �V across the interface. The band offset is then
found as

�E c/v = E s
c/v − Eo

c/v + �V. (8)

This scheme is summarized in Fig. 1. The calculations per-
formed in this paper correspond to a temperature of 0 K.

Various electronic-structure methods are investigated in
the present paper, including PBE, PBE0, qsGW , qsGW̃ Boot,
qsGW̃ NQ, qsGW̃ LR, and qsGŴ . In principle, the same
electronic-structure method should be used in the bulk and
interface calculations. However, since the average electro-
static potential is found to be rather robust upon varying
the electronic-structure scheme [13,15,18], it is possible to
devise mixed schemes. For instance, when band offsets are
obtained at the GW level, the line-up potential is often taken
from semilocal calculations [14–16,18,41,42,45]. Similarly,
the scheme proposed by Alkauskas et al. relies on the use
of different hybrid functionals for each interface component
in order to reproduce their respective band gaps [13]. This
is achieved by setting suitable values of Fock exchange α

for each bulk component (αA and αB). The calculation of
the line-up potential is then carried out with the functional
PBEh(ᾱ), where ᾱ = 1

2 (αA + αB). The line-up potential is
found to vary linearly with ᾱ and can thus be derived from
two calculations, e.g., with PBE and PBE0 functionals. In
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TABLE I. Experimental lattice parameters and Poisson ratios
of the interface components considered in this paper. The Poisson
ratios (ν) are provided for all materials that occur as overlayer in the
considered set of interfaces. The lattice parameters (aexpt) correspond
to 0 K.

Material ν aexpt (Å)

AlAs 0.33a 5.661b

AlP 0.32c 5.451d

GaAs 5.648e

GaP 5.448e

Ge 0.25f 5.658g

Si 0.22h 5.430g

ZnSe 0.28i 5.667j

CaF2 0.26k 5.463l

aReference [61]; bReference [62]; cReference [63]; dReference [64];
eReference [65]; fReference [66]; gReference [67]; hReference [68];
iReference [69]; jReference [70]; kReference [71]; lReference [72].

practice, the difference between the line-up potentials in PBE
and PBE0 is rather small in most cases. In the present calcu-
lations, it does not exceed 0.06 eV.

At an epitaxially grown interface, we distinguish the
substrate and the overlayer materials. Experimentally,
the overlayer material adopts the lattice parameter of the sub-
strate in the directions parallel to the interface. Experimental
lattice parameters used in this paper are given in Table I.
All the interfaces considered in this paper are close to be
lattice matched (see Table II), whereby the lack of detailed
knowledge about the interfacial atomic structure is minimized.
In the vicinity of the interface, the atomic structures of both
interface components undergo structural relaxation. In the
direction normal to the interface, the lattice parameter of the
substrate corresponds to its bulk value, whereas the overlayer
is subject to strain effects. These strain effects determine the
experimental value for the lattice parameter of the overlayer in
the growth direction ao

strain (cf. Table II). These lattice param-
eters can be obtained from the experimental lattice constants
and the experimental Poisson ratio (Table I). The z direction
is taken to be the growth direction and the lattice parameter in
this direction is denoted az, while the in-plane lattice parame-
ters are denoted a⊥. Here, we aim to calculate band offsets for

TABLE II. Strain in the overlayer resulting from the lattice
mismatch when grown on the indicated substrate. The interface ori-
entation is given. The lattice parameter ao

strain of the overlayer in the
growth direction is determined through the use of the experimental
lattice parameters and Poisson ratios (Table I).

Overlayer Substrate Direction Mismatch ao
strain (Å)

AlP GaP (001) −0.06% 5.460
AlAs GaAs (001) −0.23% 5.701
Ge AlAs (011) 0.05% 5.646
Ge GaAs (011) −0.18% 5.698
Ge ZnSe (011) 0.16% 5.622
Si GaP (011) 0.33% 5.348
ZnSe GaAs (011) −0.34% 5.735
CaF2 Si (111) −0.61% 5.587

VBM
CBM

V

overlayersubstrate

bulkinterface modelbulk layer

FIG. 2. Scheme for the inclusion of strain effects in the band
offset calculation through electronic-structure calculations of ideal
bulk structures. The valence band maximum (VBM) and conduction
band minimum (CBM) as well as the electrostatic potential V are
displayed. From left to right, the scheme involves several systems:
the bulk substrate, the model interface, the bulk overlayer, and the
strained overlayer. The various ingredients in the calculations are
highlighted (red): �V s, �V o, �E strain,o

c , and �E strain,o
v . For each sys-

tem, the lattice parameters in the in-plane directions a⊥ and in the
growth direction az are given. The targeted valence and conduction
band offsets are shown (blue).

interface models, which reproduce the experimental atomic
structure as well as possible.

