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The multicomponent density functional theory is faced with the challenge of capturing various types of
inter- and intraparticle exchange-correlation effects beyond those introduced by the conventional electronic
exchange-correlation functionals. Herein, we focus on evaluating the electron-proton/muon correlation function-
als appearing in molecular/condensed-phase systems where a proton/muon is treated as a quantum particle on
equal footing with electrons, beyond the Born-Oppenheimer paradigm. Five recently developed local correlation
functionals, i.e., the epc series and eµc-1, are selected and their performances are analyzed by employing a
two-particle model that includes an electron and a positively charged particle (PCP) with a variable mass,
interacting through Coulombic forces, within a double harmonic trap. Using the Kohn-Sham (KS) inversion
procedure, the exact two-component KS characterization of the model is deduced and its properties are compared
to those derived from the considered functionals. The analysis demonstrates that these local functionals achieve
their original parameterization objectives to reproduce the one-PCP densities and the electron-PCP correlation
energies, but all fall short of reproducing the underlying PCP correlation potentials correctly. Moreover, a
comprehensive error analysis reveals that the density-driven errors have a non-negligible contribution to the
success of the considered functionals. Overall, the study shows the strengths as well as shortcomings of the
considered functionals hopefully paving the way for designing more robust functionals in the future.

DOI: 10.1103/PhysRevB.108.245155

I. INTRODUCTION

The last two decades have witnessed a new age in
ab initio computational study of the multicomponent Coulom-
bic quantum systems which has been recently called the mul-
ticomponent quantum chemistry (MCQC) [1]. The MCQC
aims to extend the applicability domain of ab initio QC to
molecular systems and phenomena where not only electrons
but also other particles are treated as quantum particles. Apart
from the usual light nuclei like proton and its heavier isotopes,
this includes elementary particles that are attached to molec-
ular systems like positron or the positively charged muon
(hereafter called muon for brevity) [2–15]. While there is
a “prehistory” for this extension [16–20], in one sense the
renaissance of the MCQC started from the pioneering work of
Tachikawa, Nakai, Shigeta, and coworkers in 1998 [21–24].
These studies laid the stepping stone to attribute and optimize
spin-spatial orbitals simultaneously to electrons as well as
nuclei and/or other elementary particles in molecular systems.
Since then various research groups have tried to bring the
traditional hierarchical structure of the electronic ab initio
methodologies, i.e., first Hartree-Fock (HF) and then step
by step more sophisticated post-HF methods, to the realm
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of the MCQC [25–31]. At first glance this may seem to
be a computationally cumbersome but theoretically straight-
forward research program without any need for innovative
theoretical elements. However, this is deceptive since new
types of correlations emerge in such systems apart from the
well-known electron-electron correlation [32,33].

Let us imagine a two-component system composed of N
electrons and a single positively charged particle (PCP), all
within an external field. The MCHF wave function, as the
starting point for ab initio calculations, is a product of the
electronic N × N Slater determinant and the spin-orbital at-
tributed to the PCP, which is an uncorrelated description of
electrons and the PCP. Neglecting all types of correlations
among the involved particles leads to a significant differ-
ence in the observable results computed at the MCHF level
compared to the exact solution of the MC-Schrödinger equa-
tion [34,35]. Inevitably, in subsequent steps in any conceived
hierarchical structure of the MCQM, one must deal with both
electron-electron and electron-PCP correlations and try to
incorporate them efficiently into the wave function. Neverthe-
less, the electron-PCP correlation is not only quantitatively
but also qualitatively different from the electron-electron cor-
relation because an electron and a PCP form a distinguishable
and attractively interacting pair of particles with no operative
exchange phenomenon, unlike electrons. In fact, two decades
of experience reveal that the orbital-based ab initio correlated
methods, which are capable of recovering electron-electron
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correlation, are not suitable to recover the electron-PCP cor-
relation efficiently and new methodological developments are
necessary [36–66]. This is also the case for the extension of
density functional theory (DFT) to the MC systems as one of
the most computationally cost-effective methodologies to deal
with the many-body problem [67]. While the theoretical foun-
dations of the MCDFT were laid decades ago [68–77], and
refined since then [78–89], properly designed electron-PCP
correlation functionals have appeared only recently [90–108].
Although it is not discussed in the present study, let us just
briefly stress that another type of correlation, namely the
PCP-PCP correlation, may also emerge if, for example, one
considers quantum systems composed of N electrons and M
PCPs when M > 1. Probably, the most interesting example is
hydrogen under extreme pressures and its infamous metallic
phase [109–112], which is basically a strongly interacting
system of electrons and protons (or deuteriums) [113–124].
Accordingly, in an ab initio study of an MC many-body quan-
tum system, composed of quantum particles with different
charges and masses, the diversity of various conceived cor-
relations is enormous. Currently, in contrast to all attempts
[125–136], there is no single unified scheme to treat all these
correlations efficiently and much remains to be done in this
area.

