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Gauge invariance of the thermal conductivity in the quantum regime
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The widely-used linear-response (LR) theory of thermal conduction in the quantum regime rests on the yet
unproven assumption that the thermal conductivity is invariant with respect to the gauge of the energy density of
the system. This assumption manifests itself clearly in, e.g., Hardy’s formulation of the heat-flux operator [Hardy,
Phys. Rev. 132, 168 (1963)]. In this paper, we rigorously prove this assumption. Our proof, being valid for the
nuclear and electronic subsystems, not only puts the state-of-the-art theory on solid grounds, but also enables
going beyond the scope of the widely-used Boltzmann transport equation (BTE) within the LR framework for
many-body systems.
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I. INTRODUCTION

Linear-response (LR) theory is one of the most impor-
tant techniques of theoretical physics to calculate materials
properties [1,2] such as optical spectra [3,4], electron-phonon
coupling strength [5,6], magnetic susceptibility [7] and ther-
mal conductivity [8–11]. The thermal conductivity of a
material determines the amount of heat that flows through
it in presence of a temperature gradient ∇T . It is an impor-
tant property for applications, such as thermographic defect
detection [12], thermal-barrier coatings [13], and for thermo-
electrics, that can tap waste heat to generate electricity [14].

In crystals, heat is carried by electrons and lattice vi-
brations (phonons). To calculate the lattice contribution,
the state-of-the-art methodologies are the Green-Kubo (GK)
[8,15] and the Boltzmann transport equation (BTE) [16–18].
Despite recent advancements in the application of GK to
real materials [19], using it as a general framework for cal-
culating heat transport is still a formidable task [20]. The
BTE, therefore, remains the workhorse for computing the
lattice thermal conductivity. Similarly, the electronic contri-
bution to the thermal conductivity can be calculated using the
Kubo-Greenwood approach [21] or the Boltzmann transport
equation [22] where due to the computational complexity of
the former, likewise the BTE remains the most often used
technique.

The assumption underlying the BTE is that the heat-
carrying particles, i.e., phonons or electrons, act as in a gas,
in which they do not scatter very often and behave almost like
classical particles [17]. This enables one to treat them (almost)
independently and assign them a defined long lifetime, which
leads to the relaxation-time approximation (RTA) [22]. Hav-
ing lifetime and dispersion, one can calculate the respective
contribution to the thermal conductivity of a material [23].
The BTE gives very good results for many materials [19,24–
28]. However, this method becomes questionable if the
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scattering rates of the particles are large [29], as, for instance,
for phonons in materials with low lattice thermal conductivity.

The BTE can be derived as an approximation to Kubo’s
formula [8,30] [Eq. (1) below] for electronic as well as lattice
thermal transport [2,31]. Therefore, it should be possible to
derive correction terms that may answer the question when the
BTE is applicable to a material, and if not, how to improve it.
However, this approach faces a severe obstacle: For thermal
transport, a temperature gradient is required. Therefore, to
formulate the LR, small subsystems in local equilibrium are
considered [32], which gives rise to the notion of a local
energy density [2]. For interacting systems, this local energy
density is ambiguous: Whenever two or more particles in-
teract, portions of the interaction energy can be arbitrarily
assigned to any of them, or even to other points in space
[10]. As a consequence, its definition involves the choice of
a gauge. This is the case, for instance, for the interacting
electrons and atomic nuclei responsible for the thermal con-
duction.

Even though it has been argued long ago that the LR
approach is applicable also in the presence of a thermal distur-
bance (∇T �= 0) [8,30], it remained unclear whether the result
is invariant with respect to the specific definition, i.e., the
gauge, of the local energy density. Given the invariance, one
may devise how to use methods of LR to go beyond the BTE
for thermal conductivity and thereby judge its applicability.
Only for the GK equation, which is the classical limit of the
LR approach, a proof has been given a few years ago for the
thermal conductivity [33], and discussions on the invariance
of other coefficients in this limit exist as well [34]. In contrast,
however, the many-body system of interacting particles that
form any material, is a quantum problem. This is where our
paper comes in.