To achieve this target, we follow the procedure introduced
by Bischoff et al. [18], which proposed a method to account
for the strain in the overlayer. We model the A/B interface
as a superlattice of materials A and B. The in-plane lat-
tice constants are set to the experimental values pertaining
to the substrate material B. The atomic structure including
the cell parameter in the growth direction are then fully
relaxed. By consequence, the lattice parameter of the sub-
strate in this direction differs from its experimental value.
Similarly, the lattice parameter of the overlayer in the same
direction also differs from its strained value ao

strain. Hence, the
strain present in the superlattice originates from two differ-
ent sources. First, there is a physical effect resulting from
the lattice mismatch in the in-plane direction between the
two materials at the interface, which causes strain in the
overlayer. Second, the structural relaxation in the modeling
scheme gives rise to equilibrium lattice parameters (as

mod and
ao

mod), which differ from their experimental counterparts in
both components of the interface (cf. Fig. 2). In the fol-
lowing, we first identify the quantities that are required and
then describe their calculation in practical terms. On the
side of the substrate, we determine the shift between the
electrostatic potentials of the substrate in the interface model
and in the bulk at experimental lattice constants, �V s =
�V (model substrate → bulk substrate) (cf. Fig. 2). The band
edges of the conduction and valence bands are then deter-
mined from a bulk calculation at experimental lattice con-
stants. On the side of the overlayer, we first establish the shift
of the electrostatic potential when going from the interface
model to the bulk structure at experimental lattice constants
�V o = �V (model overlayer → bulk overlayer) (cf. Fig. 2).
We determine the conduction and valence band edges with
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TABLE III. Valence and conduction band-offset corrections (in eV) due to strain (�E strain
c/v ), zero-phonon renormalization (�EZPR

c/v ), and
spin-orbit coupling (�ESOC

v ) effects. The strain effects are evaluated at the PBE0 level.

Interface �E strain
v �EZPR

v �ESOC
v �E strain

c �EZPR
c

AlAs/GaAs −0.13 −0.02 −0.01 −0.09 −0.04
AlP/GaP −0.01 −0.03 −0.01 0.00 0.00
Ge/AlAs 0.08 −0.02 −0.01 0.10 −0.02
Ge/GaAs −0.04 0.00 −0.02 0.06 0.02
Ge/ZnSe 0.12 −0.01 −0.04 0.11 0.00
Si/GaP 0.00 0.01 −0.01 0.00 −0.02
ZnSe/GaAs −0.12 −0.01 0.02 −0.04 −0.01
CaF2/Si −0.02 −0.21 −0.01 0.05 −0.06

respect to the electrostatic potential through a bulk calculation
of the overlayer material at experimental lattice constants.
The final step consists in shifting the band edges to those
pertaining to the strained overlayer with lattice parameters
corresponding to those of the substrate in the parallel direc-
tions and to ao

strain in the growth direction. In this way, we ob-
tain �E strain,o

c/v = �Ec/v(bulk overlayer → strained overlayer)
(cf. Fig. 2). Gathering all strain contributions for a given
interface, we obtain

�E strain
c/v = �V s + �V o + �E strain,o

c/v , (9)

which yields the strain corrections for the conduction and
valence band offsets. We remark that in principle it is not
necessary to transit through the bulk structure of the overlayer
at experimental lattice constant. Nevertheless, the consider-
ation of the unconstrained bulk structure of the overlayer
allows us to obtain electronic-structure results that can easily
be compared with references in the literature. Furthermore,
the higher symmetry of the unconstrained structure allows
one to keep to a minimum the computational cost of the
calculations.

To determine the strain effect on the electrostatic poten-
tial and on the band edges in practice, we use the scheme
described by Van de Walle [73,74] at the PBE0 level. We
set up an interface in which the two components correspond
to the same material, but with different lattice constants in
the growth direction. The shift of the electrostatic potential
can directly be inferred from the line-up across the inter-
face. The shifts of the valence and conduction band edges
due to the strain effect are obtained upon aligning the elec-
tronic structures of the strained and unstrained materials to
the electrostatic potential on either side of the interface. The
calculated corrections �E strain

c/v are given in Table III, while the
individual corrections �V s, �V o, and �E strain,o

c/v are provided
in the SM [55]. The total strain corrections in Table III amount
to 0.13 eV at most. While these corrections are rather small,
they are of the same order as the overall accuracy by which
the band offsets are determined and thus need to be included
to avoid systematic errors.

The band-edge levels are further corrected for the zero-
point renormalization (ZPR) resulting from electron-phonon
interactions. For all materials but CaF2, we use corrections
obtained with the nonadiabatic approach from Miglio et al.
[57]. For CaF2, we compute the ZPR in the adiabatic approx-

imation using the special displacement method developed by
Zacharias and Giustino [58]. For a list of materials including
polar compounds, the difference between the two schemes
has been found not to exceed 40 meV [57,75], which we
consider negligible for the purpose of our study. Using the
implementation by Karsai et al. [59], we carry out calculations
on a 4×4×4 supercell with the PBE functional, which has
been found to provide accurate estimates [76]. In this way, we
find a ZPR of 0.32 eV for the CaF2 band gap, corresponding
to the largest ZPR value for the materials under considera-
tion. The ZPR corrections applied to the band offsets, �EZPR

v
and �EZPR

c (cf. Table III), are obtained from the difference
between the ZPR correction of the two interface components.
The latter are provided in the SM [55].

