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We have studied theoretically the effect of electrical magnetochiral anisotropy (eMChA) in p-type tellurium
crystals. It is shown that the terms kiB j in the hole Hamiltonian, linear in both the wave vector k and the magnetic
field B, do not lead to eMChA and one needs to include the higher-order terms like k3

i B j . Two microscopic
mechanisms of the effect are considered. In the first one only elastic scattering of holes by impurities or
imperfections is taken into consideration. In the second mechanism, besides the elastic scattering processes
the hole gas heating and its energy relaxation are taken into account. It is demonstrated that both contributions
to the magneto-induced rectification are comparable in magnitude. The calculation is performed by using two
independent approaches, namely, in the relaxation-time approximation and in the limit of small chiral band
parameter β. A bridge is thrown between the eMChA and magneto-induced photogalvanic effects.
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I. INTRODUCTION

Tellurium is an elemental chiral crystal with a D3 point
symmetry. It has a natural optical activity [1,2], and it
is tellurium where the circular photogalvanic effect [3,4],
electric-current induced optical activity [5,6], and bulk circu-
lar photon drag effect [7] were discovered; Sakano et al. has
for the first time verified experimentally the spin texture of the
right- and left-handed tellurium by the ARPES and SARPES
measurements [8]. Recently, Rikken and Avarvari observed
the effect of electrical magnetochiral anisotropy (eMChA)
in Te crystals [9]. This effect manifests itself as an addi-
tional contribution to the sample resistance R = R0(1 + γ BI ),
where R0 is a constant, B is the magnetic field strength, I is
the electric current, and the coefficient of bilinear magneto-
electric resistance γ describes a rectification by the sample;
see Refs. [10,11] for reviews. Earlier, the effect of chirality
(or nonreciprocity) in magnetotransport has been observed
in a number of other gyrotropic materials: distorted bis-
muth wires [12], carbon nanotubes [13,14], crystals of chiral
salt (DM-EDT-TTF)2ClO4 [15], polar semiconductor crys-
tal BiTeBr [16], topological insulators [17–21], semimetals
ZrTe5 [22], WTe2 [23], and α-Sn [24], and on the surface of
SrTiO3(111) [25].

Theoretically, the eMChA effect has been considered for
carbon nanotubes [26,27], Weyl semimetals of TaAs type [28],
semimetal ZrTe5 [22] (Supplemental Material), surface states
in topological insulators [29], and molecular conductors [30].
In the works [22,29], a calculation of the correction to the
electric current δ j ∝ E2B, proportional to the squared elec-
tric field strength E and linear in the magnetic field B, has
been performed in the simplest approximation of a general
relaxation time (τ approximation). This approach does not
take into account a difference between quasimomentum and
energy relaxations, or between elastic and inelastic relaxation
processes of free charge carriers. In this paper we show that,

with account for this difference, there are two independent
microscopic mechanisms of eMChA. In a simplified form, the
presence of two mechanisms can be explained as follows: Let
us divide a correction to the charge carrier distribution func-
tion δ fk ∝ E2 in two terms, δ f (εk) and δ f as

k , where the first
function depends on the carrier energy εk (k is a wave vector),
and the second function, δ f as

k , is an asymmetric correction
with zero average over the directions of the wave vector k
at constant energy. The correction δ f as

k is controlled by the
momentum relaxation time τp, while in order to calculate
δ f (εk) one must account for inelastic processes of carrier-
phonon interaction and, hence, introduce the energy relaxation
time τε which can be much longer than τp. As noticed in
Ref. [26], although the correction δ f (εk) ∝ τε by itself does
not result in the electric current, its relaxation through inter-
action with phonons produces an asymmetric distribution of
carriers in the k space with an extra multiplier τp/τε. As a
result, the mechanisms related to δ f as

k and δ f (εk) lead to com-
parable contributions to the electrical magnetochiral current
δ j ∝ τ 2

p E2B.
Here we consider both mechanisms resulting in eMChA

of holes in the Te valence band. The paper is organized
as follows. In Sec. II, macroscopic equations are presented.
General consideration of the eMChA effect in Te is given
in Sec. III. In Sec. IV, the eMChA current is estimated in
the relaxation-time approximation. Sections V and VII are
devoted to rigorous calculations of the contributions caused
by the elastic and inelastic relaxation processes, respectively.
The perturbative results in the lowest order in the chirality
parameter are presented in Sec. VI. In Sec. VIII, discussion
of results is given, and Sec. IX summarizes the paper.

II. MACROSCOPIC EQUATIONS

The phenomenon under study is described by a fourth-
rank tensor in the expansion of the electric current density in

2469-9950/2023/108(24)/245202(11) 245202-1 ©2023 American Physical Society

https://orcid.org/0000-0003-3818-1014
https://orcid.org/0000-0001-7414-462X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.245202&domain=pdf&date_stamp=2023-12-08
https://doi.org/10.1103/PhysRevB.108.245202


L. E. GOLUB, E. L. IVCHENKO, AND B. SPIVAK PHYSICAL REVIEW B 108, 245202 (2023)

powers of the electric field strength E and magnetic field B,

ji = σi jE j + σ
(H )
i jk E jBk + Gi jkl E jEkBl . (1)

The first two terms are allowed by any point symmetry, σ is
the tensor of linear conductivity, and σ

(H )
i jk is the Hall conduc-

tivity tensor. The eMChA effect is represented by the tensor
G symmetrical in indices j and k. It is related by

Gi jkl ∝ γi j′k′lσ j′ jσk′k (2)

with the tensor γ which is introduced in Eq. (1) in Ref. [9] and
describes the second-harmonic generation

E2ω
i = γi jkl jωj jωk Bl ,

under conditions where the modulation period T = 2π/ω ex-
ceeds by far all the microscopic times of the system. Note that
the last term in Eq. (1) is present in both chiral and achiral
systems; see Sec. VIII for discussion.

In crystals of D3 symmetry there are 10 linearly inde-
pendent components of the Gi jkl tensor with indices zzzz,
xxxx, zzxx, xxzz, zxxz, xzzx, xyyx, zxxy, xxyz, and xzxy [31].
Note that in this point group, the component Gxxyy equals
(Gxxxx − Gxyyx )/2.