In the meantime, the most computationally tractable
ab initio methodology to deal with medium to large
MC molecular systems is the MCDFT and the solution
of the MC Kohn-Sham (MCKS) equations. The recent
success in introducing relatively accurate local and
semilocal electron-positron [90,100,102], electron-proton
[104,105,107], and electron-muon [108], correlation
functionals are indeed promising. However, designing novel
correlation functionals is by no means a straightforward task
since the goal of building a simplified but reliable many-body
model to start considering the electron-PCP correlation,
similar to the homogeneous electron gas model used in the
electronic DFT (eDFT) [137,138], is not achieved yet. The
only exception is the “delocalized” states of positrons in solids
[3], for which the many-body homogeneous electron-positron
gas model was developed long ago [139–144]. This model has
been employed to deduce local density approximations for
the electron-positron correlation functional [145–147]. While
the model has been extended to the case of a PCP with an
arbitrary mass [148–154], the “localized” nature of the heavy
PCPs, e.g., proton and muon, in many MC systems cast some
doubt on the model’s validity in such cases. As an alternative,
the recently designed electron-proton correlation functionals
have been largely based on extending the Colle-Salvetti
approximation for the electron-electron correlation energy
[155,156], to the electron-proton correlation energy
[104,105,107]. Although some theoretical clarifications
yet needed to be done in this procedure, the computational
success of the series of designed functionals, called epc-17
[104], epc-18 [105], and epc-19 [107], encourages this
line of reasoning [1,157–159]. The eµc-1 functional [108],
which is recently proposed to account for the electron-muon
correlation effects, resembles the epc series mathematically,
but simply designed based on a semiempirical approach from
the outset (see Appendix C). Accordingly, it is desirable
to check the intrinsic accuracy of these functional and try
to uncover the reasons behind their success. By the way,

this is not a straightforward task, since in an ab initio
MCDFT calculation the outcomes, e.g., total energy or
geometrical parameters, depend both on the qualities of
the electronic exchange-correlation and the electron-PCP
correlation functionals. A handful of studies on the possible
inter-dependence of these two types of correlations have come
to opposing views, and further studies are needed for more
clarification [99,101,105]. Nevertheless, all the mentioned
electron-PCP functionals have been parameterized in ab initio
procedures on real molecules employing the same electronic
exchange-correlation functionals that are used in the “single-
component” eDFT without any re-parameterization. A
reasonable doubt emerges as to what extent the electron-PCP
correlation functionals “absorb” the errors inherent in
the original design of the electronic exchange-correlation
functionals. In fact, the error compensation of two seemingly
independent functionals that are used in conjunction with ab
initio calculations is well-documented and has been utilized
in the joint parameterization of the electronic exchange and
correlation functionals [160].

Currently, the “gold standard” for the quality of an
electron-PCP correlation functional is its ability to overcome
the overlocalization of the uncorrelated one-PCP density (vide
infra). These overlocalized uncorrelated densities are derived
from MCKS (and MCHF) wave functions in the absence
of the electron-PCP correlation functional [104,105,107,108].
However, these studies demonstrate that the “cure” of the
overlocalization does not in itself guarantee the success of an
electron-PCP correlation functional in reproducing the correct
energetics. Thus it is desirable to find new ways of gauging
the “inherent” accuracy of the currently used electron-PCP
correlation functionals. To reach this goal, it is preferable
to apply the MCKS equations with the desired electron-
PCP correlation functional to a model system that lacks the
electron-electron and PCP-PCP correlations. Such a system is
inevitably composed of just one electron and a PCP, all placed
within an external field, to eliminate the unbound center of
mass motion preventing concomitant complications [161].

The following section presents the basic theory of this
model system and shows that the overlocalization problem
persists in this system regardless of whether the PCP is a
proton or a muon. Thus this simple model is a proper testing
ground to evaluate the quality of the electron-PCP corre-
lation functionals. Also, various energetic comparisons are
done comparing the results of the exact MCKS with those
derived from various local correlation functionals including,
the electron-PCP correlation energy and the KS potentials of
the electron and the PCP. Overall, the present study tries to
evaluate the inherent qualities of the local electron-proton and
electron-muon correlation functionals currently in use.

II. THE MODEL TWO-PARTICLE SYSTEM

A. The theoretical basics

The idea of using simple models to evaluate the corre-
lation energies in many-body systems, i.e., the difference
between the exact and the mean-field energies, is not new
and its usefulness has been demonstrated many times previ-
ously [162–165]. In the case of electron-electron correlation,
probably the best-known and the most studied model is the

245155-2



QUANTIFYING ERRORS OF ELECTRON-PROTON/ … PHYSICAL REVIEW B 108, 245155 (2023)

two-electron harmonium atom, sometimes also called the
Hooke’s atom, which is composed of two electrons inter-
acting within a harmonic trap [166]. The model was first
proposed by Kestner and Sinanoglu in 1962 [167], as a sim-
plified version of the real helium atom, and since then it
has been studied by various researchers [168–200]. In con-
trast to the helium atom, the partial electronic Schrödinger
differential equation of the harmonium atom is separable
into two ordinary differential equations [167]. One of them
is equivalent to the Schrödinger equation of the harmonic
oscillator problem, and is analytically solvable, while the
other belongs to the class of quasiexactly solvable models
[167,168,172,175,201]. Since the exact analytical and/or nu-
merical solutions of these equations are available, the model is
an ideal “laboratory” to study the electron correlation effects.
One of the most interesting applications of this laboratory is
the evaluation of the reliability of various proposed approxi-
mate electronic exchange-correlation functionals used in the
eDFT. The exact noninteracting KS system of the harmonium
atom and its components, e.g., the KS correlation energy
and the exchange-correlation potential, are derivable from an
inversion process. Hence, the exact components are compa-
rable with their approximate counterparts, derived from the
approximate exchange-correlation functionals [202]. The pio-
neering studies of Laufer and Krieger in 1986 [203], as well
as other researchers [204–208], set the stage for subsequent
studies on various aspects of the eDFT of the harmonium
atom [209–241]. Accordingly, it is desirable to have a similar
model to study the electron-PCP correlation-related effects
and to evaluate the utility of the recently designed electron-
PCP correlation functionals.