For completeness, we also consider spin-orbit coupling
corrections �ESOC

v on the valence band edges. These
corrections for the bulk interface components are given
in the SM [55] and their effect amounts to at most 0.04 eV
for the interfaces considered in this paper (see Table III).
Hence, the band offsets are here corrected for strain, ZPR, and
spin-orbit coupling (SOC) effects,

�E c/v = �Emod
c/v + �E strain

c/v + �EZPR
c/v + �ESOC

c/v , (10)

where �Emod
c/v are the bare band offsets obtained for the model

interfaces neglecting all strain and ZPR corrections. The cor-
rections �ESOC

c are neglected.
The main ingredients in our calculations are (i) the band

structures of the bulk interface components and (ii) the line-up
potential. Point (i) is strongly dependent on the electronic
structure scheme and a variety of such schemes are taken
under consideration in this paper, including qsGW calcula-
tions with effective vertex functions. At variance, point (ii)
is a very robust quantity and depends only weakly on the
electronic structure method, as is seen in Sec. IV. Hence, the
main outcome of our paper is establishing the dependence of
the band offsets on the electronic structure method used for the
band structures of the interface components. In addition, we
consider three corrections to account for strain, zero-phonon
renormalization, and spin-orbit coupling effects (Table III).
However, all these corrections are rather small for the present
interfaces and variations resulting from the applied electronic-
structure method can be ignored.
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TABLE IV. Convergence parameters used in the self-consistent
GW calculations. Nω is the number of frequencies sampled on the
real axis in the contour-deformation technique, Nbands is the number
of considered bands, and Nsc-bands is the number of self-consistently
updated bands. For all materials, the energy cutoffs for the wave
functions and for the response function are set to 500 eV and 333 eV,
respectively.

Material Nω Nbands Nsc-bands

AlAs 200 1024 112
AlP 200 1024 56
GaAs 150 1152 352
GaP 150 1024 112
Ge 150 1152 64
Si 200 1024 64
ZnSe 150 1152 224
CaF2 150 500 256

III. BAND GAPS

In this section, we determine the band gaps and the band
edges of the bulk materials. The PBE and the PBE0 calcu-
lations are performed with 6×6×6 k-point grids, which are
found to be sufficient for all materials, except for silicon.
In the latter case, we use a 12×12×12 k-point grid to de-
scribe the conduction band minimum, which is not located
at a high-symmetry point, but along a symmetry line. In
the self-consistent GW calculations, we use the convergence
parameters given in Table IV. When referring to the same ma-
terials, the present convergence parameters agree with settings
of a previous paper [49]. The initial electron wave functions
and single-particle energies are computed using the PBE func-
tional for all materials, except for germanium for which we
use the PBE0 functional due to the vanishingly small PBE
band gap. The contour-deformation technique is used in order
to perform the energy integration [83]. All the self-consistent

GW calculations are carried out with 6×6×6 k-point grids.
For the silicon band gap, we include a correction of 0.15 eV,
which is estimated from the difference between G0W0 calcu-
lations computed with 6×6×6 and 10×10×10 k-point grids.
All the self-consistent GW calculations are further corrected
to account for extrapolation to infinite basis set, as described
in Refs. [41,84]. In the specific case of qsGŴ , we follow the
procedure described in Ref. [49]. In particular, we study the
convergence behavior of the individual quasiparticle energy
levels for the valence and conduction band edges, which is
generally more accurate than just focusing on the band gap
(e.g., see Ref. [85]). The extrapolated corrections for the band
edges are given in the SM [55]. The largest corrections are
found for CaF2, for which they range up to 0.60 eV. For the
semiconductors, the largest corrections amount to 0.25 eV
(see SM [55]).

The band gaps obtained with the various electronic-
structure schemes considered in this paper are shown in
Table V along with experimental values for comparison. The
experimental results for the semiconductors all correspond to
very low temperatures and can directly be compared with the
theoretical results corresponding to 0 K. In the case of CaF2,
the measurement has been made at 90 K, but from a linear
extrapolation of the temperature dependent data in Ref. [82]
to 0 K we estimate a band-gap increase of only 0.07 eV.
The accuracy of the various schemes can be estimated by
separately determining with respect to the experimental values
the mean absolute error (MAE) for the narrow-band semicon-
ductors and the absolute error (AE) for CaF2. It is preferable to
distinguish these two cases due the large band-gap difference.
Due to its well-known band-gap underestimation, the PBE
functional shows the largest errors with a MAE of 1.04 eV
for the semiconductors and an AE of 4.8 eV for CaF2. A
significant reduction of the MAE to 0.35 eV is achieved
with PBE0, even though the band gaps remain systemati-
cally overestimated. At variance, for CaF2, the PBE0 band

TABLE V. Fundamental band gaps of bulk materials calculated with various electronic-structure schemes at a temperature of 0 K. The
calculated band gaps include ZPR and SOC corrections (cf. SM [55]). The experimental lattice constants given in Table I are used. We
separately determine with respect to the experimental values the mean absolute error (MAE) for the narrow-band semiconductors and the
absolute error (AE) for CaF2. The qsGW̃ Boot and qsGW̃ NQ results for all materials are taken from Ref. [37], except those for Ge and CaF2,
which have been obtained here for the scope of this paper.

Material PBE PBE0 qsGW qsGW̃ Boot qsGW̃ NQ qsGW̃ LR qsGŴ Expt.