In Ref. [9], the following estimates are given:

12γzzzx ≈ γxxxy ≈ 3γxxxx and γzzzz � γzzzx. (3)

According to Eq. (2),

γzzzz ∝ Gzzzz

σ 2
‖

, γxxxx ∝ Gxxxx

σ 2
⊥

,

γzzzx ∝ Gzzzz

σ‖σ⊥
, γxxxy ∝ Gxxxy

σ 2
⊥

,

where σ‖ = σzz, σ⊥ = σxx = σyy. The data of Ref. [9] con-
tradict the point symmetry D3 with the nonzero components
Gzzzx and Gxxxy; therefore γzzzx, γxxxy are forbidden. This con-
tradiction is discussed in more detail in Sec. VIII.

In our work the attention is focused on the components
Gzzzz and Gxxxx allowed by the symmetry, i.e., on the ge-
ometries j ‖ E ‖ B ‖ ẑ (shortly z-eMChA geometry) and j ‖
E ‖ B ‖ x̂ (x-eMChA). In these cases the Hall effect does not
appear and hence is not discussed here. We use the notation
δ j for the electric magnetochiral (eMCh) current, or the third
term in Eq. (1). The paper is devoted to consideration of this
particular current.

With account for the symmetry, the macroscopic relation
between the correction to the current δ j and the electric and
magnetic vectors can be written in the following convenient
form:

δ jz = G(1)E2
z Bz + G(2)

(
E2

x + E2
y

)
Bz + G(3)

[(
E2

x − E2
y

)
By + 2ExEyBx

] + G(4)Ez(ExBx + EyBy),

δ jx = G(5)
(
E2

x + E2
y

)
Bx + G(6)E2

z Bx + G(7)
[(

E2
x − E2

y

)
Bx + 2ExEyBy

] + G(8)2ExEyBz

+ G(9)ExEzBz + G(10)Ez(ExBy + EyBx ),

δ jy = G(5)
(
E2

x + E2
y

)
By + G(6)E2

z By + G(7)
[−(

E2
x − E2

y

)
By + 2ExEyBx

] + G(8)
(
E2

x − E2
y

)
Bz

+ G(9)EyEzBz + G(10)Ez(ExBx − EyBy), (4)

where G(n) (n = 1 . . . 10) are macroscopic parameters. The
material relation between δ jx, δ jy, and the transverse compo-
nents of vectors E and B has an axial symmetry and preserves
its form at any orientation of the x, y axes relative to the
second-order symmetry axes C2.

III. GENERAL CONSIDERATION

The current δ jz ∝ Gzzzz is induced in the magnetic field B ‖
z. In presence of this field, the effective 2 × 2 valence-band
Hamiltonian in Te has the following form [4,32,33]:

H = A1k2
z + A2k2

⊥ + (βkz + gBz )σz + �2σx+�2. (5)

Here k is a wave vector, k2
⊥ = k2

x + k2
y , σx and σz are

the pseudospin Pauli matrices in the basis ±3/2 (the re-
ducible representation D = H4 + H5), �2 is the spin-orbit
half-splitting of the valence-band states

(|3/2〉 ± |−3/2〉)/
√

2

at the H point of the Brillouin zone, the parameter g describes
the Zeeman effect, the parameters A1,A2 are responsible for
parabolic scalar terms, and the coefficient β determines the

strength of the kz-linear term; it has opposite signs in the two
Te enantiomorphs D4

3 and D6
3 (or P3121 and P3221). Hereafter

we use the hole representation and take A1,2 > 0.
We study magnetoelectric transport of holes occupying the

lowest valence band of Te (uppermost in the electron repre-
sentation). According to Eq. (5) its energy dispersion relation
is given by

εk = A1k2
z + A2k2

⊥ −
√

�2
2 + (βkz + gBz )2 + �2. (6)

Since we are interested in linear-B effects, we make an expan-
sion εk ≈ ε0

k + δεk, where the zero-field energy is

ε0
k = A1k2

z + A2k2
⊥ −

√
�2

2 + β2k2
z + �2, (7)

and the correction

δεk = −gBzη(kz ), η = βkz√
�2

2 + β2k2
z

. (8)

The hole energy dispersion at zero magnetic field and at Bz 
=
0 is illustrated in Fig. 1.
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FIG. 1. The lowest valence subband of tellurium in the hole
representation in the vicinity of the H point. The curves show the
hole energy dispersion εk vs kz at k⊥ = 0 in the absence (dashed) and
presence (solid) of the magnetic field B ‖ z.

At Bz = 0 the eigenvectors of the Hamiltonian (5) are two-
component columns

u0
kz

= 1√
2

[√
1 + η(kz )√
1 − η(kz )

]
. (9)

The dispersion ε0
k has the camel’s back shape with the en-

ergy minimum εm = −�2A1/β
2. At fixed hole energy ε0

k =
ε � εm the values of k2

⊥ lie in the range between 0 and√
(ε − εm)/A2 while the values of kz fill the range Kz(ε)

containing two intervals [−κ (ε),−κ ′(ε)] and [κ ′(ε), κ (ε)],
where

κ (ε) =
√

ε − � +
√

�2 + β2ε/A1

A1
,

κ ′(ε) =
√

ε − � −
√

�2 + β2ε/A1

A1
, (10)

and � = �2 − β2/(2A1). For ε > 0, the value of κ ′ should
be set to 0 and the range Kz(ε) = [−κ (ε), κ (ε)].

For calculation of the Gxxxx component one should add to
the Hamiltonian (5) scalar terms linear in Bx and odd in kx;
see the next section.

The eMCh current density is calculated in the standard way
with the help of the hole distribution function fk as follows:

δ j = 2e
∑

k

v(k) fk, (11)

where e > 0 is the elementary charge, the factor 2 accounts
for the two valleys H and H ′, and v(k) is the hole velocity
h̄−1∂εk/∂k.

In the z-eMChA geometry, the distribution function fk is
dependent on kz and k2

⊥ and independent of the azimuth angle
between k⊥ and the x axis. It is helpful to change variables
from (kz, k2

⊥) to (kz, ε
0
k ) bearing in mind that

k2
⊥ = 1

A2

(
ε0

k +
√

�2
2 + β2k2

z − �2−A1k2
z

)
.

