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Raman spectroscopy uses light scattering to extract information on low-energy excitations of solids. The
Raman process is described by diagrams which are fourth order in the light-matter interaction and in particular
the resonant contribution, which involves four different space-time arguments, is difficult to evaluate. If one
instead simulates explicitly the incoming (classical) light pulse, the Raman signal is given by the outgoing
photon flux and can be determined from a two-point correlation function. Such a formalism can be used to
compute the time-resolved Raman spectrum of nonequilibrium systems, as well as nonlinear signals which are
higher order in the incoming field, such as hyper-Raman scattering. Here we explain how to implement this
time-dependent formalism within the dynamical mean field theory framework. The method is illustrated with
applications to the Holstein-Hubbard model in the strong electron-phonon coupling regime. We demonstrate
hyper-Raman scattering in measurements with strong probe fields and frequency mixing signals in the presence
of a pump field and simulate the evolution of Stokes and anti-Stokes features after photoexcitations of metallic
and Mott insulating systems.
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I. INTRODUCTION

Ultrafast optical spectroscopies provide detailed infor-
mation on the nonequilibrium evolution of photoexcited
materials [1,2]. They allow one to study single-particle and
collective excitations, order parameters, and phase transitions,
as well as the coupled dynamics of spin, orbital, and lattice
degrees of freedom. Photoemission spectroscopy provides in-
formation on the occupied electronic states of the solid [3],
(x-ray) absorption spectroscopy on particle-hole excitations
and unoccupied states [4–6], while Raman scattering [7] and
resonant inelastic x-ray scattering (RIXS) [8–10] probe vari-
ous types of low-energy excitations [11].

An advantage of light-scattering experiments such as Ra-
man and RIXS is the freedom to target specific excitations by
selecting the polarization of both the incident and scattered
light. This is one of the reasons why Raman scattering has
been used extensively to study cuprates, where the physics in
the nodal and antinodal region differs substantially [11,12].
Moreover, the comparison of scattering with energy loss ω

[Stokes signal I (ω)] and with energy gain ω [anti-Stokes
signal I (−ω)] allows one to obtain not only information on
the spectrum of the low energy modes, but also on their
occupation. This makes time-resolved Raman spectroscopy a
potentially powerful tool for probing the relaxation pathways
of various degrees of freedom in photoexcited solids. For
example, the anti-Stokes signal has been used to measure
phonon temperatures during photoinduced structural phase
transitions [13] and the lifetime of phonons in graphene
[14,15], and theoretical proposals exist for the transient
thermometry of electronic or magnetic degrees of freedom
[16,17].

In diagrammatic analyses of electronic Raman scattering,
we distinguish (i) contributions which involve excitations
into electronic intermediate states via the linear light-matter
interaction (“ j · A”) and (ii) contributions which arise from
the diamagnetic light-matter interaction. We refer to these
two types as resonant and nonresonant diagrams, respectively,
because the contributions (i) become dominant when the elec-
tronic intermediate state is (near) resonant to the probe.

For a single clean band of Bloch electrons, resonant
contributions are suppressed, because an optical transition
with momentum transfer q = 0 does not couple the ground
state and electronically excited states. In interacting elec-
tron systems, however, electronic excitations are possible at
q = 0, such as excitations between the Hubbard bands in a
Mott insulator or excitations between phonon sidebands in
an electron-phonon coupled system. In this case, resonant
contributions to the Raman signal may be relevant for the
interpretation of experiments. For example, Raman thermom-
etry often assumes that the ratio I (−ω)/I (ω) of anti-Stokes
and Stokes signals in thermal equilibrium is a universal func-
tion of temperature, given by the Boltzmann factor e−βω.
However, this universality relies on a symmetry of the Ra-
man tensor which may no longer hold when near-resonant
intermediate states are involved in the scattering (see, e.g.,
the discussion in Ref. [18]). For electronic Raman scattering,
the anti-Stokes/Stokes ratio takes its universal form when one
restricts the analysis to off-resonant contributions [16,17,19–
22], but for the resonant contributions the ratio may depend on
microscopic details of the scattering process. To unlock the
full potential of Raman spectroscopy for characterizing the
nonequilibrium evolution of correlated electrons, a theoretical
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framework which can treat both resonant and nonresonant
Raman contributions is therefore desirable.

The theoretical calculation of resonant contributions to
light scattering (Raman or RIXS) is challenging already in
equilibrium [10,11]. In nonequilibrium situations the problem
becomes even harder [16,17,23] because the standard dia-
grammatic calculations require the evaluation of a four-point
correlation function. An alternative way to calculate spectro-
scopic signals in time-dependent situations is to explicitly
simulate the probe pulse as a classical light field and take
the limit of a weak probe field in the numerical results. For
example, this has been exploited to compute time-resolved op-
tical conductivities [24,25] and to simulate scattering within
wave-function based approaches [26,27]. Recently, such a
formalism was developed to calculate RIXS, wherein the first
half of the RIXS process—the excitations of core electrons
to the conduction states—is simulated explicitly [28,29]. In
this approach, the diagrammatic calculation only needs to
deal with the photon emission part of the scattering process
and involves a two-point correlation function. This method
has been implemented within a dynamical mean field theory
(DMFT) [30] framework—first proposed in the equilibrium
context in Refs. [31,32]—and applied to single-orbital [28]
and multiorbital Hubbard systems [29], electron-phonon sys-
tems [33], and a model for rare earth nickelates [34].

Here, we introduce a related two-point formalism for
light scattering to compute the resonant contributions to the
time-resolved Raman scattering signal, using nonequilibrium
DMFT [35]. (The nonresonant diagrams can be obtained by a
separate two point correlation function.) While no core levels
are involved in this case, the Raman process also corresponds
to the excitation of electrons into virtual or valence states and
their relaxation back into the low-energy manifold via the
emission of photons. We simulate the excitation part of this
process by treating the incoming light as a classical field. By
measuring an appropriate two-point correlation function, the
resonant contributions to the Raman amplitude can be evalu-
ated for each outgoing photon frequency by a postprocessing
scheme.

In both the two-point formalism and the four-point
formalism, the full diagrammatic evaluation of the respective
two- and four-point functions in terms of Green’s functions
requires vertex corrections. Even if vertex corrections are
not fully included, the two-point point formalism has a
number of technical advantages which will be discussed in
this manuscript (Sec. II E). Most obviously, the two-point
formalism is not restricted to weak probe pulse amplitudes
and is thus suitable for the study of higher-order nonlinearities
in the signal. As an example we discuss the emergence of
hyper-Raman signals at high probe amplitudes, which can be
understood as Raman scattering from a Floquet dressed band
structure.

The paper is organized as follows. In Sec. II we describe
the methodology for resonant Raman scattering. The adap-
tation of the conventional DMFT formalism for nonresonant
Raman scattering to simulations with explicit Raman drive
is presented in Appendix C and is found to produce results
which are qualitatively similar to the resonant signal for high
enough frequency of the probe light. Section III presents test
results for the resonant Raman signal of the Hubbard-Holstein

FIG. 1. (a), (b) Illustration of the light scattering (Raman) pro-
cess. Panel (a) shows a Stokes process and (b) an anti-Stokes process.
Lower panels: simple diagrams (without vertex corrections) for
(c) resonant Raman scattering, (d) nonresonant Raman scattering,
and (e) mixed scattering. In (c), (d), and (e), the wiggly lines repre-
sent incoming or outgoing photons, the black lines electron Green’s
functions, the red circles first-order light-matter interaction vertices
Mγ , and the red squares second-order interaction vertices Mα,γ .

model in and out of equilibrium, while Sec. IV is a short
conclusion.

II. FORMALISM

A. Light scattering processes

The light scattering process is schematically illustrated in
Fig. 1. Electrons are excited by a laser pulse with frequency
ωin and an envelope sin(t ) into virtual (nonresonant Raman
scattering) or long-lived (resonant Raman scattering) inter-
mediate states. The decay of these electrons back into the
low-energy manifold of states leads to the emission of photons
with frequency ωout. In panel (a), the final state energy of
the system is higher than the initial state energy, which cor-
responds to a Stokes process. At nonzero initial temperature
or in photoexcited systems, the final state energy can also be
lower than the initial energy, see panel (b), which corresponds
to an anti-Stokes process.