AlAs 1.25 2.54 2.56 2.33 2.22 2.39 2.25 2.24a

AlP 1.45 2.82 2.84 2.61 2.48 2.63 2.51 2.52a

GaAs 0.40 1.83 1.70 1.54 1.59 1.54 1.38 1.52a

GaP 1.49 2.82 2.62 2.44 2.66 2.42 2.33 2.35a

Ge 0.00 1.22 1.02 0.95 0.92 0.87 0.85 0.74b

Si 0.49 1.70 1.34 1.23 1.17 1.19 1.17 1.17c

ZnSe 1.10 2.88 3.22 2.84 2.86 3.00 2.78 2.82d

MAE 1.04 0.35 0.28 0.08 0.09 0.10 0.05
CaF2 6.96 9.79 13.39 12.02 12.35 13.28 12.64 11.8e

AE 4.8 2.0 1.6 0.2 0.6 1.5 0.9

aReference [77], extrapolated to T = 0 K.
bReference [78], extrapolated to T = 0 K.
cReference [79], extrapolated to T = 0 K.
dReference [80], obtained at T = 6 K.
eReference [81], inferred from the 12.1 eV direct transition measured at T = 90 K in Ref. [82].
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TABLE VI. Valence band-edge levels (in eV) of bulk materials with respect to the average electrostatic potential, as obtained from the
various electronic-structure schemes considered in this paper. Strain, ZPR, and SOC effects are not included, since they do not affect the
comparison. For PBEh(α), the value of α reproducing the band gap is shown in parentheses. The qsGW̃ Boot and qsGW̃ NQ results are taken from
Ref. [37] for all materials, except for Ge and CaF2 for which they have been obtained here for the scope of this paper.

Material PBE PBE0 PBEh(α) qsGW qsGW̃ Boot qsGW̃ NQ qsGW̃ LR qsGŴ

AlAs 2.89 2.12 2.30 (0.19) 1.54 1.49 1.58 1.61 2.34
AlP 4.20 3.37 3.55 (0.20) 2.87 2.84 2.92 2.94 3.65
GaAs 3.07 2.37 2.52 (0.20) 1.91 1.86 1.88 1.95 2.57
GaP 4.37 3.61 3.88 (0.16) 3.16 3.16 2.92 3.21 3.88
Ge 3.10 2.33 2.61 (0.16) 1.84 1.73 1.88 1.89 2.53
Si 2.72 2.07 2.36 (0.14) 1.73 1.69 1.74 1.76 2.32
ZnSe 2.51 1.50 1.53 (0.24) 0.74 0.77 0.77 0.83 1.44
CaF2 1.03 −1.01 −2.44 (0.43) −3.95 −3.25 −3.41 −4.09 −2.88

gap underestimates the experimental value by ∼2 eV. These
results are in accord with general tendencies of PBE0 for
narrow and wide band-gap materials [86]. With qsGW , we
find band gaps showing slightly smaller MAE and AE of 0.28
and 1.6 eV, respectively. This error results from an overall
overestimation of the experimental band gaps by ∼20%, in
accord with previous results in the literature [32,33,35–37].

To reduce these deviations it is necessary to include vertex
corrections, which approximately account for electron-hole
interactions in the polarizability [35–37,40,41]. For the semi-
conductors, qsGW̃ Boot, qsGW̃ NQ, and qsGW̃ LR indeed yield
smaller MAEs of 0.08, 0.09, and 0.10 eV, respectively. In
particular, we remark that for this set of semiconductors
the effective vertex functions yield an accuracy similar to
that achieved with the NANOQUANTA vertex. Furthermore, the
achieved MAE values are noticeably smaller than obtained
with the same schemes in Ref. [37], where they are found to
range between 0.14 and 0.36 eV for a larger set of materials.
When the vertex function is also included in the self-energy
as in qsGŴ , the MAE further drops to 0.05 eV. In particular,
when compared to qsGW̃ LR, qsGŴ leads to a systematic
further reduction of the band gap (cf. Table V). We note
that for the narrow band-gap materials the self-consistent GW
schemes including vertex corrections give band gaps in close
agreement with experiment, i.e., within at most ∼0.3 eV. It
is worth mentioning that the inclusion of ZPR corrections (cf.
SM [55]) reduces the MAE of all electronic-structure schemes
by ∼0.05 eV, indicating that these corrections contribute to
improving the agreement with the experimental values. The
results for qsGW̃ LR and qsGŴ for these materials are also
in good agreement with previous self-consistent GW calcu-
lations based on a second-order expansion of � in W [41].

For the wide band-gap material CaF2, the various self-
consistent GW schemes including vertex corrections give
band gaps differing by more than 1 eV among each other.
Since these GW schemes correspond to the present state of
the art, this suggests that a large indetermination still subsists
in the case of predictions for a large band-gap material such as
CaF2. For this material, the band gap is found to correlate with
the high-frequency dielectric constant ε∞ in a sensitive way.
We find ε∞ of 1.71, 2.15, 1.99, 1.82, and 1.91 for qsGW̃ Boot,
qsGW̃ NQ, qsGW̃ LR, and qsGŴ , to be compared with the ex-
perimental value of 2.045 [87]. The best description of ε∞ is

found for qsGW̃ Boot and qsGW̃ NQ, which also yield the most
accurate band gaps. In a previous calculation at the qsGW̃ Boot

level, Bischoff et al. found a band gap of 11.47 eV [18] to
be compared with our value of 12.29 eV obtained within the
same theoretical scheme (without including ZPR and SOC
corrections). This difference of about 0.9 eV should solely
be assigned to the use of different computational setups in
the two cases. At the one-shot G0W0 level, Ma and Rohlfing
yielded a band gap of 11.5 eV [88].