In this article, we prove the gauge invariance of the ther-
mal conductivity in the quantum regime. In analogy to the
classical counterpart [33], here we derive a quantum Ein-
stein relation, which relates the thermal conductivity to the
equal-time autocorrelation of a quantum energy-displacement
operator. This enables us to leverage a generalized version
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of the Cauchy-Schwarz inequality to show that, for any two
gauges, the thermal conductivity tensors must be identical. We
then use Hardy’s formulation of the heat-flux operator [10]
to analyze the thermodynamic limit and illustrate the impact
of the gauge. Finally, we show how the gauge invariance
is fulfilled in a simple case of two-body interactions. This
example motivates an alternative proof that is given at the end.

II. HEAT TRANSFER IN THE QUANTUM REGIME

The lattice thermal conductivity is given as [2,8,32]

κ i j (ω) = �

T

∫ β

0
dλ

∫ ∞

0
dtei(ω+iη)t 〈ŜiŜ j (t + ih̄λ)〉 (1)

where � is the system volume, T the temperature, β =
(kBT )−1, and kB the Boltzmann constant. η is a positive
infinitesimal. The operators are written in the Heisenberg
picture. Angle brackets denote canonical thermal averages:
〈Ô〉 = (Tr̂ρ )−1Tr(̂ρÔ) with ρ̂ = exp(−βĤ) the density ma-
trix, and Ĥ the system hamiltonian in equilibrium. Ŝi are the
cartesian components of the heat-flux operator Ŝ. It can be
obtained from the volume average of a local heat-flux operator
ŝ(x), which fulfills the continuity equation [10]

1

ih̄
[ĥ(x), Ĥ] = −∇ · ŝ(x), (2)

where ĥ(x) is a Hamiltonian density that is only constrained
by the fact that its volume integral is Ĥ. There remains a
gauge freedom for ĥ(x), since the interaction energy can be
located at any of the involved particles or spatial coordinates.
Multiplying Eq. (2) with x and integrating over space, using
partial integration, leads to

1

ih̄
[P̂, Ĥ] = − 1

�

∫
�

dx x∇ · ŝ(x) = Ŝ. (3)

Here,

P̂ = 1

�

∫
�

dx xĥ(x) (4)

is the (gauge-dependent) energy polarization per unit volume.
The surface term in Eq. (3) vanishes since the integrand x̂s(x)
is zero outside the system [10]. From Eq. (4), it is clear
that different choices of the gauge in ĥ(x) lead in general
to different definitions of Ŝ. While it is clear that a physical
observable is indeed independent of arbitrary mathematical
gauge choices, the question remains whether the result of LR
theory is also independent. In what follows, we rigorously
prove that the LR result for κ i j is indeed independent of the
gauge of ĥ(x).

III. PROOF OF INVARIANCE

We define the quantum energy displacement

D̂i(t ) =
(

�kB

2

)1/2 ∫ β/2

−β/2
dλ

∫ t

0
dt ′Ŝi(t ′ − ih̄λ). (5)

Now, we relate the thermal conductivity κ i j to Re〈D̂i(t )D̂ j (t )〉.
With the aid of [35]∫ c+y

c
dx1dx2 f (x1 − x2) =

∫ y

−y
dγ (y − |γ |) f (γ ), (6)

where c is some constant, we find

〈D̂i(t )D̂ j (t )〉 = �kB

2

∫ β

−β

dφ(β − |φ|)

×
∫ t

−t
dσ (t − |σ |)〈Ŝi(σ − ih̄φ )̂S j〉. (7)

Applying the relation

lim
t→∞

∫ t

−t
dσ

(
1 − |σ |

t

)
exp

(
i
Eσ

h̄

)
= 2π h̄δ(E ) (8)

to Eq. (7) in the eigenfunction representation of Ĥ and taking
the limit t → ∞, we arrive at

lim
t→∞

1

t
〈D̂i(t )D̂ j (t )〉

= π h̄�kBβ2

Tr(̂ρ)

∑
γ ,ξ

e−βEγ δ(Eγ ξ )̂Si
γ ,ξ Ŝ j

ξ,γ , (9)

where Ŝi
γ ,ξ is a matrix element of the heat-flux operator be-

tween Ĥ’s eigenstates |ξ 〉 and |γ 〉, Eξ/γ are the corresponding
eigenvalues, and Eγ ξ = Eγ − Eξ . This limit is identical to the
static thermal conductivity κ i j , as obtained from the real part
of Eq. (1) in the ω → 0, then η → 0 limit. Therefore

lim
t→∞

1

t
Re〈D̂i(t )D̂ j (t )〉 = κ i j . (10)

