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Recent experiments on the twisted semiconductor bilayer system tMoTe2 have observed integer and fractional
quantum anomalous Hall effects, which occur in topological moiré bands at zero magnetic field. Here, we present
a global phase diagram of tMoTe2 throughout the filling range 0 < n � 1 substantiated by exact diagonalization
calculations. At a magic angle, we find that the system resembles the lowest Landau level (LLL) to a remarkable
degree, exhibiting an abundance of incompressible fractional quantum anomalous Hall states and compressible
anomalous composite Fermi liquid states. Away from the magic angle, particle-hole symmetry is strongly broken.
Some LLL-like features remain robust near half-filling, while others are replaced, predominantly by charge
density waves near n = 0 and anomalous Hall Fermi liquids near n = 1. Among LLL-like phases, we find the
anomalous composite Fermi liquid at n = 1

2 to be most robust against deviations from the magic angle. Within
the band-projected model, we show that strong particle-hole asymmetry above the magic angle results from
interaction-enhanced quasiparticle dispersion near n = 1. Our paper sets the stage for future exploration of LLL-
like and beyond-LLL phases in fractional quantum anomalous Hall systems.
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I. INTRODUCTION

Twisted transition metal dichalcogenide homobilayers
(tTMDs) host topological moiré bands that exhibit spin-valley
locking and spin/valley contrasting Chern numbers [1]. Owing
to band topology and narrow bandwidth, small-twist-angle
bilayer MoTe2 and WSe2 are predicted to support integer
and fractional quantum anomalous Hall (QAH) states [2–5].
These are chiral topological states that spontaneously break
time-reversal symmetry and exhibit integer and fractionally
quantized anomalous Hall conductance σAH = Ce2/h at zero
magnetic field respectively. Recently, electronic compressibil-
ity measurements on tWSe2 have shown incompressible states
with C = 1 persisting down to zero magnetic field at filling
factors n = 1 and 3, providing evidence for integer QAH
states. In tMoTe2, optically detected Landau fan diagrams
reveal signatures of integer as well as fractional QAH states,
with C = −1, − 2

3 , and − 3
5 respectively [6,7].

Very recently, for the first time, the fractionally quan-
tized anomalous Hall effect was observed through transport
measurements on tMoTe2 [8]. This observation provides con-
vincing evidence of a topological phase hosting fractionally
charged quasiparticles at zero magnetic field, opening a new
frontier in topological physics and quantum materials re-
search. Another group also reported the observation of an
integer QAH effect as well as a nearly fractionally quantized
anomalous Hall effect in tMoTe2 [9].

Following the experimental breakthrough, recent theoret-
ical works have studied various FQAH states in tMoTe2 at
specific odd-denominator filling fractions [10–13]. Using nu-
merical exact diagonalization, our recent study [10] showed
that the FQAH state at n = 2

3 appears robustly over a broad
range of twist angles. In contrast, the FQAH state at n = 1

3
competes with an insulating charge density wave state that
is favored at experimentally studied twist angles θ >∼ 2.3◦.

These conclusions are strongly supported by recent experi-
ments (see below) [7].

The formation of FQAH states in tTMDs results from
(i) exchange-induced spontaneous spin/valley polarization
and (ii) strong correlation in spin/valley polarized Chern
bands at partial filling. Broadly speaking, when a Chern
band is sufficiently flat [14–20], its wavefunctions suffi-
ciently resemble those of the lowest Landau level (LLL)
[21–32], and the topological gap to higher bands is suffi-
ciently large, the system can be approximately mapped to
a partially filled Landau level through the band-projected
Hamiltonian. If this mapping holds faithfully, the existence of
FQAH states follows straightforwardly from the well-known
fractional quantum Hall states in Landau levels. The key ques-
tion is: To what extent is the phase diagram of tMoTe2 as a
function of band filling similar to that of the LLL [33]? And
in what aspect is it fundamentally different?

In this paper, we map out the global phase diagram for
tTMDs throughout the filling range n � 1. We find that, in
the vicinity of a “magic angle”, an abundance of FQAH states
appear and the phase diagram is nearly symmetric about n =
1
2 , which hosts an anomalous composite Fermi liquid state
(ACFL) [13,34], see Fig. 1(a). ACFL states may also appear
at n = 1

4 , 3
4 . In these regards, the system closely resembles

the LLL. At larger twist angles, particle-hole symmetry is
strongly broken, leading to a coexistence of phases that are
familiar with others that are foreign to the LLL. The n = 1

2
ACFL states and some FQAH states survive beyond the magic
angle. In contrast, charge density waves appear at low fillings
n = 1

3 , 1
4 and a time-reversal-breaking Fermi liquid phase ap-

pears in the filling factor range 2
3 < n < 1, see Fig. 1(b).

