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Electrical operation of planar Ge hole spin qubits in an in-plane magnetic field
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Hole spin qubits in group-IV semiconductors, especially Ge and Si, are actively investigated as platforms
for ultrafast electrical spin manipulation thanks to their strong spin-orbit coupling. Nevertheless, the theoretical
understanding of spin dynamics in these systems is in the early stages of development, particularly for in-plane
magnetic fields as used in the vast majority of experiments. In this work, we present a comprehensive theory
of spin physics in planar Ge hole quantum dots in an in-plane magnetic field, where the orbital terms play a
dominant role in qubit physics, and provide a brief comparison with experimental measurements of the angular
dependence of electrically driven spin resonance. We focus the theoretical analysis on electrical spin operation,
phonon-induced relaxation, and the existence of coherence sweet spots. We find that the choice of magnetic field
orientation makes a substantial difference for the properties of hole spin qubits. Specifically, we find that (i)
EDSR for in-plane magnetic fields varies nonlinearly with the field strength and weaker than for perpendicular
magnetic fields. (ii) The EDSR Rabi frequency is maximized when the a.c. electric field is aligned parallel to
the magnetic field, and vanishes when the two are perpendicular. (iii) The orbital magnetic field terms make the
in-plane g-factor strongly anisotropic in a squeezed dot, in excellent agreement with experimental measurements.
(iv) Focusing on random telegraph noise, we show that the effect of noise in an in-plane magnetic field cannot
be fully mitigated, as the orbital magnetic field terms expose the qubit to all components of the defect electric
field. These findings will provide a guideline for experiments to design ultrafast, highly coherent hole spin qubits
in Ge.
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I. INTRODUCTION

Solid state spin qubits are prime candidates for scalable,
highly coherent quantum computing platforms [1–9]. Among
these group IV materials such as Ge and Si stand out thanks
to the absence of piezoelectric interaction with phonons [10]
and the possibility of isotopic purification, which eliminates
the contact hyperfine coupling to the nuclear field [11,12],
with the maturity of semiconductor microfabrication as an
added advantage. Recent years have witnessed a concerted
push towards all-electrical qubit operation, since electric fields
are easier to apply and local ize than magnetic fields, and elec-
trically operated qubit gates offer significant improvements
in speed and power consumption as compared to magnetic
gates. A series of theoretical predictions [13–16] as well as
experimental leaps in growth techniques and sample quality
[17–19] have led to a surge in interest in spin-3/2 hole systems
in group IV materials. The strong and multifaceted spin-orbit
coupling experienced by holes [10,20–24], their anisotropic
and tunable g-tensor [25–29], and the absence of a valley
degree of freedom makes them ideal for electrical spin ma-
nipulation, with Ge offering the additional advantages of a
small effective mass [30] and ease of ohmic contact formation.
Compared to electrons, the weaker hyperfine coupling for
holes [31,32] due to the absence of the contact interaction

significantly reduces the nuclear field contribution to spin de-
coherence, while the hole spin-3/2 is responsible for physics
with no counterpart in electron systems [21,33–36], which
may offer flexibility in future design strategies—for exam-
ple magic angles have been predicted for acceptor qubits,
[35] at which dipole-dipole entanglement can be switched off
without switching off the electric dipole moments of single
qubits.

Remarkable progress on hole spin qubits in several
architectures has spanned more than a decade, with an over-
whelming focus on Ge and Si [7–9]. Initial work focused
on measuring hole spin states [37–40], relaxation and de-
phasing times [41–43], single spin electrical control [44],
readout and control of the g-tensor [45–55] and of spin states
in multiple dots [39,56–59], and achieving single-spin spin
qubits. [60,61] In recent years the development of strained
germanium in SiGe heterostructures [19,30,62] provided a
low-disorder environment, which supported the development
of single-hole qubits [63], singlet-triplet qubits [64], universal
quantum logic [65], and a four-qubit germanium quantum
processor [66]. Experiments have demonstrated ultrafast spin
manipulation using the spin-orbit interaction [63,65,67,68]
and EDSR Rabi oscillations as fast as 540 MHz [68], elec-
trical control of the underlying spin-orbit coupling [69,70]
and charge sensing using a superconducting resonator [71],
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while relaxation times of up to 32 ms have been measured
in Ge dots [72]. Hole spins in Ge have been used as quan-
tum simulators [73] and control of an array of 16 Ge hole
dots has been demonstrated [74]. The development of hybrid
structures offers another path towards entanglement, with the
demonstrations of superconductivity in planar Ge, [75–77]
hole coupling to a superconducting resonator [78], dipole
coupling to a microwave resonator [79], charge sensing us-
ing a superconducting resonator [71] and devices such as
transistors and interferometers [80]. Theoretically, the inter-
play of spin-orbit coupling and superconductivity in hybrid
semiconductor-superconductor structures is only now being
studied in the context of quantum computing [81].

Concomitantly, Si qubits have also registered remarkable
recent progress, with coherence times of up to 10ms in Si:B
acceptors [82] and the detection of sweet spots as a func-
tion of the top gate field in quantum dots [83], sweet spots
having been the subject of a number of theoretical studies
[14,30,35,52,84–91]. Anisotropic exchange was also used to
entangle two hole qubits [92], hole coupling to a supercon-
ducting resonator has been demonstrated [93], and progress
has been made towards higher-temperature operation with
the observation of Coulomb diamonds up to 25 K [94] and
single-qubit operation above 4 K [95].

Despite experimental advances on many fronts, construct-
ing an all-encompassing theory to describe hole physics in
group-IV semiconductor quantum dots is challenging. In
particular, owing to different effective masses and intrinsic
spin-orbit gap in the valence band of these materials, the wide
range of QD sizes as well as spin manipulation timescales
exhibited in experiments render it difficult to provide a theory
of spin qubits common to Si and Ge. In this work we will
focus on Ge, which is somewhat more tractable analytically
than Si, and describe electrical qubit operation in an in-plane
magnetic field. This choice is motivated by the observation
that experiments has overwhelmingly favoured in-plane mag-
netic fields [61,63], partly because a transverse magnetic field
makes it easier to suppress hyperfine and cyclotron quanti-
zation effects, and partly in order to avoid the strong orbital
coupling of the perpendicular field, which can cause a large
diamagnetic shift and also affect tunnel rates. For spin-3/2
holes, in-plane magnetic fields are highly nontrivial, because
the spin and orbital degrees of freedom are intertwined. The
in-plane g-factor is very small, and in Ge most of it comes
from the octupole interaction with the magnetic field [96].
Whereas in-plane magnetic fields have been considered for
realistic devices in recent theoretical studies [90,97–99], these
efforts have been largely from an engineering point of view,
and the orbital effect of an in-plane magnetic field in planar
quantum dots has largely been neglected, though they have
been shown to play an important role in nanowires [100,101].
It has thus not been possible to date to construct a full picture
of spin dynamics and electrical spin operation in planar Ge
hole dots in an in-plane magnetic field. This has left several
outstanding questions unanswered: what determines the speed
of EDSR, as well as the relaxation time T1? Is there an optimal
magnetic field orientation for driving a spin-orbit qubit? Do
coherence sweet spots exist when the magnetic field is in the
plane?

FIG. 1. A prototype double quantum dot in a strained germanium
hole system. The strained quantum well is grown epitaxially on
a strain-relaxed SiGe layer. Gate B2 and T1 control the inter-dot
tunneling. The growth direction is ẑ.

In this work we seek to answer these questions. Our focus
will be on gate-defined Ge quantum dots, with the parent
2DHG exhibiting very high mobility[18,102], low percolation
density, [62,103], and a low effective mass of mh = 0.05 me

[19,75], which all aid the formation of quantum dots. One
reason for our choice of Ge is its band alignment, which
makes it the only group IV material suitable for growing
quantum wells. Another reason is pragmatic—it is easier to
describe theoretically. This is because the spin-orbit splitting
in Ge (�SO = 325 meV) is stronger than that in Si (�SO =
44 meV), resulting in a large separation of the spin-orbit/split-
off (SO) band from the heavy- and light-hole subspaces. This
ensures that the 4 × 4 Luttinger Hamiltonian formalism for
spin-3/2 is adequate for the topmost Ge valence band, as
opposed to Si where the Rashba mediated electrical con-
trol features both heavy hole-light-hole (HH-LH) coupling
contributions and heavy hole-split off (HH-SO) coupling con-
tributions. Ge has a noticeable cubic-symmetry contribution
to the Luttinger Hamiltonian. It is strong enough to enable
electrical spin manipulation in planar dots [30,87], making Ge
ideal for electrical spin operation, but not as strong as in Si,
such that it can be treated perturbatively.

Figure 1 provides a schematic of the device architecture
for studying a planar germanium hole quantum dot qubit. In
this paper we concentrate on developing the key formalisms
for describing the spin physics of hole spin qubits in an in-
plane magnetic field. To avoid unneccessary complexity, and
to keep our results generally applicable, we avoid making the
analysis overly device specific; therefore we do not consider
effects of gate electrode induced nonuniform strain which can
lead to a significant modification of the spin-orbit interac-
tion [55,104]; or Fowler-Nordheim tunneling of hole states
through the SiGe barrier leading to charge accumulation at the
interface between the semiconductor and the gate dielectric;
or light-hole penetration through the SiGe barrier. Addressing
these would require detailed finite element numerical simula-
tion techniques on top of the theory developed here.

For an applied in-plane magnetic field operation of planar
Ge hole QD, in the presence of uniaxial strain but neglecting
shear strain, we show that: (i) EDSR is linear in the magnetic
field with nonlinear corrections emerging at larger fields, and
is driven by Rashba spin-orbit coupling rather than by the
orbital magnetic field terms; the picture that emerges is that
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the orbital B terms give rise to the finite Zeeman splitting
between the qubit energy levels, while the Rashba spin-orbit
coupling gives rise to transitions between them. The EDSR
Rabi frequency is a maximum when the ac electric field is
parallel to the magnetic field, and vanishes when the two are
perpendicular; it can be sizable despite the smallness of the
in-plane g-factor, and has a nonmonotonic dependence on B.
(ii) The relaxation rate is due to bulk acoustic phonons and
is proportional to B3 in the leading power [105]. (iii) For a
squeezed (elliptical) dot with an aspect ratio Ly/Lx = 2 the
spin-flip frequency is an order of magnitude faster than for a
circular dot allowing Rabi time ∼10 ns with ∼105 operations
within time T1. (iv) For a squeezed dot, due to the effect of the
orbital vector potential terms, the in-plane g-factor exhibits
a strong anisotropy resulting in oscillatory behavior as the
magnetic field is rotated in the plane of the dot, an obser-
vation supported by new experimental measurements shown
in Sec. V of this paper. (v) Although extrema in the qubit
Zeeman splitting as a function of the top gate voltage exist
in the same way as for a perpendicular magnetic field [87],
the effect of random telegraph noise in an in-plane magnetic
field cannot be entirely mitigated, because the vector potential
terms expose the qubit to all components of a defect’s electric
field.

The outline of this paper is as follows. Section II lays
down the foundation of the numerical model of a Ge hole
quantum dot qubit withing the framework of effective mass
theory. Next we discuss the properties of circularly symmetric
dots in Sec. III, including the qubit Zeeman splitting, EDSR,
relaxation, and dephasing. In Sec. IV, we focus on elliptical
dots and study their EDSR and coherence properties, while
in Sec. V, we discuss the consequences of g-factor anisotropy
and compare our predictions with recent experimental results.
We end with a summary and outlook in Sec. VI.

II. HAMILTONIAN AND MODEL

The topmost valence band in Ge has orbital angular mo-
mentum l = 1. When the hole spin s = 1/2 is taken into
account the resultant states at the �-point are eigenstates of
the total angular momentum J = (L + S). The fourfold de-
generate j = 3/2 states are separated by the spin-orbit gap
�0 from the j = 1/2 twofold degenerate split-off states. For
Ge the spin-orbit gap �0 = 325 meV, so the split-off band is
safely disregarded in describing hole motion in the topmost
valence bands. The | 3

2 〉 and | − 3
2 〉 states constitute the heavy-

hole (HH) manifold while the | 1
2 〉 and | − 1

2 〉 states represent
the light-hole (LH) manifold. The Luttinger Hamiltonian de-
scribes the hole motion in the topmost valence bands and
has the following form in the j = 3/2 basis {| 3

2 〉, | − 3
2 〉, | 1

2 〉,
|− 1

2 〉}:

HLK(k) =

⎛
⎜⎜⎝

P′ + Q′ 0 L′ M ′
0 P′ + Q′ M ′∗ −L′∗

L′∗ M ′ P′ − Q′ 0
M ′∗ −L′ 0 P′ − Q′

⎞
⎟⎟⎠, (1)

where the matrix elements of the Luttinger Hamiltonian
comprise the k-dependent part and strain-induced
perturbations: P′ = P(k) + Pε, Q′ = Q(k) + Qε, L′ = L(k)

+ Lε, M ′ = M(k) + Mε. The kinetic energy terms are
P = h̄2γ1

2m0
(k2

x + k2
y + k2

z ), Q = h̄2γ2

2m0
(k2

x + k2
y − 2k2

z ), L =
−√

3h̄2γ3

m0
({kx, kz} − i{ky, kz}) and M =

√
3h̄2

2m0
{−γ2(k2

x − k2
y ) +

2iγ3{kx, ky}}. The strain terms are: Pε = −a(εxx + εyy + εzz ),
Qε = −b(εxx + εyy − 2εzz ), Lε = d (εxz − iεyz ) and

Mε =
√

3
2 b(εxx − εyy) − dεxy. Here m0 is the bare electron

mass while γ1 = 13.35, γ2 = 4.25, and γ3 = 5.69 are
Luttinger parameters for Ge. The constant a = 2 eV is
the hydrostatic deformation potential, b = −2.16 eV is the
uniaxial deformation potential, and d = −6.06 eV accounts
for the shear deformation potential. In most Ge/GeSi
samples there is considerable strain in the quantum well,
which significantly increases the splitting between light
and heavy holes compared to silicon—here we take the
compressive strain to be 0.6% [18]. The strain tensor
components in the plane are: εxx = εyy = −0.006. The
in-plane compressive strain elongates the out-of-plane lattice
constant via εzz = −2C12

C11
εxx = 0.004; with C12 = 44 GPa,

C11 = 126 GPa [106]. We assume the off-diagonal shear
elements of the strain tensor to be εi j|i �= j = 0. The out-of-plane
confinement is described by a one-dimensional infinite square
well potential

V (z) =
{

∞ z ∈ {− Lz

2 ,
Lz

2

}
0 otherwise

. (2)

The coupling to the top-gate electric field, denoted by Fz, gives
an additional term eFzz in the Hamiltonian. The in-plane con-
finement is modelled by a parabolic potential Vx,y = 1

2 (λ2
xx2 +

λ2
yy2), where λx, λy are determined by the dot dimensions

Lx, Ly in the plane. The effective hole QD Hamiltonian is
given by

H0D = HLK(k) + eFzz + Vconf, (3)

where Vconf = Vx,y + V (z) is the total confinement potential.
The Zeeman interaction is given by

HZ = −2κμBB · J − 2qμBB · J , (4)

where J = {Jx, Jy, Jz}, J = {J3
x , J3

y , J3
z }; and Jx, Jy, Jz are

the 4×4 Pauli matrices. μB is the Bohr magneton; and κ =
3.41, q = 0.07 for Ge signify the bulk g-factors of isotropic
and anisotropic Zeeman interactions respectively. The J -
terms are vital in order to obtain the correct in-plane g-factor
≈0.25.