B. Model and coupling to the field

We will demonstrate the formalism by considering a
Holstein-Hubbard model on an infinite-dimensional hypercu-
bic lattice. The lattice Hamiltonian is given by

H =
∑
i jσ

vi j (t )c†
iσ c jσ + U

∑
i

ni↑ni↓ − μ
∑

iσ

niσ

+
∑

i

√
2g(ni↑ + ni↓ − 1)Xi + ω0

2

∑
i

(
X 2

i + P2
i

)
, (1)

where ciσ denotes the annihilation operator for an electron on
site i with spin σ , Xi (Pi) the phonon position (momentum)
operator, ω0 the phonon frequency, g the electron-phonon
coupling, U the local Hubbard interaction, and μ the chemical
potential. The light-matter coupling is described by the Peierls
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phase of the hopping amplitude [35,36],

vi j (t ) = ti je
−iφi j , (2)

where ti j is the hopping amplitude from site j to site i in the
absence of a field. Assuming a long wavelength compared to
the lattice spacing, the phase is

φi j = q

h̄
�A · �ri j = qa

h̄
�A · �ηi j, (3)

with �A(t ) the vector potential, q the electron charge, and �ri j =
�Ri − �Rj the vector connecting the sites j and i. In the second
equality, we have expressed the lattice vector as �ri j = a�ηi j

with the lattice constant a, so that �ηi j is dimensionless. We
have dropped the �r dependence of �A since we consider the
long wavelength limit.

The incoming probe field will later be described by a clas-
sical time-dependent electric field

�E (t ) = Einε̂in sin(ωint )s(t ), (4)

where Ein is the electric field amplitude, ε̂in the incoming
polarization vector, ωin the frequency of the probe, and s(t ) a
dimensionless probe envelope function. The vector potential
is related to the electric field �E (t ) by �E (t ) = −∂t �A(t ) and can
be written as

�A(t ) = Ein

ωin
ε̂inS(t ), (5)

where we have factored out the center frequency ωin of the Ra-
man pulse, so that the time-dependent function S(t ), defined
by sin(ωint )s(t ) = −Ṡ/ωin, is again dimensionless. With this,
the classical field implies a Peierls phase

φcl
i j = A0(êin · �ηi j )S(t ), (6)

A0 = aqEin

h̄ωin
. (7)

For simulations of time-resolved Raman spectroscopy, s(t )
will be of finite duration, centered around a given probe
time. To simulate a continuous probe, s(t ) will be smoothly
switched on (starting from t = 0) to a constant value s = 1.
Explicit forms of s(t ) are given in Sec. III.

To describe the outgoing photon field at the quantum level,
we use the representation of the electromagnetic field in a
quantization volume V ,

�A(�r) =
∑
�k,α

ε̂�k,α
ei�k·�r

√
h̄

2εrε0V ωk
(a�k,α

+ a†
−�k,α

), (8)

�E (�r) =
∑
�k,α

ε̂�k,α
ei�k·�r

√
h̄ωk

2εrε0V
i(a�k,α

− a†
−�k,α

). (9)

Here ε̂�k,α
is the polarization vector, which is chosen real and

satisfies ε̂�k,α
= ε̂−�k,α

, ε0 is the vacuum dielectric constant,
and εr is the background dielectric constant. The light-matter
coupling via the Peierls phase (3) can also be used for the
quantum field [37]. The contribution to the Peierls phase for a
given mode γ (defined by its wave vector �k and a polarization
direction) is therefore given by

φ
γ

i j = gγ (ε̂γ · �ηi j )
aγ + a†

γ√
2

, (10)

with a dimensionless light-matter coupling constant

gγ = aq√
h̄V

1√
ωγ ε0εr

, (11)

where we dropped again the spatial dependence ei�k·�r .

C. Raman signal: General considerations

We aim to compute the time-resolved or steady state Ra-
man signal for a given outgoing mode γ = “out”. In the
subsequent section, we will derive expressions for the photon
generation rate �out(t ) = d

dt 〈nout(t )〉 into this specific mode to
leading (quadratic) order in the light-matter coupling gout, i.e.,
we will compute the normalized rate

�̃out(t ) = lim
gout→0

�out(t )

A2
0g2

out
. (12)

For a continuous probe, the Raman signal is then given by the
photon flux at the detector in the steady state limit long after
the switch-on of the probe and is therefore proportional to

�̃cw
out = lim

t→∞ �̃out(t ). (13)

In a time-resolved Raman measurement, the signal is propor-
tional to the total photon number produced by the probe pulse,


Ñout =
∫ ∞

0
dt �̃out(t ). (14)

Note that both Eqs. (13) and (14) still depend on the amplitude
A0; the normalization with A2

0 in Eq. (12) ensures that the
limit A0 → 0 gives the usual Raman signal, while deviations
for larger pulse amplitudes correspond to higher order non-
linear scattering processes such as the hyper-Raman signal. In
Sec. III we will display the normalized signals (13) and (14) or
simply �̃out(tmax) measured at the maximum simulation time
tmax.

For completeness, let us also state the relation to the ab-
solute photon count: for a continuous probe we define the
Raman signal Rcw

out as the differential photon flux per fre-
quency interval dω and solid angle d� around the frequency
ωk and direction k̂ of the mode “out.” With the rate (12) per
mode, the photon flux at the detector is given by

dσ (t )

d� dω
= �̃out(t )g2

outA
2
0

dNk

d� dω
, (15)

where dNk is the number of modes per polarization in the
phase space volume d� dω. For a quantization box of volume
V , d3k contains dNk = d3k V/(2π )3 modes and with d3k =
k2d� dk = ω2

k c−3d� dω we have dNk
d� dω

= ω2
k c−3V/(2π )3.

Using Eq. (11) for gout, the Raman signal then becomes

Rcw
out = A2

0R0�̃
cw
out, (16)

with the unit

R0 = q2

aε0εr

a3

c3

ωk

h̄

1

(2π )3
. (17)

For the time-resolved Raman measurement we can define the
signal Rpulse

out as the total photon count per frequency interval
dω and solid angle d�, accumulated from one probe pulse.
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FIG. 2. Derivation of the expression for resonant Raman scatter-
ing. Panel (a): fourth order expansion in the φi j term. Solid arrows
represent the time evolution without light-matter coupling, but in the
presence of the Raman laser field, which populates photon states
with index α 
= γ , where γ is the flavor of the outgoing photon.
In panel (b), we keep only those photon operators which give a
nonzero contribution to the fourth order process. In panel (c), the
Raman laser and its effect on the system (red operators) has been
replaced by a classical field which is contained in the time evolution
operators (dashed arrows). The evaluation of the photon expectation
value yields the factor eiωγ (t+−t− ) = eiωout (t+−t− ).

Analogous to Eq. (16), this is given by

Rpulse
out = A2

0R0
Ñout (18)

in terms of the normalized signal (14).

D. Calculation of the resonant Raman diagram

To derive the diagrams for Raman scattering, we first ex-
pand vi j (t ) up to fourth order in the light-matter coupling
term:

vi j = ti j

(
1 − iφi j − 1

2
φ2

i j + i

6
φ3

i j + 1

24
φ4

i j + · · ·
)

. (19)

To get the normalized signal (12), we need to compute the
total number of emitted photons at time t , 〈a†

γ aγ 〉(t ). We can
formally start from a quantum description of both the ingoing
and outgoing modes. While general results for nonzero tem-
perature will be presented in the next section, it is illustrating
to first derive the diagrammatic expression for a system which
is initially in a state |ψel

0 〉|ψ in
0 〉 for the electrons and photons,

where the first ket describes the ground state of the Holstein-
Hubbard model and the second ket the state of the incoming
photon field. We assume that the outgoing mode is initially
unoccupied, 〈ψ in

0 |a†
γ aγ |ψ in

0 〉 = 0.
The derivation is then based on standard time-dependent

perturbation theory to fourth order in φ on the Kadanoff-Baym
contour [35]. The terms in the time-dependent perturbative ex-
pansion can be represented by contour diagrams as shown in
Fig. 2. In the main text of this paper, we focus on the diagram
corresponding to resonant Raman scattering, which in the
conventional formalism requires the evaluation of a four-point

correlation function [11]. Within the time-dependent pertur-
bation theory, this diagram represents a process where on the
forward time contour a photon with frequency ωin > 0 is ab-
sorbed from the laser and a photon with frequency ωout > 0 is
emitted (the order of the two processes does not matter). Then
the emitted photon is measured at time t . On the backward
branch of the time contour, the absorption of a photon with
frequency ωout and the emission of a photon with frequency
ωin occur.

In Fig. 2, panel (a) shows the forward and backward
branches of the complex time contour and the four inter-
action vertices corresponding to the first-order light-matter
interaction term ∝φi j . The operator measured at time t is
the photon number a†

γ aγ = nγ , where γ corresponds to the
outgoing photon with frequency ωout and polarization ε̂out. In
panel (b), we only show the operators which contribute to the
expectation value 〈a†

γ aγ 〉0, namely the absorption (emission)
of a photon with flavor α on the forward (backward) branch
and the emission (absorption) of a photon with flavor γ on
the forward (backward) branch. Here, α = “in” corresponds
to the incoming light with frequency ωin and polarization εin.
In the step from panel (b) to panel (c), we replace the photons
of the incoming light by a classical field, corresponding to
a coherent state. The effect of the classical field is explicitly
taken into account to all orders in the time evolution of the
system, via the classical Peierls phase (6). We have further-
more evaluated the photon expectation value, which leads to
a factor eiωout (t+−t− ), where t+ (t−) denotes the times associated
with the photon emission (absorption) with flavor γ on the
forward (backward) branch.