This relation establishes an unambiguous correspondence be-
tween k2

⊥ and a pair of variables (kz, ε
0
k ). Thus, all functions

kz and k2
⊥ are treated as dependent on kz and energy ε0

k ,
F (kz, ε

0
k ). A sum of any function F (kz, ε

0
k ) over k is calculated

as follows:∑
k

F
(
kz, ε

0
k

) = g2D

∫ ∞

εm

dε0
k

∫
Kz (ε0

k )
dkzF

(
kz, ε

0
k

)
, (12)

where g2D = 1/(8π2A2) is the density of states for two-
dimensional motion in the (xy) plane. In the following we
consider the case where the energy minimum εm is small
compared with the average hole energy and use the limits
[−κ (εk), κ (εk)] and (0,∞) of integration over kz and ε0

k in
equations like Eq. (12).

The distribution function obeys the Boltzmann kinetic
equation

e

h̄
E · ∂ fk

∂k
+ Î (el)

k [ f ] + Î (inel)
k [ f ] = 0, (13)

where the left-hand side contains the force and collision terms,
respectively. The collision integral consists of two contribu-
tions describing elastic and inelastic hole scattering. We will
solve Eq. (13) by iterations up to the second order in E and,
therefore, present fk as a sum f0(εk) + f1(k) + f2(k) with
f0(εk) being the Fermi-Dirac distribution and fn ∝ En.

IV. RELAXATION-TIME APPROXIMATION

We use the relaxation-time approximation taking the colli-
sion integral in the form

Îk[ f ] = fk − f0(εk)

τ
(14)

with τ being a constant. This corresponds to fast energy relax-
ation with a rate equal to the elastic scattering rate.

Then the corrections of the first and second orders in Ez are
given by

f1(k) = −eτEz f ′
0(εk)vz,

f2(k) = −eτEz

h̄

∂ f1(k)

∂kz
, (15)

where f ′
0(ε) = ∂ f0(ε)/∂ε. Substitution of fk = f2(k) into

Eq. (11) and integration by parts yields for the eMCh current
density

δ jz = 2
e3(τEz )2

h̄3

∑
k

f0(εk)
∂3εk

∂k3
z

. (16)

An analogous result was obtained previously for 1D transport
in quantum wires [20]. Expanding

f0
(
ε0

k + δεk
) ≈ f0

(
ε0

k

) + f ′
0

(
ε0

k

)
δεk, (17)

calculating the third derivatives of ε0
k and δεk, and integrating

by parts we obtain

Gzzzz = −12
e3τ 2A1gβ

h̄3�2

∑
k

η2(kz )ζ 3(kz ) f ′
0

(
ε0

k

)
, (18)
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where

ζ (kz ) = �2√
�2

2 + β2k2
z

=
√

1 − η2(kz ). (19)

For degenerate hole gas with the Fermi energy εF > 0 we
come to the final equation

Gzzzz = g
A1

A2

e3τ 2

π2h̄3 η3(κF), (20)

where κF = κ (εF) and κ (ε) is defined by Eq. (10). For small
values of β, the component Gzzzz is cubic in β because in this
limit η ∝ β; see Eq. (8).

An important result to stress is that, at small β, the eMCh
current is not linear but a cubic function of β. This can
be understood taking ε0

k as A1k2
z + A2k2

⊥ and the magnetic-
field induced correction to the energy as δε = Pkz, where
P = −gBzβ/�2, and shifting the origin of the k space by
k0

z = P/(2A1). In the new frame k′
z = kz + k0

z we obtain a
fully parabolic dispersion εk′ = A1k′2

z + A2k2
⊥ as in a cen-

trosymmetric crystal where an eMCh current is forbidden.
A similar calculation of the Gxxxx component with the

following energy dispersion in the magnetic field B ‖ x̂,

εk = ε0
k + Bxkx

(
�⊥k2

⊥ + �zk
2
z

)
, (21)

yields

Gxxxx = 2
A1

A2

e3τ 2

π2h̄3 �⊥κ3
F . (22)

Since the presence of a linear-kx term is not enough to get the
magnetochiral current, we took into account cubic-k terms in
Eq. (21). Note, however, that �z makes no contribution to the
eMCh current because the third derivative ∂3(kxk2

z )/∂k3
x = 0;

see Eq. (16).

Microscopic interpretation of eMChA

We give here the simplest interpretation of the eMChA cur-
rent (16). In the external electric field Ez the equilibrium hole
distribution is shifted in the k space by δkz = eEzτ/h̄. Then in
the simplest description one can present the nonequilibrium
distribution function as f0(k⊥, kz − δkz ). Let us expand this
function in powers of δkz as follows:

f0(k⊥, kz − δkz ) = f0(k) − ∂ f0

∂kz
δkz + 1

2

∂2 f0

∂k2
z

(δkz )2.

The linear term contributes to the Ohmic current while the
nonlinear contribution is

δ jz = e
∑

k

vz
∂2 f0

∂k2
z

(δkz )2 = e3τ 2E2
z

h̄3

∑
k

∂3εk

∂k3
z

f0(εk).

This equation differs from Eq. (16) only by a factor of 2 which
reflects the simplified character of the latter consideration.

V. MECHANISM DUE TO ELASTIC SCATTERING

Now we consider the eMCh current formed in the process
of elastic scattering by short-range impurities. In this case the

collision integral reads

Î (el)
k [ f ] = 2π

h̄
Ni

∑
k′

|Vk′k|2δ(εk − εk′ )( fk − fk′ ), (23)

where Ni is the impurity concentration, and Vk′k is the ma-
trix element of scattering by an individual impurity potential
V (r) = V0δ(r) given by Vk′k = V0〈uk′

z
|ukz 〉, with ukz being the

eigenvectors of the Hamiltonian (5). For the mechanism under
consideration all the nonequilibrium corrections to the distri-
bution function fk vanish after averaging over k at the fixed
energy. The role of corrections δ f dependent on the energy εk

is analyzed in Sec. VII.