In the presence of a magnetic field, the canonical momen-
tum of holes in topmost valence band becomes k → (k + eA

h̄ ).
The hole spin in a planar Ge quantum dot is then described by

HQD = HLK

(
k + eA

h̄

)
+ eFzz + Vconf + HZ . (5)

The resultant modifications due to the vector potential A in
HLK(k + eA

h̄ ) lead to nontrivial contributions to the effective
spin-orbit interaction in the HH and LH manifolds, subse-
quently labeled as “orbital B terms.” To check the gauge
invariance of our theoretical framework, we consistently di-
agonal ize the effective quantum dot Hamiltonian using two
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different gauges:

(1) A = − 1
2 Bzyêx + 1

2 Bzxêy + (Bxy − Byx)êz;
(2) the symmetric gauge: A = 1

2 B × r = 1
2 (Byz −

Bzy) êx + 1
2 (Bzx − Bxz) êy + 1

2 (Bxy − Byx) êz.

All calculations have been performed in both gauges, yield-
ing consistent results ( Appendix A).

The eigenstates of the hole QD can be expressed as
linear combinations of states belonging to a basis in
which the bare QD Hamiltonian is diagonal, i.e., |�QD〉 =∑

i ciψi(x, y, z)|φ j〉, where the bare Hamiltonian refers to
HQD of Eq. (5) with its off-diagonal elements set to zero,
following the practice of k · p theory, as well as the external
magnetic field set to zero. We choose the spatial wave func-
tions as ψ (x, y, z) = ψn(x) ψm(y) ψl (z), where the in-plane
basis states are 1-D Harmonic oscillator states for x and y
and the out-of-plane basis states are given by solutions of the
infinite potential well:

ψn(x) = 1√
2n n!

1√
Lx

√
π

e
− x2

2L2
x Hn

(
x

Lx

)
, x ∈ {−∞,∞};

ψm(y) = 1√
2m m!

1√
Ly

√
π

e
− y2

2L2
y Hm

(
y

Ly

)
, y ∈ {−∞,∞};

ψl (z) =
{

cos
( (l+1)πz

Lz

)
l is even

sin
( (l+1)πz

Lz

)
l is odd

, z ∈
{
−Lz

2
,

Lz

2

}
. (6)

The indices n, m, l in Eq. (6) can take integer values
0, 1, 2, 3, etc. The hole spinors represent the j = 3/2
spin states: |φ j〉 ∈ {| 3

2 〉, | − 3
2 〉, | 1

2 〉, | − 1
2 〉}. When operated

at low in-plane B we are in the ωc � ω0 limit, with ωc the cy-
clotron frequency, so any effect of the in-plane magnetic field
on the dot size are generally irrelevant (they are taken into
account in our 3D formalism). This means the Fock-Darwin
solutions have a one-on-one analogy to the harmonic oscilla-
tor solutions in Eq. (6). The in-plane basis states �n(x)�m(y)
are ordered according to their energy ∝ (n + m + 1). We find
converging solutions to Eq. (5) by considering 55 in-plane
basis states, i.e., (n + m) ∈ [0, 9]; and 15 out-of-plane �l (z)
basis states, i.e., l ∈ [0, 14]. We note that the (n + m) = 0
level has no degeneracy; but considering the degeneracies
of (n + m) = 1, 2, . . . , 9; the simulation spans 55 in-plane
levels. The numerical diagonalization of the resultant 3300 ×
3300 Hamiltonian yields the energy levels of the hole quan-
tum dot: HQD|�QD〉 = λE |�QD〉.

We comment briefly on the choice of spatial Ge basis
functions. Variational analyses of the z-wave function incor-
porating the top gate potential have successfully described Ge
hole QDs in Refs. [23,87], but the variational model is hard
to extend to a full 3D numerical analysis due to the com-
plicated form of the variational excited states. For example,
the Airy function [90,105] provides the exact solution if the
z confinement is modelled as a triangular potential well but
can yield a residual Rashba spin-orbit interaction at nonzero
top gate potential (Fz > 0), requiring a careful choice and
implementation of boundary conditions. In the present paper
we describe the z confinement using an infinite square well
augmented by a linear electrostatic potential that accounts
for the top gate, and consider top gate fields up to 50MV/m

(although values up to 100 MV/m can also be studied with
this method). Ref. [90] used a sophisticated model that in-
corporates Fowler-Nordheim tunneling, which is beyond the
scope of the present study, as explained below. We stress that
the range of Fz is at the lower end of what we consider here
(up to 2.5 MV/m), and thus our studies can be regarded as
complementary.

When the out-of-plane confinement of the hole QD is much
stronger than the in-plane confinement, i.e., in the quasi-2D
limit, the energy splitting �HL between the heavy-hole (HH)
and the light-hole (LH) states becomes much larger than
the in-plane confinement energy. In this situation, one can
use quasidegenerate perturbation theory (the Schrieffer-Wolff
transformation) to write an effective 2×2 Hamiltonian for the
2D hole gas. This approach, when applicable, is a useful com-
plement to the numerical calculations, providing additional
insight into physical processes and functional dependencies.
For this purpose the HH-LH coupling terms, e.g., L, M of
Eqs. (1)–(5) would be treated perturbatively—the details of
the SW transformation are provided in supplementary infor-
mation 2. The effective Hamiltonian has the following form:

Hi j
eff = Hi j

QD + 1

2

∑
m=3,4

Him
QDHm j

QD

(
1

�im
+ 1

� jm

)
+ . . . , (7)

where i, j = 1, 2. This picture can be useful for providing
qualitative explanations of certain experimental observations.
For example, recent experiments have shown unambiguously
that the g-factor of a 2D hole gas is a strong function of
density [52,107]. This is explained by effective 2D theo-
retical models [20,23,26,108], which show that the in-plane
magnetic field gives rise to an effective spin-orbit coupling
whose magnitude is proportional to B [20,26,108]. However, a
significant degree of caution must be exercised when seeking
to understand the dynamics of quantum dots in an in-plane
magnetic field, where a naive application of quasidegenerate
perturbation theory is insufficient. In general, the effective
spin-orbit interaction due to the orbital magnetic field terms
has a highly nontrivial interplay with the Rashba spin-orbit
interaction stemming from the top-gate potential [20,96,108].
For a hole QD in an in-plane magnetic field, as considered
here, this interplay results in significant contribution to hole
spin dynamics from the orbital magnetic field terms. This
contribution, as the following sections make clear, cannot be
captured by a naive Schrieffer-Wolff transformation, because
the orbital magnetic field terms couple the in-plane and out-of-
plane dynamics in a way that makes them inseparable: if one
first reduces the 3D Hamiltonian to an effective 2 × 2 Hamil-
tonian for a 2D hole gas, and then attempts to understand QD
dynamics based on this effective 2D Hamiltonian (in analogy
with electron systems) all the physics of the orbital magnetic
field terms is lost. Hence the full 3D theoretical model de-
scribed is essential to understand the full spin dynamics of a
hole quantum dot in an in-plane magnetic field.

With this in mind, in the subsequent sections we analyze
numerical results from the 3D model, while the 2D formalism
will be used for pedagogical reasons where appropriate, in
particular when it can provide a simple intuitive picture of the
role of various spin-orbit interactions in hole spin dynamics.
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FIG. 2. Qubit Zeeman splitting of hole spin-qubit in B‖. (a) Vari-
ation in the qubit Zeeman splitting �E (μeV) with the in-plane
magnetic field Bx(T). The Zeeman splitting shows a monotonic linear
trend with Bx at Fz = 2 MV/m, Fz = 18 MV/m and Fz = 35 MV/m
top-gate potentials respectively; with in-plane g‖ ∼ 0.22. No signif-
icant difference occurs in the qubit Zeeman splitting for different
top gate field. (b) The in-plane g-factor exhibits an extremum as a
function of the top gate at Fz = 18 and 21 MV/m, respectively for
Bx = 0.1 and 2 T.

III. CIRCULAR QUANTUM DOT

Qubit Zeeman splitting. We solve the full 3D Hamil-
tonian in an external magnetic field along x for a Ge
hole QD with the following dimensions: Lx = 50 nm, Ly =
50 nm, and Lz = 11 nm. We evaluate the QD ground state
|�GS〉 = ∑

i ciψi(x, y, z)|φ j〉 and first excited state |�ES〉 =∑
i c′

iψi(x, y, z)|φ j〉, labeling them as state |0〉 with eigenen-
ergy E0 and |1〉 with eigenenergy E1, respectively. The
coefficients ci(c′

i) constitute the corresponding eigenvector to
the eigenenergy E0(E1). The strong z confinement and the
compressive strain in the Ge layer governs the large heavy
hole-light hole splitting of �LH ∼ 60 meV, so that many
in-plane (quantum dot) levels are contained between any two
out-of-plane (quantum well) levels. This allows us to write
the ground state and the first excited state as |± 3

2 〉 heavy
hole-type with light-hole admixtures: |0〉 = (c1|0, 0, 0, 3

2 〉 +
admixtures) and |1〉 = (c′

1|0, 0, 0,− 3
2 〉 + admixtures), where

the four indices denote n, m, l, Jz. This admixtures are de-
termined by the two primary spin-orbit interactions in the
system: structure inversion asymmetry (SIA) due to the top-
gate potential Fz gives rise to the first Rashba term, which
stems primarily from HH-LH coupling. The second contri-
bution to the spin-orbit interaction comes from the orbital
vector potential terms due to the in-plane magnetic field B.
The qubit Zeeman splitting �E = E1 − E0 shows a linear
trend with Bx [Fig. 2(a)], �E = g‖μBBx, where the effective
in-plane g-factor ranges between 0.215–0.219, expectedly ∼3
orders of magnitude smaller than out-of-plane g-factor for Ge
hole qubits; g‖ � g⊥ [8]. The extrema in the qubit Zeeman
splitting as a function of Fz in an in-plane B [Fig. 2(b)] are ex-
plained by the same mechanism as for out-of-plane magnetic
field operation [87]. At small values of Fz the matrix elements
connecting the HH and LH states, which give rise to Rashba
spin-orbit coupling, increase linearly with the gate field, while

the change in the HH-LH splitting is negligible. At large
values of Fz the increase in the HH-LH splitting outweighs
all other effects and the Rashba spin-orbit coupling decreases
as a function of Fz. These competing effects give rise to an
extremum in the qubit Zeeman splitting at a certain value of
the top gate electric field, where the qubit is insensitive to
z-electric field fluctuations.

EDSR. An alternating electric field Ẽ(t ) can induce spin-
flip transition between the primarily |± 3

2 〉-spin qubit states |0〉
and |1〉 via electron dipole spin resonance (EDSR). When the
frequency of the ac electric field matches the Zeeman splitting
of the hole spin qubit, �E = hν, i.e., at the resonance condi-
tion, the EDSR technique involves driving the hole spin via
the second order virtual transition between the ground orbital
state and excited orbital state of the QD.[30] The EDSR Rabi
frequency is calculated as

fEDSR = 〈0|eẼ(t ) · r|1〉. (8)

Here we will focus on the scenario in which the alternating
electric field is in the plane. For an applied oscillatory electric
field of strength E0 = 10 kV/m, Fig. 3(a) presents the spin-flip
Rabi frequency variation w.r.t. the top gate field and applied
Bx as calculated from the full 3D analysis, with the key fea-
tures of the EDSR Rabi frequency exhibiting a maximum at
a certain value of Fz, as well as a nonlinear dependence of
fEDSR on Bx. In figure 3, the nonlinearity of fEDSR as function
of the applied in-plane magnetic field Bx is best fit as fEDSR =
a f Bx+b f B2

x+c f B3
x at a constant top gate field. We compare

this result with the out-of-plane magnetic field operation of
Ge hole qubits where fEDSR shows linear trend with respect to
|B|; explained by the effective 2D theory.[30,68,87] Following
Eq. (7), we attempt to understand the fEDSR vs Bx trend in
this paper by calculating the effective 2D Hamiltonian in the
{| 3

2 〉, | − 3
2 〉} basis using the Schrieffer-Wolff transformation:

H2×2
eff = H0 + HSO + HZ,2D + V (x, y) + eEx(t )x,

where

H0

(
k‖→

(
k‖+eA

h̄

))
= [Ak2

‖−Bk4
‖−D(k2

+−k2
−)2]I2×2,

HSO = αR2[k3
+σ−−k3

−σ+] − αR3[{k2
+, k−}σ+−{k+, k2

−}σ−],

HZ,2D = g1μ
3
BB3

xσx + g2μBBxk2
x σx + 3

2
qμBBxσx. (9)

Here H0 signifies the hole kinetic energy term in the 2D limit
including a k4 correction [96], and the D term represents
warping of the energy contours [23]. We denote the in-plane
wave vector as k‖ = kxî + ky ĵ, which satisfy k2

‖ = k2
x + k2

y ,
k± = kx±iky. The Pauli matrices satisfy σ± = σx±iσy. The
spin-orbit Hamiltonian HSO comprises two important k-cubic
Rashba terms induced by the top gate field; a spherical term
∝αR2 and a cubic-symmetric correction ∝αR3. The important
Zeeman terms are listed in Hz; while the last two terms in
H2×2

eff represent the 2D confinement energy and the driving
electric field applied along the x direction, respectively. The
relevant coefficients of the effective 2D model are derived in
supplementary information 2, while typical values of these
parameters are provided in Tab. I.