Our findings demonstrate the remarkable robustness of
ACFL state at n = 1

2 with respect to the twist angle and
establish its central role as the parent of adjacent FQAH states
in the phase diagram. Our paper also reveals an “anomalous
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FIG. 1. Schematic phase diagrams of tMoTe2 with respect to n, the number of holes per moiré unit cell, at angles near (a) and greater
than (b) the magic angle θm. [(c),(d)] Charge gap at several Jain sequence filling fractions at corresponding representative twist angles and
two interaction strengths. In (c) and (d), blue denotes FQAH, red denotes CDW, and black denotes undetermined. Data for fractions with
denominators 3, 5, and 7 are obtained from clusters with 27, 25, and 28 unit cells respectively (see Supplemental Material, SM [41]). (F/IQAH,
fractional/integer quantum anomalous Hall; ACFL, anomalous composite Fermi liquid; CDW, charge density wave; AHFL, anomalous Hall
Fermi liquid.)

Hall Fermi liquid” phase that exhibits an unquantized,
filling-dependent anomalous Hall conductivity and has no
counterpart in the LLL. We discuss the origin of similari-
ties and differences between the many-body phase diagram
of topological bands in tTMDs and that of the LLL. The
observable consequences of our phase diagram for fractional
quantum anomalous Hall systems are also described and com-
pared to recent experiments on tMoTe2.

II. CHARGE GAP PHASE DIAGRAM

The continuum model for AA-stacked, K-valley TMD
homobilayers describes holes in a moiré-periodic scalar po-
tential and a layer-pseudospin “Zeeman” field that carries a
skyrmion texture [1]. In the vicinity of a magic angle, several
LLL-like features appear in the lowest moiré band at the
single-particle level: The bandwidth nearly vanishes and the
Berry curvature becomes nearly uniform [2]; the deviation
from the so-called trace condition is minimized [5,10,34]; and
the general bound on the topological band gap is closest to
saturation [35]. Based on our large-scale density functional
theory (DFT) calculations, it is found that θm ≈ 2◦ for twisted
bilayer MoTe2 [10] and θm ≈ 1.5◦ for twisted bilayer WSe2

[2]. We note that the use of different DFT parameters results
in some variation in the magic angle [1,11,36–39].

At the many-body level, our previous exact diagonalization
(ED) calculations indeed find that the neutral energy gaps
of the n = 1

3 and 2
3 FQAH states are both maximized near

a magic angle θm [10]. Here, we present a comprehensive
ED study of tMoTe2 both near and above the magic angle
and throughout the filling range n � 1, finding a plethora
of incompressible and compressible states. Our results are
obtained on a finite-sized torus using the continuum model
for tMoTe2 with the parameters of Ref. [10] projected to
the lowest moiré band and a Coulomb interaction V (r) = e2

εr .

Given that previous studies have shown the ground state over
a wide range of fillings n � 1 to be fully spin/valley polarized
[4,10], all ED calculations in this paper are performed in the
fully spin/valley polarized sector. Our model and methods are
described in the Supplemental Material of Ref. [10].

The defining propertyof an incompressible state is a finite
charge gap in the thermodynamic limit. Here we study the
charge gap �c(N ) = μ+

N − μ−
N with μ±

N = ±(EGS (N ± 1) −
EGS (N )) where N is the number of holes and EGS (N ) is the
ground-state energy at a given N and a fixed finite system ge-
ometry. The thermodynamic limit of �c can be measured via
compressibility and, in a state with quasiparticles of fractional
charge e∗ = p

q , is related to the transport activation gap �t as
p�c = q�t [40]. Note that the charge gap is distinct from the
neutral energy gap, the difference between the ground and first
excited state energies at fixed particle number.

In Fig. 1, we show the charge gaps at the Jain sequence
filling fractions n = p

2p+1 where p = 1, 2, 3 and their particle-
hole conjugates at two twist angles and two interaction
strengths. At θ = 2◦, representative of the system near the
magic angle θm, the charge gap is positive at all p, decreases
with increasing p, and is nearly particle-hole symmetric under
n → 1 − n. By inspecting the many-body spectra, we confirm
that these incompressible states are all FQAH states(see the
Supplemental Material, SM [41]). Remarkably, the decreasing
charge gaps of FQAH states as the filling approaches 1

2 closely
resembles the Jain sequence of fractional quantum Hall states
in the LLL, despite being at zero magnetic field.