Because the sum over the lattice sites of ri j times the
hopping ti jc

†
i c j is equivalent to the sum over the velocities

vk = ∂kεk (with εk the dispersion of the lattice), the vertices
can be transformed into sums over momenta,

Mγ
res =

∑
k

Mγ

k nk, (20)

Mγ

k = 1√
2

∑
μ

∂εk

∂kμ

εγ ,μ, (21)

where nk = ∑
σ c†

kσ
ckσ . The dispersion and velocity are as-

sumed to be spin independent. We thus obtain the following
expression for the resonant Raman signal with frequency
ωγ = ωout and polarization εγ = εout:

〈
nγ

res

〉
(t ) = ig2

γ

∫ t

−∞
dt+dt−eiωout (t+−t− )�<

res(t+, t−), (22)

where

�res(t, t ′) = −i
〈
TCMγ

res(t )Mγ
res(t

′)
〉
con (23)

is the connected correlation function. [Note that Eq. (22) is
real, because �<

res(t, t ′) = −�<
res(t

′, t )∗.] We do not consider
the disconnected part of the correlation function, since this
contribution corresponds to forward scattering into the di-
rection of the main laser beam or into the reflected signal.
Equations (22) and (23) show that the explicit simulation
of the incoming light pulse circumvents the calculation of a
four-point correlation function and reduces the problem to the
measurement of a two-point correlation function.
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Alternatively, the formula for the resonant Raman scatter-
ing signal can be obtained by considering the bosonic Green’s
function of the outgoing photon and its equation of motion.
This has the advantage that it can be expressed using the
L-shaped Keldysh contour for an initial state at temperature
T > 0 [35]. We define the photon Green’s function

Bγ (t, t ′) = − i〈TCaγ (t )a†
γ (t ′)〉, (24)

from which the photon number (Raman signal) at time t
can be extracted as 〈nγ 〉(t ) = iB<

γ (t, t ). The photon Green’s
function satisfies the Dyson equation

(i∂t − ωγ )Bγ (t, t ′) − (
g2

γ �res ∗ Bγ

)
(t, t ′) = δ(t, t ′), (25)

where the correlation function g2
γ �res(t, t ′) now takes the role

of the self-energy to second oder in gγ . [The linear order self-
energy is a classical source field and is excluded for the same
reason as the disconnected parts of the diagram in Eq. (22).]
The number of emitted photons can thus be obtained from

d

dt

〈
nγ

res

〉
(t ) = i

(
d

dt
+ d

dt ′

)
B<

γ (t, t ′)
∣∣∣∣
t=t ′

= g2
γ (�res ∗ Bγ − Bγ ∗ �res)<(t, t ). (26)

In the convolutions in Eq. (26) we can then to leading order
in gγ approximate Bγ by the free photon Green’s function
B0,γ . The convolutions on the contour C are evaluated using
the standard Langreth rules [38,39]; see Appendix A.

In practice, Eq. (26) is more convenient for a numerical
evaluation than Eq. (22), which requires the knowledge of
the functions on the full contour, and thus even for times
before the Raman pulse hits the system. Note that in the T > 0
expression (26), the photon Green’s function Bγ ≈ B0,γ which
enters into the calculation of the rate has an initial state
occupation given by the Bose function nB(ωout ). However,
this number is exponentially small in all relevant applications
below and can be neglected. Blackbody radiation does not
directly contribute to the Raman signal, which is calculated
from the time derivative of the occupation of the outgoing
mode. In a Raman experiment, one furthermore considers the
difference of the signal with and without Raman probe.

In Appendix A, we give explicit expressions for the con-
tour convolutions on the L-shaped contour and demonstrate
that at T = 0 Eqs. (22) and (26) are related by an analytical
continuation.

E. Evaluation of � and difference between the four-point
and two-point formalism

To calculate the photon emission rate using Eqs. (26) and
(A6), we need to measure the correlation function (23). Note
that Eq. (23) is, up to a prefactor 1/2, the current-current
correlation function. In equilibrium, within DMFT, the latter
can be evaluated without vertex corrections [40], which yields
the bubble

�res(t, t ′) = −i
∑
kσ

Mγ

k (t )Gkσ (t, t ′)Gkσ (t ′, t )Mγ

k (t ′), (27)

where Gkσ = −i〈TCckσ (t )c†
kσ

(t ′)〉 is the lattice Green’s func-
tion of the system. The vanishing of vertex corrections relies
on the fact that (i) the self-energy of the infinite-dimensional

FIG. 3. Illustration of different types of vertex corrections to the
resonant Raman scattering process. Vertex corrections of the type
shown in panel (a) vanish in the absence of pump light and for weak
probe pulses, those illustrated in panel (b) are taken into account,
while the vertex corrections shown in panel (c) are neglected.

system is local, (ii) the current vertex vk is an odd func-
tion of momentum, and (iii) the Green’s functions are even
in momentum [35,40]. The third point holds no longer in
the presence of external fields, which is why vertex correc-
tions can become important in the optical conductivity of
driven systems [41,42]. Since the correlation function (23) is
evaluated in the presence of the external Raman probe, the
factorization in Eq. (27) is an approximation (even in the limit
A0 → 0, as the full result is of order A2

0).
It is therefore illustrating to discuss the type of vertex

corrections which are included in the expression (27) by
considering the implications of this approximation for the
resonant Raman diagram. To get from the two-time bubble
to the conventional four-time resonant Raman diagram, one
can, in the perturbative regime, explicitly represent the inter-
action with the incoming light in the propagators. This leads
to diagrams as shown in Fig. 3, where the outgoing light
marks the time arguments of the bubble. In the absence of
pump light and for weak probe pulses, the vertex corrections
shown in Fig. 3(a) vanish because of points (ii) and (iii) men-
tioned above. The vertex corrections illustrated in Fig. 3(b)
are contained in the bubble calculation, since the Green’s
functions include the effect of the Raman drive, while vertex
corrections of the type shown in panel (c) are neglected. In
the presence of a pump field, the system is no longer inversion
symmetric and all types of vertex corrections (not only those
shown in Fig. 3) become relevant. A complete analysis of
vertex corrections is beyond the scope of this paper and will
be deferred to future work. However, already the evaluation of
the resonant Raman diagrams without full vertex corrections
shows that these contributions can be of similar order as the
nonresonant diagrams and should matter for the interpretation
of experiments. The results below will thus be calculated with
the bubble approximation (27).

Let us add a few comments on the benefits of the two-point
formalism. In principle the four-point ring diagrams could be
evaluated by first numerically calculating the dressed Green’s
function to leading order in A0, via a convolution, and then
applying the two-point formalism. Nevertheless, the two-point
formalism is easier to implement and more convenient when
additional vertex corrections are considered. In fact, it is rel-
atively straight-forward to build in further vertex corrections
into the two-point bubble, for example, through ladder correc-
tions which represent the interactions of electrons with spin
fluctuations [43–46] or superconducting fluctuations [47]. An-
other advantage is that the expressions derived in this work
can be extended directly to wave function methods.
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While we focus in the main text on resonant Raman scatter-
ing, other contributions to the Raman signal can be derived in
an analogous fashion. In Appendix C we derive the standard
diagrammatic expression for nonresonant Raman scattering
and show some applications.

III. RESULTS

To demonstrate our formalism for the simulation of
resonant Raman scattering we consider the Holstein-
Hubbard model (1) on an infinite-dimensional hypercubic
lattice with a noninteracting density of states ρ(ω) =
exp(−ω2/W 2)/(

√
πW ) and measure energy (time) in units

of W (h̄/W ). The polarization of the incoming field in the
Raman measurement is chosen along the body diagonal, εα =
(1, 1, 1, . . . ), and the same holds for the pump laser field in
the nonequilibrium simulations. In the following, the light-
matter coupling parameter gγ√

2
, the electron charge q, the

dielectric constants, and h̄ are all set to 1.
The hypercubic lattice has a bare dispersion

εk = −2t∗
d∑

ν=1

cos(kν ), (28)

with t∗ = W
2
√

d
and d → ∞. The effect of the Peierls phase is

to shift the dispersion as

εk−A(t ) = cos[A(t )]εk + sin[A(t )]ε̄k, (29)

with ε̄k = −2t∗ ∑d
ν=1 sin(kν ). Momentum summations can

thus be implemented as integrals over the joint density of
states D(ε, ε̄) = ∑

k δ(ε − εk )δ(ε̄ − ε̄k ), which in the case of
the hypercubic lattice factorizes as D(ε, ε̄) = D(ε)D(ε̄) [48].