The picture that emerges from the 2D model is the follow-
ing: the orbital B terms along with the anisotropic Zeeman
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FIG. 3. Electric dipole spin resonance of hole qubit in B‖. (a) De-
pendence of the EDSR Rabi frequency fEDSR(GHz) on the top gate
field Fz(MV/m) and in-plane magnetic field Bx (T ). The strength of
the in-plane EDSR driving ac electric field is E0 = 10 kV/m. The
z axis representing fEDSR in the 3D plot is logarithmic. (b) Log-log
plot of fEDSR vs Bx showing a nonmonotonic dependence of EDSR
Rabi frequency on the applied B field as fEDSR = af Bx+bf B2

x+c f B3
x .

The points on the plot signify results from the numerical calculation
while the fitting is denoted by the dashed lines. At Fz = 2 MV/m,

the fitting parameters are af = 0.0002, bf = 0.00002, c f = 0.003;
at Fz = 18 MV/m they are af = 0.005, bf = 0.00006, c f = 0.01
and at Fz = 35 MV/m top-gate potential the fitting parameters are
af = 0.01, bf = 0.00004, c f = 0.01. (c) The Rabi frequency ex-
hibits maxima as a function of the top gate at Fz = 18 MV/m only for
higher magnetic field (Bx = 2T), over the range of top-gate potentials
used in this study.

interaction in HZ give rise to a small finite spin splitting �E in
the lowest orbital state of the quantum dot. The driving term
eEx(t )x generates a spin-preserving �n = 1 orbital transition.
The Rashba spin-orbit coupling HSO gives rise to reversal of
spin in the heavy hole manifold | 3

2 〉→|− 3
2 〉, while inducing

�n = 1 transition between quantum dot orbital levels. Pro-
jecting H2×2

eff onto the in-plane quantum dot states, we evaluate
the EDSR Hamiltonian in quasidegenerate perturbation the-
ory as HQ = �E

2 σz + h fEDSRσx, with fEDSR∝Bx in the leading
order, while the next order of expansion gives fEDSR∝B3

x
(Appendix B).

The significant quadratic B2
x dependence of the EDSR

Rabi frequency at large Fz [Fig. 3(b)] is a signature of

TABLE I. Typical values of the 2D model parameters for hole
number density of p = 2 × 1015 m−2 in the Ge quantum well (QW);
which corresponds to a top gate field of Fz ≈ 2.5 MV/m. The QW
width is Lz = 11 nm.

effective 2D model parameters value

hole number density in Ge layer, p 2 × 1015 m−2

heavy hole-light hole splitting, �HL 53.3 meV
A 0.84 eV nm2

B 1.50 eV nm4

D 0.29 eV nm4

αR2 −0.09 eV nm3

αR3 0.01 eV nm3

g1 8.4 × 104 eV−2

g2 1.5 × 10−20 m2

the orbital B terms. These terms couple the out-of-plane
and in-plane hole dynamics, hence the resultant spin-orbit
coupling is not fully captured by the effective 2D model.
Using the full 3D analysis one can determine possible paths
connecting the |0〉 = (c1|0, 0, 0, 3

2 〉+admixtures) and |1〉 =
(c′

1|0, 0, 0,− 3
2 〉+admixtures) qubit states. Choosing the sym-

metric gauge A = (0,− 1
2 Bxz, 1

2 Bxy), the orbital B terms
induce the following transitions in the Luttinger-Kohn pic-

ture, e.g., {| 3
2 〉 Bx−→| 1

2 〉, | − 1
2 〉 Bx−→| − 3

2 〉}. The top gate potential

gives {nz
eFzz−−→nz±1} which is spin conserving. The Lut-

tinger terms L(k), M(k) couple HH and LH states, e.g.,

{|nx, ny, nz,
3
2 〉 kxkz−−→

L(k)
|nx ± 1, ny, nz ± 1, 3

2 〉}. We consider the

complete spin-orbit picture in the Ge hole QD following
Eq. (5) to sketch a few example paths as follows:

(1) |0, 0, 0, 3
2 〉 Bx−→

L
|0, 0, 0, 1

2 〉 kykz−−→
L

|0, 1, 1, 3
2 〉 kxky−−→

M

|1, 2, 1,− 1
2 〉 eFzz−−→|1, 2, 0,− 1

2 〉 eExx−−→|0, 2, 0,− 1
2 〉 k2

y−−→
J→J

|0, 0, 0,− 1
2 〉 Bx−→

L
|0, 0, 0,− 3

2 〉.
(2) |0, 0, 0, 3

2 〉 kykz−−→
L

|0, 1, 1, 1
2 〉 eExx−−→|1, 1, 1, 1

2 〉 Bxykz−−→
J→J

|1, 0, 2, 1
2 〉 (eFzz)2

−−−→|1, 0, 0, 1
2 〉 kxky−−→

M
|0, 1, 0,− 3

2 〉 Bxykz−−→
J→J

|0, 0, 1,− 3
2 〉 eFzz−−→|0, 0, 0,− 3

2 〉.
These paths indicate the presence of an effective spin-flip

matrix element between |0, 0, 0, 3
2 〉→|0, 0, 0,− 3

2 〉 propor-
tional to B2

x . Figure 3(c) shows the variation of EDSR Rabi
frequency with respect to the top gate field. At Bx = 0.1 T,
fEDSR increases slowly with the top gate field. On the other
hand at higher magnetic fields (Bx = 2 T), the EDSR Rabi
frequency increases more rapidly with Fz, and the maximum
shifts towards lower values of Fz. We find fEDSR to be a
maximum when the ac electric field is parallel to the magnetic
field, and vanishes when the two are perpendicular.

Phonon mediated relaxation. The relaxation mechanism
in Ge hole QD qubits is well explained by acoustic
phonon coupling to the hole spins through the valence
band deformation potential Di, j of Ge. There are no
piezoelectric phonons in Ge, but the hole spin inter-
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FIG. 4. Phonon induced hole spin-qubit relaxation for B‖ op-
eration. (a) Log-log plot of relaxation rate T −1

1 (s−1) vs applied
magnetic field Bx (T) at the top-gate field of Fz = 18 MV/m. The
B dependence of the relaxation rate has been fitted using the fitting
parameters shown in the top inbox. (b) The relaxation rate T −1

1 vs the
top gate field Fz (MV/m) for Bx = 0.67 T.

acts with the thermal bath of the bulk phonons via the
hole-phonon Hamiltonian Hh−ph, where α ∈ {l, t,w} denotes
the polarization directions of the phonon and q is the
phonon wave vector. We write Hh−ph = ∑

i, j Di, jε
α
i, j (r) with

εα
i, j (r) = ∑

q
i
2

√
h̄

2ρNV ωq,α
(qiĉ j + q j ĉi )eiq·r√Nα

q + 1. The re-
laxation rate 1/T1 is written as

1

T1
= 2π

h̄

∑
α,q

|〈0|Hh−ph|1〉α|2δ(�E − h̄ωα,q) (10)

We calculate the relaxation rate using the full 3D quantum
dot analysis by computing in real space the overlap integral
〈0|Hh−ph|1〉α due to position-dependent local strain, followed
by the scattering integral in the phonon wave vector q-space
for a specific polarization direction. The full analytical inte-
grations and dipole approximation calculations are detailed
in Appendix C. Figure 4(a) shows the nonlinear variation of
the relaxation rate T −1

1 with respect to the external magnetic
field Bx, where B3, B4 and B5 terms present in the fitting are
obtained from the full 3D numerical model. While the B3 and
B5 dependencies are explained from the first two terms in
the dipole approximation, the B4 term is understood from the
orbital B admixture. A minimum relaxation time T1 ∼ 80 ms
at an in-plane magnetic field Bx = 0.67 T is obtained. This
result from the theory compares well with a single hole relax-
ation time measurement in Ge of over 30 milliseconds and a
five-hole relaxation time of approximately 1 millisecond by
Lawrie et al. [72]. The magnetic field in the experimental
setup [63,72] is B = 0.67 T, as also used in Fig. 4(a). There
exists a minimum in T1 in the range of Fz considered here
for Bx = 0.67 T [Fig. 4(b)]. At this minimum the Rabi ratio
T1/Tπ ≈ 2 × 105, where Tπ is the time required for an EDSR
π rotation, demonstrating that fast Rabi oscillations can be
achieved without sacrificing T1.

Random telegraph noise (RTN) dephasing. The large spin-
orbit coupling exposes the hole spin qubit to charge noise.
The dephasing time T ∗

2,RTN is evaluated from the fluctuation in
the qubit energy gap, denoted by δω, caused by the screened
potential Us(r) of a nearby single charge defect in the 2DHG

FIG. 5. Qubit dephasing in an in-plane magnetic field. (a) Vari-
ation of qubit dephasing time T ∗

2,RTN (ms) due to random telegraph
noise (RTN) from a nearby in-plane single charge defect 200 nm
away from the qubit with respect to top gate field Fz (MV/m).
(b) Qubit Zeeman splitting �E (μeV) vs applied top-gate field Fz

(MV/m). The applied magnetic field is in the plane with the mag-
nitude Bx = 0.67 T. The dephasing time reaches a minimum at
Fz = 18 MV/m.

[91,109–112]. The mathematical formulation of Us(r) is given
in Appendix D. The matrix elements 〈n, m, l|Us(r)|n′, m′, l ′〉
are added to the full Hamiltonian, and the 3300 × 3300 matrix
is diagonal ized to evaluate the qubit energy splitting in the
presence of the charge defect as �E + δω. The dephasing
rate is

(T ∗
2,RTN)−1 = (δω)2τ

2h̄2 , (11)

where the defect switching time is taken as τ = 103 tRabi.
This picture assumes the most significant contribution to RTN
comes from charge defects away from the top gate, close to
the qubit plane; hence we consider a single charge defect in
the qubit plane situated 200 nm away from the center of the
qubit. Fluctuating single charge defects right above the qubit
will be screened by the presence of the top-gate, where the
image charge changes the interaction to a much weaker dipole
interaction. In contrast fluctuating charges in the plane of the
quantum well are less effectively screened by surface gates,
and may be the dominant source of charge noise [113].

It is evident that for hole qubit in an in-plane magnetic
field, the dephasing time T ∗

2,RTN actually decreases as a func-
tion of the top gate electric field Fz, and reaches a minimum
at a certain value of this field [Fig. 5(a)], in other words,
a coherence hot spot. The location of this dephasing time
hotspot is closely related to the extremum in the qubit Zeeman
splitting [Fig. 5(b)]. This behavior is in sharp contrast to hole
spin qubits in a perpendicular magnetic field, where the qubit
exhibits a sweet spot at a certain value of the top gate field
[Fig. 6(a)], at which its sensitivity to noise vanishes to leading
order in the noise strength, and dephasing time T ∗

2,RTN reaches
a maximum. The location of the sweet spot in Fz for out-of-
plane qubit operation is closely related to an extremum in the
qubit Zeeman splitting [Fig. 6(b)].

B⊥ vs B‖ coherent qubit operation. In the context of qubit
coherence one must distinguish between extrema in the qubit
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FIG. 6. Qubit dephasing in an out-of-plane magnetic field.
(a) Variation of qubit dephasing time T ∗

2,RTN (ms) due to random
telegraph noise (RTN) from a nearby in-plane single charge defect
200 nm away from the qubit with respect to top gate field Fz (MV/m).
(b) Qubit Zeeman splitting �E (μeV) vs applied top-gate field Fz

(MV/m). The applied magnetic field is in the plane with the magni-
tude Bx = 0.1 T. In this case, the dephasing time exhibits a maximum
in top-gate field.

Zeeman splitting and actual sweet spots in the coherence time.
It is important to recall that in a spin qubit the dephasing
time T ∗

2 depends on the magnitude of the magnetic field. This
follows from time-reversal symmetry considerations, since the
combination of charge noise and spin-orbit coupling cannot
give rise to an energy difference between qubit states that form
a Kramers doublet. The magnetic field dependence involves
both the Zeeman terms and the orbital vector potential terms,
a fact that is responsible for the main difference between
in-plane and out-of-plane magnetic fields with regard to qubit
dynamics: the make up of the ground and first excited states
is very different when the magnetic field is in the plane and
when it is out of the plane.