In contrast, at θ = 2.7◦, representative of a broad range of
angles θ > θm, the charge gap exhibits strong particle-hole
asymmetry, see Fig. 1(d). n = 1

3 exhibits a large charge gap
associated with an insulating charge density wave rather than
an FQAH state [5,10]. On the other hand, the n = 2

3 state is
an FQAH state with the topological order of the particle-hole
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FIG. 2. (a) Charge density at n = 1
3 . MM stacking regions appear

light blue and MX/XM stacking regions are red. Pair correlation
functions g(r0, r) and projected static structure factors s(q) of the
n = 1

3 [(b),(d)] and 2
3 [(c),(e)] FQAH fluids at θ = 2◦ ∼ θm. Line

cuts are taken along r − r0 going from the center to the bottom right
corner of (b) and (c). Line cuts with r0 at two high-symmetry points
in the moiré unit cell, MX and MM, are both shown. ε−1 = 0.2 and
the same system with 27 moiré unit cells is used in all panels.

conjugate of the 1
3 Laughlin state in the LLL. Compared to that

at n = 2
3 , other FQAH states are more fragile when θ exceeds

θm. For ε−1 = 0.1, the charge gap at n = 4
7 become negative

and that at n = 3
5 is positive but very small. When interaction

strength increases to ε−1 = 0.2, the charge gaps at both filling
fractions increase and are positive. Compared to the FQAH
state at n = 2

3 , stronger interactions are necessary to stabilize
FQAH states at these filling fractions away from the magic
angle.

In the SM [41], we compare charge gaps at various filling
fractions between magic-angle tMoTe2 and the LLL on identi-
cal finite system geometries, which show a striking similarity
at all carrier densities. This indicates that the resemblance
between the two systems is not limited to specific filling
fractions. We also study the evolution with respect to twist
angle θ of the many-body spectra at several rational filling
fractions. In addition to the fractions shown here, we find that
many others, including n = 1

5 , 4
5 , 4

9 , 2
7 , 5

7 , and 5
9 may host

FQAH states at the magic angle.
Our study reveals the physical consequences of the magic

angle in tMoTe2. While the n = 2
3 FQAH state exists robustly

over a wide range of twist angles, only at θ ∼ 2◦ does the
many-body phase diagram resemble the LLL at all filling
factors.

III. FRACTIONAL QUANTUM ANOMALOUS
HALL FLUIDS

To further characterize the FQAH states, we now study
their two-body correlations. In Fig. 2, we show the pair corre-
lation functions

g(r, r′) = 〈n(r)n(r′)〉 − δ(r − r′)〈n(r)〉
〈n(r)〉〈n(r′)〉 (1)

and projected density structure factors

s(q) = 〈ρ̄(−q)ρ̄(q)〉
N

− δq,0 (2)

of the n = 1
3 , 2

3 FQAH states near the magic angle. Here
ρ̄(q) = P

∑
i e−iq·riP is the projected density fluctuation op-

erator where P is the projector onto the lowest moiré band and
i indexes holes. 〈〉 denotes an expectation value with respect to
the many-body ground state(s). The local density operator is
n(r) = ∑

l ψ
†
l (r)ψl (r) where ψ

†
l (r) creates a hole at position

r in layer l .
The pair correlation functions of the n = 1

3 and 2
3 states

show clear exchange-correlation holes at small separation and
remain near 1 at large separation. At n = 1

3 , the pair cor-
relation function oscillates at intermediate range, indicating
incipient crystalline order. The projected structure factors do
exhibit some nonuniformity but lack the strong peaks ex-
pected of a crystal. Both of these correlation functions exhibit
characteristics of a fluid with strong short-range correlations.
We remark that the presence of the layer degree of freedom
means that, in general, g(r, r) 
= 0 even when spin/valley
is fully polarized. Additional analysis of FQAH correlation
functions, including at n = 2

5 , 3
5 is presented within the SM

[41].
The charge gap phase diagram (Fig. 1) shows that, through-

out a wide range of twist angles, the system hosts a sequence
of FQAH states analogous to the Jain sequence in the LLL.
Having studied these incompressible topological fluids, we
now turn to the filling fraction n = 1

2 about which they are
centered.