A. Inversion of the collision integral at B = 0

At B = 0 we obtain from Eq. (9)

|Vk′k|2 = V 2
0

2
[1 + η(kz )η(k′

z ) + ζ (kz )ζ (k′
z )]. (24)

Below we use for brevity the notation Ik[ f ] instead of I (el)
k [ f ]

for the elastic collision integral at B = 0.
It follows from Eq. (24) that, for the short-range scattering

potential, the kernel of the elastic collision integral (23) is
degenerate: It is a sum of products of functions depending
solely on kz or k′

z. This allows us to invert the operator Îk[ f ]
by reducing the following integral equation to the algebraic
one:

G
(
kz, ε

0
k

) + Îk[ f ] = 0, (25)

where the source function G(kz, ε
0
k ) satisfies the integral

condition∑
k

G
(
kz, ε

0
k

)
δ
(
ε0

k − ε
) ∝

∫ κ (ε)

−κ (ε)
dkzG(kz, ε) = 0, (26)

which means that the number of particles of a given energy
are conserved under elastic scattering. If the source function
G(kz, ε

0
k ) in the kinetic equation (25) does not satisfy the

condition (26) it should be presented as a sum of the function
satisfying this condition and the function G(ε0

k ) dependent
purely on ε0

k . In order to find the solution of the kinetic equa-
tion with the source G(ε0

k ) one must replace Îk[ f ] in Eq. (25)
by the inelastic collision integral Î (inel)

k [ f ]; see Sec. VII. For
an odd source term, G(kz, ε

0
k ) = −G(−kz, ε

0
k ), we obtain for

the inverse operator

Î−1
k [G] = h̄

[
G

(
kz, ε

0
k

) + η(kz )LGη/(1 − Lη2 )
]

2πg2DNiV 2
0 C

(
kz, ε

0
k

) , (27)

and for an even function G(kz, ε
0
k ) = G(−kz, ε

0
k ) we have

Î−1
k [G] = h̄

[
G

(
kz, ε

0
k

) − ζ (kz )LG/Lζ

]
2πg2DNiV 2

0 C
(
kz, ε

0
k

) , (28)

C
(
kz, ε

0
k

) = κ
(
ε0

k

) + �2

β
ζ (kz ) Arctanh

{
η
[
κ
(
ε0

k

)]}
, (29)

where Arctanh(z) = [ln(1 + z) − ln(1 − z)]/2, and the func-
tion LF (ε0

k ) is defined for any even-kz function F (kz, ε
0
k ) as

follows:

LF
(
ε0

k

) =
∫ κ (ε0

k )

0
dkz

F
(
kz, ε

0
k

)
C

(
kz, ε

0
k

) . (30)
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By using the inverse collision integral we can calculate the
conductivity

σzz = 2e
∑

k

v0
z (k)Î−1

k

[−ev0
z f ′

0

]
, (31)

where v0
z = h̄−1∂ε0

k/∂kz is the hole velocity in the absence of
magnetic field. For degenerate hole statistics we have

σzz = 2e2h̄

πNiV 2
0

(
Lv2 + L2

vη

1 − Lη2

)
, (32)

where the functions LF are taken at ε0
k = εF.

B. Allowance for linear-B term in collision integral

Scattering by impurities is affected by the magnetic field.
In the linear-B approximation we obtain

δÎk[ f ] = 2π

h̄
Ni

∑
k′

[
δ|Vk′k|2δ

(
ε0

k − ε0
k′
)

+ |Vk′k|2δ′(ε0
k − ε0

k′
)
(δεk − δεk′ )

]
( fk − fk′ ).

(33)

Here δεk is given by Eq. (8), and since the Hamiltonian (5) in
the presence of Bz is obtained from its zero-field value by the
substitution kz → kz + gBz/β, we have

δ|Vk′k|2 = gBz

β

(
∂

∂kz
+ ∂

∂k′
z

)
|Vk′k|2, (34)

which yields

δ|Vk′k|2 = V 2
0

gBz

2�2
[η2(k′

z ) − η2(kz )][η(k′
z )ζ (kz ) − η(kz )ζ (k′

z )].

(35)

Passing from summation to integration over the variables
(k′

z, ε
0
k′ ) and integrating the term with

δ′(ε0
k − ε0

k′
) = −∂δ

(
ε0

k − ε0
k′
)

∂ε0
k′

by parts, we get

δÎk[ f ]= 2π

h̄
Nig2D

{∫ κ (ε0
k )

−κ (ε0
k )

dk′
zδ|Vk′k|2

[
f
(
ε0

k, kz
)− f

(
ε0

k, k′
z

)]

+ fk
d

dε0
k

∫ κ (ε0
k )

−κ (ε0
k )

dk′
z|Vk′k|2(δεk − δεk′ )

− d

dε0
k

∫ κ (ε0
k )

−κ (ε0
k )

dk′
z|Vk′k|2(δεk − δεk′ ) f

(
ε0

k, k′
z

)}
.

(36)

Here we took into account that both |Vk′k|2 and δεk are inde-
pendent of ε0

k and dependent on kz, k′
z only.

C. Procedure to calculate the eMCh current

According to Eq. (33) or (36), at nonzero magnetic field
the kinetic equation takes the form

e

h̄
Ez

∂ fk

∂kz
+ Îk[ f ] + δÎk[ f ] = 0. (37)

The equilibrium hole gas is described by the Fermi-Dirac
distribution function (17) satisfying the identity

δÎk
[

f0
(
ε0

k

)] + Îk
[

f ′
0

(
ε0

k

)
δεk

] = 0, (38)

which is Eq. (37) at Ez = 0.
The correction to the distribution function proportional to

E2
z Bz can be found by iterations of the kinetic equation (37).

First of all, we find a linear-Ez correction f (E )
k at Bz = 0. It is

given by f (E )
k = −eEzÎ−1

k [vz f ′
0]; see Eq. (31). The required

solution δ fk ∝ E2
z Bz is sought as a sum of two corrections

labeled f (E2B)
k and f (EBE )

k .