For an out of plane magnetic field the hole g-factor is
large, having a textbook value of 20.4 for Ge [20,114]. With
the magnetic field out of the plane one can understand the
physics qualitatively by considering an approximate decom-
position of in-plane and out-of-plane dynamics by means
of a Schrieffer-Wolff transformation [87]. The picture that
emerges is that the top gate electric field primarily affects
spin dynamics in the plane by enabling a Rashba term. In a
quantum dot this Rashba term is responsible for a renormal-
ization of the g-factor. In other words, one can think of the
magnetic field terms as providing the qubit Zeeman splitting,
and the Rashba spin-orbit terms as renormalizing this Zeeman
splitting. Background charge fluctuations generating an elec-
tric field perpendicular to the plane are the biggest danger for
this qubit, because they directly affect the Rashba interaction
and through it the g-factor, generating pure dephasing. A more
detailed analysis of hole spin qubit in B⊥ [87] reveals that
in-plane charge fluctuations do not produce pure dephasing to
leading order. Hence for B⊥ operation, when the qubit Zeeman
splitting is at an extremum with respect to the top gate electric
field [Fig. 6(b)], the qubit is protected against noise and one

also observes a sweet spot in T ∗
2 in the vicinity of this point

[Fig. 6(a)].
On the other hand, for hole spin qubit in B‖, we recall

that to a first approximation the in-plane g-factor is zero,
hence the entire qubit Zeeman splitting is given by coupling to
the excited states. This coupling involves Luttinger spin-orbit
terms, the orbital magnetic field terms, the top gate electric
field, and any other electric fields present in the system. The
orbital terms due to the magnetic field mix the in-plane and
out-of-plane coordinates regardless of the gauge choice. There
is no clear separation between in-plane and out-of-plane dy-
namics, and no suitable Schrieffer-Wolff transformation from
the 3D picture to the asymptotic 2D limit. One may at best
envisage a combined Rashba-Zeeman interaction with contri-
butions from all the components of the electric field, not just
the top gate. The qubit states contain a strong admixture of all
the higher orbital excited states in all three directions, which
exposes the qubit to all components of the electric field of the
defect. Thus, even though one can still identify an extremum
in the qubit Zeeman splitting as a function of the top gate field
[Fig. 5(b)], this does not offer full protection against noise
[Fig. 5(a)]. It only protects against noise fields perpendicular
to the plane, without offering any protection against the in-
plane electric field of a defect. We check explicitly that for
a defect that produces only an out-of-plane electric field at
the qubit location the sensitivity to this out-of-plane noise is
minim ized at the extremum in the Zeeman splitting. We have
also checked that the qubit is not shielded from the in-plane
electric field of the defect at this extremum: there is nothing
special about the extremum from this perspective. We note
that in an experimental sample exposed to an ensemble of
defects it is possible for the net in-plane electric field to cancel
out, or nearly cancel out. Hence, to achieve a more complete
understanding of coherence, it is vital to consider a realistic
configuration leading to 1/ f noise. In light of this, and of
additional complexities identified recently in modeling hole
spin coherence [115], we defer the full theory of hole spin
coherence in the presence of 1/ f noise to a future publication.

We note that our findings appear to agree with recent
experimental work reporting sweet spot operation of a Ge
hole spin qubit [116] as well as strong anisotropy in the noise
sensitivity. Sensitivity to charge noise is found to increase sig-
nificantly when the qubit is operated in an in-plane magnetic
field. This is in agreement with the finding of the present paper
that in-plane magnetic fields expose the qubit to noise much
more strongly than out-of-plane magnetic fields, leading to the
coherence hot spot seen in Fig. 5(a). Remarkably, the domi-
nant source of noise in Ref. [116] is believed to lie directly
above the qubit, implying charge fluctuations predominantly
in the perpendicular electric field component, and suggesting
the qubit was not operated in the sweet spot for out-of-plane
charge fluctuations. Nevertheless, a full comparison between
theory and experiment is premature at this stage, given that
tilting of the g-tensor and local strain have not been considered
in the present work.

IV. ELLIPTICAL QUANTUM DOT

Introducing asymmetry into the planar confinement, i.e.,
having one lateral confinement potential stronger than the
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FIG. 7. (a)Variation of the EDSR Rabi frequency fEDSR with the
aspect ratio Ly/Lx of the hole QD. The confinement in x is fixed at
Lx = 50nm while Ly is varied. The calculation is done for Bx = 0.7T.
The EDSR driving field is applied along the x̂ direction. fEDSR is
a minimum when the dot is circular, i.e., Lx = Ly = 50nm, while
elliptical dots show an improvement of > 1 order of magnitude in
the EDSR spin-flip rate at high ellipticities. (b) Linear monotonic
dependence of fEDSR on the applied in-plane magnetic field Bx for an
elliptical dot with Ly/Lx = 2, Lx = 50nm for three different values
of the top gate potential: Fz = 2 , 18 , and 35 MV/m. (c) Variation in
fEDSR with the top gate electric field for an elliptical dot at low (0.1 T)
and high (2 T) in-plane magnetic fields, displaying a maximum
EDSR Rabi frequency at Fz = 18 and 21 MV/m, respectively.

other (Lx �=Ly) will bring in additional sources of structure
inversion asymmetry (SIA). For such elliptical hole QDs, the
resultant Rashba spin-orbit interaction is stronger, bridging
the gap between planar QD and nanowires [99] in terms of
fast gate operations. A theoretical understanding of QD ellip-
ticity for holes is thus important. Insight into our numerical
results for elliptical hole QD (Fig. 7) can be obtained from
the effective 2D spin-orbit Hamiltonian HSO in Eq. (9) which
contains the k3-Rashba terms with spherical coefficient αR2

and cubic-symmetry coefficient αR3:

αR2 = 3h̄4

2m2
0

γ3γ

�HL
〈�H |�L〉[〈�H |k̂z|�L〉 − 〈�L|k̂z|�H 〉],

αR3 = − 3h̄4

2m2
0

γ3δ

�HL
〈�H |�L〉[〈�H |k̂z|�L〉 − 〈�L|k̂z|�H 〉],

(12)

where γ = (γ2 + γ3)/2, δ = (γ2 − γ3)/2, with γ2 = 4.25 and
γ3 = 5.69 being the Ge Luttinger parameters. �HL signifies
the HH-LH splitting, while, e.g., 〈�H |k̂z|�L〉, denote matrix
elements between the HH and LH states. For the in-plane
dimensions Lx, Ly of the hole quantum dot, the spherical

term ∝ αR2 scales as ∝[1 − L2
y

L2
x
] (Appendix B). Hence in a

circular dot (Lx = Ly), only the cubic-symmetry correction
αR3 is responsible for EDSR, while the αR2 term does not
contribute to EDSR. In contrast, in an elliptical dot (Lx �=Ly),
the αR2 term makes a strong contribution to EDSR. Moreover,
from Eq. (12) we can write αR3 = (δ/γ ) αR2, which can be
evaluated using Ge material parameters as α2 ≈ 10 α3 for
elliptical dots (e.g., Table I). We present the results for a dot
size of Lz = 11 nm, Lx = 50 nm, and varying Ly. Figure 7(a)
shows the variation of the EDSR Rabi frequency with the
aspect ratio Lx/Ly, showing that an increase in the aspect ratio
results in a larger Rabi frequency. The qubit Zeeman splitting
is linear in the applied in-plane magnetic field, similar to the
circular case. The relaxation rate varies as B3. The EDSR Rabi
frequency is linear in B [Fig. 7(b)], which is reminiscent of
out-of-plane B-field operation in presence of strong structure
inversion asymmetry; and the Rabi frequency exhibits a max-
imum as a function of Fz [Fig. 7(c)].

V. G-FACTOR ANISOTROPY OF ELLIPTICAL
QD AND COMPARISON WITH EXPERIMENT

The in-plane g-factor of an elliptical dot is strongly
anisotropic and exhibits an oscillatory behavior as the mag-
netic field is rotated in the plane. We compare the predicted
variation of the g-factor with experimentally measured values
from EDSR in a planar germanium hole qubit. The qubit sam-
ple is a gate-defined double quantum dot in a Ge/Si0.2Ge0.8

heterostructure. (See Ref. [65] for further sample info). The
dots are assumed to be elliptical, with a slight misalignment of
their semimajor axes. Figure 8(a) shows a false color SEM of
the gate design. Plunger gates (purple) are used to define the
two dots, while the barrier gates (green) are used to control
coupling to the leads and between the dots. Metal ohmic
contacts (yellow) act as a reservoir for holes. By negatively
biasing the barrier and plunger gates, the sample can be tuned
to the few hole regime. The relative angle between the applied
magnetic field direction in the plane and the double dot trans-
port direction is denoted by θ . Bias triangles of the double
dot measured via transport for positive and negative bias are
shown in Figs. 8(b) and 8(c). A region of Pauli spin blockade
is visible at the base of one charge transition as indicated by
a yellow circle. By applying an external magnetic field and a
microwave tone to the P2 gate, we are able to drive spin ro-
tations via EDSR when the microwave frequency matches the
Larmor frequency (h̄ f = gμBB). These spin rotations lift the
Pauli spin blockade, causing a change in the current through
the double dot. Using a lock-in amplifier, we measure the
difference in current through the double dot when the mi-
crowave is on versus off. Figure 8(d) shows the change in the
leakage current for the double quantum dot with the external
magnetic field applied in the direction indicated in Fig. 8(a).
Clear EDSR lines are visible for both dots, and both single
and multiphoton lines can be seen. From the slope of these
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FIG. 8. (a) Sample scanning electron microscope (SEM) image
of a gate-defined Ge double dot. [(b) and (c)] Bias triangles (dashed)
in forward and reverse bias, respectively. Pauli spin blockade is
visible in the transition marked by a yellow circle. (d) g-factors
measured via EDSR for the magnetic field direction indicated in
part (a) (black solid arrow). (e) Comparison of the g-factor measured
via EDSR with the theoretical prediction. The experimental results
for g-factor anisotropy in Ref. [117] are presented as scatter plots
of effective g-factor (g∗) versus the in-plane magnetic field angular
orientation with respect to the double dot transport direction (θ ).
We use triangular markers to denote the experimental data in scatter
plots, while the solid fit lines are generated using the theoretical
model in Sec. II. The g-factor for the left dot is denoted by gL (empty
blue triangular experimental data points, solid red theoretical fit line),
while the right dot g-factor is denoted by gR (filled yellow triangular
experimental data points, solid purple theoretical fit line).

resonance lines the g-factor can be calculated for each dot.
Using this technique, we measure the g-factor as a function of
field angle by rotating a magnetic field of B = 0.7 T in the 2D
plane. Figure 8(e) shows the results of this measurement for
both quantum dots, revealing an oscillatory variation in the
g-factor as a function of in-plane magnetic field angle. The
direction of θ is shown in Fig. 8(a).

Using the model developed in Sec. II, we fit to the exper-
imental data. For both dots, we use the same size, shape and
strain. We are able to account for the difference in g-factor
between the dots by considering only a rotation of the dot axes
in-plane and a change in the magnitude of the vertical electric
field. A full list of fitting parameters is given in Table II. The
maximum value of the g-factor is not aligned with the external
magnetic field or sample axes, and is also different for the left
and right dots. To account for this, we introduce a phase shift
angle (θps) which effectively rotates the axes of the quantum
dots. Here θps,l = 3π/4 and θps,r = 5π/8 The magnitude of
the g-factor is also different for each dot. This is accounted
for by changing the vertical electric field applied to each dot.
Here we use 10MV/m for the left dot and 45MV/m for the
right dot. The results of the fits for both dots are shown by the
solid lines in Fig. 8(e).

The theoretical fit in Fig. 8(e) shows good agreement
between the phase shift angle θps parameter choices and B-
field angular orientations where the experimental g-factors are
maximum. In other words, the largest value of the g-factor

TABLE II. List of the parameters used to fit the analytical model
to the experimental g-factor anisotropy data in Fig. 8(e). While the
choices of phase shift angles (θps) explain the experimental artifact
of relative misalignment of the two dots; the top-gate voltages (Fz)
are tuned to match the g-factor oscillation amplitudes of the dots. We
stress however that the choice of fitting parameters given in this table
for Fig. 8(e) is not unique. A possible set of parameters that yields
a similar theoretical fitting of the experimental data in Fig. 8(e) are
listed in Appendix E.

Fitting Parameters values

Left QD in-plane dimensions 40 nm×30 nm
Right QD in-plane dimensions 40 nm×30 nm
Left dot perpendicular confinement (Lz,l ) 10 nm
Right dot perpendicular confinement (Lz,r) 10 nm
Left dot top-gate voltage (Fz,l ) 10 MV/m
Right dot top-gate voltage (Fz,r) 45 MV/m
Left dot phase shift θps,l 3π/4
Right dot phase shift θps,r 5π/8
Left dot uni-axial compressive strain εxx,l −0.006
Right dot uni-axial compressive strain εxx,r −0.006
Applied magnetic field magnitude B 0.7 T

occurs when the magnetic field is parallel to the semi-major
axis of the elliptical hole QD. This behavior is consistent with
the effective in-plane g-factor being primarily the result of
coupling to higher excited states brought about by the orbital
magnetic field terms. We note that inhomogeneous strain in
the sample, or the Ge/SiGe heterostructure interface induced
roughness and disorder, or a misalignment of the sample with
respect to the in-plane B field (since g⊥ � g‖) could poten-
tially lead to significant modulation of the g-tensor. We can
rule out the latter, since there is a different phase shift for
the left and right dots in Fig. 8(e). The effects of strain and
inhomogeneities on g-factor anisotropy will be considered in
a future publication.

VI. CONCLUSIONS AND OUTLOOK

We have presented a general ized model that fully describes
the electrical operation of a planar germanium hole qubit
in presence of an in-plane magnetic field. A comprehensive
theory for spin manipulation via electron dipole spin reso-
nance (EDSR) is given: surface inversion asymmetry (SIA)
mediated fast EDSR is a result of the k · p coupling of the
heavy hole ground state to higher energy light-hole bands.
The EDSR rate is linear in B with important nonlinear cor-
rections due to orbital mixing. Qubit relaxation is induced by
acoustic phonons and the relaxation rate 1/T1 has terms with
B3, B4, B5 dependence, again reflecting the importance of the
orbital mixing. In-plane operation demonstrates an excellent
trade-off between relaxation and EDSR. The in-plane g-factor
is strongly anisotropic and oscillates as the magnetic field is
rotated in the plane. Random telegraph noise from charges in
the plane of the quantum well results in decoherence, with
an optimal top gate potential where it is insensitive to �Fz;
although the in-plane magnetic field exposes the qubit to x-y
electric field of the fluctuator. Hence, in contrast to the case
of out-of-plane magnetic fields, coherence sweet spots cannot
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be identified in an in-plane B for a qubit exposed to electric
field fluctuations in all spatial directions. For an elliptical QD
of aspect ratio Ly/Lx = 2, EDSR is shown to be faster by an
order of magnitude compared to a circular dot of Lx = 50 nm
radius; and the nonlinear correction to EDSR is suppressed as
rotational asymmetry induces more SIA Rashba.
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FIG. 9. EDSR time Tπ (ns) vs top gate field Fz and in-plane
magnetic field Bx .