This is the quantum Einstein relation that we wanted to prove.
Now, only one more step is required: Assume there are

two different heat fluxes, Ŝi
1 and Ŝi

2 (corresponding to two
different gauges), causing two different conductivities, κ ii

1 and
κ ii

2 , as obtained from Eq. (10) with D̂i
1 and D̂i

2, respectively.
We define �̂ i = D̂i

2 − D̂i
1. Then

wii ≡ lim
t→∞

1

t
Re

〈(
D̂i

1(t ) + D̂i
2(t )

)2〉
= κ ii

1 + κ ii
2 + lim

t→∞
1

t
Re

〈
D̂i

1(t )D̂i
2(t ) + D̂i

2(t )D̂i
1(t )

〉
= 2

(
κ ii

1 + κ ii
2

) − lim
t→∞

1

t
Re〈�̂ i(t )�̂ i(t )〉

= 2
(
κ ii

1 + κ ii
2

)
. (11)

The last step is possible, because

lim
t→∞

1

t
〈�̂ i(t )�̂ i(t )〉 = 0. (12)

We will elaborate on this point further below. Comparing the
second with the fourth line, we find

lim
t→∞

1

t

〈
D̂i

1D̂i
2 + D̂i

2D̂i
1

〉 = κ ii
1 + κ ii

2 . (13)

Using the Cauchy-Schwarz inequality for Hermitian operators
Â and B̂,

4 〈Â2〉〈B̂2〉 � 〈ÂB̂ + B̂Â〉2, (14)
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we arrive at

4κ ii
1 κ ii

2 �
(
κ ii

1 + κ ii
2

)2

⇒ 0 �
(
κ ii

1 − κ ii
2

)2
. (15)

The invariance of the tensor κ i j follows immediately from
Eq. (15), which is true for all directions, not just the Cartesian
axes. Since the tensors κ1 and κ2 are real and symmetric [36],
their difference θ = κ1 − κ2 is also symmetric and has an
eigenbasis. The representation of the tensor θ in the coordi-
nate system defined by this eigenbasis must be exactly zero,
according to Eq. (15). As it vanishes in this basis, it vanishes
in general. Therefore, κ1 = κ2.

IV. THERMODYNAMIC LIMIT

An important step in the above derivation is Eq. (12). We
will now prove it. Replacing D̂i with �̂ i in Eq. (7), one finds

lim
t→∞

1

t
〈�̂ i(t )�̂ i(t )〉

= π�kBβ2

h̄Tr(̂ρ)

∑
γ ,ξ

e−βEγ δ(Eγ ξ )|�P̂ i
γ ,ξ |2E2

γ ξ . (16)

Here, �P̂ i
γ ,ξ are matrix elements of the i component of �P̂ =

P̂2 − P̂1, i.e., the change in energy polarization P̂ due to the
change of gauge. This quantity must be bounded for physical
gauges. A way to understand this is to consider the relocation
of a part of the energy δ̂v(x) of a subsystem A of volume �A

by a constant vector c, such that the Hamiltonian density is
changed to ĥ′(x) = ĥ(x) + �ĥ(x),

�ĥ(x) = ϑA(x − c)δ v̂(x − c) − ϑA(x)δ v̂(x), (17)

where ϑA(x) is an indicator function that is one in the volume
�A and otherwise zero. Then, the change of polarization is
given by

�P̂ =
∫

dxx�ĥ(x) = c
�

∫
�A

dx δ v̂(x). (18)

Under the premises that the relocation c of the energy should
not be macroscopically large [32] and that the total energy of
a subsystem should remain finite, �P̂ must be bounded. As
�P̂ is bounded, Eq. (16) equals to zero. This confirms the
validity of Eq. (12) and the proof is complete.

Before passing to an example, we discuss a few aspects
concerning the thermodynamic limit and the heat-flux op-
erator. In the thermodynamic limit (� → ∞), the energy
polarization as given by Eq. (4) is ill defined, due to the
presence of x in the integral. Thus, in this limit, no meaningful
expression for κ i j in terms of P̂ can be written, as would, e.g.,
be obtained by replacing Ŝ in Eq. (9) by Eq. (3),

κ i j = π�kBβ2

h̄Tr(̂ρ)

∑
γ ,ξ

e−βEγ δ(Eγ ξ )E2
γ ξ Re

(
P̂ i

γ ,ξ P̂
j
ξ,γ

)
. (19)

One may argue that a realistic system will never be of
infinite size, and employ the above equation. In such a case,
though, the term δ(Eγ ξ )E2

γ ξ would seemingly lead to zero
conductivity. However, for a finite system the interaction with

the environment must be taken into consideration. This in-
teraction, which enables the transfer of energy through the
material, leads to a broadening of δ(Eγ ξ ) and thereby to a finite
thermal conductivity.