IV. ANOMALOUS COMPOSITE FERMI LIQUID
AT HALF FILLING

Previously, we showed that metallic states analogous to
the composite Fermi liquids of the LLL but at zero magnetic
field exist at n = 1

2 and n = 3
4 , which we dubbed “anomalous

composite Fermi liquids” (ACFL) [13]. Here, we extend our
earlier study to a larger system (with 28 moiré unit cells) and
a broader range of angles beyond θ = 2◦. Figure 3 shows
the many-body energy spectra at n = 1

2 for three twist angles
θ = 2◦, 3◦, and 3.5◦. Near the magic angle, the ground states
come in quasidegenerate pairs as they do in the half-filled LLL
(where they are related by center-of-mass magnetic trans-
lations [42,43]), and their many-body momenta also match
those of the half-filled LLL on a torus of identical geometry,
showing that the n = 1

2 state is a composite Fermi liquid.
Unlike incompressible candidate competing states, the com-
posite Fermi liquid’s finite-size ground-state degeneracy is
sensitive to the system geometry and can be interpreted from
trial wave functions as arising from compact configurations of
the composite Fermi sea [27,44–48].

As the twist angle increases from 2◦ to 3.5◦, no ground-
state level crossing occurs, suggesting that the system at n = 1

2
remains in the same composite Fermi liquid phase throughout.
In contrast, with the same interaction strength ε−1 = 0.1, the
FQAH state at n = 2

3 undergoes a phase transition at θ ≈
3◦ where a level crossing between the FQAH ground-state
manifold and excited states occurs [10]. This observation sug-
gests that the ACFL state at n = 1

2 is more resilient against
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FIG. 3. Low-lying many-body energy spectra (top) and ground-
state momentum distribution function n(k) (bottom) at n = 1

2 and
several twist angles. In each case ε−1 = 0.1 and the lowest five
energy levels in each momentum sector are shown. The system size
is 28 moiré unit cells.

departure from the magic angle than the FQAH state at n = 2
3 .

In the SM [41], we provide similar evidence for the n = 1
4 , 3

4
ACFL states near the magic angle, and show that, as twist an-
gle increases, both these ACFL states undergo level-crossing
transitions before the ACFL state at n = 1

2 .
We also calculate the momentum distribution function

n(k) = 1
NGS

∑
i 〈	i| c†

kck |	i〉 (where c†
k creates a hole in a

moiré Bloch state and i runs over a set of NGS degener-
ate many-body ground states) shown in Fig. 3. At θ = 2◦,
n(k) ≈ 0.5 is nearly constant and, in particular, smooth. This
shows that the state is not a Landau Fermi liquid in which
n(k) is necessarily discontinuous at the Fermi surface in the
thermodynamic limit. At larger angle, n(k) varies throughout
the Brillouin zone but still does not exhibit a sharp jump.We
remark that the momentum distribution function is exper-
imentally accessible through angle-resolved photoemission
spectroscopy.

Since n(k) → 1 − n(−k) under a particle-hole transforma-
tion, the ground-state wavefunction of ACFL state beyond
the magic angle is clearly not invariant under the particle-
hole transformation. (Whether there exists an “emergent”
particle-hole symmetry at low energy is an open question.)
At θ = 3.5◦, the spectrum is on the verge of a level cross-
ing between the higher-energy partner of the quasidegenerate
ACFL ground states, indicating a phase transition out of the
ACFL. The nature of the many-body ground state following
this transition is an interesting open question for future work.

So far we have seen that (i) near a magic angle, the system
resembles the LLL to a remarkable extent; and (ii) above this
magic angle, some LLL-like features remain in the neighbor-
hood of half filling, while other new phases appear at fillings
away from half filling. The similarity of our many-body phase
diagram at the magic angle with the LLL supports the recent
argument that the wavefunctions of the magic-angle moiré
band can be approximately mapped to those of the LLL [32].
Equally important is the departure from the LLL analog at
larger twist angles, to which we now turn our attention.

V. MICROSCOPIC ORIGIN OF PARTICLE-HOLE
ASYMMETRY

A generic band-projected Hamiltonian takes the form

H =
∑

k

ε(k)c†
kck + 1

2

∑
kpq

V(k+q)(p−q)kpc†
k+qc†

p−qcpck (3)

where spin is neglected. Therefore, it is determined entirely by
the dispersion ε(k) and the interaction matrix elements Vk′ p′kp.
The latter are determined in turn by the band’s single-particle
wavefunctions and the two-body interaction potential. Any
deviation between the phase diagrams of given band-projected
model and the LLL originates from a deviation in these fea-
tures.