To calculate f (E2B)
k we perform the next iteration and find

the correction f (E2 )
k ∝ E2

z at Bz = 0 from the equation

eEz

h̄

⎛
⎝∂ f (E )

k

∂kz
− ∂ f (E )

k

∂kz

⎞
⎠ + Îk[ f (E2 )] = 0. (39)

Here the bar denotes averaging over kz at a fixed energy ε0
k ,

namely,

F = 1

2κ
(
ε0

k

) ∫ κ (ε0
k )

−κ (ε0
k )

dkzF
(
kz, ε

0
k

)
. (40)

Then we include into consideration the magnetic field Bz and
find f (E2B)

k as a solution of the linear equation

δÎk
[

f (E2 )
k

] + Îk
[

f (E2B)
] = 0. (41)

In order to determine the second contribution, f (EBE )
k , we

first find the correction f (EB)
k ∝ EzBz. It satisfies the equation

e

h̄
Ez

[
∂ ( f ′

0δεk)

∂kz
− ∂ ( f ′

0δεk)

∂kz

]

+ δÎk[ f (E )] − δÎk[ f (E )] + Îk[ f (EB)] = 0. (42)

Finally we substitute the correction f (EB)
k to

eEz

h̄

∂ f (EB)
k

∂kz
+ Îk[ f (EBE )] = 0 (43)

and find f (EBE )
k .

It should be noted that both f (E )
k and the resulting functions

f (E2B)
k , f (EBE )

k are odd in kz, whereas those obtained at inter-

mediate iteration steps, f (E2 )
k and f (EB), are even functions

of kz. For the mechanism due to elastic scattering all these
functions satisfy the integral condition (26).

The eMCh current is calculated according to Eq. (11) as
follows:

δ jz = 2e
∑

k

[
v0

z

(
f (EBE )
k + f (E2B)

k

) + δvz f (E2 )
k

]
. (44)

Here, following Eq. (6) we present the hole velocity as vz =
v0

z + δvz with

v0
z (kz ) = 1

h̄
[2A1kz + βη(kz )], (45)

δvz(kz ) = gBz
β

h̄�2
ζ 3(kz ). (46)
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VI. THE MAGNETOCHIRAL CURRENT
IN THE SMALL-β LIMIT

At small β, the equation (20) derived in the relaxation-time
approximation reduces to

Gzzzz ≈ g
A1

A2

e3τ 2

π2h̄3 ξ 3, ξ = βκF

�2
. (47)

Here we go beyond the relaxation-time approximation,
apply the scheme developed in the previous section, and cal-
culate each of three contributions to the eMCh current (44)
assuming the constant β to be small.

In the limit β → 0, we have approximately

C
(
kz, ε

0
k

) ≈ 2κ
(
ε0

k

)
, κ

(
ε0

k

) ≈
√

ε0
k

A1
, |Vk′k|2 ≈ V 2

0 ,

ε0
k ≈ A1k2

z + A2k2
⊥, v0

z ≈ 2A1kz

h̄
, (48)

and the inverted collision integral is given by

Î−1
k [G] ≈ −τ

(
ε0

k

)
G

(
kz, ε

0
k

)
, τ

(
ε0

k

) = 2πA2h̄

NiV 2
0 κ

(
ε0

k

) . (49)

In the magnetic-field induced correction to the energy spec-
trum we take into account the cubic-β term because, as
discussed above, the linear-β correction does not result in
eMChA. Therefore we take

δεk ≈ −gBz

2

(
βkz

�2

)3

, δvz ≈ −3gBz

2h̄

(
β

�2

)3

k2
z . (50)

The Bz-linear correction to the scattering matrix element
squared reads

δ|Vk′k|2 ≈ V 2
0

2

gBz

�2

(
βkz

�2

)3(
k′2

z − k2
z

)
(k′

z − kz ). (51)

It can be neglected in the following because its contribution to
the current is parametrically smaller by a factor of εF/�2 � 1
compared with other contributions coming from the Bz-linear
correction (50). As a result, only two last lines of Eq. (36)
contribute to δÎk[ f ]:

δÎk[ f ] = 1

κτ

[
fkδεk

dκ

dε0
k

+ 1

2

∫ κ (ε0
k )

−κ (ε0
k )

dk′
zδεk′

∂ f
(
ε0

k, k′
z

)
∂ε0

k

]
.

(52)

We start from calculation of the third term on the right-
hand side of Eq. (44). The correction f (E2 )

k found from
Eq. (39) with f (E )

k = −eEzτvz f ′
0 is given by

f (E2 )
k =

(
2A1

eEz

h̄

)2

τ (τ f ′
0)′

(
k2

z − κ2

3

)
. (53)

Substituting this function into the last term in Eq. (44) we find
its contribution to the eMChA effect,

G(v)
zzzz = −32A2

1ge3τ

15h̄3

(
β

�2

)3

g2D
∂
[
κ5

Fτ (εF)
]

∂εF
. (54)

Using the relations κF ∝ ε
1/2
F , τ (εF) ∝ ε

−1/2
F , A1κ

2
F = εF, we

arrive at

G(v)
zzzz = − 8

15
g
A1

A2

e3τ 2

π2h̄3 ξ 3, (55)

where ξ is defined in Eq. (47).

Next, we search for the correction f (E2B)
k . It is found from

Eq. (41) to be as follows [see Eq. (52)]:

f (E2B)
k = gBz

(
βkz

�2

)3 1

2κ

dκ

dε0
k

f (E2 )
k , (56)

where f (E2 )
k is given by Eq. (53). This allows us to calculate

the second contribution in Eq. (44):

G(E2B)
zzzz = 16

105
g
A1

A2

e3τ 2

π2h̄3 ξ 3. (57)

Finally we calculate the contribution related to the function
f (EBE )
k . According to Eq. (43) this function has the form

f (EBE )
k = −τ

eEz

h̄

∂ f (EB)
k

∂kz
. (58)

It allows us to rewrite the first contribution in Eq. (44) as

j (EBE )
z = 2e2Ez

(
2A1

h̄

)2 ∑
k

f (EB)
k τ ′k2

z . (59)

While deriving this equation we took into account that the
function f (EB)

k satisfies Eq. (26).
The solution of Eq. (42) for f (EB)

k reads

f (EB)
k = gBzeEzτ

2h̄

(
β

�2

)3[
3 f ′

0

(
k2

z − κ2

3

)

+ A1

(
2 f ′′

0 − f ′
0

ε0
k

)(
k4

z − κ4

5

)]
. (60)

Substitution of this expression to Eq. (59) leads to

G(EBE )
zzzz = − 2

105
g
A1

A2

e3τ 2

π2h̄3 ξ 3. (61)

The sum of the three contributions (54), (57), and (61) yields

Gzzzz = −2

5
g
A1

A2

e3τ 2

π2h̄3 ξ 3, (62)

where τ is defined by Eq. (49). Comparing with the
relaxation-time approximation result (47) we see a difference
both in the sign and a factor of 2/5.