In contrast, the analogous expression in terms of the heat-
flux operator, namely

κ i j = π h̄�kBβ2

Tr(̂ρ)

∑
γ ,ξ

e−βEγ δ(Eγ ξ )Re(Ŝi
γ ,ξ Ŝ j

ξ,γ ), (20)

is well defined also in the thermodynamic limit. This can be
understood from the general expression for Ŝ as was found by
Hardy [10],

Ŝ = 1

2�

∑
l

p̂l

Ml
Ĥl − i

2�h̄

∑
l,k

r̂lk[T̂l , V̂k] + H.c. (21)

Here, Ĥl = T̂l + V̂l , T̂l = p̂2
l /2Ml , r̂lk = r̂l − r̂k , p̂l and r̂l are

the momentum and position operators of particle l , Ml is its
mass, and V̂l its potential energy. As will be shown in the
example below, the definition of the latter depends on the
choice of the gauge, the only constraint being that the sum of
the V̂l must equal the potential-energy operator of the system
V̂ . The first term of Eq. (21) can be interpreted as the transport
of heat carried by the particle flux, and is dominant if the
particles form a gas, as in the case of electrons [10,21,32]. The
second term can be interpreted as the rate of work that particle
k does on particle l [32], and dominates the lattice transport.
Similar (approximate) operators for the thermal current, can
be found in literature, e.g., [30,37]. The main reason why Ŝ, as
given by Eq. (21), can be employed in Eq. (20) in the thermo-
dynamic limit, relies on the fact that it only contains position
differences, r̂lk . Moreover, analogous premises as given after
Eq. (18) apply here: (i) No gauge choice should lead to diver-
gent local energies Ĥl , and (ii) interactions should not have a
macroscopic range, i.e., the energy cannot be relocated over
macroscopic distances. More precisely, as the particle separa-
tion d increases, the term r̂lk[T̂l , V̂k] must vanish faster than
1/d3. Examples for this behavior are the nuclei in nonpolar
insulators and most metals, for which the interatomic force
constants decay as d−5 or faster [38]. For polar insulators
and semiconductors, the interatomic force constants decay
like d−3 but due to the total charge neutrality of the system,
they oscillate, leading to a bounded heat-flux operator. This is
more clear in reciprocal space [10] as the heat-flux operator is
well-defined also in presence of LO-TO splitting [38].

V. EXAMPLE: TWO-BODY INTERACTION

We exemplify our proof with a system that has only
two-body interactions between the particles. An analogous
example was considered in Ref. [39] for the classical case.
For this system, the local energy density ĥ(x) can be written
as

ĥ(x) = 1

2

∑
l

[δ(x − r̂l )Ĥl (�) + Ĥl (�)δ(x − r̂l )] (22)
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where Ĥl (�) is the local energy of particle l , given as Ĥl (�) =
T̂l + V̂l (�), with

V̂l (�) = 1

2

∑
k �=l

v̂lk (1 + �lk ). (23)

Here, v̂lk is the interaction operator between particles l and k
that depends on their positions. The assumptions after Eq. (21)
regarding the interaction range apply to v̂lk as well. � is an
arbitrary antisymmetric matrix, thus

∑
l V̂l (�) = V̂ , indepen-

dently of �, as v̂lk = v̂kl . In other words, � parametrizes
the gauge choice. For instance, if �lk = sgn(l − k), all the
interaction energy between particles l and k is assigned to
the particle with index min(l, k). By plugging Eq. (23) into
Eq. (21), we obtain the change in the heat-flux operator due to
the application of a gauge �, i.e., �Ŝ(�) = Ŝ(�) − Ŝ(� = 0).
Then, using �Ŝ(�) = d�P̂ (�)/dt [cf. Eq.(3)], we get the
corresponding change in energy polarization (up to a time-
independent constant),

�P̂ (�) = 1
2�

∑
l,k>l r̂lk v̂lk�lk + H.c..