We solve the Holstein-Hubbard model on the hypercu-
bic lattice using DMFT and the noncrossing approximation
(NCA) as the impurity solver [49,50]. The NCA can be ex-
pected to give qualitatively correct results in regimes where
the kinetic energy is small and the interaction terms dominate,
in particular the Mott insulating phase, but also in the strong
electron-phonon coupling (polaronic) regime. Our nonequi-
librium DMFT setup is the same as the one used in Ref. [51].

The choice of the polarization vectors ε determines the
type of Raman response. The A1g channel corresponds to εα =
εγ = (1, 1, 1, . . .) and the B1g channel to εα = (1, 1, 1, . . .)
and εγ = (−1, 1,−1, 1, . . . ), so that [21]

M
A1g

k ∝ 1√
d

∑
μ

sin(kμ), (30)

M
B1g

k ∝ 1√
d

∑
μ

(−1)μ sin(kμ). (31)

In the d → ∞ limit, M
B1g

k can be replaced by a constant, as
discussed in Appendix B. The simulation results in this paper
are for the A1g response.

A. Equilibrium results

To illustrate our measurement procedure, we first con-
sider the equilibrium Holstein-Hubbard model in the metallic
phase. If the electron-phonon coupling is strong enough, the
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FIG. 4. DMFT + NCA spectral function of the Holstein-
Hubbard model with U = 2, g = 1, ω0 = 1 and inverse temperature
β = 5. The occupied part of the spectrum is indicated by the shading.

local spectral function features peaks corresponding to po-
laron subbands, as illustrated for U = 2, g = 1, ω0 = 1, and
inverse temperature β = 5 in Fig. 4. The main peak at ω = 0
corresponds to electron insertion or removal processes that do
not excite phonons, while those at energies ω ≈ nω0 (n 
= 0)
involve the additional excitation of phonons. The solid line
plots the spectral function A(ω) = − 1

π
ImGR(ω), while the

shading indicates the occupied part of the spectral function. In
equilibrium, the occupation is given by A<(ω) = A(ω)nβ

F (ω),
with nβ

F (ω) the Fermi function for inverse temperature β.
In Fig. 5 we plot the evolution of nres(t ), evaluated with

Eqs. (26) and (A6), for different ωout. Here, the Raman drive

Ein(t ) = Ein fin(t ) sin(ωint ) (32)

is simulated by a periodic electric field with ωin = 14 (near-
resonant regime) and amplitude Ein = 0.5, which is ramped on
in a time � 2 and continues up to the longest simulation time
t = 30. The form of the envelope function fin(t ) is indicated
by the gray shading in panel (a).

As can be seen in Fig. 5(a), the number of emitted pho-
tons grows approximately linearly with time, with a slope
that depends on ωout. For ωin − ωout < 0 (anti-Stokes pro-
cesses), the Raman signal is small, while for 0 < ωin − ωout �
bandwidth (Stokes processes) the signal is larger. A spectrum
proportional to the resonant Raman signal can be obtained by
plotting nres(t ) for fixed time t as a function of ωin − ωout.
The result for β = 5 and t = 30 is shown by the red line in
Fig. 5(b). For comparison, we also plot by a black line the
analogous result obtained for β = 1. At this higher tempera-
ture, the anti-Stokes peaks become more prominent.

In Fig. 5(b) we also indicate by a thick light-red line
the result obtained by averaging the rate (26) over a small
time interval (27 � t � 30). After a rescaling, the result looks
consistent with the spectrum measured at t = 30, but the sub-
structures related to the phonon sidebands are sharper. Also
on the anti-Stokes side, the exponentially suppressed signal is
better captured by the averaged rate, while the photon number
at fixed t has a significant uncertainty due to small oscillations.
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FIG. 5. Resonant contribution to the Raman signal for U = 2,
g = 1, ω0 = 1 and inverse temperature β = 5 (photon number mea-
sured at time t). The Raman drive has frequency ωin = 14 and
amplitude Ein = 0.5. Panel (a) shows the time evolution of the num-
ber of emitted photons for the indicated values of ωout, together with a
rescaled envelope of the Raman drive (gray shading). Panel (b) shows
the corresponding spectrum (proportional to the resonant Raman
signal) measured at time t = 30 for β = 5 (red line) and β = 1 (black
line). The thick light-red line is the spectrum for β = 5 obtained by
averaging the rate (26) over the time interval 27 � t � 30 (rescaled
by a factor 29 to match the scales).

Raman scattering is sometimes used for thermometry ap-
plications. In the case of a nonresonant signal, in equilibrium,
the values of the Stokes (anti-Stokes) signals Is (Ia) at energy

ω = ωin − ωout (−
ω) allow one to extract the inverse tem-
perature β via the formula [11]

Ia

Is
= e−β
ω. (33)

In the case of a resonant light-scattering process, the valid-
ity of Eq. (33) is a priori not clear. We test the relation in
Fig. 6, which plots Ia/Is as a function of 
ω on a logarithmic
scale and compares the result to e−β
ω (black line). Panel
(a) shows results for β = 1 and different ωin in the near-
resonant to resonant regime. Here, we show results based on
the phonon numbers measured at t = 30, since the accuracy
of this measurement is sufficient at β = 1. A reasonable nu-
merical estimation of Ia/Is is possible in the energy range
−4 � 
ω � 4 and we see that, in this range, the results are
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FIG. 6. Ratio between the anti-Stokes signal Ia = I (−
ω) and
Stokes signal Is = I (
ω) (same setup as Fig. 5) as a function of

ω = ωin − ωout on a logarithmic scale and comparison to e−β
ω

(black line). We consider the resonant contribution to the Raman sig-
nal for U = 2, g = 1, ω0 = 1 and inverse temperature β = 1 [panel
(a)] and β = 5 [panel (b)]. The results plotted are for driving ampli-
tude Ein = 0.5. Panel (a) is based on the photon numbers measured at
t = 30 and panel (b) on the rates averaged over 27 � t � 30 (thick
line) and 28.5 � t � 30 (thin line). For β|
ω| � 4 the numerical
uncertainty on the Ia/Is ratio becomes large.

consistent with Eq. (33), even for the smallest ωin. Panel
(b) shows results for β = 5 and ωin = 10. Here, because of
the exponentially suppressed anti-Stokes signal, we use the
averaged rate to estimate the ratio Ia/Is. The two blue lines in
the figure show the results obtained using different time inter-
vals for the averaging. The deviations between them give an
indication of the accuracy of the numerical estimate. Within
this accuracy, Eq. (33) is again well satisfied. Similar results
are found also for the larger and smaller ωin. At least for
the Holstein-Hubbard model, with equal spacing ω0 between
the phonon side-bands, we thus find that a determination of
the temperature via Eq. (33) is still possible even if resonant
scattering processes play an important role.

The effect of the amplitude Ein of the incoming field is
illustrated in Fig. 7. Panel (a) plots results analogous to
the red line in Fig. 5(b), but now for different probe field
amplitudes Ein and with the signal rescaled by 1

E2
in

. In the weak-

field regime, these rescaled spectra overlap, confirming the
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FIG. 7. Panel (a): resonant contribution to the Raman signal
(rescaled by E−2

in ) for U = 2, g = 1, ω0 = 1 and inverse temper-
ature β = 5. The Raman drive has frequency ωin = 14, while the
amplitude is varied from Ein = 0.5 to 8. For strong probe field am-
plitudes, Stokes peaks associated with two-photon absorption appear
on the ωin − ωout < 0 side (hyper-Raman signal; see inset). Panel (b):
scaling of the highest peaks in the Stokes and hyper-Raman signal,
rescaled by E−2

in , as a function of Ein. The black line in this log-log
plot is proportional to E2

in. The data in (b) have been extracted from
the rate (26) averaged over 27 � t � 30.

expected quadratic scaling in the field [Eq. (12)]. In particular,
the field strength Ein = 0.5 used in most of our calculations
is, as far as the Stokes signal is concerned, well within the
perturbative regime. On the anti-Stokes side ωin − ωout < 0
one observes a different scaling. At stronger probe-field am-
plitudes, a prominent series of peaks appears down to an
energy of approximately −ωin. These are processes associated
with second-order photon absorption from the Raman drive,
as illustrated in the inset in Fig. 7(a). In the literature, these
peaks are also referred to as the hyper-Raman signal [52]. In
panel (b), we analyze the scaling with Ein of the highest peak
for positive and negative ωin − ωout. Because of the very weak
hyper-Raman signal for small Ein, we base this analysis on
the rates averaged in the interval 27 � t � 30. While for the
Stokes signal and “regular” anti-Stokes signal, the peak height
times E−2

in are approximately constant in the considered field
range, near ωin − ωout ≈ −ωin, we observe an approximately
quadratic increase, which means that the total scaling of this
hyper-Raman feature is ∝ E4

in, which is consistent with the
second-order absorption.
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FIG. 8. Resonant contribution to the Raman signal for U = 2,
g = 1, ω0 = 1 and inverse temperature β = 5 (photon number mea-
sured at time t), for a short Raman probe pulse. The Raman drive has
frequency ωin = 14 and amplitude Ein = 0.5. Its (rescaled) envelope
function is indicated by the gray shading in panel (a). The lines in
panel (a) show the time evolution of the number of emitted photons
as a function of time for the indicated values of ωout, while panel
(b) shows the Raman spectrum measured at time t = 30.