To construct the proper model, one of the two electrons
in the harmonium model is replaced with a particle having a
unit of the positive charge and an arbitrary mass (equal to or
larger than the electron’s mass). Our previous studies indeed
revealed that in real molecules, on average, a single elec-
tron surrounds a proton/muon thus the model hopefully must
simulate hydrogen (H)/muonium (Mu) atom bonded within
a molecule [242–245]. The corresponding Hamiltonian of the
model, hereafter called the H/Mu atom in the double harmonic
traps, and abbreviated as H/Mu-DHT, is as follows:

Ĥ = T̂e + T̂PCP + V̂e-PCP + νext
e (�re ) + νext

PCP(�rPCP)

= − 1

2
∇2

e − 1

2mPCP
∇2

PCP − 1

|�re − �rPCP|
+ 1

2
ker2

e + 1

2
kPCPr2

PCP. (1)

Note that both in this equation and throughout the rest of the
text, all equations and numerical data are given in the atomic
units unless stated otherwise. The parameters of the model are
the mass of the PCP, mPCP, and the force constants of the two
traps, one for the electron, ke, and the other for the PCP, kPCP,
sharing a single center in space. Each trap acts as the external
potential for the electron, νext

e , or the PCP, νext
PCP. A special case

of this model, ke = 0, has been considered recently [246],
but since we are interested in a separable Hamiltonian (vide
infra), we further assume that the frequency of oscillations is
equal for the two traps: ki = miω

2. Let us stress at this stage of
development that the model can be used to simulate various

physical systems that some are beyond the intent of the
present study including the trapped atoms [247–250], and the
electron-hole pair [251–256]. The Hamiltonian is transformed
by employing the center of mass, �R = (�re + mPCP�rPCP)/M,
and the relative, �r = �re − �rPCP, variables into two independent
Hamiltonians without any coupling term:

Ĥ = ĤR + Ĥr,

ĤR = − 1

2M
∇2

R + 1

2
Mω2R2,

Ĥr = − 1

2μ
∇2

r + 1

2
μω2r2 − 1

r
. (2)

The center of mass Hamiltonian, ĤR, describes a pseu-
doparticle with the total mass M = 1 + mPCP, in a harmonic
trap which is a textbook example of an analytically solvable
model [257]. The relative motion Hamiltonian, Ĥr , describes a
pseudoparticle with the reduced mass μ = mPCP/(1 + mPCP),
experiencing a harmonic potential and a Coulombic attraction.
The mathematical procedures used to derive the analytical so-
lutions of the relative motion Hamiltonian of the harmonium
atom do not provide us with the analytical solution for the
ground state of Ĥr [175,187,195,201]. Accordingly, for differ-
ent sets of the model’s parameters, we derived the ground state
wave functions of the relative motion from high-precision
numerical solutions through the finite element method.

To test the physical relevance of the model, the mass and
the frequency of oscillation of the model must be fixed to
values that make comparison to real physical systems feasi-
ble. Since in this study, we are interested in the correlations
between localized PCPs and electrons, the mass of the PCP
was fixed at the masses of proton, mproton ≈ 1836, and muon,
mmuon ≈ 207. Fixing the frequency of oscillation and con-
comitant force constants is a more delicate issue, since, based
on the separability condition of the Hamiltonian, the fre-
quency of oscillation must be equal for the electron and the
proton/muon. In fact, the force constants may be viewed as
a simple representation of how the other nuclei and electrons
collectively affect the target electron and the proton/muon in
a real molecule. It seems reasonable to assume that the target
electron is mainly influenced by the nearby proton/muon and
is least affected by other nuclei/electrons and this justifies the
assumption ke = 0 [246]. However, in principle, any other
value for the force constant that makes it small relative to
the Coulomb term in the vicinity of the center of the trap is
also physically a reasonable choice. We fixed the frequency
of oscillation by taking into account the typical known val-
ues of the zero-point vibrational energies of proton/muon in
real molecules, ωproton = 0.01 and ωmuon = 0.02 [258,259].
With this strategy, since the force constants are scaled with
the particle’s mass, ki = miω

2, the relative smallness of ke is
guaranteed. Nevertheless, the main results gained in this study
are not sensitive to the numerical choice of ω and remain valid
in a broad range of oscillation frequencies.

B. The overlocalization of the uncorrelated
one-proton/muon densities

In the first step, the exact and the mean-field derived
one-proton/muon densities were studied to see whether the
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previously mentioned overlocalization is taking place also
in the model. This is a crucial characteristic without which
the model would not be proper for the quality evaluation
of the electron-PCP correlation functionals. The one-particle
densities in the original variables are easily deducible from
the exact ground state wave function of the model: ρe(�re) =∫

d�rp/µ|�exact (�re, �rp/µ)|2, ρp/µ(�rp/µ) = ∫
d�re|�exact (�re, �rp/µ)|2.

Note that since Eq. (2) is solved in practice, the ground
state wave function is derived according to the secondary
variables, �(�r, �R). Therefore, before doing the integration, a
“back transformation” must be done to the original variables
where its mathematical details have been disclosed previously
by Laufer and Krieger and are not reiterated herein [203]. The
derived one-particle densities are the “reference” densities of
the model for all subsequent comparisons.