Motivated by our observation of strong asymmetry be-
tween n and 1 − n states above the magic angle as shown in
Fig. 1, we now consider the band-projected Hamiltonian un-
der the particle-hole transformation. Under the particle-hole
transformation d†(r) = c(r) or, equivalently, d†

k = c−k, where
ck annihilates the particle in Bloch state |k〉, Eq. (3) can be
rewritten in terms of hole operators as

H =
∑

k

ε̃(k)d†
k dk + 1

2

∑
kpq

Ṽ(k+q)(p−q)kpd†
k+qd†

p−qdpdk (4)

where we neglect a constant energy shift. The full-band Slater
determinant state |	 f 〉 = (

∏
k c†

k ) |0〉 is the vacuum for holes,
dk |	 f 〉 = 0. The interaction matrix elements of holes are
related to those of electrons as

Ṽk′ p′kp = V ∗
−k′−p′−k−p. (5)

ε̃(k) describes the energy-momentum dispersion of a single
particle removed from an otherwise full band,

ε̃(k) = −ε(−k) − �(−k). (6)

Here, �(k) is a self-energy term coming from the interaction
between the electron at k and all others in the full band (see
SM [41] for definition). In the lowest Landau level, both ε(k)
and �(k) are k independent, producing particle-hole symme-
try. More generally, applying a time-reversal transformation
H → T HT −1 (where T dkT −1 = d−k and T iT −1 = −i) to
Eq. (4) and comparing to Eq. (3) shows that particle-hole
symmetry arises when the condition ε̃(k) = ε(−k) is satisfied.
Any particle-hole asymmetry between states at filling frac-
tions n and 1 − n in the phase diagram of a band-projected
model has its origin in the inequivalence between the energy
dispersion of a particle added to an empty band and that of a
particle removed from a filled band.

To shed light on the approximate particle-hole symme-
try near the magic angle and lack thereof at larger angles,
we now calculate ε̃(k) in tMoTe2 and compare it with the
bare energy dispersion ε(k). A note on terminology before
proceeding. Since the moiré band of interest is a valence
band, we define the filling factor n as the number of holes
(i.e., carrying positive charge) per moiré unit cell relative
to charge neutrality. These holes are the elementary charge
carriers in the moiré superlattice. The n = 1 IQAH state is
formed when holes completely fill the topmost moiré va-
lence band of one spin/valley. Removing a hole from the
n = 1 state creates a quasiparticle carrying negative charge,
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FIG. 4. (a) Comparison of hole dispersion ε(k) at n = 0 and
electron quasiparticle dispersion ε̃(k) at n = 1 of the lowest moiré
band assuming full valley polarization at θ = 2◦ and θ = 2.7◦. Note
that ε̃(k) depends on the two-body interaction potential for which
we use a Coulomb interaction with ε−1 = 0.1. (b) Color plots of
the electron quasiparticle dispersion. All dispersions are shifted by
a constant to be centered about zero energy.

which we refer to as an electron quasiparticle. The energy
dispersion of a hole at charge neutrality is simply ε(k) as
determined by the continuum model, whereas the energy
dispersion of an electron quasiparticle in the QAH state
ε̃(k) is affected by interaction-induced self-energy as stated
above.

In Fig. 4, we compare the hole ε(k) and electron quasi-
particle ε̃(k) dispersions in the lowest tMoTe2 moiré band
at two representative twist angles, θ = 2.0◦ and 2.7◦. At
θ = 2◦, the self-energy has an insignificant influence on
the electron quasiparticle dispersion so ε̃(k) ≈ −ε(−k). On
the other hand, at θ = 2.7◦, the self-energy approximately
doubles the electron quasiparticle bandwidth. The overall
energy scale of interactions is set by e2

εaM
∝ θ . At θ = 2◦,

��(k) ≡ max (�(k)) − min (�(k)) = 0.58 meV and at θ =
2.7◦, ��(k) = 7.0 meV (given ε−1 = 0.1). In going from
θ = 2◦ to 2.7◦, the overall interaction energy scale grows by
a small factor of 2.7

2 = 1.35 while ��(k) grows by a much
larger factor, 7.0

0.58 ≈ 12. Therefore, the k dependence of �(k)
is much stronger above than it is near the magic angle.