We give in Table VI the valence band-edge levels of the
materials studied with respect to the average electrostatic po-
tential for the various electronic-structure schemes. As we will
see in the next section, the average electrostatic potential is
robust among the electronic-structure schemes investigated in
this paper. Hence, it is meaningful to compare the relative po-
sitions of the valence band edges across the involved schemes.
In addition to the schemes considered so far, we provide
results for PBEh(α) with α set to reproduce the experimental
band gap, since this scheme has empirically been found to pro-
vide accurate energy-level alignments [13,18,32,42,43]. All
the self-consistent GW schemes except qsGŴ systematically
set the valence band edge at lower energy compared to the
PBE0 and PBEh(α) calculations. When the vertex is included
in the polarizability, as in the qsGW̃ schemes, the valence
band edge is generally found to undergo only a small shift
compared to qsGW , while the band gaps generally undergo
a reduction of larger size (cf. Table V). The inclusion of the
short-range part of the vertex in qsGŴ moves up the valence
band edge level with respect to the qsGW̃ values, bringing
them closer to the PBEh(α) levels. Indeed, in this case, the
shift of the valence band edge is generally much larger than
the effect on the band gap (cf. Table V). In short, the qsGW̃
calculations provide similar valence band-edge levels, while
qsGŴ displaces these levels to higher energies.

IV. BAND ALIGNMENT

To calculate the line-up potential, it is necessary to set up
atomistic models of the interfaces. In this paper, we only con-
sider lattice-matched interfaces to simplify the construction of
model structures representing the interfacial atomic arrange-
ment. The semiconductor-semiconductor model interfaces are
generated from an initial structure in which the two interface
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components are stacked in a superlattice geometry along the
growth direction. For the interfaces grown along the (001)
direction, we use a simulation cell with eight atomic layers for
each component with two atoms per layer. For the interfaces
grown along the (011) direction, we take seven layers for
each component with two atoms per layer. The in-plane lattice
parameter is set to the experimental value of the substrate
in all cases. The atomic structure and the cell size in the
growth direction are fully relaxed with the PBE functional.
The structural model for the CaF2/Si interface corresponds
to the T4 interface model in the B-type orientation [89,90],
where Si-Ca bonds predominate at the interface. The silicon
component contains fourteen layers, while the CaF2 compo-
nent consists of six layers of Ca and ten layers of F. We here
adopt the model structure provided in Ref. [91], which was
generated through a scheme analogous to the one employed
in the present paper [18]. The convergence parameters of the
electronic-structure calculations are set to achieve an accuracy
of 10 meV or lower in the potential line-up. Depending on
the interface, this required k-point grids up to 8×8 in the
in-plane directions, up to 5 k points in the growth direction,
and an energy cut-off up to 1000 eV (see details in SM [55]).
From the relaxed structures, we determine the model lattice
parameters of the substrate and overlayer (as

mod and ao
mod, cf.

Fig. 2) by considering the interatomic layer spacing at the cen-
ter of each superlattice component. These lattice parameters
are then used to determine strain corrections (see Sec. II B).

The electrostatic Hartree potential along the growth di-
rection is obtained through an average over the in-plane
directions. The potential obtained in this way is then con-
voluted with a Gaussian function to achieve the average
macroscopic electrostatic potential. This potential assumes
constant levels in the central regions of the two interface
components. The line-up potential �V is then defined as the
difference between these two potential levels. The Gaussian
broadening is chosen such that the oscillations are smoothed
without affecting the average values [92]. We remark that
the adopted procedure for the determination of the potential
line-up relies on the fact that the potential assumes constant
values away from the interface region. Indeed, in our models,
we do not observe any charge transfer between the various
interfaces resulting in flat potentials between the interfaces,
very similar to those found in Refs. [15,18] to which we refer
to as examples. In more realistic interfaces, the occurrence
of defect states gives rise to charge traps that produce band-
bending effects [93]. Such effects occur on long-range length
scales and are quite distinct with respect to band offsets, which
occur on atomic-scale distances.

After setting up the interfaces, the calculation of the line-up
potential is carried out with both the PBE and PBE0 function-
als. The results are reported in Table VII. The PBE and PBE0
values are in excellent agreement with each other, with a
difference lower than 60 meV in the worst case, corresponding
to CaF2/Si. This indicates that the potential line-up is robust
when going from PBE to PBE0, in accord with previous
findings [13,15].

It is of interest to verify whether the robustness of the
line-up potential observed for semilocal and hybrid func-
tionals also holds for the self-consistent GW calculations.
Indeed, in such calculations, the effects of self-consistently

TABLE VII. Line-up potential �V (in eV) as calculated in PBE,
PBE0, and qsGŴ for the interfaces considered in this paper. Given
the high computational cost, the qsGŴ calculations have been per-
formed only for two interfaces.

Interface �VPBE �VPBE0 �VqsGŴ

AlP/GaP 0.33 0.33 0.36
AlAs/GaAs 0.35 0.35
Ge/AlAs −1.04 −1.06
Ge/GaAs −0.60 −0.63
Ge/ZnSe −0.82 −0.85
Si/GaP −1.90 −1.89
ZnSe/GaAs 0.20 0.19
CaF2/Si 3.97 4.03 4.06

updating the density has only rarely been considered at
interfaces [14]. Due to their high computational cost, we per-
form qsGŴ calculations of the line-up potential only at one
semiconductor-semiconductor interface (AlP/GaP) and one
insulator-semiconductor interface (CaF2/Si). The resulting
line-up potentials are given in Table VII, for comparison with
the semilocal and hybrid-functional results. We find that all
line-up potentials are very close to each other, with differences
amounting to at most 90 meV. Hence, our results confirm that
the self-consistent update of the density in self-consistent GW
calculations only lead to minor effects, as found previously for
the SiO2/Si interface [14]. This supports the common practice
of determining the line-up potential through semilocal or hy-
brid functional calculations.