To check the presence of the overlocalization in ρp/µ

of the model, as discussed previously, we need to have
also an uncorrelated description of the electron and the
proton/muon. Accordingly, we tried to find the best varia-
tional Hartree-product solution for the ground state of the
model, �uncorrelated(�re, �rp/µ) = φe(�re)φp/µ(�rp/µ), which is for-
mally equivalent to the MCHF wave function for a system
composed of an electron and a proton/muon. This was done
by expanding φe and φp/µ in a series of seven s-, p-, and d-
type Gaussian functions denoted as [7s7p7d/7s7p7d] basis set;
details of the basis set are given in Appendix A. It was found
during the numerical tests that the MCHF/[7s7p7d/7s7p7d]
level yields numerical results near the infinite basis limit for
the practical applications intended in this study. From the
derived uncorrelated wave function, the uncorrelated one-
particle densities are easily deducible: ρe = |φe|2 and ρp/µ =
|φp/µ|2. For comparison purposes, the same one-particle den-
sities were also computed for hydrogen/muonium cyanide,
XCN (X=H, Mu), where the latter is the simplest muonic
molecule considered in our previous MCDFT study [108].
The details of the used computational levels to deduce the
reference/exact and uncorrelated one-particle densities may
be found in our previous paper [108], and a brief survey is
also given in Appendix B.

Figures 1 and 2 depict 1D slices of the one-particle densi-
ties computed from the exact and uncorrelated wave functions
for the model and the XCN molecules. In the case of the
model, since the one-particle densities are isotropic, the axis
used to depict the figures is arbitrary and goes through the
joint center of the traps, whereas for XCN species, they are
anisotropic and the axis passes through the maximum of ρp/µ

and the clamped carbon and nitrogen nuclei is used for depic-
tion [108]. A quick glance at Fig. 1 reveals unequivocally the
expected overlocalization of the uncorrelated ρp/µ in compar-
ison to the reference densities in both real and model systems,
whereas no such extreme overlocalization is observable in the
case of ρe in Fig. 2.

We conclude that the model, in contrast to its seemingly
profound simplicity, reveals the same pathological behavior
of the uncorrelated ρp/µ observable in the case of the real
systems. In this regard, it can be used as a laboratory to
study this “pathological behavior” in detail and to verify
how a properly designed correlated wave function, or an
electron-proton/muon correlation functional, may remedy the
overlocalization.

FIG. 1. The left-hand panels depict ρp/µ for HCN and MuCN,
while the right-hand panels depict the same densities for H/Mu-DHT.
The reference ρp/µ of HCN and MuCN, depicted as dashed curves,
were derived in a previous study from the double-adiabatic approx-
imation [108]. The reference ρp/µ for the model, depicted as dashed
curves, is obtained from the computed exact wave function. The
uncorrelated one-particle densities of the model, the solid red curves,
are obtained at the MCHF/[7s7p7d/7s7p7d] level while for HCN
and MuCN they are derived at the B3LYP/pc-2//no-epc/14s14p14d
and B3LYP/pc-2//no-eµc/14s14p14d levels (for more details see Ap-
pendix B). In the case of the model, all the one-particle densities
are isotropic and the center of the coordinate system is placed at
the joint center of the traps. For the real molecules, the one-particle
densities are anisotropic and the axis used to depict the densities goes
through the maximum of ρp/µ and the clamped carbon while the latter
is located at the center of the coordinate system.

C. The two-component KS inversion

As discussed in the introduction, the fundamental theorems
of the MCDFT as well as the MCKS equations have been
derived for the general MC systems long ago (for a com-
pressed review see Sec. 9.6 in Ref. [137]). By the way, in this
subsection, we briefly review the specific KS system of the
model and also the inversion process upon which the exact
electron-proton/muon correlational potential is derived. Nu-
merical comparisons with approximate correlation functionals
are considered in the next section.

The MC Hohenberg-Kohn theorems and the generalized
levy’s constraint search imply the following for finding the
ground state energy of the model based on Eq. (1):

Eground = min
ρe,ρp/µ

E [ρe, ρp/µ],

E [ρe, ρp/µ] = F [ρe, ρp/µ] +
∫

d�re νext
e (�re)ρe(�re )

+
∫

d�rp/µ νext
p/µ(�rp/µ)ρp/µ(�rp/µ),

F [ρe, ρp/µ] = min
�e,p/µ→ρe,ρp/µ

〈�e,p/µ|T̂e + T̂p/µ + V̂e-(p/µ)|�e,p/µ〉

= Te[ρe, ρp/µ] + Tp/µ[ρe, ρp/µ] + Ve-(p/µ)[ρe, ρp/µ].
(3)
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FIG. 2. The left-hand panels depict ρe for HCN and MuCN,
while the right-hand panels depict the same densities for H/Mu-
DHT. The reference ρe of HCN and MuCN, depicted as dashed
curves, are computed at the B3LYP/pc-2//epc17-1/14s14p14d and
B3LYP/pc-2//eµc-1/14s14p14d levels, respectively, while the uncor-
related densities are derived at the B3LYP/pc-2//no-epc/14s14p14d
and B3LYP/pc-2//no-eµc/14s14p14d levels, respectively (for more
details see Appendix B). The reference densities for the model are
obtained from the computed exact wave function, whereas the un-
correlated densities are derived at the MCHF/[7s7p7d/7s7p7d] level.
In the case of the model, all ρe are isotropic and the center of the
coordinate system is placed at the joint center of the traps. For the real
molecules, ρe are anisotropic and the axis used to depict the densities
goes through the maximum of ρp/µ and the clamped carbon nucleus
where the latter is located at the center of the coordinate system.