The physical origin of the enhanced dispersion for elec-
tron quasiparticles above the magic angle is as follows. The
self-energy can be decomposed into Hartree and Fock contri-
butions, �(k) = �H (k) + �F (k). We have directly confirmed
that the k-dependent part of the self-energy above the magic
angle is dominated by the Fock term, which is an interaction-
potential-weighted average of quantum distances between
intra-unit-cell wavefunctions |uk〉 and |uk+q〉,

�F (k) = −
∫

d2q

(2π )2
V (q)|〈uk+q| |uk〉|2. (7)

As we showed in Ref. [10], the Bloch states in the lowest
moiré band are strongly layer polarized except in the vicinity
of γ , where they are strongly layer hybridized. The change
in the wavefunctions’ layer character at γ causes a peak in
the Fock self-energy that adds constructively with the bare
energy dispersion ε(k) and thereby enhances the quasiparticle
bandwidth at n = 1.

Our finding that, near the magic angle, the quasiparti-
cle dispersions near n = 0 ε(k) and n = 1 ε̃(k) are both
narrow—and consequently that the condition for particle-hole
symmetry ε̃(k) = ε(−k) is only weakly violated—is consis-
tent with our finding of approximate particle-hole symmetry
in the magic-angle many-body phase diagram (see Fig. 1).
Above the magic angle, we find in contrast that (i) ε(k) is
broad to begin with, (ii) ε̃(k) is approximately twice as broad
due to strong k dependence of the Fock energy, and (iii)
ε(k) has two degenerate minima at the corners of the moiré
Brillouin zone whereas ˜ε(k) has a unique minimum at its
center (see Fig. 4). These properties are consistent with the
enhanced particle-hole asymmetry in the above-magic-angle
many-body phase diagram shown in Fig. 1.

VI. FERMI LIQUID AND UNQUANTIZED ANOMALOUS
HALL EFFECT

With this understanding of particle-hole asymmetry in the
band-projected model for tMoTe2 above the magic angle, and
in particular of the broadened quasiparticle dispersion ε̃(k)
in the n = 1 QAH state, we now study its consequences at
finite doping n = 1 − δ with δ > 0. For small doping δ, the
low-energy physics of our system maps to a uniform electron
gas. Provided that the density of electron quasiparticles δ is
not too low, it is natural to expect that its ground state is a
Fermi liquid. The reduction of electron quasiparticle mass by
interaction-induced self energy near n = 1 is also beneficial
to the formation of a Fermi liquid [49]. From band-projected
ED calculations, we indeed find a fully spin/valley-polarized,
metallic state with a filling-dependent anomalous Hall con-
ductivity in the carrier density range 2

3 < n < 1 that we refer
to as an anomalous Hall Fermi liquid.

Figure 5 shows the momentum distribution function n(k) at
three filling fractions n = 0.89, 0.83, 0.78. Unlike the ACFL
state at n = 1

2 , at these fillings n(k) drops sharply across a
circle centered at γ , indicating the presence of a Fermi surface
expected from the quasiparticle dispersion ε̃(k). Moreover, the
degenerate ground states’ many-body momenta match those
expected from simply filling electrons according to the quasi-
particle dispersion ε̃(k). In Fig. 5(d), for instance, the sixfold
ground-state degeneracy at n = 7

9 (δ = 2
9 ) comes from adding

36× 2
9 = 8 electrons to the seven Bloch states closest to γ and

one of the six momenta in the next available shell. Similar data
obtained from other finite system geometries are also shown
in the SM [41].

In contrast to the Fermi liquid phase close to n = 1, cor-
relation effects are much stronger at low fillings close to
n = 0 because the effective mass of holes is much larger
than that of electron quasiparticles, as seen in Fig. 4. As a
consequence, we find that above the magic angle, the n = 1

4
state is a 2×2 charge density wave (see below), whereas
the n = 3

4 state is a Fermi liquid. Our finding of Fermi
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(a) (b)

(c)

FIG. 5. Momentum distribution function (see main text) of the
many-body ground states at several carrier densities 2

3 < n < 1 at
θ = 2.70◦, ε−1 = 0.1, and the system includes 36 moiré unit cells.

liquids stabilized by interaction-enhanced dispersion near
unity filling echoes previous studies of other Chern band
systems [49–51].