In Fig. 8 we show results analogous to Fig. 5 (for β = 5),
but now obtained using a short Raman probe pulse with a
Gaussian envelope fin(t ) = exp[−0.3(t − tprobe)2] centered at
tprobe = 9. A rescaled version of this envelope is indicated
by the gray shading in panel (a). Outgoing photons are gen-
erated during the application of the probe pulse, while the
signal nres(t ) saturates after the probe pulse, because no more
photons are emitted. The corresponding spectrum measured
at t = 30 is shown in panel (b). Because of the short probe
pulse, the energy resolution is reduced, compared to Fig. 5, but
one can still resolve peaks corresponding to different phonon
sidebands. In the following section, we will employ such
short probe pulses to study the nonequilibrium evolution of
photoexcited systems.

B. Nonequilibrium results

1. Photoexcited metallic system

An advantage of the measurement approach based on real-
time simulations is that it can easily deal with nonequilibrium
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FIG. 9. Difference spectra δnres = 〈nres〉pump+probe − 〈nres〉pump for
the pump-excited metallic system with U = 2, g = 1, and initial
inverse temperature β = 5. The photodoping pulse has frequency
�pump = 4, 6, 8 and amplitude Epump = 4. The Raman probe pulse
has amplitude Ein = 0.5 and frequency ωin = 14 (same as in Fig. 5).
Black arrows indicate the energy range −�pump � ωin − ωout � 0.

states. In this section, we demonstrate this with results for the
photoexcited Holstein-Hubbard model. In a metallic system,
photoexcited electrons quickly relax due to scattering and the
interactions with phonons [53,54], which results in a state
which is close to an equilibrium state at higher T . During
and shortly after the pump pulse, the electron and phonon
populations are however highly nonthermal and an interesting
question is how this affects the Raman signal.

We apply a pump pulse corresponding to the electric field

Epump(t ) = Epump fpump(t − tpump) sin[�pump(t − tpump)],

(34)

with Epump the peak amplitude, �pump the frequency, and
fpump(t ) the envelope of the pump pulse. To this strong pertur-
bation we add in the simulation the weak Raman probe field
(32) and calculate the difference

δnres = 〈nres〉pump+probe − 〈nres〉pump (35)

of the photon numbers with pump and probe field and with
pump field only.

Figure 9 shows the Raman spectra measured at t = 30 in a
system with U = 2, g = 1, ω0 = 1 and initial β = 5, which is
photoexcited by a pump pulse with pump frequency �pump =
4, 6, 8 and peak amplitude Epump = 4. The pump pulse is
centered at time tpump = 6 and has a Gaussian envelope of the
form fpump(t ) = exp(−0.3t2). The probe pulse is the same as
in Fig. 5, i.e., the Raman drive continues with amplitude Ein =
0.5 up to the longest simulation time. We see that, in contrast
to the equilibrium system, whose Raman signal rapidly decays
on the anti-Stokes side ωin − ωout < 0 (black dashed line), the
spectrum of the photodoped system exhibits a plateau struc-
ture down to ωin − ωout ≈ −�pump, as indicated by the arrows.
This plateau could have two possible origins: (i) frequency
mixing between the pump pulse and the Raman probe or
(ii) light scattering with energy gain from photoexcited states
with excess kinetic and/or phonon energy up to �pump. The
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FIG. 10. Panel (a): difference spectra δnred = 〈nres〉pump+probe −
〈nres〉pump for the pump excited metallic system with U = 2, g = 1,
ω0 = 1 and initial β = 5. The pump pulse has amplitude Epump =
4, frequency �pump = 8, and is centered at tpump = 15. The differ-
ent lines show the resonant Raman signals obtained for the probe
times tpr = 6, 9, . . . , 24. Both the pump and the probe pulses have
a Gaussian envelope with the same form as shown by the gray
shading in Fig. 8. The probe pulse has amplitude Ein = 0.5 and
frequency ωin = 14. The black arrow indicates the energy range
−�pump � ωin − ωout � 0. Panel (b): time-resolved photoemission
spectrum IPES(ω, tprobe ) as a function of −ω, for the same photodoped
state and the same probe envelopes.

process (i) is analogous to hyper-Raman scattering, but with
absorption of �pump + ωin instead of ωin + ωin. Alternatively,
it can be viewed as Raman scattering from photon-dressed
states (Floquet states). The fact that the shape of the “plateau”
resembles the Stokes signal for large �pump suggests that, at
least in this limit, the frequency mixing dominates.

More insights into the population dynamics and the role of
frequency mixing can be obtained by time-resolved measure-
ments with short probe pulses. The results for probe pulses
with a width 
t ≈ 6 and a pump pulse with Epump centered
at tpump = 15 are shown in Fig. 10(a). The envelope of the
pump pulse and the other system parameters are the same
as before (U = 2, g = 1, β = 5). The figure again plots the
difference spectra δnres, for the indicated probe times, which
are symmetric with respect to tpump. Because of the short probe
pulses, the phonon peaks in the Raman spectra are washed out,
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but the measurements provide enough time resolution to track
the growth and vanishing of the nonthermal plateau on the
ωin − ωout < 0 side of the spectrum. In particular, one can see
that the results are symmetric with respect to tpump = 15. For
example, the curves for tprobe = 12, 18 or tprobe = 9, 21 are al-
most identical. In the metallic phase of the Hubbard-Holstein
model with strong electron-phonon coupling, one can expect a
quick relaxation of the nonequilibrium photoexcited distribu-
tions to a thermal state with a temperature close to the initial
temperature, which would be consistent with the quick return
of the Raman signal to the initial state. However, the almost
perfect temporal symmetry of the Raman signal with respect
to the pump maximum, together with the spectral shape of
the signal, suggest that there is in fact little contribution from
photoexcited states and that the Raman signal is instead pre-
dominantly due to photon-dressed states (frequency mixing).

The wiggles in the signal are due to the oscillations in
nres(t ) as a function of t . To suppress these, we average
the signals over the time interval 27 � t � 30 in the case
of tprobe � 21. The anti-Stokes signal near ωin − ωout � 0
is however a bit broader after the pump maximum, com-
pared to the corresponding signal before the pump maximum,
which indicates some heating effect. The heating is small,
because the phonon subsystem can absorb a large amount of
energy.

For a more direct view on the electronic population dy-
namics, we plot in Fig. 10(b) the time-resolved photoemission
signal [55]

IPES(ω, tprobe)

= −i
∫

dt dt ′s(t )s(t ′)eiω(t ′−t )G<(t + tprobe, t ′ + tprobe)

(36)

as a function of −ω (with some arbitrary rescaling). Here,
s(t ) = fin(t ) is the same Gaussian envelope as in the Ra-
man measurements. The photoemission signal also shows an
evolution which is symmetric with respect to tpump = 15 and
only little indications of heating. Consistent with the Raman
results, the plateau feature in this case tracks the Floquet
sidebands of the electronic spectrum during the pump.

Clear signatures of population dynamics can be found in
the time-resolved Raman signal of the metallic system if we
use a smaller pump frequency �pump and weaker phonon
coupling g. The former results in stronger absorption and
the latter in slower relaxation. Time-resolved resonant Raman
difference spectra analogous to Fig. 10(a), but for the lower
pump frequency �pump = 4 and weaker electron-phonon cou-
pling, are shown in Fig. 11. Panel (a) is for g = 0 and panel
(b) for g = 0.5 (U = 2, ω0 = 1, initial β = 5). For these
parameters, the DMFT solution with the NCA solver yields
a pseudogapped metal state, with upper and lower Hubbard-
band features. The pump pulse with �pump = 4 then leads to
a redistribution of charge carriers in these bands. The main
difference between g = 0 and g = 0.5 is that, in the phonon
coupled case, the pseudogap is less pronounced and the energy
dissipation to the phonons allows the charge carriers to relax
to a distribution which is close to that of the initial state, while
in the isolated system without phonon coupling, the system
will thermalize to a hot-electron distribution.
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FIG. 11. Difference spectra δnred = 〈nres〉pump+probe − 〈nres〉pump

for the pump excited pseudogapped metallic systems with g = 0
[panel (a)] and g = 0.5 [panel (b)], U = 2, ω0 = 1, and initial β = 5.
The pump pulse has amplitude Epump = 4, frequency �pump = 4, and
is centered at tpump = 15. The different lines show the resonant Ra-
man signals obtained for the probe times tprobe = 6, 9, . . . , 24. Both
the pump and the probe pulses have a Gaussian envelope with the
same form as shown by the gray shading in Fig. 8. The probe pulse
has amplitude Ein = 0.5 and frequency ωin = 14. The black arrow
indicates the energy range −�pump � ωin − ωout � 0.