VII. MECHANISM INVOLVING INELASTIC SCATTERING

Now we turn to the mechanism of magnetochiral current
involving the inelastic scattering. Compared to the previous
section we change the attention from the asymmetric part
of δ fk satisfying condition (26) to the energy-dependent part
δ f (εk) of the correction to the hole distribution function. As-
suming the hole-hole collisions to be more effective than the
hole energy relaxation on acoustic phonons we can describe
the energy-dependent sum f0(εk) + δ f (ε0

k ) as the Fermi-Dirac
distribution function f0(εk, Th) characterized by the hole tem-
perature Th different from the bath temperature T . Here we
first briefly describe the procedure to calculate Th and then
show how the inelastic relaxation of hole nonequilibrium
distribution f0(εk, Th) gives rise to an electric current propor-
tional to (Th − T )Bz.
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A. Estimation of the hole effective temperature ∝ E2
z

The effective temperature Th can be found from the heat
balance equation

σzzE
2
z = J . (63)

The left-hand side represents Joule heating produced by the
passage of an electric current with σzz being the conductivity.
The right-hand side describes the energy relaxation of the
holes following acoustic-phonon scattering and has the form

J =
∑
k′k

(εk − εk′ )
(
W (ab)

k′,k − W (em)
k,k′

)
, (64)

where W (ab)
k′,k , W (em)

k,k′ are the hole scattering rates for phonon
absorption and emission processes. Their difference is given
by

W (ab)
k′,k − W em

k,k′ = 2π

h̄
|Mk′k|2δ(εk′ − εk − h̄�q)

× [( fk − fk′ )Nq − fk′ (1 − fk)]. (65)

Here q = k′ − k, �q, and Nq are the phonon wave vector,
frequency, and occupation number

Nq = 1

exp(h̄�q/kBT ) − 1
;

Mk′k is the scattering matrix element. For the energy-
dependent distribution function f0(εk, Th) the term in the
brackets in Eq. (65) reduces to

e(ε−εF )/kBTh [e(ε′−ε)/kBTh − e(ε′−ε)/kBT ]

(e(ε−εF )/kBTh + 1)(e(ε−ε′ )/kBTh + 1)(e(ε′−ε)/kBT − 1)

≈ −Th − T

T

h̄�q/kBT

eh̄�q/kBT − 1
f0(ε)[1 − f0(ε′)],

where ε = ε0
k , ε′ = ε0

k′ .
For the degenerate statistics, εF � kBT , a reasonable esti-

mation of J in Eqs. (63), (64) is

J ∼ �ε
Th − T

T

ρ(εF )kBT

τin
= kB(Th − T )

ρ(εF )�ε

τin
, (66)

where �ε = min (h̄�kF , kBT ), and ρ(ε) is the 3D density
of states. The characteristic inelastic-scattering time τin is
defined by

1

τin
= 2π

h̄

∑
k′

|Mk′k|2δ
(
ε0

k′ − ε0
k

)
(67)

for ε0
k = εF . Equations (63) and (66) allow one to estimate the

heating of the hole gas.

B. Current driven by energy relaxation

The energy-dependent nonequilibrium function f (εk, Th)
makes no contribution to the current (11). However, an electric
current appears due to the inelastic relaxation of this distribu-
tion to f (εk, T ) ≡ f0(εk). The current is given by

δ jz = −e
∑

k

τv(0)
z (kz )I (ne)

k { f }, (68)

where the inelastic collision integral has the form

I (ne)
k { f } = 2π

h̄

∑
k′

|Mk′k|2

× {[( fk − fk′ )Nq + fk(1 − fk′ )]δ(εk′ − εk + h̄�q)

+[( fk − fk′ )Nq − fk′ (1 − fk)]δ(εk′ − εk − h̄�q)},
(69)

with fk = f0(εk, Th) and εk = ε0
k + δεk; see Eqs. (7) and (8).

It is clear that the current is contributed by the odd-in-kz

part of I (ne)
k { f }. For simplicity we used the relaxation-time

approximation for deriving the antisymmetric component of
the hole distribution function f (2)

k and get f (2)
k = −τI (ne)

k { f }.
Substituting the collision integral into Eq. (68) we can

reduce this equation to

δ jz = − 2πeτ

h̄

∑
k,k′

|Mk′k|2
[
v(0)

z (kz ) − v(0)
z (k′

z )
]

× [( fk − fk′ )Nq − fk′ (1 − fk)]δ(εk′ − εk − h̄�q).
(70)

For an estimation of the current magnitude we simplify in
the collision integral the dispersion (7) to ε0

k = Ak2 and take
into account only the cubic term in the expansion of δε(kz );
see Eq. (50). Then the expressions in the sums (64) and (70)
differ by the multipliers (εk − εk′ ) and

gBz

εF

[
v(0)

z (kz )

(
βkz

�2

)3

− v(0)
z (k′

z )

(
βk′

z

�2

)3
]

∼ gBz

εF

(
β

�2

)3 k2

h̄
(εk − εk′ ).

It follows then that the current (70) can be estimated as

δ jz ∼ eτ
gBz

εF

(
β

�2

)3
κ2

F

h̄
J .

For the simplified energy dispersion the conductivity reads

σzz ∼ e2τεF κF

h̄2

and we finally obtain

δ jz ∼ g
e3τ 2

h̄3

(
βκF

�2

)3

E2
z Bz. (71)

One can see that the obtained estimation of the magnetochiral
current for the second mechanism has the same order as the
contribution (62).