F [ρe, ρp/µ] is the Hohenberg-Kohn universal functional of the
model which is a functional of ρe and ρp/µ, independent from
νext

e and νext
p/µ. Assuming there is a noninteracting two-particle

reference KS system for the model, reproducing the exact one-
particle densities, the universal functional may be rewritten as
follows:

F [ρe, ρp/µ] = T s
e [ρe] + T s

p/μ[ρp/µ] + Je-(p/µ)[ρe, ρp/µ]

+ Ee(p/µ)c[ρe, ρp/µ],

Ee(p/µ)c[ρe, ρp/µ] = (Te[ρe, ρp/µ] − T s
e [ρe]) + (Tp/µ[ρe, ρp/µ]

− T s
p/µ[ρp/µ]) + (Ve-(p/µ)[ρe, ρp/µ]

− Je-(p/µ)[ρe, ρp/µ]). (4)

In these equations T s
e [ρe] = (−1/2)〈φKS

e |∇2
e |φKS

e 〉 and
T s

p/µ[ρp/µ] = (−1/2mp/µ)〈φKS
p/µ|∇2

p/µ|φKS
p/µ〉 are the KS nonin-

teracting kinetic energies of the electron and the proton/muon
while Je-(p/µ)[ρe, ρp/µ] = − ∫

d�re
∫

d�rp/µ
ρe (�re )ρp/µ(�rp/µ)

|�re−�rp/µ| is
the classical Coulomb interaction energy, sometimes
also called the Hartree term. Neglecting the spin, the
KS wave function of the model is the product of the
KS spatial orbitals: �KS(�re, �rp/µ) = φKS

e (�re )φKS
p/µ(�rp/µ),

where: ρe = |φKS
e |2 and ρp/µ = |φKS

p/µ|2 are the one-particle
densities of the model. The only unknown is the functional

FIG. 3. 1D slices of the reference, functional- and MCHF-
derived ρe and ρp/µ for H/Mu-DHT. Since all the one-particle
densities are isotropic, the direction of the z axis is arbitrary and the
center of the coordinate system is placed at the joint center of the
double harmonic traps.

form of the electron-proton/muon correlation functional,
Ee(p/µ)c[ρe, ρp/µ]. Upon the variation of the energy functional,
Eq. (3), with respect to the KS spatial orbitals, the following
set of coupled KS equations are derived:

(
−1

2
∇2

e + νKS
e (�re)

)
φKS

e (�re) = εKS
e φKS

e (�re)

(
− 1

2mp/µ
∇2

p/µ + νKS
p/µ(�rp/µ)

)
φKS

p/µ(�rp/µ) = εKS
p/µφ

KS
p/µ(�rp/µ),

νKS
e (�re ) = νext

e (�re) + νJ
e (�re) + νe(p/µ)c

e (�re)

νKS
p/µ(�rp/µ) = νext

p/µ(�rp/µ) + νJ
p/µ(�rp/µ) + ν

e(p/µ)c
p/µ (�rp/µ). (5)

In these equations, νKS
e (�re ) and νKS

p/µ(�rp/µ) are the effec-
tive KS electronic and protonic/muonic potentials, respec-
tively. Their components, apart from the external poten-
tials, are νJ

e (�re) = δJe-(p/µ)

δρe
= − ∫

d�rp/µ
ρp/µ(�rp/µ)
|�re−�rp/µ| and νJ

p/µ(�rp/µ) =
δJe-(p/µ)

δρp/µ
= − ∫

d�re
ρe (�re )

|�re−�rp/µ| , as the potentials emerging from the

Hartree term, and, ν
e(p/µ)c
e (�re) = δEe(p/µ)c

δρe
and ν

e(p/µ)c
p/µ (�rp/µ) =

δEe(p/µ)c

δρp/µ
, as the electronic and protonic/muonic correlation po-

tentials, respectively.
Since the exact functional form of Ee(p/µ)c[ρe, ρp/µ] is

unknown, in order to start solving the KS equations, an ap-
proximate functional form must be used to deduce the corre-
sponding correlation potentials. Such approximate functionals
are considered in the next section, but since �exact (�re, �rp/µ)
and the concomitant exact ρe and ρp/µ are known, depicted
in Fig. 3, the exact correlations potentials are also deducible
from an inversion process similar to that employed previously
in the case of the harmonium model [203,207,208]. The rele-
vant expressions, derived from the coupled KS equations, are
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TABLE I. The exact/reference and approximate KS energy components computed for H/Mu-DHT (for the definition of each term see
Sec. II C). The entry denoted as reference contains the exact results while the others are obtained with and without the considered electron-
proton/muon correlation functionals.

Method Eground T s
e 〈νext

e 〉 T s
p/µ 〈νext

p/µ〉 Je-(p/µ) Ee(p/µ)c εKS
e εKS

p/µ

H
no-epc/MCHF −0.4628 0.4561 0.0002 0.0171 0.0033 −0.9393 0.0000 −0.48 −0.919
epc17-1 −0.5112 0.4928 0.0001 0.0083 0.0075 −0.9564 −0.0636 −0.50 −0.978
epc17-2 −0.4874 0.4606 0.0002 0.0094 0.0062 −0.9323 −0.0314 −0.49 −0.932
epc18-1 −0.4971 0.4928 0.0001 0.0074 0.0085 −0.9527 −0.0532 −0.50 −0.959
epc18-2 −0.4829 0.4751 0.0002 0.0092 0.0066 −0.9443 −0.0297 −0.49 −0.939
eµc-1 −0.4786 0.4646 0.0002 0.0121 0.0077 −0.9319 −0.0314 −0.49 −0.922
Reference −0.4846 0.4649 0.0002 0.0075 0.0075 −0.9315 −0.0331 −0.49 0.015

Mu
no-eµc/MCHF −0.4078 0.3892 0.0007 0.0383 0.0059 −0.8419 0.0000 −0.45 −0.798
epc17-1 −0.4690 0.4882 0.0006 0.0415 0.0055 −0.9351 −0.0696 −0.50 −0.942
epc17-2 −0.4486 0.4378 0.0007 0.0360 0.0063 −0.8855 −0.0439 −0.48 −0.873
epc18-1 −0.4628 0.4762 0.0006 0.0357 0.0064 −0.9180 −0.0637 −0.50 −0.916
epc18-2 −0.4432 0.4515 0.0006 0.0381 0.0060 −0.8995 −0.0399 −0.48 −0.882
eµc-1 −0.4547 0.4072 0.0007 0.0213 0.0108 −0.8328 −0.0619 −0.47 −0.821
Reference −0.4670 0.3944 0.0007 0.0151 0.0149 −0.8035 −0.0885 −0.49 0.030

the following:

νe(p/µ)c
e (�re) = εKS

e − νext
e (�re) − νJ

e (�re) + ∇2
e φKS

e (�re)

2φKS
e (�re)

,

ν
e(p/µ)c
p/µ (�rp/µ) = εKS

p/µ − νext
p/µ(�rp/µ) − νJ

p/µ(�rp/µ)

+ ∇2
p/µφ

KS
p/µ(�rp/µ)

2mp/µφ
KS
p/µ(�rp/µ)

. (6)

Comparison between the exact and an approximate cor-
relation potential is probably the most stringent quality
measure of an approximate functional as also demonstrated
in the case of the electronic exchange-correlation functionals
[203,207,208,260–267]. Let us now turn to the numerical
application of the formalism to the model.

Since |φKS
e | = √

ρe and |φKS
p/µ| = √

ρp/µ, apart from the
phase, φKS

e and φKS
p/µ are available, and the numerical val-

ues of all energy components except for Ee(p/µ)c, namely,
T s

e , T s
p/µ, Je-(p/µ), 〈νext

e 〉, 〈νext
p/µ〉, are easily computable. The

eigenvalue problems of the Hamiltonians given in Eq. (2) are
solved exactly and Eexact = ER + Er is numerically known,
thus, Ee(p/µ)c is computed as follows: Ee(p/µ)c = Eexact − (T s

e +
T s

p/µ + Je-(p/µ) + 〈νext
e 〉 + 〈νext

p/µ〉). Alternatively, since the ex-
pectation values of the operators composing the original
Hamiltonian, Eq. (1), are all known, it is feasible to compute
Ee(p/µ)c directly using Eq. (4); both methods yield the same
numerical value.

All total energies and their components are gathered for
H/Mu-DHT in Table I. Most notable is the twice larger
Eeµc in comparison to Eepc, consistent with the known fact
that the correlation energy is inversely related to the mass
of the PCP. In order to derive the KS orbital energies,
εKS

e and εKS
p/µ, the known trick of imposing the follow-

ing asymptotic conditions was used: lim|�re|→∞νe
e(p/µ)c(�re) →

0 and lim|�rp/µ|→∞ν
e(p/µ)c
p/µ (�rp/µ) → 0 (for more details see

[203,207,208]), and the numerical results are also given in

Table I. Interestingly, the values of εKS
e in both systems are

very near the ground state energy of the free hydrogen atom,
∼ −0.5, while those of εKS

p/µ are practically equal to the zero-

point energy of the harmonic traps, εKS
p ∼ 3

2ωproton = 0.015
and εKS

µ ∼ 3
2ωmuon = 0.03. To have a “local” picture of the

role of correlations, Fig. 4 depicts νKS
e and νKS

p/µ as well as
their components individually as introduced in Eq. (5). It
is evident that the role of the protonic/muonic correlation
potentials is pivotal, eliminating the Hartree part of the po-

FIG. 4. The reference νKS
e and νKS

p/µ and their components νext
e ,

νJ
e , νe(p/µ)c

e , and νext
p/µ, νJ

p/µ, ν
e(p/µ)c
p/µ , respectively, for H/Mu-DHT [see

Eq. (5) for more details]. The Coulomb’s law, the solid black line,
is also given in the right-hand panels for comparison. Since all the
potentials are isotropic, the direction of the z axis is arbitrary and
the center of the coordinate system is placed at the joint center of the
double harmonic traps.
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tential, ν
e(p/µ)c
p/µ ≈ −νJ

p/µ. Thus, to a very good approximation:
νKS

p/µ ≈ νext
p/µ, which explains why the numerical values of εKS

p/µ
are equal to the zero-point energy of the traps. In contrast, the
contribution of ν

e(p/µ)c
e is marginal in shaping νKS

e and only
modifies the dominant contribution of νJ

e slightly, thus, to a
good approximation: νKS

e ≈ νJ
e . As is evident from the figure,

upon taking some distance from the joint center of the traps
the Hartree potential quickly approaches the Coulomb law:
νJ

e ∼ − 1
r , and this may explain the origin of the numerical

values of εKS
e .

Based on these observations, we conclude that the model
is capable of providing a clear understanding of the roles of
the correlation potentials, however, as is discussed in the next
section, the reproduction of these potentials through applying
approximate functionals to the coupled KS equations is not an
easy task.

III. ASSESSING THE QUALITY OF THE LOCAL
ELECTRON-PROTON/MUON

CORRELATION FUNCTIONALS

A. Applying approximate correlation functionals to the model

In this section, some recently developed local electron-
proton/muon correlation functionals are applied to the KS
system of the model through the solution of the coupled KS
equations. The resulting numerical data are compared to the
reference solutions obtained in the previous section. Let us
first briefly review the studied functionals and some computa-
tional details regarding the implementation of the coupled KS
equations.

There were several proposed electron-proton correla-
tion functionals before the introduction of the epc series
[92–94,97,101,268]. However, to the best of our knowledge,
none has systematically been evaluated through the standard
self-consistent field (SCF) solution of the coupled KS equa-
tions on benchmark sets of molecules or crystals. Thus, in
the present study we choose the local electron-proton cor-
relation functionals from the epc series, namely, epc17-1
[104], epc17-2 [157], epc18-1 and epc18-2 [105], as well as
eµc-1, as the electron-muon correlation functional [108]; the
functional forms are given in Appendix C. All these func-
tionals have been evaluated carefully in previous benchmark
computational studies, and all are capable of remedying the
overlocalization of the uncorrelated ρp/µ.