We now have all the ingredients to determine the band
offsets for the interfaces considered here. The band offsets are
calculated with Eq. (10) including strain, ZPR, and SOC cor-
rections for all the electronic-structure schemes considered in
this paper, namely PBE, PBE0, PBEh(α), qsGW , qsGW̃ Boot,
qsGW̃ NQ, qsGW̃ LR, and qsGŴ . Here, the PBEh(α) scheme
refers to calculations in which we use PBEh(α) functionals
with α set to reproduce the experimental band gap in each
interface component and the PBEh(ᾱ) functional for the de-
termination of the line-up potential in the interface model
(cf. Sec. II B). When matching the experimental band gap,
we ensure that the ZPR and SOC corrections are properly
accounted for. Valence and conduction band offsets are given
in Tables VIII and IX, respectively. For the PBE results,
the line-up potential is taken at the PBE level. For all other
schemes, the line-up potential obtained with PBE0 is used.

Rather than discussing valence and conduction band offsets
separately, we focus for each electronic-structure scheme on
the MAEs obtained for all band offsets taken together (cf.
Table X). Rather than aiming at a statistically meaningful
analysis, which is prevented by the small number of inter-
faces, we use the MAE values to guide the comparison with
experiment. We first discuss the set of semiconductor het-
erostructures, because the large errors occurring in the case of
the CaF2/Si interface might otherwise obscure general trends.
The PBE functional yields the largest errors in the band gaps
and correspondingly the largest errors in the band offsets.
Surprisingly, despite its inherent errors in the description of
the band gaps, PBE0 achieves an accuracy similar to that of
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TABLE VIII. Valence band offset �Ev (in eV) at a temperature of 0 K, as calculated with the various electronic-structure schemes
considered in this paper, compared to experimental values. We separately determine with respect to the experimental values the mean absolute
error (MAE) for the semiconductor-semiconductor interfaces and the absolute error (AE) for the CaF2/Si interface.

Interface PBE PBE0 PBEh(α) qsGW qsGW̃ Boot qsGW̃ NQ qsGW̃ LR qsGŴ Expt.

AlP/GaP 0.48 0.54 0.64 0.61 0.64 0.30 0.58 0.55 0.56a

AlAs/GaAs 0.40 0.47 0.44 0.58 0.58 0.51 0.55 0.45 0.53b

Ge/AlAs −1.16 −1.16 −1.26 −1.25 −1.19 −1.25 −1.23 −1.14 −0.95c

Ge/GaAs −0.56 −0.60 −0.70 −0.57 −0.51 −0.63 −0.57 −0.59 −0.56d

Ge/ZnSe −1.24 −1.50 −1.74 −1.77 −1.63 −1.78 −1.72 −1.75 −1.52e

Si/GaP −0.28 −0.35 −0.38 −0.45 −0.42 −0.70 −0.43 −0.32 −0.80f

ZnSe/GaAs 0.64 0.92 1.04 1.22 1.13 1.16 1.16 1.18 1.10g

MAE 0.24 0.14 0.19 0.16 0.13 0.15 0.14 0.16
CaF2/Si 5.46 6.88 8.62 9.49 8.75 8.95 9.66 9.00 8.7h

AE 3.2 1.8 0.1 0.8 0.1 0.3 1.0 0.3

aReference [94]; bReference [77]; cReference [95]; dReference [96]; eReference [97]; fReference [98]; gReference [97]; hReferences [99–101].

PBEh(α), on the order of 0.2 eV. Similarly, all GW schemes
yield MAEs of 0.2 eV or lower. The calculated MAEs do
not correlate with the average error by which the considered
scheme yields band gaps (see δEg in Table X). In fact, the band
offsets in some GW schemes are described even more accu-
rately than in PBEh(α), which reproduces the experimental
band gap by construction. This suggests that the specific val-
ues of the calculated MAEs ranging between 0.14 and 0.20 eV
do not carry particular significance. Furthermore, it should be
remarked that the MAEs achieved here for the band offsets
are significantly lower than found for ionization potentials
in Ref. [37], where, MAEs between 0.3 and 0.8 eV were
found, depending on the employed GW scheme. This further
suggests that the present errors in the range 0.14–0.20 eV
might result from error cancellation due to the similar nature
of the interface components in the set of lattice-matched in-
terfaces considered here [16]. In addition, we remark that the
NANOQUANTA vertex does not yield a higher accuracy for the
band offsets than the effective vertices, suggesting that it is not
worth performing computationally more expensive qsGW̃ NQ

calculations for this type of semiconductor interfaces. Simi-
larly, the qsGŴ scheme, which had been designed to improve
absolute energy-level alignments [37] does not stand out for
higher accuracy compared to the other self-consistent GW

schemes. The generally low MAE values recorded for all GW
schemes investigated here are even more striking when one
considers that the experimental values might not correspond
to abrupt interfaces as assumed in the present paper. For
instance, previous research has shown that the discrepancy
between experimental and theoretical predictions in the case
of the Si/GaP interface could be explained by allowing for
atomic interlayer diffusion at the interface [102].