This population dynamics is reflected in the Raman spec-
tra. On the one hand, we notice the appearance of a peak at
ωin − ωout ≈ 0, which is associated with charge excitations or
deexcitations within the partially populated Hubbard bands. In
the g = 0.5 calculation, this feature appears transiently, while
in the g = 0 case it persists due to the thermalization in the hot
electron state. We also notice that, in contrast to Fig. 10(a), the
evolution of the spectra on the ωin − ωout < 0 side is no longer
symmetric with respect to the maximum of the pump pulse
(at time tpump = 15). This is a clear indication that the signal
is not merely due to frequency mixing with the pump pulse,
but has also significant anti-Stokes contributions (energy gain
from scattering with the nonthermal charge carriers).

2. Photoexcited Mott insulating system

While long-lived nonequilibrium effects are absent in
the moderately correlated metallic system, characteristic
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FIG. 12. DMFT + NCA spectral function of the Holstein-
Hubbard model with U = 6, g = 1, and ω0 = 1. The black line
shows the equilibrium spectrum for the initial inverse temperature
β = 5, while the red line shows the nonequilibrium spectrum at
t = 12, after a photodoping pulse with �pump = 8 and Epump = 4.
The occupied part of the nonequilibrium spectrum is indicated by
the shading.

nonequilibrium properties can be induced by photodoping
a Mott insulating system. In this case the relaxation of
photodoped doublons (doubly occupied sites) and holons
(empty sites) leads to the appearance and population of in-gap
states, as was previously discussed in Ref. [51].

Here, we consider a Mott insulator with U = 6, g = 1,
and ω0 = 1, where a photodoping pulse with frequency com-
parable to U induces such long-lived in-gap states. While
the absorption and hence the weight of these in-gap states
depends on the pump frequency, the state after the pump
exhibits a nonequilibrium distribution which looks qualita-
tively similar for different pump frequencies, because the
photodoped doublons and holons quickly emit their excess
energy to phonons and relax to the first subband of the lower
or upper Hubbard band and to the in-gap states. The nonequi-
librium spectral function and occupation at t = 12, after a
photodoping excitation with �pump = 8, Epump = 4, tpump = 6
and the same pump envelope as in the previous section, is
shown in Fig. 12. For comparison, we also plot with a black
line the gapped equilibrium spectral function of the initial
state.

Because of the long-lived photoinduced in-gap states, the
Raman spectrum changes qualitatively during and after the
photodoping pulse and the spectrum does not relax back to
a (slightly hotter) equilibrium spectrum on the timescales
considered in this study. This is demonstrated in Fig. 13(a),
which shows the time evolution of the Raman signal, analo-
gous to Fig. 10(a). Here, the photodoping pulse is centered at
tpump = 15 and the weaker Raman probe pulses are applied at
the probe times tprobe = 6, 9, . . . , 24.

On the ωin − ωout > 0 side of the spectrum, we observe
the appearance of Stokes peaks in the gap region, which
can be associated with the emission of one or two phonons.
These peaks remain and even grow beyond t = 15 (peak am-
plitude of the pump pulse). This is because the appearance
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FIG. 13. Panel (a): difference spectra δnred = 〈nres〉pump+probe −
〈nres〉pump for the photodoped system with U = 6, g = 1, and initial
β = 5. The photodoping pulse has frequency �pump = 8, amplitude
Epump = 4, and is centered at tpump = 15. The different lines show
the resonant Raman signal obtained for probe pulses at tprobe =
6, 9, . . . , 24, with amplitude Ein = 0.5 and frequency ωin = 14. Both
the pump and the probe pulses have a Gaussian envelope with the
same form as shown by the gray shading in Fig. 8. The black arrow
indicates the energy range −�pump � ωin − ωout � 0, while the gray
arrow shows the range where the long-lived nonthermal population
contributes to energy gain (see also Fig. 12). The black dashed line
plots a rescaled Stokes signal for tprobe = 15, which is shifted down
in energy by �pump. Panel (b): time-resolved photoemission spectrum
IPES(ω, tprobe) as a function of −ω, for the same photodoped state and
the same probe envelopes.

of the photoinduced in-gap states and the partial population
of the Hubbard bands enables low-energy excitations and in
particular excitations between phonon sidebands with an
energy of nω0. Since the in-gap states and nonthermal pop-
ulations are long lived, the photoinduced Stokes peaks remain
after the pump.

On the ωin − ωout < 0 side, the photodoping creates a
highly nonthermal plateau structure similar to the one found
(during the pump) in the metallic system. Some of the tran-
sient structures can be associated with frequency mixing,
since they have the same shape as the Stokes part of the
spectrum [see black dashed line in Fig. 13(a), which shows
a shifted and rescaled version of the tprobe = 15 Stokes signal]
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and are present only during the pump. The evolution of the
frequency mixing signal is however less symmetric with re-
spect to the peak signal than in the metallic system analyzed in
Sec. III B 1, because the appearance of the photodoped in-gap
states during the pump activates new scattering processes.
After the end of the pump pulse, a plateaulike structure re-
mains down to ωin − ωout ≈ −4, which roughly corresponds
to the energy separation between the lower Hubbard band
and the highest nonthermally occupied sideband (see gray
arrow in Fig. 12). An alternative interpretation is that this
edge corresponds to −(�pump − 
gap), i.e., to energy gain
from relaxation processes within the Hubbard bands. The
former contribution yields a long-lived signal, since the in-gap
states persist up to the longest simulation times, while the
anti-Stokes processes associated with energy gain from the
relaxation of electrons or holes within the Hubbard bands
exist only during and shortly after the pulse [similar to the
metallic case in Fig. 10(a)]. The short-lived weaker plateau
which extends down to ωin − ωout ≈ −8 = −�pump can be
interpreted as a frequency mixing signal.

In Fig. 13(b), we plot the (rescaled) photoemission spec-
trum measured with the same probe pulse envelopes. This
spectrum also exhibits a plateau at positive energies associated
with the long-lived in-gap states (note that the spectrum is
plotted as a function of −ω). During the pump, the spec-
trum also exhibits a tail up to roughly ω = �pump, but this
tail quickly disappears after the excitation. We thus associate
these tails with the population of the Floquet sidebands which
are present only during the pump pulse.

IV. CONCLUSIONS

We presented a DMFT-based formalism for the calculation
of the resonant Raman scattering signal which does not rely
on the evaluation of a four-point correlation function. By
explicitly simulating the effect of the incoming light within
nonequilibrium DMFT at the classical level, the calculation
can be reduced to the evaluation of the lesser component
of a two-point correlation function. The approach is not
limited to weak probe pulses and for example enables the
investigation of hyper-Raman scattering. Since it is based on
nonequilibrium Green’s functions, it can be directly applied
to nonequilibrium states created by additional light pulses or
other perturbations and to time-resolved measurements.

As an application, we evaluated the resonant Raman signal
of a metallic and Mott insulating Holstein-Hubbard model
with strong electron-phonon coupling. In this case, the spec-
tral function splits into polaron sidebands and the Raman
signal exhibits peaks associated with transitions between
these sidebands (phonon emission and absorption). In equi-
librium, we analyzed the relation between the weights of the
Stokes and anti-Stokes signals and showed that the ratio of
these weights is consistent with a Boltzmann-type scaling
[Eq. (33)]. Hence, in the case of the Holstein-Hubbard model
and for the setups considered in this study, Raman-based tem-
perature measurements are reliable even if resonant scattering
processes are relevant.

If the frequency of the incoming light is not resonant to
intraband transitions and hence the population dynamics plays
a minor role, the main observation on the ωin − ωout < 0

side of the spectrum is a frequency-mixing signal during the
application of the pump. In the case of resonant excitations,
photoexcited populations become manifest, e.g., because the
lifetime of the anti-Stokes signal extends beyond the pump
pulse envelope by the relaxation time of the nonthermal elec-
trons (which however is rather short in the metallic phase
of the Holstein-Hubbard model with strong electron-phonon
coupling).

The photodoping of the Mott system, on the other hand,
generates long-lived in-gap states and nonthermal electron
and phonon populations. These nonthermal populations en-
able energy gain in the light-scattering process, so that the
Raman amplitude for ωin − ωout < 0 becomes a superposi-
tion of the frequency-mixing signal and additional anti-Stokes
peaks during the pump. After the pump, it features a long-
lived nonthermal plateau with a lifetime controlled by the
lifetime of the photodoped doublons/holons and the photoin-
duced polaronic in-gap states.