APPENDIX A: GAUGE INVARIANCE

The hole motion in the topmost valence band is described by the 4×4 Luttinger-Kohn (LK) Hamiltonian, which in the general
operator form is given by

HLK = h̄2

2m0

[(
γ1 + 5γ2

2

)
k2 − 2γ2

(
k2

x J2
x + k2

y J2
y + k2

z J2
z

) − 4γ3({kx, ky}{Jx, Jy} + c.p.)

]
(A1)

Expanding the anticommutators, LK Hamiltonian has the form:

HLK = h̄2

2m0

[(
γ1 + 5γ2

2

)(
k2

x + k2
y + k2

z

) − 2γ2
(
k2

x J2
x + k2

y J2
y + k2

z J2
z

) − 4γ3

((
kxky + kykx

2

)(
JxJy + JyJx

2

)

+
(

kykz + kzky

2

)(
JyJz + JzJy

2

)
+
(

kxkz + kzkx

2

)(
JxJz + JzJx

2

))]
(A2)

with m0 notifying bare electron mass, γ1 = 13.38, γ2 = 4.24, and γ3 = 5.69 are Luttinger parameters. We have tried two
different gauges: 1

2 B × r and gauge choice from Loss et al. [86].

1. Gauge 1

In presence of magnetic field, the momentum correction would be k → (k + eA
h̄ ). We use the gauge A = − 1

2 Bzyêx +
1
2 Bzxêy + (Bxy − Byx)êz (symmetric in z, Landau gauge in x-y).

a. Momentum correction.
(1) The components of corrected momentum:

kx →
(

kx − eBz

2h̄
y

)
, ky →

(
ky + eBz

2h̄
x

)
, kz →

(
kz + eBx

h̄
y − eBy

h̄
x

)
,

where k = −ι∂ . For By = 0 and Bz = 0, we write kx → kx, ky → ky, kz → (kz + eBx
h̄ y).

(2) We evaluate k2
i terms below:

k2
x ⇒ k2

x , k2
y ⇒ k2

y , k2
z ⇒

(
k2

z + 2eBxykz

h̄
+ e2B2

xy2

h̄2

)
(A3)

and the cross-terms kik j are

kxky ⇒ kxky; kykz ⇒
(

kykz + eBx

h̄
{y, ky}

)
; kxkz ⇒

(
kxkz + eBxykx

h̄

)
. (A4)

(3) Using these corrections, the LK Hamiltonian is

HLK =
[(

γ1 + 5γ2

2

)(
k2

x + k2
y + k2

z + 2eBxykz

h̄
+ e2B2

xy2

h̄2

)
− 2γ2

(
k2

x J2
x + k2

y J2
y +

(
k2

z + 2eBxykz

h̄
+ e2B2

xy2

h̄2

)
J2

z

)

− 4γ3

(
kxky{Jx, Jy} +

(
kykz + eBx

h̄
{y, ky}

)
{Jy, Jz} +

(
kxkz + eBxykx

h̄

)
{Jz, Jx}

)]
h̄2

2m0
, (A5)
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where

H11/22
LK = h̄2

2m0

[
(γ1 − 2γ2)

(
k2

z + 2eBxykz

h̄
+ e2B2

xy2

h̄2

)
+ (γ1 + γ2)

(
k2

x + k2
y

)]
,

H33/44
LK = h̄2

2m0

[
(γ1 + 2γ2)

(
k2

z + 2eBxykz

h̄
+ e2B2

xy2

h̄2

)
+ (γ1 − γ2)

(
k2

x + k2
y

)]
,

H13
LK = L = −

√
3

h̄2γ3

m0

[(
kxkz + eBxykx

h̄

)
− i

(
kykz + eBx

h̄
{y, ky}

)]
,

H14
LK = M =

√
3h̄2

2m0

[−γ2
(
k2

x − k2
y

) + 2iγ3kxky
]
. (A6)

2. Gauge 2

In this section, we use the symmetric gauge ( 1
2 B × r): A = 1

2 (Byz − Bzy)êx + 1
2 (Bzx − Bxz)êy + 1

2 (Bxy − Byx)êz.
b. Momentum correction.
(1) The components of corrected momentum with By = 0, Bz = 0:

kx → kx, ky →
(

ky − eBx

2h̄
z

)
, kz →

(
kz + eBx

2h̄
y

)
where, k = −ι∂. (A7)

(2) We evaluate k2
i terms below:

k2
x ⇒ k2

x , k2
y ⇒

(
k2

y − eBxzky

h̄
+ e2B2

xz2

4h̄2

)
, k2

z ⇒
(

k2
z + eBxykz

h̄
+ e2B2

xy2

4h̄2

)
(A8)

and the cross-terms kik j are

kxky ⇒
(

kxky − eBxzkx

2h̄

)
; kykz ⇒

(
kykz + eBx

2h̄
({y, ky} − {z, kz}) − e2B2

x

4h̄2 yz

)
; kxkz ⇒

(
kxkz + eBxykx

2h̄

)
. (A9)

(3) Using these corrections, the LK Hamiltonian terms become

HLK = h̄2

2m0

[(
γ1 + 5γ2

2

)(
k2

x + k2
y − eBxzky

h̄
+ e2B2

xz2

4h̄2 + k2
z + eBxykz

h̄
+ e2B2

xy2

4h̄2

)

− 2γ2

(
k2

x J2
x +

(
k2

y − eBxzky

h̄
+ e2B2

xz2

4h̄2

)
J2

y +
(

k2
z + eBxykz

h̄
+ e2B2

xy2

4h̄2

)
J2

z

)
− 4γ3

((
kxky − eBxzkx

2h̄

)
{Jx, Jy}

+
(

kykz + eBx

2h̄
{y, ky} − eBx

2h̄
{z, kz} − e2B2

x

4h̄2 yz

)
{Jy, Jz} +

(
kxkz + eBxykx

2h̄

)
{Jz, Jx}

)]
, (A10)

where

H11/22
LK = h̄2

2m0

[
(γ1 − 2γ2)

(
k2

z + 2eBxykz

h̄
+ e2B2

xy2

h̄2

)
+ (γ1 + γ2)

(
k2

x + k2
y − eBxzky

h̄
+ e2B2

xz2

4h̄2

)]
, (A11)

H33/44
LK = h̄2

2m0

[
(γ1 + 2γ2)

(
k2

z + 2eBxykz

h̄
+ e2B2

xy2

h̄2

)
+ (γ1 − γ2)

(
k2

x + k2
y − eBxzky

h̄
+ e2B2

xz2

4h̄2

)]
, (A12)

H13
LK = L = −

√
3

h̄2γ3

m0

[(
kxkz + eBxykx

2h̄

)
− i

(
kykz + eBx

2h̄
{y, ky} − eBx

2h̄
{z, kz} − e2B2

x

4h̄2 yz

)]
,

H14
LK = M =

√
3h̄2

2m0

[
− γ2

(
k2

x − k2
y + eBxzky

h̄
− e2B2

xz2

4h̄2

)
+ 2iγ3

(
kxky − eBxzkx

2h̄

)]
. (A13)

Figure 9 shows the variation of the EDSR Rabi frequency fEDSR with respect to the applied magnetic field strength Bx and
top-gate field strength Fz for both gauge choices; emphasising the gauge invariance of the model.

APPENDIX B: SCHRIEFFER-WOLFF TRANSFORMATION

A Hamiltonian H = H0 + H ′ comprising two parts: H0 with known eigenvalues En and eigenfunctions |�n〉, and a perturba-
tion H ′; can be treated in quasidegenerate perturbation theory which is particularly suitable for approximate diagonalization of
k · p subband Hamiltonians. The set of eigenfunctions {|�n〉} can be divided in subsets A and B, which are weakly interacting
via perturbation. The quasidegenerate perturbation theory produces a unitary transformation H̃ = e−SHeS , such that the matrix
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elements of H̃ between eigenfunctions |�l〉 from set A and |�m〉 from set B vanishes: 〈�n|H̃ |�l〉 = 0. In the context of this work,
this unitary transformation is known as Schrieffer-Wolff transformation. S can be calculated using the anti-Hermiticity property
S† = −S, which allows one to evaluate the transformed Hamiltonian as H̃ = H (0) + H (1) + H (2) + H (3) + . . . The expansion
signifies the diagonalization of the subband Hamiltonian in increasing order of subband interactions:

H (0)
mm′ = H0

mm′ ,

H (1)
mm′ = H ′

mm′ ,

H (2)
mm′ = 1

2

∑
l

H ′
ml H

′
lm′

[
1

Em − El
+ 1

Em′ − El

]
,

H (3)
mm′ = −1

2

∑
l,m′′

[
H ′

ml H
′
lm′′H ′

m′′m′

(Em′ − El )(Em′′ − El ))
+ H ′

mm′′H ′
m′′lH

′
lm′

(Em − El )(Em′′ − El ))

]

+ 1

2

∑
l,l ′

H ′
ml H

′
ll ′H

′
l ′m′

[
1

(Em − El )(Em − El ′ )
+ 1

(Em′ − El )(Em′ − El ′ )

]
, (B1)

where m, m′, m′′ denotes states from set A and l, l ′, l ′′ denotes higher energy states from set B.

1. 3D Hamiltonian to effective 2D Hamiltonian

Applying Eq. (B1) to the 4 × 4 quantum dot Hamiltonian with large HH-LH splitting in the j = | 3
2 〉 basis, we derive the final

formula in Eq. (7) for writing down the effective 2 × 2 transformed Hamiltonian in the lowest energy HH states. We derive the
matrix elements of the 2 × 2 Hamiltonian explicitly here. Not including the uni-axial strain terms, first we identify H0 and H ′
from Eq. (1) as follows:

H0 =

⎛
⎜⎜⎜⎜⎝

P + Q 0 | 0 0
0 P + Q | 0 0

− − − − − − −|− − − − − − −
0 0 | P − Q 0
0 0 | 0 P − Q

⎞
⎟⎟⎟⎟⎠; H ′ =

⎛
⎜⎜⎜⎜⎝

0 0 | L M
0 0 | M∗ −L∗

− − − − − − −|− − − − − − −
L∗ M | 0 0
M∗ −L | 0 0

⎞
⎟⎟⎟⎟⎠, (B2)

where the Luttinger Hamltonian has the following matrix elements: P + Q = h̄2

2m0
(γ1 − 2γ2)k2

z + h̄2

2m0
(γ1 + γ2)k2

‖ , with k2
‖ =

k2
x + k2

y , L = −√
3h̄2γ3

m0
k−kz and M = −

√
3h̄2

2m0
(−γ k2

− + δk2
+). k± = kx ± iky, γ = γ2+γ3

2 , δ = γ2−γ3

2 are defined. One can readily

calculate H (0) = (P + Q 0
0 P + Q), H (1) = (0 0

0 0). In the second order of Schrieffer-Wolff transformation, the diagonal terms would
be

H (2)
11 = 1

2

∑
l=3,4

H ′
1l H

′
l1

[
1

E1 − El
+ 1

E1 − El

]
= H ′

13H ′
31

[
1

E1 − E3

]
+ H ′

14H ′
41

[
1

E1 − E4

]

= −〈L〉HL〈L∗〉LH

�HL
− 〈M〉HL〈M∗〉LH

�HL

= − 1

�HL

⎡
⎣(√

3h̄2γ3

m0

)2

k−k+〈H |k̂z|L〉〈L|k̂z|H〉 +
(

−
√

3h̄2

2m0

)2

(γ k2
− + δk2

+)(γ k2
+ + δk2

−)〈H |L〉〈L|H〉
⎤
⎦

= − 1

�HL

⎡
⎣(√

3h̄2γ3|〈H |k̂z|L〉|
m0

)2(
k2

x + k2
y

) +
(√

3h̄2|〈H |L〉|
2m0

)2(
(γ 2 + δ2)k2

−k2
+ + γ δ(k4

− + k4
+)
)⎤⎦

= − 1

�HL

⎡
⎣(√

3h̄2γ3|〈H |k̂z|L〉|
m0

)2(
k2

x + k2
y

) +
(√

3h̄2|〈H |L〉|
2m0

)2(
(γ 2 + δ2)

(
k2

x + k2
y

)2 + γ δ((k2
+ − k2

−)2 + 2k2
+k2

−)
)⎤⎦

= − 1

�HL

⎡
⎣(√

3h̄2γ3|〈H |k̂z|L〉|
m0

)2(
k2

x + k2
y

) +
(√

3h̄2|〈H |L〉|
2m0

)2(
γ 2

2

(
k2

x + k2
y

)2 + 1

4

(
γ 2

2 − γ 2
3

)
(k2

+ − k2
−)2

)⎤⎦

= − 1

�HL

⎡
⎣(√

3h̄2γ3|〈H |k̂z|L〉|
m0

)2

k2
‖ +

(√
3h̄2|〈H |L〉|

2m0

)2(
γ 2

2 k4
‖ + 1

4

(
γ 2

2 − γ 2
3

)
(k2

+ − k2
−)2

)⎤⎦. (B3)
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So up to second order in SW transformation, H11
eff = H̃11 can be written as

H11
eff = h̄2

2m0
(γ1 − 2γ2)〈H |k̂2

z |L〉 + h̄2

2m0
(γ1 + γ2)k2

‖

− 1

�HL

⎡
⎣(√

3h̄2γ3|〈H |k̂z|L〉|
m0

)2

k2
‖ +

(√
3h̄2|〈H |L〉|

2m0

)2(
γ 2

2 k4
‖ + 1

4

(
γ 2

2 − γ 2
3

)
(k2

+ − k2
−)2

)⎤⎦. (B4)

The first term ∝ 〈H |k̂2
z |L〉 does not contribute to in-plane hole dynamics and only renormalizes the z-subband energies; hence

safely discarded subsequently. Noting the degeneracy of the diagonal elements, one can similarly calculate H22
eff ; resulting in the

diagonal hole kinetic energy term H0 in Eq. (9) as follows:

H0 =
[(

h̄2

2m0
(γ1 + γ2) − 3h̄4γ 2

3 |〈H |k̂z|L〉|2
m2

0�HL

)
k2
‖−

3h̄4γ 2
2 |〈H |L〉|2

4m2
0�HL

k4
‖−

3h̄4
(
γ 2

2 − γ 2
3

)|〈H |L〉|2
16m2

0�HL
(k2

+ − k2
−)2

]
I2×2. (B5)