In order to apply the functionals to the model, we modified
our in-house version of the NEO code [36,108,269], im-
plemented in the GAMESS quantum computational package
[270], to include external harmonic potentials. The coupled
KS equations were solved by expanding KS spatial orbitals
in the previously described [7s7p7d/7s7p7d] basis set. For
comparison purposes, the coupled KS equations were also
solved without any correlation functional, abbreviated as
the no-e(p/µ)c levels. Since there is no electron-electron
correlation potential in the KS equations, these are practi-
cally equivalent to the MCHF/[7s7p7d/7s7p7d] computational
level. The final numerical results are gathered in Table I and
the resulting ρe and ρp/µ are depicted in Fig. 3 while the
derived νKS

e and νKS
p/µ as well as their components are depicted

in Figs. 5–7.

FIG. 5. The reference and functional-derived correlation poten-
tials for H/Mu-DHT. The reference correlation potentials are the
exact results, depicted previously in Fig. 4, while the others have
been deduced using the considered electron-proton/muon correlation
functionals. The potentials deduced for each functional are computed
using ρp/µ and ρe derived from the SCF solution of the coupled KS
equations. The insets are zoomed views of the functional-derived
potentials. Since all the potentials are isotropic, the direction of the
z axis is arbitrary and the center of the coordinate system is placed at
the joint center of the double harmonic traps.

Let us first compare the functional-derived ρe and ρp/µ with
the reference densities as one of the basic outputs of the SCF
solutions of the coupled KS equations. Since the one-particle
densities are isotropic, only a 1D plot of the densities along
an arbitrary axis going through the joint centers of the double
harmonic traps is given in Fig. 3. In the case of H-DHT,
the computed ρe with various correlation functionals, even
that derived at the no-epc level, are almost superimposable
on the reference ρe. In contrast, the computed ρp is clearly
overlocalized at the no-epc level but those derived using
the correlation functionals of the epc series to a large ex-
tent reduce the overlocalization. Particularly, ρp derived from
epc17-1 and epc18-1 are almost similar to the reference ρp in
line with the fact that the numerical values of the parameters
of these two functionals were optimized to reproduce the
exact ρp in molecules [104,105]. The worst result between
the functionals is that of eµc-1 and this is also understandable
since this functional has been primarily designed to cope with
the overlocalization of ρµ in muonic molecules. In the case
of Mu-DHT, the situation is to some extent different, and
the computed ρe using various functional vary considerably.
Oddly, the epc series is acting even worse than the no-eµc level
when compared to the reference ρe and only eµc-1, to some
extent, is able to reproduce the reference ρe. The uncorrelated
ρµ computed at the no-eµc level is evidently overlocalized
and all functionals to some extent reduce the overlocalization
although eµc-1 is clearly superior to the epc series. All these
observations are promising and reveal the fact that the correla-
tion functionals overcome the overlocalization of ρp/µ, as they
do in the case of real molecules. Also, we may claim that the
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FIG. 6. The functional-derived νKS
e and νKS

p , and their compo-
nents, νext

e , νJ
e , νepc

e , and νext
p , νJ

p , νepc
p , respectively, for H-DHT

[see Eq. (5) for more details], deduced from the SCF-derived ρe and
ρp. The protonic and electronic potentials are shown in the left- and
right-hand panels, respectively. Since all the potentials are isotropic,
the direction of the z axis is arbitrary and the center of the coordinate
system is placed at the joint center of the double harmonic traps.

model is sensitive enough to differentiate correctly between
the functionals and reveal their special mPCP-dependent capa-
bilities.

Now, let us consider the KS energy contributions derived
from each functional as given in Table I. The parameters of
epc17-2 and epc18-2 were optimized to reproduce the zero-
point energy of the proton in molecules thus one expects their
performance in reproducing energetics to be superior in the
epc series [105,157]. Indeed, both functionals reproduce the
reference total energy of H-DHT and its components almost
exactly. In contrast, epc17-1 and epc18-1 overestimate the
absolute amount of the total energy as well as T s

e and Je-p as

FIG. 7. The functional-derived νe
KS and νµ

KS, and their compo-
nents, νe

ext , νe
J , νe

eµc, and νµ
ext, νµ

J , νµ
eµc, respectively, for Mu-DHT

[see Eq. (5) for more details], deduced from the SCF-derived ρe and
ρµ. The muonic and electronic potentials are shown in the left- and
right-hand panels, respectively. Since all the potentials are isotropic,
the direction of the z axis is arbitrary and the center of the coordinate
system is placed at the joint center of the double harmonic traps.

the two major components of the total energy. Interestingly,
the performance of eµc-1 is much better than epc17-1 and
epc18-1, and the only major error of this functional is in
the correct reproduction of T s

p . In line with these observa-
tions, epc17-2, epc18-2, and eµc-1 are capable of recovering
the reference Eepc quite precisely. Also, all functionals and
even the no-epc level are capable of recovering the reference
εKS

e , but concomitantly all of them severely underestimate the
value of the reference εKS

p , ∼0.015, predicting large negative
values, ∼−0.9. As will be discussed subsequently in detail,
the origin of this failure may be traced to the unsuccessful
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reproduction of the reference νKS
p . Let us now turn to Mu-