In the future, it will be interesting to analyze the relative
contributions of the different scattering processes (resonant,
nonresonant, and mixed) to the Raman signal and to study
the effect of vertex corrections of the type shown in Fig. 3(c),
which are not captured by the presented method. The two-
point formalism introduced in this work provides a convenient
way for incorporating different classes of vertex corrections
based on physical intuition, such as vertex corrections associ-
ated with antiferromagnetic or particle-hole scatterings.
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APPENDIX A: EQUIVALENCE OF EQS. (22) AND (26)

In the convolutions in Eq. (26) we replace Bγ by the free
photon Green’s function B0,γ , whose components are

B<
0,γ (t, t ′) = −i〈b†(t ′)b(t )〉0

= −i eiωout (t ′−t )nB(ωout), (A1)

B>
0,γ (t, t ′) = −i〈b(t )b†(t ′)〉0

= −i e−iωout (t−t ′ )[1 + nB(ωout)], (A2)

BR
0,γ (t, t ′) = −i〈[b(t ), b†(t ′)]〉0

= −i e−iωout (t−t ′ )

= [
BA

0,γ (t ′, t )
]∗

, (A3)

B�
0,γ (τ, t ′) = −i〈b(τ )b†(t ′)〉0

= −i eiωoutt ′
e−ωoutτ [1 + nB(ωout)]

= −[B�
0,γ (t ′, β − τ )]∗, (A4)

with nB(ωout) = 1/(eβωout − 1) the Bose function.
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From the Langreth rules one has [� ∗ B0,γ ]<(t, t ′) = ∫ t
0 dt̄ �R(t, t̄ )B<

0,γ (t̄, t ′) + ∫ t ′

0 dt̄ �<(t, t̄ )BA
0,γ (t̄, t ′) − i

∫ β

0 dτ��(t, τ )

B�
0,γ (τ, t ′), which gives

(� ∗ B0,γ − B0,γ ∗ �)<(t, t ′)

=
∫ t

0
dt̄

[
�R(t, t̄ )B<

0,γ (t̄, t ′) − [BA
0,γ (t̄, t ′)]∗[−�<(t ′, t̄ )]∗

] +
∫ t ′

0
dt̄

[
�<(t, t̄ )BA

0,γ (t̄, t ′) − [−B<
0,γ (t̄, t ′)]∗[�R(t ′, t̄ )]∗

]

− i
∫ β

0
dτ

[
��(t, τ )B�

0,γ (τ, t ′) − [−B�(β − τ, t )]∗[��(t ′, β − τ )]∗
]
. (A5)

For t ′ = t this becomes

(� ∗ B0,γ − B0,γ ∗ �)<(t, t )

=
∫ t

0
dt̄ 2 Re

[
�R(t, t̄ )B<

0,γ (t̄, t ) + �<(t, t̄ )BA
0,γ (t̄, t )

] − i
∫ β

0
dτ 2 Im

[
��(t, τ )B�

0,γ (τ, t )
]
i

= 2 Im
∫ t

0
dt̄ eiωout (t−t̄ )[�R(t, t̄ )nB(ωout) − �<(t, t̄ )] − 2 Re

∫ β

0
dτ e−ωoutτ [1 + nB(ωout)]e

iωoutt��(t, τ ). (A6)

We now take the limit β → ∞ [nB(ωout) → 0] and analytically continue the Matsubara branch to the negative real-time axis:
−iτ → −t ′, ��(t, τ ) → �<(t, t ′). This transforms Eq. (A6) to

(� ∗ B0,γ − B0,γ ∗ �)<(t, t ) = −2 Im
∫ t

0
dt̄ eiωout (t−t̄ )�<(t, t̄ ) − 2 Im

∫ ∞

0
dt ′eiωout (t+t ′ )�<(t, t ′). (A7)

With the additional substitution t ′ = −t̄ one finds that Eq. (26)
is equivalent to

d〈nγ 〉
dt

= −2g2
γ Im

∫ t

−∞
dt̄ eiωout (t−t̄ )�<(t, t̄ ), (A8)

which is consistent with the time derivative of Eq. (22).

APPENDIX B: B1g RAMAN VERTEX

In this Appendix, we show that, in the limit d → ∞, the
B1g Raman vertex can be replaced by a constant. Here we
consider the B1g Raman vertex given by

MB1g (k) ∝ 1√
d

∑
α

(−1)α cos(kα ), (B1)

relevant for nonresonant Raman scattering, but the same line
of argument holds for MB1g (k) ∝ 1√

d

∑
α (−1)α sin(kα ), which

appears in the calculation of the resonant Raman signal (see
main text). The system is defined on the d-dimensional hyper-
cubic lattice with dispersion

ε(k) ∝ 1√
d

∑
α

cos(kα ). (B2)

The Raman response function in the B1g channel can be writ-
ten as [using a certain function f (ε(k))]

χB1g =
∑

k

MB1g (k)MB1g (k) f (ε(k)), (B3)

which evaluates to

χB1g ∝
∑

k

1

d

∑
α

(−1)α cos(kα )
∑

β

(−1)β cos(kβ ) f (ε(k))

=
∑

k

1

d

∑
α

cos2(kα ) f (ε(k))

+
∑

k

1

d

∑
α 
=β

(−1)α+β cos(kα ) cos(kβ ) f (ε(k)). (B4)

In the first term, one can replace cos2(kα ) with 1
2 in the large-d

limit.1 To treat the second term, we define

gαβ =
∑

k

cos(kα ) cos(kβ ) f (ε(k)), (B5)

which for symmetry reasons does not depend on α, β when
α 
= β (i.e., gαβ = g if α 
= β). Then,∑

k

1

d

∑
α 
=β

(−1)α+β cos(kα ) cos(kβ ) f (ε(k))

= 1

d

∑
α 
=β

(−1)α+βgαβ = g

d

∑
α 
=β

(−1)α+β

= g

d

⎡
⎣(∑

α

(−1)α
)2

−
∑

α

(−1)2α

⎤
⎦ → −g (d → ∞).

(B6)

1This is justified since cos2(kα ) = 1
2 + 1

2 cos(2kα ) and
∑

α cos(2kα )

represents the dispersion with two-site hoppings, which scales as
√

d
in d → ∞.
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Therefore, the second term in Eq. (B4) becomes

∑
k

1

d

∑
α 
=β

(−1)α+β cos(kα ) cos(kβ ) f (ε(k))

= −
∑

k

cos(kα ) cos(kβ ) f (ε(k)) (α 
= β )

= − 2

d (d − 1)

∑
α<β

∑
k

cos(kα ) cos(kβ ) f (ε(k))

= − 1√
d (d − 1)

∑
k

εfcc(k) f (ε(k)), (B7)

where we used the dispersion for the d-dimensional fcc lattice,

εfcc(k) = 2√
d (d − 1)

∑
α<β

cos(kα ) cos(kβ ). (B8)

Since εfcc(k) is related to ε(k) as [56,57]

εfcc(k) = (ε(k))2 − 1
2 (B9)

in the limit of d → ∞, we have

∑
k

1

d

∑
α 
=β

(−1)α+β cos(kα ) cos(kβ ) f (ε(k))

= − 1√
d (d − 1)

∑
k

(
(ε(k))2 − 1

2

)
f (ε(k)) → 0

(B10)

for d → ∞. From this it follows that Eq. (B3) simplifies to

χB1g ∝
∑

k

f (ε(k)). (B11)

This is proportional to the current-current correlation function
χJJ . If the polarization is chosen as ε = (1, 1, 1, . . .), the
conductivity bubble becomes

χJJ ∝
∑

k

( ∑
α

∂ε(k)

∂kα

εα

)( ∑
β

∂ε(k)

∂kβ

εβ

)
f (ε(k))

=
∑

k

1

d

∑
α

sin2(kα ) f (ε(k))

+
∑

k

∑
α 
=β

1

d
sin(kα ) sin(kβ ) f (ε(k))

∝
∑

k

f (ε(k)), (B12)

where, in the middle expression, we replaced 1
d

∑
α sin2(kα )

by 1
2 and 1

d

∑
α sin(kα ) by zero.

FIG. 14. Derivation of the expression for nonresonant Raman
scattering. (a) Second order expansion in φ2

i j . Solid arrows represent
the time evolution without light-matter coupling, but in the presence
of the driving laser field, which populates photon states with index
α 
= γ , where γ is the flavor of the outgoing photon. In panel (b), we
keep only those photon operators which give a nonzero contribution
to the nonresonant process. In panel (c), the driving laser and its
effect on the system (red operators) is replaced by a classical field
[aα → sin(t )eiωint ], while the expectation value in the photon ground
state yields the additional factor eiωγ (t+−t− ) = eiωout (t+−t− ).