Having established its existence, we now study the prop-
erties of the ferromagnetic Fermi liquid state in tMoTe2. In
Fig. 6, we show the zero-temperature, intrinsic anomalous
Hall conductance

σAH = 1

2π

e2

h

∫
d2k θ (εF − ε(k))F (k) (8)

where F (k) is the Berry curvature of the lowest moiré band
in the presence of full spin/valley polarization. We note that
this this formula is applicable only when the system is in
a Fermi liquid phase. Near the magic angle, a relatively
uniform Berry curvature distribution leads to σAH ≈ n e2

h . In
contrast, at larger twist angles, the Berry curvature has a
hotspot near the band maximum as shown in Fig. 6(b). This
leads to a rapid reduction in anomalous Hall conductivity
σAH < n e2

h as the filling is reduced from n = 1 and the sys-
tem enters the anomalous Hall Fermi liquid phase, before
rising to the quantized value σAH = 2e2

3h in the n = 2
3 FQAH

state.
In addition to the QAH states at n = 1, 2

3 , 3
5 , the recent

transport experiment on tMoTe2 reveals intriguing behavior
as a function of carrier density [8]. Notably, it is found that
(i) Rxy  Rxx throughout the filling range 1

2 � n � 2
3 ; (ii)

as the band filling increases from 2
3 to 1, Rxy drops rapidly,

is comparable to Rxx over an extended filling range, and
eventually rises to the quantized value h

e2 at n = 1. The
distinct transport behaviors at 1

2 � n � 2
3 and 2

3 � n < 1

(a)

(b)

FIG. 6. (a) Intrinsic anomalous Hall conductance of a fully
spin/valley polarized Fermi gas in the lowest moiré band as a func-
tion of hole density at several twist angles. The white background
denotes the region hosting the anomalous Hall Fermi liquid phase
studied in this work at angles larger than the magic angle θm ∼ 2◦ to
which the data shown are applicable. (b) Berry curvature distribution
of the lowest moiré band.

agree, respectively, with the LLL-like FQAH regime and
the anomalous Hall Fermi liquid regime of tMoTe2 above
the magic angle. Our theory then further predicts the ex-
istence of CDW states at n < 1

2 , to which we turn our
attention now.

VII. CHARGE DENSITY WAVES AT n < 1
2

By explicit calculation of the interaction-renormalized dis-
persion near n = 1, we have shown that the band-projected
continuum model is strongly particle-hole asymmetric above
the magic angle. The model’s intrinsic particle-hole asymme-
try produces a particle-hole asymmetric diagram with charge
density waves at low filling factors in stark contrast to the
AHFL phase near n = 1. In Fig. 7, we show the pair corre-
lation functions and projected structure factors at n = 1

3 , 1
4 at

θ = 2.7◦ > θm. Unlike at smaller angles, the charge density
here is peaked at MM stacking sites that form a triangular
lattice [10]. The pair correlation functions exhibit clear crys-
talline order with N − 1 distinct peaks where N is the total
number of holes. Similarly, the projected structure factors
exhibit peaks at the moiré Brillouin zone corners and m points,
indicating crystalline order with

√
3×√

3 and 2×2 enlarged
unit cells at n = 1

3 , 1
4 respectively.

In the LLL, the formation of charge density wave states
is inevitable when the low filling factor is sufficiently low
or, equivalently, the ratio between the average interparticle
spacing and the magnetic length is sufficiently large. While
the precise filling factor below which such states are favored
is not firmly agreed upon, it is widely believed to be around
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FIG. 7. Hole density and pair correlation functions of the charge
density wave states appearing above the magic angle at filling factors
n = 1

3 (a) and 1
4 (b), exhibiting clear crystal structure. [(c),(d)] Line

cuts of the pair correlation functions along r − r0 going from the
center to the bottom right corner of (a) and (b). Insets to (c) and
(d) show the projected structure factors. MM stacking regions are
red and MX/XM stacking regions are yellow in the charge density
plots of (a) and (b). Data are from clusters with 27 [(a),(c)] and 28
[(b),(d)] unit cells. θ = 2.7◦ and ε−1 = 0.2.

ν ≈ 1
7 [52,53]. Moreover, particle-hole symmetry in the LLL

ensures that if a CDW of particles is the ground state at
filling factor ν, a CDW of holes is the ground state at 1 − ν.
In topological bands of tTMDs, the presence of CDWs at
relatively high filling factors, and the lack thereof at their
particle-hole conjugates, illustrates a clear departure of the
system at θ > θm from the LLL.