Here, the spatial relocation of the energy is limited by the
range of the interaction v̂lk , which plays a role analogous
to the vector c in Eq. (18) and in the same sense, �P̂ is
bounded: If the interaction strength between particles l and k,
v̂lk decreases fast enough with their distance, the sum above
has a limited number of finite significant contributions per unit
volume. This leads to a finite �P̂ . This result completes the
example, since the energy polarization difference �P̂ (�) is
bounded, and, therefore, Eq. (12) is fulfilled [see Eq. (16)].

From this example, we note that, interestingly, the differ-
ence in κ i j for two different definitions of Ŝ contains at least
one �Ŝ term, as can be deduced from Eq. (20). Therefore, by
using �Ŝ = 1

ih̄ [�P̂, Ĥ], the gauge related change in κ i j will
be

− iπ�kBβ2

Tr(̂ρ)

∑
γ ,ξ

Re
(
�P̂ i

γ ξ Ŝ j
ξγ

)
e−βEγ δ(Eγ ξ )Eγ ξ = 0, (24)

which is zero because xδ(x) = 0 and both �P̂ and Ŝ are well
defined in the thermodynamic limit. This may be considered
as a condensed version of our proof above.

VI. CONCLUSIONS

We have shown that the thermal conductivity is invariant
of the specific choice of gauge in the energy density. This
guarantees that one obtains its unique, true value in the realm
of linear-response theory. With this, derivations of correction
terms to the Boltzmann transport equation for thermal con-
ductivity become possible, as any gauge of the energy density
can be used. The correction terms, as proposed, for example
in Ref. [40], will enable one to check for which materials the
Boltzmann transport equation can be used and for which it
needs to be improved. This has been a long-standing, impor-
tant issue for applied materials, such as thermoelectrics, as,
other than in the case of the BTE, it is not obvious that other
contributions to the thermal flux can be reformulated in a way,
such that they are independent of the gauge. Given the invari-
ance proof it is possible to compute the other contributions
to the expectation value in Eq. (1), by means of perturbation
theory with any physically intuitive gauge of Ŝ. Only gauges
that differ by an unbounded �P̂ compared to the physical
ones are forbidden, but all gauges that assign the interaction
energy to the microscopic vicinity of the interacting particles
are allowed. Last but not least, we emphasize that, follow-
ing our procedure, the gauge invariance for other quantities
related to the heat-flux like the Seebeck coefficient, may be
derived.

Note added. Recently a similar proof appeared [41]. It
relies on the idea of bounded differences between two heat
fluxes. Our proof is particularly clear and more easily ac-
cessible, elucidating the connection of the bound with the
interaction range and clarifies under which conditions the
invariance holds, which will simplify similar proves for other
quantities of interest.
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monicity and thermal conductivity from compressive sensing

of first-principles calculations, Phys. Rev. Lett. 113, 185501
(2014).

[27] T. Tadano and S. Tsuneyuki, Self-consistent phonon calcu-
lations of lattice dynamical properties in cubic SrTiO3 with
first-principles anharmonic force constants, Phys. Rev. B 92,
054301 (2015).

[28] N. H. Protik and D. A. Broido, Coupled transport of phonons
and carriers in semiconductors: A case study of n-doped GaAs,
Phys. Rev. B 101, 075202 (2020).

[29] D. Pines, Theory of Quantum Liquids: Normal Fermi Liquids
(CRC Press, Boca Raton, FL, 2018).

[30] J. Luttinger, Theory of thermal transport coefficients, Phys. Rev.
135, A1505 (1964).

[31] W. C. Schieve and R. L. Peterson, Correlation function calcula-
tion of thermal conductivity, Phys. Rev. 126, 1458 (1962).

[32] P. B. Allen and J. L. Feldman, Thermal conductivity of disor-
dered harmonic solids, Phys. Rev. B 48, 12581 (1993).

[33] A. Marcolongo, P. Umari, and S. Baroni, Microscopic theory
and quantum simulation of atomic heat transport, Nat. Phys. 12,
80 (2016).

[34] L. Ercole, A. Marcolongo, P. Umari, and S. Baroni, Gauge
invariance of thermal transport coefficients, J. Low Temp. Phys.
185, 79 (2016).

[35] E. Helfand, Transport coefficients from dissipation in a canoni-
cal ensemble, Phys. Rev. 119, 1 (1960).

[36] S. R. De Groot, Thermodynamics of Irreversible Processes,
Vol. 242 (North-Holland, Amsterdam, 1951).
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