While the calculations presented in this Appendix assume
time-independent vertices, analogous results can be derived in
the presence of a time-dependent field, by expanding sin[kα −
A(t )] as sin(kα ) cos[A(t )] − cos(kα ) sin[A(t )], etc.

APPENDIX C: NONRESONANT RAMAN DIAGRAM

The nonresonant scattering diagram can be obtained by in-
serting the ∼ (φi j )2 term in the expansion (19) on the forward
and backward time contour, as shown in Fig. 14(a). We may
then replace the incoming (outgoing) photon on the forward
(backward) branch by a classical field, using the substitutions

aα → sin(t )eiωint , a†
α → sin(t )e−iωint , (C1)

with sin(t ) the envelope of the light pulse. The photon expecta-
tion value in the ground state can then be evaluated and leads
to a factor eiωout (t+−t− ), as in the main text. The sums over the
lattice sites in the vertices can be transformed into sums over
momenta, which yields

Mα,γ
nonres = −1

2

∑
k

Mα,γ

k nk, (C2)

Mα,γ

k = 1

2

∑
μ,ν

εα,μ

∂2εk

∂kμ∂kν

εγ ,ν . (C3)
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Here εk is the dispersion of the lattice, while εα(γ ) is the
polarization of the incoming (outgoing) light. We thus obtain〈

nγ
nonres

〉
(t, ωin − ωout)

= ig2
αg2

γ

∫ t

−∞
dt+dt−sin(t+)sin(t−)ei(ωout−ωin )(t+−t− )

× �<
nonres(t+, t−)

= −g2
αg2

γ

∫ t

−∞
dt+dt−sin(t+)sin(t−)

× Im[ei(ωout−ωin )(t+−t− )�<
nonres(t+, t−)], (C4)

�nonres(t+, t−) = −i〈Mα,γ
nonres(t+)Mα,γ

nonres(t−)〉

≈ i

4

∑
kσ

Mα,γ

k (t+)Gkσ (t+, t−)

× Gkσ (t−, t+)Mα,γ

k (t−). (C5)

Apart from the pulse envelope factors, this corresponds
to the standard expression for the nonresonant Raman signal
[11]. A possible nonequilibrium state of the system, induced
for example by a pump pulse, enters through the nonequilib-
rium lattice Green’s functions Gkσ . In contrast to the proce-
dure discussed for the resonant Raman signal in the main text,
we do not explicitly simulate here the nonequilibrium state
produced by the incoming light of the Raman measurement
and hence the “Fourier integral” involves the energy differ-
ence 
ω = ωin − ωout, which can be positive or negative.

Up to a rescaling factor, the results obtained from Eqs. (C4)
and (C5) are very similar to those presented in the main text
for the resonant scattering amplitude, both for the equilibrium
and photoexcited systems. In Fig. 15 we show data analogous
to Fig. 5(b) and to Fig. 9, for α = γ in the vertex (C2) and
gαgγ /2 = 1. The model parameters and the pump excitation
are the same as in the main text.

APPENDIX D: RELATION TO THE OPTICAL
CONDUCTIVITY

The correlation function (23) appearing in our two-point
formalism looks like a conductivity. However, inferring a
direct connection between the resonant Raman signal and
the conductivity from this observation is not possible, be-
cause Eq. (23) is the correlation function of the driven system
(driven by the Raman probe, which enters the propagators in
this expression), while the conductivity is determined by the
undriven current-current correlation function. For the nonres-
onant contribution, on the other hand, an explicit connection
to the conductivity can be made in d = ∞.

The optical conductivity is given by [35]

σ (t, t ′) = −
∫ t

t ′
dt̄ χR(t, t̄ ), (D1)

where in DMFT

χR(t, t ′) = −2
∑
kσ

γk Im
[
GR

kσ (t, t ′)G<
kσ (t ′, t )

]
γk

= i
∑
kσ

γk
[
GR

kσ (t, t ′)G<
kσ (t ′, t )

+ G<
kσ (t, t ′)GA

kσ (t ′, t )
]
γk (D2)
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FIG. 15. Nonresonant contribution to the Raman signal for U =
2, g = 1, ω0 = 1 and inverse temperature β = 5 (photon number
measured at time t = 30). Panel (a) shows the equilibrium results
for β = 5 and β = 1. Panel (b) shows nonequilibrium spectra for
initial β = 5 and a photodoping pulse with frequency �pump = 4, 6, 8
and amplitude Epump = 4. Black arrows indicate the energy range
−�pump � ωin − ωout � 0. The Raman probe pulse has amplitude
Ein = 0.5 and frequency ωin = 14.

and γk = ∑
α

∂εk
∂kα

εα . In the limit of d → ∞ and for po-

larization ε = (1, 1, 1, . . .) one can replace γ 2
k with 1

2 [see
derivation of Eq. (B12)].

The Fourier transform of σ (t, t ′) is

σ (ω) =
∫ t

−∞
dt̄ eiω(t−t̄ )σ (t, t̄ )

= −
∫ t

−∞
dt̄ eiω(t−t̄ )

∫ t

t̄
dt̄ ′ χR(t, t̄ ′) (D3)

and hence

iωσ (ω) =
∫ t

−∞
dt̄ [∂t̄ e

iω(t−t̄ )]
∫ t

t̄
dt̄ ′ χR(t, t̄ ′)

=
∫ t

−∞
dt̄ eiω(t−t̄ )χR(t, t̄ ) (D4)

= i
∫ t

−∞
dt̄ eiω(t−t̄ )

∑
kσ

γk[G>
kσ (t, t̄ )G<

kσ (t̄, t )

− G<
kσ (t, t̄ )G>

kσ (t̄, t )]γk . (D5)
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Using [G>(t, t ′)]∗ = −G>(t ′, t ) and [G<(t, t ′)]∗ =
−G<(t ′, t ) one finds

Re [ωσ (ω)] = 1

2

∫ t

−∞
dt̄ eiω(t−t̄ )

∑
kσ

γk[G>
kσ (t, t̄ )G<

kσ (t̄, t )

− G<
kσ (t, t̄ )G>

kσ (t̄, t )]γk

+ 1

2

∫ t

−∞
dt̄ e−iω(t−t̄ )

∑
kσ

γk[G>
kσ (t̄, t )G<

kσ (t, t̄ )

− G<
kσ (t̄, t )G>

kσ (t, t̄ )]γk. (D6)

On the other hand, it follows from Eqs. (C4) and (C5)
that the nonresonant contribution of the Raman signal can be
expressed as (
ω = ωin − ωout)

d

dt

〈
nnonres

γ

〉
(t ) (D7)

= −2g2
αg2

γ s(t )Im
∫ t

−∞
dt̄ e−i
ω(t−t̄ )s(t̄ )�<

nonres(t, t̄ )

= g2
αg2

γ s(t )
∫ t

−∞
dt̄ s(t̄ )e−i
ω(t−t̄ )i�<

nonres(t, t̄ )

+g2
αg2

γ s(t )
∫ t

−∞
dt̄ s(t̄ )ei
ω(t−t̄ )[i�<

nonres(t, t̄ )]∗,

(D8)

where

i�<
nonres(t, t ′) = −1

4

∑
kσ

Mα,γ

k G<
kσ (t, t ′)G>

kσ (t ′, t )Mα,γ

k .

(D9)

Substituting this into the above equation and assuming a
slowly varying envelope, we obtain

d

dt

〈
nnonres

γ

〉
(t )

∝
∫ t

−∞
dt̄ e−i
ω(t−t̄ )

∑
kσ

Mα,γ

k G<
kσ (t, t̄ )G>

kσ (t̄, t )Mα,γ

k

+
∫ t

0
dt̄ ei
ω(t−t̄ )

∑
kσ

Mα,γ

k G<
kσ (t̄, t )G>

kσ (t, t̄ )Mα,γ

k .

(D10)

By comparing Eqs. (D6) and (D10) and taking into ac-
count that the difference between the squares of γk and Mα,γ

k
becomes negligible in d → ∞ [the average of sin2(k) and
cos2(k) becomes 1

2 ], we see that the optical conductivity is,
up to prefactors, the difference of the Raman signals with

ω = ω and 
ω = −ω:

Re [ωσ (ω)] ∝ d

dt

〈
nnonres

γ

〉
(t )

∣∣∣∣

ω=ω

− d

dt
〈nnonres

γ 〉(t )

∣∣∣∣

ω=−ω

.

(D11)

The derivations presented in this Appendix are valid for
time-independent vertices, but they can be generalized to
electric field driven systems by expanding sin[kα − A(t )] as
sin(kα ) cos[A(t )] − cos(kα ) sin[A(t )], etc.
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