The off-diagonal spin-orbit terms are calculated in second order of SW as follows:

H (2)
12 = 1

2

∑
l=3,4

H ′
1lH

′
l2

[
1

E1 − El
+ 1

E2 − El

]

= 1

2
H ′

13H ′
32

[
1

E1 − E3
+ 1

E2 − E3

]
+ 1

2
H ′

14H ′
42

[
1

E1 − E4
+ 1

E2 − E4

]

= −〈L〉HL〈M〉LH

�HL
+ 〈M〉HL〈L〉LH

�HL

= 1

�HL

[(
3h̄4γ3

2m2
0

)
(γ k2

− + δk2
+)〈H |L〉k−〈L|k̂z|H〉 −

(
3h̄4γ3

2m2
0

)
k−〈H |k̂z|L〉(γ k2

− + δk2
+)〈L|H〉

]

= 3h̄4γ3

2m2
0�HL

[
(γ k2

− + δk2
+)〈H |L〉k−〈L|k̂z|H〉 − k−〈H |k̂z|L〉(γ k2

− + δk2
+)〈L|H〉]

= 3h̄4γ3γ

2m2
0�HL

[
k3
−〈H |L〉(〈L|k̂z|H〉 − 〈H |k̂z|L〉)] + 3h̄4γ3δ

2m2
0�HL

[{k2
+, k−}〈H |L〉(〈L|k̂z|H〉 − 〈H |k̂z|L〉)]; (B6)

similarly,

H (2)
21 = 3h̄4γ3γ

2m2
0�HL

[k3
+〈H |L〉(〈L|k̂z|H〉 − 〈H |k̂z|L〉)] + 3h̄4γ3δ

2m2
0�HL

[{k2
−, k+}〈H |L〉(〈L|k̂z|H〉 − 〈H |k̂z|L〉)]. (B7)

This produces the spin-orbit 2D Hamiltonian:

HSO = 3h̄4γ3

2m2
0�HL

(〈H |k̂z|L〉 − 〈L|k̂z|H〉)[γ (k3
+σ− − k3

−σ+) − δ({k2
+, k−})σ+ − {k+, k2

−})σ−]. (B8)

Next we analyze the Zeeman spin-splitting terms in the 2D approximation. Firstly, we write the angular momentum matrices in
j = 3/2 basis:

Jx = 1

2

⎛
⎜⎜⎜⎝

0 0
√

3 0
0 0 0

√
3√

3 0 0 2
0

√
3 2 0

⎞
⎟⎟⎟⎠; Jy = i

2

⎛
⎜⎜⎜⎝

0 0 −√
3 0

0 0 0
√

3√
3 0 0 −2

0 −√
3 2 0

⎞
⎟⎟⎟⎠; Jz = 1

2

⎛
⎜⎜⎝

3 0 0 0
0 −3 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠. (B9)

An external in-plane magnetic field Bx gives rise to the Zeeman interaction HZ = (−2κμBBxJx−2qμBBxJ3
x ) in the 3D model:

HZ =

⎛
⎜⎜⎜⎜⎝

0 3
2 qμBBx

( 7q
4 + κ

)√
3μBBx 0

3
2 qμBBx 0 0

( 7q
4 + κ

)√
3μBBx( 7q

4 + κ
)√

3μBBx 0 0 (5q + 2κ )μBBx

0
( 7q

4 + κ
)√

3μBBx (5q + 2κ )μBBx 0

⎞
⎟⎟⎟⎟⎠. (B10)

The bare Zeeman terms in the 2D model up to third order can be calculated from Schrieffer-Wolff transformation: H (0)
Z,2D =

(0 0
0 0), H (1)

Z,2D = ( 0 3
2 qμBBx

3
2 qμBBx 0 ), H (2)

Z,2D = (0 0
0 0), H (3)

Z,2D = ( 0 g1μ
3
BB3

x
g1μ

3
BB3

x 0 ). We calculate g1 = 3( 7q
4 + κ )2(2κ + 17

4 q)/�2
HL ≈
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6κ3

�2
HL

. We mention here that the correction in diagonal terms in higher order of perturbation due to Bx only renormalizes the z

subbands and does not contribute to a Zeeman splitting, hence not shown explicitly above. Considering canonical momentum
in the symmetric gauge: k = {kx, ky − eBx

2h̄ z, kz + eBx
2h̄ y} in presence of the external magnetic field, we get a correction in H2×2

eff
off-diagonal which is proportional to Bxk2

x , because the 〈L〉HL〈M〉LH etc. terms in set of equations (B6) gets modified as follows:

〈L〉HL〈M〉LH =
[

k−〈kz〉HL + ieBx

2h̄
〈{z, kz}〉HL

][
(γ k2

− + δk2
+)〈L|H〉 + ieBx〈z〉LH

h̄
(γ k− − δk+)

]
. (B11)

This gives rise to terms e.g. g2μBBxk2
x σx in HZ,2D, where g2 can be estimated as

g2 � 3h̄4γ3

2�HLm2
0μB

ie

h̄
[γ2〈H |L〉(〈L{ẑ, k̂z}|H〉 − 〈H{ẑ, k̂z}|L〉) + 2γ3(〈H |ẑ|L〉〈L|k̂z|H〉 − 〈L|ẑ|H〉〈H |k̂z|L〉)]. (B12)

For a typical hole number density of p = 2 × 1015 m−2, which correspond to a top-gate potential of Fz ≈ 2.5 MV/m (Fz ≈
ep

(16.2−4.5x)ε0
, x = 0.2 in SixGe1−x), we calculate the 2D model parameters from our knowledge of the z-subband interactions, as

outlined in this section. Values for these parameters are provided in the main text Table I.

2. effective 2D Hamiltonian to two level EDSR Hamiltonian

To evaluate the Bx dependence of fEDSR in the effective 2D model, we project H2×2
eff into the following in-plane states:

⎧⎪⎨
⎪⎩

e
−( x2

2L2
x
+ y2

2L2
y

)√
πLxLy

,

√
2y e

−( x2

2L2
x
+ y2

2L2
y

)√
πL3

y Lx

,

√
2x e

−( x2

2L2
x
+ y2

2L2
y

)√
πL3

x Ly

⎫⎪⎬
⎪⎭ ⊗ {↑, ↓}, (B13)

where the orbital states are the first three harmonic oscillator product states: (n, m) = {(0, 0), (0, 1), (1, 0)}. Considering the
general case of Lx �= Ly, we denote the orbital energies of these states as E0, E1, E2. The spinors are the effective spin-up
and spin-down states of the 2D hole qubit, and gives ±g‖μBBx Zeeman energies for the up and down spin states due to small
anisotropic term q and the orbital B terms ∝Bxk2

x . The spin-orbit interactions can be listed as

HSO = iαR1(k−σ−−k+σ+) + iαR2(k3
+σ− − k3

−σ+) + iαR3({k+, k2
−}σ− − {k2

+, k−}σ+) + iαR4
({

k2
z , k−

}
σ−−{

k2
z , k+

}
σ+

)
. (B14)

The k-linear Rashba terms come from the coupling of the bonding VB p orbitals to the antibonding CB p orbitals, which is very
small. In the Luttinger formalism, thus the αR1, αR4 terms vanish. The nonzero contributions are

HSO = iαR2(k3
+σ− − k3

−σ+) + iαR3({k+, k2
−}σ− − {k2

+, k−}σ+) (B15)

and the spin-orbit matrix elements are calculated below:

〈(0, 0) ↑|HSO|(0, 1) ↓〉 = −iαR2〈(0, 0) ↑|k3
−σ+|(0, 1) ↓〉 + iαR3〈(0, 0) ↑|k+k−k+σ+|(0, 1) ↓〉

= −iαR2〈(0, 0)|k3
−|(0, 1)〉 + iαR3〈(0, 0)|k+k−k+|(0, 1)〉

= −3iαR2

2
√

2L3
y

(
1 − L2

y

L2
x

)
+ iαR3

2
√

2L3
y

(
1 + 3

L2
y

L2
x

)
= Rc, (B16)

〈(0, 0) ↑|HSO|(1, 0) ↓〉 = −iαR2〈(0, 0) ↑|k3
−σ+|(1, 0) ↓〉 + iαR3〈(0, 0) ↑|k+k−k+σ+|(1, 0) ↓〉

= −iαR2〈(0, 0)|k3
−|(0, 1)〉 + iαR3〈(0, 0)|k+k−k+|(0, 1)〉

= −3αR2

2
√

2LxL2
y

(
1 − L2

y

L2
x

)
+ αR3

2
√

2LxL2
y

(
1 + 3

L2
y

L2
x

)
= Rr . (B17)

The ac electric field eEx(t )x is spin-conserving and connects the states (0,0) and (1,0). In other words, the driving electric
field generates �n = 1 orbital transition. On the other hand, the spin-orbit coupling HSO connects (0, 0,↑) and (1, 0,↓), i.e.,
also generates �n = 1 orbital transition but along with a spin-flip. eEx(t )x + HSO thus effectively results in a spin-flip, known
as electrically driven spin resonance (EDSR). Hence, to effectively describe hole EDSR in the effective 2D model, one need
to capture all spin interactions and �n = 1 orbital transitions up to the lowest order; which is possible by choosing a basis
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consisting of the ground orbital state and first excited orbital states. The resultant 6 × 6 Hamiltonian would be

H ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E0 − 1
2 g‖μBBx 0 0 Rc eExa Rr

0 E0 + 1
2 g‖μBBx R∗

c 0 −Rr eExa

0 Rc E1 − 1
2 g‖μBBx 0 0 0

R∗
c 0 0 E1 + 1

2 g‖μBBx 0 0

eExa −Rr 0 0 E2 − 1
2 g‖μBBx 0

Rr eExa 0 0 0 E2 + 1
2 g‖μBBx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B18)

Second-order perturbation theory gives the EDSR matrix element as

H̃12 =
6∑

j=3

1

2
H ′

1 jH
′
j2

(
1

ε1 − ε j
+ 1

ε2 − ε j

)
= 1

2
H ′

15H ′
52

(
1

ε1 − ε5
+ 1

ε2 − ε5

)
+ 1

2
H ′

16H ′
62

(
1

ε1 − ε6
+ 1

ε2 − ε6

)

= −1

2
eExa Rr

(
1

−�02
+ 1

−�02 + Z

)
+ 1

2
eExa Rr

(
1

−�02 − Z
+ 1

−�02

)

= eExa Rr

(
1

�02
(
1 − Z

�02

) − 1

�02
(
1 + Z

�02

)
)

= (2eExa RrZ )/�2
02 + (2eExa RrZ3)/�4

02, (B19)

where we have used Z = g‖μBBx with in-plane g-factor g‖ ≈ 0.22, �02 = E2 − E0. This gives H̃12∝Bx in lowest order,
explaining the linear magnetic field dependence of EDSR. The next order of expansion generates H̃12∝B3

x . From Eqs. (B16)
and (B17), the α2 term vanishes when Lx = Ly, i.e., for a symmetric dot, while it is strongly nonzero for an elliptical dot; making
the linear Bx dependence stronger for the latter.

APPENDIX C: BULK PHONON MEDIATED RELAXATION RATE ANALYTICS

The total strain in the 4 × 4 Luttinger-Kohn-Bir-Pikus formalism is given as

HLKBP
strain (r) =

⎛
⎜⎜⎝

Pε(r) + Qε(r) 0 Lε(r) Mε(r)
0 Pε(r) + Qε(r) Mε(r)∗ −Lε(r)∗

Lε(r)∗ Mε(r) Pε(r) − Qε(r) 0
Mε(r)∗ −Lε(r) 0 Pε(r) − Qε(r)

⎞
⎟⎟⎠, (C1)

where Pε(r) = −a(εxx(r) + εyy(r) + εzz(r)), Qε(r) = − b
2 (εxx(r) + εyy(r) − 2εzz(r)), Lε(r) = d (εxz(r) − iεyz(r)), Mε(r) =

(
√

3
2 b(εxx(r) − εyy(r)) − idεxy(r)). The nonzero static component of the strain tensor is given by εxx = εyy = −0.006 and

εzz = −C12
C11

εxx with C12 = 44 GPa and C11 = 126 GPa. Considering the lattice deformation potential D(r), the “local” strain
is given by

εα
i, j (r) = 1

2

(
∂ui(r)

∂r j
+ ∂u j (r)

∂ri

)
, i, j ∈ {x, y, z}. (C2)

Here u vector designates the deformation field at the position r. For a phonon traveling with wave vector q in the polarized state
α, the strain tensor is given by,

εα
i, j (r) = i

2

√
h̄

2Vcρωq,α

q(ĉα
i q̂ j + ĉα

j q̂i )(e
−iq·raq,α + eiq·ra†

q,α ), (C3)

where ĉ is the polar ization unit vector. We consider three polar izations with con-ordinate systems understood as l : (r, θ, φ); t :
(r, θ + π

2 , φ); w : (r, π
2 , φ + π

2 ). Using ωq,α = vαq,

εα
i, j (r) = i

√
h̄

2Vcρvα

√
qAα

ε,i je
iq·r(a−q,α + a†

q,α ), (C4)

where vα are the acoustic phonon velocities, and we assumed 1
2 (ĉα

i q̂ j + ĉα
j q̂i ) = Aα

ε,i j . The matrix elements of Aα
ε,i j are sketched

out below:

Aα
ε = 1

2

⎛
⎜⎝

2ĉα
x q̂x ĉα

x q̂y + ĉα
y q̂x ĉα

x q̂z + ĉα
z q̂x

ĉα
y q̂x + ĉα

x q̂y 2ĉα
y q̂y ĉα

y q̂z + ĉα
z q̂y

ĉα
z q̂x + ĉα

x q̂z ĉα
z q̂y + ĉα

y q̂z 2ĉα
z q̂z

⎞
⎟⎠. (C5)
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The phonon wave vector has the components −→q → {q sin θ cos φ, q sin θ sin φ, q cos θ}; so the unit vectors for q are given by:
q̂ → {sin θ cos φ, sin θ sin φ, cos θ}. The polarization wave vectors are as follows:

(1) ĉl → q−1{qx, qy, qz} = {sin θ cos φ, sin θ cos φ, cos θ};
(2) ĉt → q−1(q2

x + q2
y )−

1
2 {qxqz, qyqz,−(q2

x + q2
y )} = {cos θ cos φ, cos θ sin φ,− sin θ};

(3) ĉw → (q2
x + q2

y )−
1
2 {qy,−qx, 0} = {− sin φ, cos φ, 0}.