VIII. DISCUSSION

We begin the discussion with a general symmetry analysis
of the eMChA effect studied in this paper. Tellurium is a crys-
tal with chiral (or enantiomorphic) structure. By definition, a
chiral periodic solid (or molecule) is non-superimposable with
its mirror image and has a “handedness.” Two modifications of
a chiral structure that are mirror-like to each other are called
enantiomorphic. In tellurium crystals, the two mirror modi-
fications are characterized by the space groups D4

3 (P3121)
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and D6
3 (P3221). Among 32 crystallographic point groups, 11

are enantiomorphic, namely, F = C1,C2, D2,C4, D4,C3, D3

(quartz, tellurium), C6, D6, T , and O.
In this regard, the question arises which of the coefficients

G(n) in Eqs. (4) coincide and which differ in sign for the two
enantiomorphs. To answer this question, consider the achiral
point group D3h, which differs from the D3 group by the
presence of a symmetry plane σh and includes 12 operations
g ∈ D3h. The D3h symmetry allows nonzero terms in (4) with
coefficients G(3), G(8), and G(10). Consequently, these three
coefficients describe an electric current nonlinear in E and
linear in B with its sign independent of the enantiomorphic
modification. The remaining seven coefficients G(n) describe
magnetochiral currents with opposite directions for the D4

3
and D6

3 phases. This way of separating the chiral and achi-
ral contributions to the electric current is applicable for 10
enantiomorphic crystal classes F , except for the O class.
Each of them can be associated with an achiral point group
Fa � F , which has no spatial inversion center and which
admits nonzero coefficients Gi jkl in Eq. (1). These coefficients
describe achiral transport, whereas the additional coefficients
arising in the F group are chiral. Chiral and achiral nature of
the coefficients can be readily determined from the behavior
of physical quantities in the left and right parts of Eqs. (4)
under reflection in the σh plane. Indeed, under this operation
the component δ jz changes sign, but the product E2

z Bz is
invariant which means that the coefficient G(1) is chiral. At
the same time, the product E2

x By changes sign upon reflection
σh, as does the component δ jz. Therefore, the coefficient G(3)

describes achiral transport.
Let us list the achiral groups correspond-

ing to the above 10 chiral groups: Fa =
Cs,C2v, D2d ,C4v, D4d ,C3v, D3h,C6v, D6d , and Td . As another
example, consider the chiral group T (sillenite Bi12SiO20,
bismuth germanate Bi12GeO20) and the corresponding achiral
group Td . The Td symmetry allows for the current δ jx
terms proportional to (E2

y − E2
z )Bx and (EyBy − EzBz )Ex. In

addition, the T group has chiral contributions proportional
to |E|2Bx, (E · B)Ex and E2

x Bx. The symmetry point
transformation which can be used to divide between chiral and
achiral coefficients is the reflection in the plane σv ‖ (110).

As for the enantiomorphic group O, it has no partner Fa �
O without an inversion center. Adding a reflection plane to
the group O leads to the Oh group in which all the coefficients
Gi jkl are equal to zero. Hence, for the O group, all the coeffi-
cients Gi jkl in the expansion (1) are chiral.

Note that the BiTeI crystal has the achiral trigonal sym-
metry C3v and allows a nonreciprocal rectification effect
δ jx ∝ E2

x By [16], which however is not a magnetochiral
effect.

In Secs. IV–VII, we have considered successively various
models and mechanisms of the eMChA effect: the approxima-
tion of a constant relaxation time, the general procedure for
calculating the magnetochiral current for different elastic and
inelastic relaxation times, and the approximation of a small
chiral parameter β. A derivation of the exact expression for
the current beyond the fixed relaxation-time approximation
cannot be obtained analytically and is outside the scope of
this work. However, the carried-out study shows that the mag-
netochiral current δ jz in tellurium for a degenerate hole gas

can be described by δ jz = GzzzzE2
z Bz with

Gzzzz = cg
A1

A2

e3τ 2

π2h̄3

(
βκF

�2

)3

, (72)

where c is a factor of the order of unity. This means that the
resistance of tellurium R has the nonreciprocal chiral contri-
bution

R = R0(1 + γzzzz jzBz ), γzzzz = −Gzzzz

σ 2
, (73)

where R0 is the resistance in the absence of magnetic field,
and σ is the conductivity. For an estimation we ignore the
difference between A1 and A2. Taking the conductivity as
σ = pe2τ/m∗ where m∗ = 2A1/h̄2, the coefficient g in Eq. (5)
as g = g∗μB, where μB is the Bohr magneton and g∗ is the
effective g factor, and noting that the Fermi wave vector is
related to the hole concentration as κ3

F = 3π2 p, we get

γzzzz ≈ −3μBg∗m∗2

ep

(
β

h̄�2

)3

. (74)

We use the parameters suitable for Te: β = 2.5 × 10−8 eV cm,
�2 = 63 meV, m∗ = 0.2m0, g∗ = 1, and the hole concentra-
tion p = 1016 cm−3. Then we obtain that the ratio βκF/�2 ≈
0.27 � 1, and one can apply the approximate equation (72)
for the estimation. The result yields 3 × 10−11 m2 T−1 A−1 for
the absolute value of magneto-induced rectification coefficient
γzzzz.

The eMCh current measurements presented in Figs. 3 and
4 in Ref. [9] were performed in the following two geometries:
(i) the electric current measured in the z direction at E ‖ ẑ and
the magnetic field vector lying in the (zx) plane; (ii) j, E ‖ x̂,
and the magnetic field in the (xy) plane. It follows from the
general equations (4) that, in these two setups, one has

δ jz = GzzzzE
2
z B cos θz = G(1)E2

z B cos θz,

δ jx = GxxxxE2
x B cos θx = (G(5) + G(7) )E2

x B cos θx, (75)

where B = |B|, θz is the angle between the vector B lying in
the (zx) plane and the z axis, and θx is the angle between the
vector B lying in the (xy) plane and the x axis.

The data presented in Figs. 3 and 4 in Ref. [9] and the
corresponding data (3) are in complete contradiction to the
phenomenological equations (4) and (75) derived for D3 sym-
metry crystals. Indeed, the symmetry predicts that γxxxy =
γzzzx = 0 while the component γzzzz is allowed. This is a key
difficulty in comparing the derived theory with the experi-
ment [9] and an additional experimental work is needed on
the study of the chiral transport in tellurium crystals.

In Ref. [9], a theoretical estimate of the γ value is also
given. The equation for γ is derived in the framework of a
model where the linear in kzBz term in the hole energy disper-
sion is taken into account only. As stressed in Sec. IV this term
does not lead to eMChA and one needs to include the higher-
order term k3

z Bz in the hole Hamiltonian, as unambiguously
follows from Eq. (16) for δ jz. Moreover, the kzBz-linear term
δεk = χkzBz in the hole dispersion is given by χ = −gβ/�2

with an estimate for tellurium |χ | = 3.7 × 10−32 J m/T. The
value of |χ | assumed in Ref. [9] is ∼40 times larger.