In a previous study, Steiner et al. achieved valence band
offsets calculated with PBE, PBE0, and PBEh(α) for the
same set of semiconductor-semiconductor interfaces, yielding
respective MAEs of 0.16, 0.12, and 0.22 eV [15]. How-
ever, these calculations did not include relaxation, strain,
ZPR, or spin-orbit coupling effects. Compared with our re-
sults, we record a deterioration of the accuracy of PBE and
PBE0, but an improvement for PBEh(α) (see Table VIII).
Hinuma et al. also investigated the valence band offsets at the
same semiconductor heterostructures considered here [16].
The PBE band offsets are within 0.05 eV from our results
except those for interfaces containing Ge, which show dis-
crepancies between 0.2 and 0.3 eV likely due to a different
treatment of Ge [16]. Hinuma et al. also carried out GW
calculations, but with different schemes than those considered
here, resulting in differences on the order of 0.1–0.2 eV for

TABLE IX. Conduction band offset �Ec (in eV) at a temperature of 0 K, as calculated with the various electronic-structure schemes
considered in this paper, compared to experimental values. The experimental values are inferred from the valence band offset and
the experimental band gaps. We separately determine with respect to the experimental values the mean absolute error (MAE) for the
semiconductor-semiconductor interfaces and the absolute error (AE) for the CaF2/Si interface.

Interface PBE PBE0 PBEh(α) qsGW qsGW̃ Boot qsGW̃ NQ qsGW̃ LR qsGŴ Expt.

AlP/GaP −0.53 −0.56 −0.47 −0.39 −0.48 −0.48 −0.38 −0.37 −0.39
AlAs/GaAs 0.43 0.21 0.25 0.24 0.17 0.08 0.25 0.39 0.19
Ge/AlAs −0.19 −0.18 −0.25 −0.29 −0.20 −0.06 −0.30 −0.27 −0.55
Ge/GaAs 0.10 −0.10 −0.14 −0.17 −0.15 −0.10 −0.17 −0.01 −0.22
Ge/ZnSe 0.07 −0.15 −0.33 −0.39 −0.23 −0.13 −0.38 −0.14 −0.56
Si/GaP −0.82 −0.78 −0.85 −0.83 −0.81 −0.79 −0.81 −0.84 −0.38
ZnSe/GaAs 0.02 0.06 0.19 0.23 0.09 0.04 0.22 0.15 0.20
MAE 0.33 0.23 0.18 0.14 0.20 0.26 0.14 0.24
CaF2/Si 0.94 1.14 1.96 2.49 1.98 2.15 2.36 2.40 1.93
AE 1.0 0.8 0.0 0.6 0.1 0.2 0.4 0.5

245303-9



LORIN, BISCHOFF, TAL, AND PASQUARELLO PHYSICAL REVIEW B 108, 245303 (2023)

TABLE X. Mean absolute errors (MAE) (in eV) calculated with
respect to experimental values for band offsets (δ�Ec/v). The con-
duction and valence band offsets are considered together. For the
semiconductor-semiconductor interfaces (Semi-Semi), we also give
the MAE of the semiconductor band gaps (δEg). For the CaF2/Si
interface, δEg represents the deviation of the band gap of CaF2 from
the experimental value.

Semi-Semi CaF2/Si

Scheme δEg δ�Ec/v δEg δ�Ec/v

PBE 1.04 0.29 4.8 2.1
PBE0 0.35 0.19 2.0 1.3
PBEh(α) 0 0.19 0.0 0.1
qsGW 0.28 0.15 1.6 0.7
qsGW̃ Boot 0.08 0.17 0.2 0.1
qsGW̃ NQ 0.09 0.20 0.6 0.2
qsGW̃ LR 0.10 0.14 1.5 0.7
qsGŴ 0.05 0.20 0.9 0.4

individual band offsets. More specifically, they carried out
GW0, GW TC-TC, and GW �1 calculations finding respective
MAEs of 0.12, 0.16, and 0.15 eV, when evaluated on the same
set of semiconductor heterostructures as studied in this paper.
This range of values is consistent with our results (0.13–
0.16 eV, see Table VIII), further confirming that GW calcu-
lations for this set of interfaces generally yield an accurate
description.

For the CaF2/Si interface, the largest errors are ob-
tained with PBE and PBE0, reflecting the errors found with
these schemes in the description of the band gap (see δEg

in Table X). In PBEh(α), the experimental band gaps of
the interface components are reproduced by construction
and the calculated band offsets are found to closely match
their experimental counterparts, in accord with the good
energy-level alignments previously observed for this func-
tional [13,18,32,42,43]. The GW schemes yield MAEs for
the band offsets ranging between 0.1 and 0.7 eV. The worse
result is found for qsGW and qsGW̃ LR, while the best result
is obtained with qsGW̃ Boot. In the latter case, the devia-
tions with respect to the experimental band offsets are on
par with the PBEh(α) functional. The qsGW̃ NQ closely fol-
lows with a MAE of 0.2 eV. The qsGŴ scheme deceptively
yields a higher MAE of 0.4 eV, although not inconsistent
with its expected accuracy of 0.3 eV in reproducing abso-
lute energy levels [37]. More generally, the errors are found
to correlate with the accuracy by which the GW schemes
describe the band gap of CaF2 (cf. Table X). For this inter-
face, the spread in the GW band offsets is rather large. Like
in the case of the semiconductor-semiconductor interfaces,
it should be mentioned that the experimental band offsets
of the CaF2/Si interface are also subject to some indeter-
mination. Indeed, they are highly sensitive to the fraction
of interfacial Si-F bonding [18], with valence-band offsets
varying between 7 [103,104] and 8.8 eV [100]. The values
adopted in Tables VIII and IX result from an average over
various experimental values corresponding to samples with a
low fraction of interfacial Si-F bonding [99–101].