We can write the matrix elements of Aα
ε,i j for the three polar izations using the decompositions above:

Al
ε = 1

2

⎛
⎜⎜⎜⎝

2 q2
x

q2 2 qxqy

q2 2 qxqz

q2

2 qyqx

q2 2
q2

y

q2 2 2qyqz

q2

2 qzqx

q2 2 qzqy

q2 2 q2
z

q2

⎞
⎟⎟⎟⎠ = 1

q2

⎛
⎜⎜⎝

q2
x qxqy qxqz

qyqx q2
y qyqz

qzqx qzqy q2
z

⎞
⎟⎟⎠,

At
ε = 1

2

⎛
⎜⎜⎜⎜⎜⎝

2 qz

q
qx√

q2
x +q2

y

qx

q 2 qz

q
qx√

q2
x +q2

y

qy

q
qxqz

q
√

q2
x +q2

y

qz

q −
√

q2
x +q2

y

q
qx

q

2 qz

q
qx√

q2
x +q2

y

qy

q 2 qz

q
qy√

q2
x +q2

y

qy

q
qyqz

q
√

q2
x +q2

y

qz

q −
√

q2
x +q2

y

q
qy

q

qxqz

q
√

q2
x +q2

y

qz

q −
√

q2
x +q2

y

q
qx

q

q2
z qy−q2

x qy−q3
y

q2
√

q2
x +q2

y

−2 qz

q

√
q2

x +q2
y

q

⎞
⎟⎟⎟⎟⎟⎠,

Aw
ε = 1

2

⎛
⎜⎜⎜⎜⎝

−2 qy√
q2

x +q2
y

qx

q − qy√
q2

x +q2
y

qy

q + qx√
q2

x +q2
y

qx

q − qy√
q2

x +q2
y

qz

q

q2
x −q2

y

q
√

q2
x +q2

y

2 qxqy

q
√

q2
x +q2

y

qxqz

q
√

q2
x +q2

y

− qyqz

q
√

q2
x +q2

y

qxqz

q
√

q2
x +q2

y

0

⎞
⎟⎟⎟⎟⎠. (C6)

We wish to evaluate the angular integrals, so we write the matrices in terms of θ and φ:

Al
ε =

⎛
⎝ sin2 θ cos2 φ sin2 θ sin φ cos φ sin θ cos θ cos φ

sin2 θ sin φ cos φ sin2 θ sin2 φ sin θ cos θ sin φ

sin θ cos θ cos φ sin θ cos θ sin φ cos2 θ

⎞
⎠,

At
ε = 1

2

⎛
⎝ 2 cos θ cos φ sin θ cos φ 2 cos θ cos φ sin θ sin φ cos θ cos φ cos θ − sin2 θ cos φ

2 cos θ cos φ sin θ sin φ 2 cos θ sin φ sin θ sin φ cos θ sin φ cos θ − sin2 θ sin φ

cos θ cos φ cos θ − sin2 θ cos φ cos θ sin φ cos θ − sin2 θ sin φ −2 sin θ cos θ

⎞
⎠

=
⎛
⎝ 1

2 sin 2θ cos2 φ 1
4 sin 2θ sin 2φ 1

2 cos 2θ cos φ
1
4 sin 2θ sin 2φ 1

2 sin 2θ sin2 φ 1
2 cos 2θ sin φ

1
2 cos 2θ cos φ 1

2 cos 2θ sin φ − 1
2 sin 2θ

⎞
⎠,

Aw
ε = 1

2

⎛
⎝ −2 sin φ sin θ cos φ − sin φ sin θ sin φ + cos φ sin θ cos φ − sin φ cos θ

− sin φ sin θ sin φ + cos φ sin θ cos φ 2 cos φ sin θ sin φ cos φ cos θ

− sin φ cos θ cos φ cos θ 0

⎞
⎠

= 1

2

⎛
⎝− sin 2φ sin θ cos 2φ sin θ − sin φ cos θ

cos 2φ sin θ sin 2φ sin θ cos φ cos θ

− sin φ cos θ cos φ cos θ 0

⎞
⎠. (C7)

The total hole-phonon Hamiltonian can be added as per the following equation:

Hα
h−ph = Dα

11Aα
ε,11 + Dα

12Aα
ε,12 + Dα

13Aα
ε,13 + Dα

22Aα
ε,22 + Dα

23Aα
ε,23 + Dα

33Aα
ε,33. (C8)

where α is the polar ization index, and D are the 4 × 4 LK deformation potential matrices.
a. l polar ization. Putting in the local strain terms, we can write

Hl
h−ph = i

√
q

√
h̄

2Vcρvl

⎛
⎜⎜⎝

Pl
ε + Ql

ε 0 Ll
ε Ml

ε

0 Pl
ε + Ql

ε Ml∗
ε −Ll∗

ε

Ll∗
ε Ml

ε Pl
ε − Ql

ε 0
Ml∗

ε −Ll
ε 0 Pl

ε − Ql
ε

⎞
⎟⎟⎠eiq·r(a−q,l + a†

q,l ),

where

Pl
ε = −a(sin2 θ cos2 φ + sin2 θ sin2 φ + cos2 θ ) = −a,

Ql
ε = −b

2
(sin2 θ cos2 φ + sin2 θ sin2 φ − 2 cos2 θ ) = −b

2
(1 − 3 cos2 θ ),
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Ll
ε = d (sin θ cos θ cos φ − i sin θ cos θ sin φ) = d

2
sin 2θ e−iφ,

Ml
ε =

√
3b

2
(sin2 θ cos2 φ − sin2 θ sin2 φ) − id sin φ cos φ sin2 θ =

√
3b

2
sin2 θ cos 2φ − id

2
sin 2φ sin2 θ. (C9)

b. t polar ization. The hole-phonon Hamiltonian in this case takes the following form in angular coordinates:

Ht
h−ph = i

√
q

√
h̄

2Vcρvt

⎛
⎜⎜⎝

Pt
ε + Qt

ε 0 Lt
ε Mt

ε

0 Pt
ε + Qt

ε Mt∗
ε −Lt∗

ε

Lt∗
ε Mt

ε Pt
ε − Qt

ε 0
Mt∗

ε −Lt
ε 0 Pt

ε − Qt
ε

⎞
⎟⎟⎠eiq·r(a−q,t + a†

q,t ),

where

Pt
ε = −a

(
1

2
sin 2θ cos2 φ + 1

2
sin 2θ sin2 φ − 1

2
sin 2θ

)
= 0,

Qt
ε = −b

2

(
1

2
sin 2θ cos2 φ + 1

2
sin 2θ sin2 φ + sin 2θ

)
= −3b

4
sin 2θ,

Lt
ε = d

(
1

2
cos 2θ cos φ − i

2
cos 2θ sin φ

)
= d

2
cos 2θe−iφ,

Mt
ε =

√
3b

2

(
1

2
sin 2θ cos2 φ − 1

2
sin 2θ sin2 φ

)
− id

4
sin 2θ sin 2φ =

√
3b

4
sin 2θ cos 2φ − id

4
sin 2θ sin 2φ. (C10)

c. w polar ization. For the third polarization direction:

Hw
h−ph = i

√
q

√
h̄

2Vcρvw

⎛
⎜⎜⎝

Pw
ε + Qw

ε 0 Lw
ε Mw

ε

0 Pw
ε + Qw

ε Mw∗
ε −Lw∗

ε

Lw∗
ε Mw

ε Pw
ε − Qw

ε 0
Mw∗

ε −Lw
ε 0 Pw

ε − Qw
ε

⎞
⎟⎟⎠eiq·r(a−q,w + a†

q,w ),

where

Pw
ε = −a

(
−1

2
sin 2φ sin θ + 1

2
sin 2φ sin θ

)
= 0,

Qw
ε = −b

2

(
−1

2
sin 2φ sin θ + 1

2
sin 2φ sin θ

)
= 0,

Lw
ε = d

(
−1

2
sin φ cos θ − i

2
cos φ cos θ

)
= − id

2
cos θe−iφ,

Mw
ε =

√
3b

2

(
−1

2
sin 2φ sin θ − 1

2
sin 2φ sin θ

)
− id

2
cos 2φ sin θ = −

√
3b

2
sin 2φ sin θ − id

2
cos 2φ sin θ. (C11)

The relaxation rate is characterized by the spontaneous and stimulated phonon scattering, hence:

�1 = 1

T1
=
∑

α

⎛
⎝2π

h̄

∑
q

|〈0|Hh−ph|1〉α|2δ(�E − h̄ωα,q
)⎞⎠. (C12)

The summation over the wave vectors can be changed to continuous integral, and the creation-annihilation operators can be
approximated to produce a factor of Nq, which denotes the number of acoustic phonons with q momentum:

�1 = 1

T1
=
∑

α

(
2π

�̄h
�V

(2π )3

∫
Vq

d3q q �̄h
2��Vcρvα

∣∣〈0|eiq·rHLKBP
strain,α��Nq|1〉α

∣∣2δ(�E − h̄vαq)

)

=
∑

α

(
1

8π2

∫
Vq

q3 dq sin θ dθ dφ
1

ρvα

∣∣〈0|eiq·rHLKBP
strain,α|1〉α

∣∣2 1

h̄vα

δ

(
�E

h̄vα

− q

))

=
∑

α

(
1

8π2h̄ρv2
α

∫ 2π

0
dφ

∫ π

0
dθ sin θ

∫ ∞

0
q3dq

∣∣〈0|eiq·rHLKBP
strain,α|1〉α

∣∣2δ(�E

h̄vα

− q

))
. (C13)
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The qubit ground state |0〉 and excited state |1〉 are 1 × 4 spinors with each component multiplied to spatial functions.

⇒ 〈0|eiq·rHLKBP
strain,α|1〉 = (g∗

1 g∗
2 g∗

3 g∗
4)eiq·r

⎛
⎜⎜⎜⎜⎝

Pα
ε + Qα

ε 0 Lα
ε Mα

ε

0 Pα
ε + Qα

ε Mα∗
ε −Lα∗

ε

Lα∗
ε Mα

ε Pα
ε − Qα

ε 0

Mα∗
ε −Lα

ε 0 Pα
ε − Qα

ε

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

e1

e2

e3

e4

⎞
⎟⎟⎟⎠

= (g∗
1 g∗

2 g∗
3 g∗

4)eiq·r

⎛
⎜⎜⎜⎜⎝

(
Pα

ε + Qα
ε

)
e1 + Lα

ε e3 + Mα
ε e4(

Pα
ε + Qα

ε

)
e2 + Mα∗

ε e3 − Lα∗
ε e4

Lα∗
ε e1 + Mα

ε e2 + (
Pα

ε − Qα
ε

)
e3

Mα∗
ε e1 − Lα

ε e2 + (
Pα

ε − Qα
ε

)
e4

⎞
⎟⎟⎟⎟⎠

= [{(
Pα

ε + Qα
ε

)
eiq·rg∗

1e1 + Lα
ε eiq·rg∗

1e3 + Mα
ε eiq·rg∗

1e4
} + {(

Pα
ε + Qα

ε

)
eiq·rg∗

2e2 + Mα∗
ε eiq·rg∗

2e3 − Lα∗
ε eiq·rg∗

2e4
}

+{
Lα∗

ε eiq·rg∗
3e1 + Mα

ε eiq·rg∗
3e2 + (

Pα
ε − Qα

ε

)
eiq·rg∗

3e3
} + {

Mα∗
ε eiq·rg∗

4e1 − Lα
ε eiq·rg∗

4e2 + (
Pα

ε − Qα
ε

)
eiq·rg∗

4e4
}]

. (C14)

According to our model g∗
i = ∑

{m,n,l,i′} cg∗
ii′ ψn(x)ψm(y)ψl (z), and e∗

j = ∑
{m′,n′,l ′, j′} ce

j j′ψn′ (x)ψm′ (y)ψl ′ (z); implies that the terms
in Eq. (C14) have the form

eiq·rg∗
i e j ⇒

⎛
⎝∑

i′, j′
cg∗

ii′ c
e
j j′

⎞
⎠
⎛
⎝∑

n,n′

∑
m,m′

∑
l,l ′

⎞
⎠∫ ∞

−∞
dx eiqxxψn(x)ψn′ (x)

∫ ∞

−∞
dy eiqyyψm(y)ψm′ (y)

∫ ∞

−∞
dz eiqzzψl (z)ψl ′ (z). (C15)

To our advantage, the inversion-symmetric basis wave functions we use to describe our hole QD, i.e., an infinite barrier in z
and harmonic potential in x-y, have closed form solutions of the eiq·r integrals. This allows us to evaluate the Relaxation rate �1

analytically. We also show the dipole approximation to agree with the analytical results for T1; thirdly, a numerical pathway is
sketched as an alternative.

Analytical: in-plane integrals. The matrix elements of eiqxx between two x(or y) wavefunctions are given by

〈n|eiqxx
∣∣n′〉 = ∫ ∞

−∞
dx eiqxxψn(x)ψn′ (x). (C16)

eiqxx can be written as an infinite expansion in Hermite polynomial basis:

eiqxx = eiqxLx
x

Lx = e
(−iqx Lx )2

4

∞∑
r=0

(iqxLx )r

2rr!
Hr

(
x

Lx

)
(C17)

⇒ 〈n|eiqxx
∣∣n′〉 = 1√

2nn!Lx
√

π

1√
2n′n′!Lx

√
π

e− q2
x L2

x
4

∞∑
r=0

(iqxLx )r

2rr!
I(r, n, n′) (C18)

with I(r, n, n′) = ∫∞
−∞ dx e

− x2

L2
x Hr ( x

Lx
)Hn( x

Lx
)Hn′ ( x

Lx
) = Lx

∫∞
−∞ d ( x

Lx
) e

− x2

L2
x Hr ( x

Lx
)Hn( x

Lx
)Hn′ ( x

Lx
). Substituting x

Lx
→ x, we write

⇒ 〈n|eiqxx|n′〉 = (2n+n′
n!n′!π )−

1
2 e− q2

x L2
x

4

∞∑
r=0

(iqxLx )r

2rr!