Our theoretical value 3 × 10−11 m2 T−1 A−1 for γzzzz in
tellurium is by more than two orders of magnitude smaller
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as compared to the experiment [9]. Tables 1 in Refs. [9]
and [10] summarize the reported results on eMChA. The
values of γ for five materials different from Te lie between
10−14 m2 T−1 A−1 and 3 × 10−10 m2 T−1 A−1. The value of
γzzzz measured recently in a tellurium wire amounts to 5 ×
10−10 m2 T−1 A−1 [34]. An increase by an order of magnitude
compared with the predicted bulk value can be related to the
effect of quantum confinement of holes in the Te nanowire.

So far, we have examined the effect of a static electric field
E. It is easiest to generalize the theory to the case of a time-
dependent field Ez(t ) = E (0)

z cos ωt in the constant relaxation-
time approximation for frequencies satisfying the condition
ω � εF /h̄, while the product ωτ may be arbitrary. To find
the distribution function fk(t ), the derivative ∂ fk/∂t must be
added to the left side of the kinetic equation (13). Omitting
calculations, we present the result. The formula (16) for ω 
= 0
becomes

δ jz(ω) = δ jz(0)

1 + ω2τ 2
, (76)

where δ jz(0) is the magnetochiral current in a static electric
field. The alternating electric field induces not only a dc cur-
rent (76), but also a current at double frequency 2ω. For the
second-harmonic generation we have

j2ω
z (t ) = jz;2ωe−2iωt + jz;−2ωe2iωt , (77)

where the complex amplitude is given by

jz;2ω = j∗z;−2ω = 1

2

δ jz(0)

(1 − iωτ )(1 − 2iωτ )
.

It should be mentioned that experimentally it is convenient to
detect the magnetochiral current by measuring the amplitude
of the second harmonic at ωτ � 1 [9].

In fact, Eq. (76) describes the phenomenon that is called the
magneto-photogalvanic effect (MPGE). In general, it is de-
scribed by the following phenomenological equation [35–39]:

ji = Gi jkl (ω){EjE
∗
k }Bl + G(circ)

klm RlBm, (78)

where E is the complex amplitude of the radiation electric
field and

{EjE
∗
k } = 1

2 (EjE
∗
k + E∗

j Ek ), R = i(E × E∗).

The first and second contributions on the right-hand side of
Eq. (78) represent the so-called linear and circular MPGE. At
zero frequency (static electric field) the coefficients Gi jkl (ω)
coincide with the coefficients Gi jkl in Eq. (1). The elec-
tric field of the electromagnetic wave is complex and the
magneto-photogalvanic current contains an additional contri-
bution described by the pseudotensor G(circ) if the circular
polarization of the exciting light is nonzero. The circular
MPGE has first been observed in the achiral GaAs crys-
tal [40]. Similarly to the dc effect (4) the coefficients Gi jkl (ω)
and G(circ) can be divided into chiral and achiral ones. Let us
consider the products RiBj which transform in D3h according
to (A′

2 + E ′′) × (A′
2 + E ′′) = A′

1 + 2E ′′ + (A′
1 + A′

2 + E ′):

RzBz (A′
1); RxBx + RyBy (A′

1); RxBy − RyBx (A′
2);

RxBx − RyBy,−RxBy − RyBx (E ′);

RzBy,−RzBx (E ′′); RyBz,−RxBz (E ′′). (79)

Thus, an achiral contribution to the current is given by

δ jx = G(circ)
1 (RxBx − RyBy),

δ jy = −G(circ)
1 (RxBy + RyBx ).

In the D3 symmetry, additional chiral terms appear:

δ jx = G(circ)
2 RzBy + G(circ)

3 RyBz,

δ jy = −G(circ)
2 RzBx − G(circ)

3 RxBz,

δ jz = G(circ)
4 (RxBy − RyBx ). (80)

It is instructive to describe the hierarchical sequence of
point-group categories: among 21 crystal classes lacking in-
version symmetry, 18 are gyrotropic and, as mentioned above,
11 are enantiomorphic. All noncentrosymmetric crystals al-
low nonzero coefficients Gi jkl in Eq. (1) and Gi jkl (ω), G(circ)

klm
in Eq. (78). We remind the reader that the gyrotropic classes
allow nonzero components of the rank-3 tensors γi jk an-
tisymmetric under exchange of one pair of its indices or,
equivalently, the rank-2 pseudotensors. In the gyrotropic crys-
tals, there exist coefficients in Eq. (78) that relate the current
vector components with pseudovector combinations of the
products of EjE∗

k Bl and describe the magneto-gyrotropic
photogalvanic effects [36,38,41]. And finally, in the chiral
crystals there are coefficients which have different signs for
the different enantiomorphic modifications. Recently the mag-
netochiral photogalvanic current j ∝ B × R has been studied
in bulk tellurium [42] in both terahertz and infrared ranges at
indirect intraband and direct intersubband optical transitions
in the valence band, respectively.

IX. SUMMARY

We have derived the theory of the eMChA effect in tel-
lurium which shows an intricate combination of chirality and
magnetism. A macroscopic phenomenological relationship is
established between the electric current density and products
of the magnetic field and bilinear combinations of the electric
field strength. Two microscopic mechanisms of the effect are
considered, one with allowance for elastic scattering processes
only and the other where the eMChA current is formed in the
course of hole gas heating and its energy relaxation. In the
purely elastic mechanism, the general formalism is developed
to calculate the eMChA current at arbitrary ratio between
the camel-back dispersion parameter β, Fermi energy, and
valence-band splitting 2�2.

The exact result is obtained in the limit of small β. It
shows the same order of magnitude of the magneto-induced
rectification coefficient γzzzz as that obtained in the simple
relaxation-time approximation; however, the value and even
the sign of γzzzz are different.

Attention is attracted to the difference between the achiral
and chiral contributions to the magneto-induced rectification
which, respectively, coincide and are opposite in sign in the
two enantiomorphic modifications of chiral crystals.

The relationship between the eMChA and magneto-
induced photogalvanic effects is discussed and the chiral and
achiral coefficients describing these effects in tellurium are
identified. The developed theory of eMChA is compared with
the available experimental data.
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