V. CONCLUSIONS

In this paper, we investigate energy-level alignments
calculated through advanced GW schemes including ef-
fective vertex corrections by focusing on lattice-matched
interfaces. The considered set of interfaces comprise seven
semiconductor-semiconductor interfaces and one insulator-
semiconductor interface. For each interface considered, we set
up an atomic model structure in the superlattice geometry and
allow for full structural relaxation starting from the ideally
abrupt interface. Our study includes a panel of GW schemes,
including qsGW , qsGW̃ Boot, qsGW̃ NQ, qsGW̃ LR, and qsGŴ .
These schemes differ in the way vertex corrections are ac-
counted for. The qsGW scheme does not carry any vertex
corrections and leads to band gaps overestimated by 20%.
Improved band gaps are obtained when vertex corrections are
included. We consider three schemes (qsGW̃ Boot, qsGW̃ NQ,
and qsGW̃ LR) in which a vertex function enters the polariz-
ability and one scheme (qsGŴ ) in which a vertex function
is included in both the polarizability and the self-energy. For
all these schemes, we determine valence and conduction band
offsets through the method based on the line-up of the average
electrostatic potential. We take care of properly including
strain, zero-point renormalization, and spin-orbit corrections
to avoid any systematic bias.

First, our study focuses on the band gaps of the involved
bulk materials. The band gaps of the semiconductors are
reproduced with high accuracy as characterized by mean ab-
solute errors in the range between 0.05 and 0.10 eV, with the
best result obtained for qsGŴ . For the insulator CaF2, the
accuracy of the GW schemes is found to deteriorate, with
deviations with respect to the experimental value reaching up
to 1.5 eV, even when considering only GW schemes includ-
ing vertex corrections. In particular, these GW schemes yield
band gaps spread over a range larger than 1 eV, suggesting
that the predictive potential of such state-of-the-art schemes is
severely challenged when considering a wide band-gap mate-
rial, such as CaF2. Nevertheless, the band gap calculated with
qsGW̃ Boot approaches the experimental value within 0.2 eV.
Focusing on the valence band maximum relative to the av-
erage electrostatic potential, we find that the GW schemes
including the vertex function in the polarizability give results
in close agreement with qsGW , indicating that the band-gap
differences primarily result from shifts of the conduction band
edge. At variance, the qsGŴ scheme leads to an overall up-
wards shift of the valence band edge, while affecting the band
gap in a minor fashion.

Our study devotes particular attention to the potential line-
up as calculated for the model interfaces. Our results support
that the line-up potential is particularly robust showing only
minor variations when different electronic-structure schemes
are employed. This property does not only hold when com-
paring semilocal and hybrid functional results, but also when
including GW calculations in which the charge density is self-
consistently iterated. The largest difference recorded for the
interfaces considered in this work amounts to only 90 meV.

Next, our analysis focuses on the band offsets. For the
semiconductor heterostructures, we find that all the self-
consistent GW schemes yield mean absolute errors of 0.2 eV
or lower. The observed errors do not appear to correlate with
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the accuracy by which the band gaps are described, indicating
that the specific error of each electronic structure scheme is
not informative. While this level of accuracy is higher than
the smallest average error achieved for absolute energy-level
alignments in the literature, this result does not allow us to
discriminate between the various considered schemes. For the
insulator-semiconductor interface, the observed errors on the
band offsets are larger, ranging up to 0.7 eV when consid-
ering the various GW schemes. In the case of the CaF2/Si
interface and unlike for the semiconductor interfaces, the
error on the band offsets for a given GW scheme strongly
correlates with the accuracy by which that same scheme re-
produces the band gap of the insulator material. In particular,
the qsGW̃ Boot scheme, which has been found to best describe
the insulator band gap, yields band offsets within a remarkable
accuracy of 0.1 eV. Further investigations including a large set
of insulator-semiconductor interfaces are necessary to assess
whether the observed trends hold more generally.

In this paper, we investigate band offsets at lattice-matched
interfaces with the scope of benchmarking energy-level
alignments in a context alternative to that of ioniza-
tion potentials at surfaces. This study has revealed that

semiconductor-semiconductor interfaces do not allow one
to critically confront competing state-of-the-art many-body
perturbation methods. Therefore, insulator-semiconductor in-
terfaces spanning larger band offsets are expected to constitute
a better benchmark set for investigating energy-level align-
ments at interfaces. However, in the study of the CaF2/Si
interface, we found that the considered GW schemes differ
significantly in describing the large band gap of the insulator,
thereby preventing us from extracting meaningful considera-
tions from the calculated band offsets. For the wide band-gap
material studied here, the accurate reproduction of the band
gap by current state-of-the-art electronic structure schemes
appears thus as an open problem, which should be addressed
before returning to the alignment issue.
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