∫ ∞

−∞
dx e−x2

Hr (x)Hn(x)Hn′ (x). (C19)

The product of two Hermite polynomials can be expanded in the Hermite polynomial basis:

Hn(x)Hn′ (x) = 2nn!n′!
n∑

k=0

H2k+n′−n(x)

2kk!(k + n′ − n)!(n − k)!
(C20)

⇒ 〈n|eiqxx
∣∣n′〉 = e− q2

x L2
x

4√
2n+n′n!n′!π

∞∑
r=0

(iqxLx )r

2rr!
2nn!n′!

n∑
k=0

1

2kk!(k + n′ − n)!(n − k)!

∫ ∞

−∞
dx e−x2

Hr (x)H2k+n′−n(x)

= e− q2
x L2

x
4√

2n+n′n!n′!π

∞∑
r=0

(iqxLx )r

2rr!
2nn!n′!

n∑
k=0

22k+n′−n(2k + n′ − n)!
√

πδr,2k+n′−n

2kk!(k + n′ − n)!(n − k)!
, (C21)
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where we have used the orthonormality relation:
∫∞
−∞ e−x2

Hn(x)Hn′ (x) dx = 2nn!
√

πδn,n′ . The δ-function boils the r-sum down
to only one term, such that

⇒ 〈n|eiqxx
∣∣n′〉 =

√
n′!n!

2n′−n
e− q2

x L2
x

4

n∑
k=0

(iqxLx )2k+n′−n

����22k+n′−n������
(2k + n′ − n)!

����22k+n′−n������
(2k + n′ − n)!

2kk!(k + n′ − n)!(n − k)!

=
√

n!

2n′−nn′!
e− q2

x L2
x

4

n∑
k=0

n′!(iqxLx )n′−n(iqxLx )2k

2kk!(k + n′ − n)!(n − k)!
=
√

n!

2n′−nn′!
e− q2

x L2
x

4 (iqxLx )n′−n
n∑

k=0

n′!((iqxLx )2)k

2kk!(k + n′ − n)!(n − k)!

=
√

n!

2n′−nn′!
e− q2

x L2
x

4 (iqxLx )n′−n
n∑

k=0

(−1)k (n + n′ − n)!

k!(k + n′ − n)!(n − k)!

(
q2

x L2
x

2

)k

. (C22)

Using the formula for the associated Laguerre polynomial La
n(x) = ∑n

k=0
(−1)k (n+a)!

k!(k+a)!(n−k)! x
k , the matrix element of eiqxx can be

analytically evaluated as

⇒ 〈n|eiqxx
∣∣n′〉 =

√
1

2n′−n

n!

n′!
e− q2

x L2
x

4 (iqxLx )n′−nLn′−n
n

(
q2

x L2
x

2

)

⇒ 〈m|eiqyy
∣∣m′〉 =

√
1

2m′−m

m!

m′!
e− q2

y L2
y

4 (iqyLy)m′−mLm′−m
m

(
q2

y L2
y

2

)
. (C23)

The z-basis wave functions are

ψl (z) =
{

cos
( (l+1)πz

Lz

)
l = 0, 2, 4, . . .

sin
( (l+1)πz

Lz

)
l = 1, 3, 5 . . .

, z ∈
{
−Lz

2
,

Lz

2

}
. (C24)

The matrix element 〈l|eiqzz|l ′〉 is evaluated as

∫ Lz
2

− Lz
2

dz eiqzzψl (z)ψl ′ (z) =
∫ Lz

2

− Lz
2

dz (cos qzz + i sin qzz)ψr (z)ψr′ (z), (C25)

where r = l + 1 is the new index for z integral (for simpler mathematical expressions).
r odd, r′ even. For the case of evaluating the matrix element between even and odd z-basis functions is calculated as

=
∫ Lz

2

− Lz
2

dz(cos qzz + i sin qzz)

√
2

Lz
cos

(
rπz

Lz

)√
2

Lz
sin

(
r′πz

Lz

)

= 2

Lz

∫ Lz
2

− Lz
2

dz(cos qzz + i sin qzz)
1

2

(
sin

(
r + r′πz

Lz

)
− sin

(
r − r′πz

Lz

))

= 1

Lz

∫ Lz
2

− Lz
2

dz

(
cos qzz sin

(
r + r′πz

Lz

)
− cos qzz sin

(
r − r′πz

Lz

)
+ i sin qzz sin

(
r + r′πz

Lz

)
− i sin qzz sin

(
r − r′πz

Lz

))

= 1

2Lz

∫ Lz
2

− Lz
2

dz

(
sin

(
qzz + r + r′πz

Lz

)
− sin

(
qzz − r + r′πz

Lz

)
− sin

(
qzz + r − r′πz

Lz

)
+ sin

(
qzz − r − r′πz

Lz

))

+ i

2Lz

∫ Lz
2

− Lz
2

dz

(
cos

(
qzz + r + r′πz

Lz

)
+ cos

(
qzz − r + r′πz

Lz

)
− cos

(
qzz + r − r′πz

Lz

)
− sin

(
qzz − r − r′πz

Lz

))
.

(C26)

The sin and cos terms can be now evaluated straight forwardly to give us the final simplified expression:

= i

2

[
sin

( qzLz

2 + (r+r′ )π
2

)
qzLz

2 + (r+r′ )π
2

− sin
( qzLz

2 − (r+r′ )π
2

)
qzLz

2 − (r+r′ )π
2

− sin
( qzLz

2 + (r−r′ )π
2

)
qzLz

2 + (r−r′ )π
2

+ sin
( qzLz

2 − (r−r′ )π
2

)
qzLz

2 − (r−r′ )π
2

]
. (C27)
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r, r′ both odd/even. For the case of evaluating the matrix element between both even(both odd) z-basis functions is calculated
as

=
∫ Lz

2

− Lz
2

dz(cos qzz + i sin qzz)

√
2

Lz
sin

(
rπz

Lz

)√
2

Lz
sin

(
r′πz

Lz

)

= −1

2

[
sin

( qzLz

2 + (r+r′ )π
2

)
qzLz

2 + (r+r′ )π
2

+ sin
( qzLz

2 − (r+r′ )π
2

)
qzLz

2 − (r+r′ )π
2

+ sin
( qzLz

2 + (r−r′ )π
2

)
qzLz

2 + (r−r′ )π
2

+ sin
( qzLz

2 − (r−r′ )π
2

)
qzLz

2 − (r−r′ )π
2

]
. (C28)

Finally we put the results from Eqs. (C23) and (C28) into Eq. (C15) to evaluate:

eiq·rg∗
i e j ⇒

⎛
⎝∑

i′, j′
cg∗

ii′ c
e
j j′

⎞
⎠
⎛
⎝∑

n,n′

∑
m,m′

∑
l,l ′

⎞
⎠√ 1

2n′−n

n!

n′!
e− q2

x L2
x

4 (iqxLx )n′−nLn′−n
n

(
q2

x L2
x

2

)

×
√

1

2m′−m

m!

m′!
e− q2

y L2
y

4 (iqyLy)m′−mLm′−m
m

(
q2

y L2
y

2

)
× f (l, l ′, qzLz ), (C29)

where

f (l, l ′, qzLz ) =

⎧⎪⎪⎨
⎪⎪⎩

i
2

[
sin
(

qzLz
2 + (r+r′ )π

2

)
qzLz

2 + (r+r′ )π
2

− sin
(

qzLz
2 − (r+r′ )π

2

)
qzLz

2 − (r+r′ )π
2

− sin
(

qzLz
2 + (r−r′ )π

2

)
qzLz

2 + (r−r′ )π
2

+ sin
(

qzLz
2 − (r−r′ )π

2

)
qzLz

2 − (r−r′ )π
2

]
l ± l ′ = odd

− 1
2

[
sin
(

qzLz
2 + (r+r′ )π

2

)
qzLz

2 + (r+r′ )π
2

+ sin
(

qzLz
2 − (r+r′ )π

2

)
qzLz

2 − (r+r′ )π
2

+ sin
(

qzLz
2 + (r−r′ )π

2

)
qzLz

2 + (r−r′ )π
2

+ sin
(

qzLz
2 − (r−r′ )π

2

)
qzLz

2 − (r−r′ )π
2

]
l ± l ′ = even

. (C30)

Next we make the substitution qx → q sin θ cos φ, qy → q sin θ sin φ, qz → q cos θ to write

eiq·rg∗
i e j ⇒

⎛
⎝∑

i′, j′
cg∗

ii′ c
e
j j′

⎞
⎠
⎛
⎝∑

n,n′

∑
m,m′

∑
l,l ′

⎞
⎠√ 1

2n′−n

n!

n′!
e− q2L2

x sin2 θ cos2 φ

4 (iqLx sin θ cos φ)n′−nLn′−n
n

(
q2L2

x sin2 θ cos2 φ

2

)

×
√

1

2m′−m

m!

m′!
e− q2L2

y sin2 θ sin2 φ

4 (iqLy sin θ sin φ)m′−mLm′−m
m

(
q2L2

y sin2 θ sin2 φ

2

)
× f (l, l ′, qLz cos θ ). (C31)

These set of equations allow us to calculate the terms in Eq. (C14) to express |〈0|eiq·rHLKBP
strain,α|1〉|2 as Iα (q, θ, φ). From Eq. (C13),

�1 = 1

T1
=
∑

α

(
1

8π2h̄ρv2
α

∫ 2π

0
dφ

∫ π

0
dθ sin θ

∫ ∞

0
q3dq Iα (q, θ, φ) δ

(
�E

h̄vα

− q

))

=
∑

α

(
�E3

8π2h̄4ρv5
α

∫ 2π

0
dφ

∫ π

0
dθ sin θ Iα

(
q → �E

h̄vα

, θ, φ

))
=
∑

α

(
�E3

8π2h̄4ρv5
α

�α

(
�E

h̄vα

))
, (C32)

where � denotes the angular integration.
Dipole approximation. Alternatively, one can expand eiq·r ≈ 1(+iq · r − |q · r|2 + . . . ) which simplifies the product

|〈0|eiq·rHLKBP
strain,α|1〉|2 ≈ |〈0|HLKBP

strain,α|1〉 + i〈0|q · rHLKBP
strain,α|1〉 − 〈0||q · r|2HLKBP

strain,α|1〉 + . . . |2. In sharp contrast to electron spin-
1/2 qubits, where the local strain is a diagonal tensor and the leading zeroth order term 〈0|Hε|1〉 vanishes; for the spin-3/2
holes the leading term is the zeroth order, resulting in a αrB3 + βrB4 + γrB5 relaxation rate variation, compared to B5 variation
in electron spin-1/2 qubits. While the B3 and B5 dependence are explained by the first two terms in dipole approximation, the
orbital B terms in the qubit admixture give rise to the B4 dependence.

APPENDIX D: RANDOM TELEGRAPH NOISE(RTN) DEPHASING: SCREENED POTENTIAL OF A CHARGE DEFECT

Taking into account the screening effect of the 2DHG being formed in Ge, the Fourier q-space form of the potential of single
defect with charge e is given by

Uscr (q) = e2

2ε0εr
e−qd �(2kF − q)

q + qT F
, (D1)

where Uscr (q) is known as the Thomas-Fermi screened potential, q is the Fourier space variable, qTF = 0.49 nm−1 is the Thomas-
Fermi wave vector in germanium independent of the density of holes. kF is the Fermi wave vector which is estimated to be
0.1 nm−1 in our calculations, and � is the Heaviside theta step function. Considering constant screening, which only holds for
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q<2kF , the screened potential in real space under the limit d�r is approximated to be

Us(r) = e2

4πε0εr

1

q2
TF

(
1

|r − rD|3 + d
qTF

|r − rD|3
)

. (D2)

The relative electrical permeability of germanium is εr = 15.8; ε0 being the vacuum electrical permeability. rD =
{80 nm, 80 nm, 0} is the vector denoting the distance of the in-plane charge defect from the center of the QD.

APPENDIX E: g-FACTOR ANISOTROPY AND FITTING PARAMETERS

In the main text, Fig. 8, we mentioned that the fitting paramters are not unique. Here we suggest some other possible
configurations to fit the parameters. The main fitting parameters are dot size (Lx, Ly, Lz), the electric field can be tuned via
gate to modulate the g-factors.

(1) Lx = 40 nm, Ly = 60 nm, Lz = 10 nm.
(2) Lx = 30 nm, Ly = 50 nm, Lz = 10.5 nm.
(3) Lx = 44 nm, Ly = 60 nm, Lz = 9.5 nm.
Note that there are many other possible combinations of parameters if the strains (both uniaxial strain and shear strain) are

included.
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Schäffler, J.-J. Zhang, and G. Katsaros, Nat. Commun. 9, 3902
(2018).

[62] M. Lodari, N. W. Hendrickx, W. I. Lawrie, T.-K. Hsiao, L. M.
Vandersypen, A. Sammak, M. Veldhorst, and G. Scappucci,
Mater. Quantum. Technol. 1, 011002 (2021).

[63] N. Hendrickx, W. Lawrie, L. Petit, A. Sammak, G. Scappucci,
and M. Veldhorst, Nat. Commun. 11, 3478 (2020).

[64] D. Jirovec, A. Hofmann, A. Ballabio, P. M. Mutter, G. Tavani,
M. Botifoll, A. Crippa, J. Kukucka, O. Sagi, F. Martins et al.,
Nat. Mater. 20, 1106 (2021).

[65] N. Hendrickx, D. Franke, A. Sammak, G. Scappucci, and M.
Veldhorst, Nature (London) 577, 487 (2020).

[66] N. W. Hendrickx, W. I. Lawrie, M. Russ, F. van Riggelen, S. L.
de Snoo, R. N. Schouten, A. Sammak, G. Scappucci, and M.
Veldhorst, Nature (London) 591, 580 (2021).

[67] F. N. M. Froning, M. J. Rančić, B. Hetényi, S. Bosco, M. K.
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