The nature of the n = 1
3 FQAH-CDW and n = 1

4 ACFL-
CDW phase transitions are interesting questions for future
theoretical investigation. Note that the CDW calculations pre-
sented here assume full spin/valley polarization, which can
be achieved by applying a small magnetic field. We leave a
systematic study of the magnetism of CDW states at zero field
to future work.

VIII. DISCUSSION AND OUTLOOK

In this paper, we have begun to map out a global phase
diagram of the fractional quantum anomalous Hall effect that
occurs in partially filled topological bands of tTMDs. With an
exact diagonalization study, we have shown that near a magic
angle θm the phase diagram bears remarkable resemblance to
that of the LLL, hosting anomalous composite Fermi liquid
phases at n = 1

2 , 1
4 , 3

4 and FQAH phases at Jain sequence
filling fractions n = 1

3 , 2
5 , 3

7 , 4
7 , 3

5 , and 2
3 .

Above the magic angle, we find the phase diagram to
be strongly particle-hole asymmetric. Charge density waves
appear at n = 1

3 , 1
4 . In contrast, anomalous Hall Fermi liquids

appear at 2
3 < n < 1. We find that the ACFL state at half-

filling is particularly robust against deviations from the magic
angle, surviving to even larger angles than n = 2

3 FQAH state.
Our phase diagram explains the recent observation of (i) an
incompressible trivial state at n = 1

3 and (ii) filling-dependent
anomalous Hall effect in the metallic region 2

3 < n < 1 in
tMoTe2 devices that show an n = 2

3 FQAH state.

Recent many-body calculations using different continuum
model parameters [11,34] find FQAH states at both n = 1

3
and 2

3 in the twist-angle range θm ∼ 3 − 4◦ where the major-
ity of experiments to date have been performed. In contrast,
our paper finds that the simultaneous appearance of these
FQAH states is limited to the neighborhood of a magic an-
gle, θm ∼ 2◦. While there is uncertainty about the continuum
model parameters and, therefore, the precise value of θm, the
appearance of a trivial insulating state at n = 1

3 [7], consistent
with a CDW, indicates that devices studied to date are above
the magic angle.

While the ED calculations presented in this paper are
performed specifically for tMoTe2, we expect our main con-
clusions as stated above to hold qualitatively for a broader
class of Chern band systems with band-projected Hamilto-
nians that can be approximately mapped to that of the LLL.
These include Chern bands from periodically modulated Lan-
dau levels [30], skyrmion lattices in semiconductor-magnet
heterostructures [29], and graphene moiré superlattices
[20,26,50,54–56], which host fractional Chern insulator states
at strong magnetic field [57,58].

The discovery of integer and fractional quantum Hall ef-
fects in the two-dimensional electron gas at high magnetic
field ushered in a revolution of topological quantum physics
that remains fruitful over forty years later [59]. The possibility
of realizing analogous topological quantum fluids in Chern
bands, broadly referred to as Chern insulators and fractional
Chern insulators, was envisioned and demonstrated by proof-
of-principle lattice model studies [14–18,60].

Of particular interest and fundamental importance is the
quantized anomalous Hall effect at zero magnetic field [61],
which may occur in time-reversal-invariant topological bands
[1,19,62] and requires magnetic ordering that spontaneously
breaks time-reversal symmetry [2,4,5,10,63,64]. Thanks to in-
novation in moiré quantum materials and advanced theoretical
guidance, the fractionally quantized anomalous Hall effect has
finally been observed [6–8]. In the same spirit as a partially
filled Landau level, a partially filled topological band can
exhibit a symphony of distinct phases as a function of filling
factor, each bringing its own novelty as an impetus to extend
the frontier of condensed matter physics.

Recent experiments on tMoTe2 have demonstrated the
ability to induce phase transitions out of QAH states by ap-
plying displacement field [6–8]. These phase transitions have
received limited theoretical and numerical attention thus far
and provide an interesting direction for future work. Pressure,
an additional in situ tuning knob that has been demonstrated
numerically to enhance the stability of FQAH states, also
deserves attention [5].

While our global phase diagram contains many prominent
features supported both by our numerical study and/or experi-
ment, it is by no means complete. Further study of the various
phases we identify by other numerical methods with access
to larger system sizes such as density matrix renormalization
group can provide valuable insight and have indeed already
done so in the case of the ACFL [34]. Theoretical studies in-
dicate that the IQAH state at n = 1 may be energetically out-
competed at larger angles [12,65], and the possibility of com-
peting phases at fractional filling not captured in the single
band-projected model also deserves further investigation [66].
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