DHT, starting from the unexpected accurate recovery of the
total reference energy by epc17-1 and epc18-1. Nevertheless,
after an inspection of the energy components, it turns out that
this must be due to error cancellations, since none reproduce
the reference values of T s

e and Je-µ accurately. In contrast,
epc17-2 and epc18-2 are not capable of recovering the to-
tal reference energy or the components properly. Expectedly,
eµc-1 outperforms all the other functionals, however, even
in this case the recovery of the reference Eeµc is not very
accurate. Finally, similar to the case of H-DHT, all functionals
are capable of recovering the reference εKS

e but none succeeds
in reproducing the value of the reference εKS

µ .
To have a local view on the nature of correlations, Fig. 5

depicts the functional-derived correlation potentials deduced
from the SCF-derived ρe and ρp/µ as well as the reference po-
tentials. Since all potentials are isotropic, only 1D plots along
an arbitrary axis going through the joint centers of the double
harmonic traps are given in the figure. Figure 5 reveals that
ν

epc
p and ν

eµc
µ deduced from the functionals of the epc series

are quite similar and distinct from those deduced from eµc-1.
The most prominent feature of this figure is the total failure
of the functionals to reproduce the reference ν

epc
p and ν

eµc
µ ,

and none are even remotely similar to the reference potentials.
This is a disappointing result but let us stress that the situation
is usually no better in the case of many seemingly suc-
cessful electronic exchange-correlation functionals. This fact
has been demonstrated long ago through a similar inversion
process applied to the two-electron harmonium and helium
atoms [203,207,208,213,260,271]. Accordingly, the reason(s)
behind the successful reconstruction of ρe and ρp/µ, and the
KS energetics of the considered functionals is not tied to
the successful reconstruction of the corresponding correlation
potentials (for a relevant discussion, albeit for the electronic
exchange-correlation functionals, see Refs. [272,273]). Most
observations described above hold in the case of ν

epc
e and ν

eµc
e ,

depicted in Fig. 5, with the major exception of clear similar-
ities between the reference and functional-derived potentials
particularly for eµc-1 derived potentials. This is a pleasant
feature of the studied correlation functions, however, the role
of ν

e(p/µ)c
e on shaping νKS

e is marginal and largely confined
to the modification of the dominant νJ

e at small distances
(vide infra). Thus future efforts to design proper electron-
proton/muon functionals should mainly concentrate on the
successful reproduction of ν

epc
p and ν

eµc
µ .

Let us now inspect the functional-derived effective po-
tentials and their components, similar to those depicted in
Fig. 4 for the reference KS system. Figure 6 depicts the
functional-derived νKS

e and νKS
p , and their components, respec-

tively, computed from the SCF-derived ρe and ρp for H-DHT.
Figure 7 depicts the same quantities for Mu-DHT revealing
in conjunction with Fig. 6 that the derived νKS

e and νKS
p/µ, and

their components, are similar in the considered functionals
particularly if only the epc series is taken into account. For
all functionals, νKS

e has a minimum at the joint center of
the harmonic traps and is almost superimposable on νJ

e with
some marginal digressions induced by ν

e(p/µ)c
e . Interestingly,

the reference νKS
e depicted in Fig. 4 shares the same fea-

tures with the functional-derived potentials, and this explains
why the reference εKS

e is properly recovered by the used

functionals. In contrast, none of the functional-derived νKS
p/µ is

even remotely similar to the reference potential which as dis-
cussed, is practically equal to νext

p/µ. This observation explains
why the functional-derived εKS

p values are severely disparate
from those of the reference values, as disclosed previously.
The dissimilarity stems from the fact that in contrast to the
reference KS system, ν

e(p/µ)c
p/µ are unable to cancel the effect of

νJ
p/µ.

We conclude that both epc series and eµc-1 are able to
remedy the overlocalization of uncorrelated one-proton/muon
densities in H/Mu-DHT, respectively. Moreover, they are also
generally successful in reproducing the KS energetics and
the electronic correlation potentials. Nonetheless, they are
especially unable to reproduce the protonic/muonic KS orbital
energies as well as the corresponding correlation potentials.
Taking the fact that the model contains solely the electron-
proton/muon correlation, the mentioned success confirms the
capacity of these functionals to cope at least partly with
this type of correlation. By the way, the mentioned failures
also point to the fact that much room remains to improve
the correlation functional design strategies. The model itself
may serve as the target system for primary tests of any new
electron-proton/muon correlation functional introduced in fu-
ture studies.

B. Disentangling the density-driven and the intrinsic
errors of the functionals

In the previous subsection, the quality of the correlation
functionals was evaluated through the results gained from the
SCF solution of the KS coupled equations. However, it is
well-documented that this procedure is prone to two inde-
pendent sources of errors [274–276]. One comes from the
approximate nature of the functional itself, called intrinsic
functional errors, and the other stems from the approximate
one-particle densities derived from the SCF procedure, called
density-driven errors. In this subsection, we try to disentangle
these two errors to access the intrinsic quality of the studied
correlation functionals by considering the associated poten-
tials as well as the computed energies.

Figure 8 depicts the functional-derived correlation poten-
tials deduced from the reference ρp/µ and ρe, respectively.
In the case of H-DHT, through comparison with Fig. 5, it
becomes evident that for each functional, ν

epc
p and ν

epc
e de-

duced from reference and SCF-derived ρp and ρe are almost
superimposable. The justification is that the reference and the
SCF-derived ρe of all the studied functionals are almost super-
imposable, whereas the corresponding ρp are quite localized
around the joint center of the traps (see Fig. 3). Accordingly,
ρe has a much more important role in shaping the topographies
of ν

epc
p and ν

epc
e , and ρp only affects the potentials around the

joint center of the harmonic traps. The situation is completely
different in the case of Mu-DHT as the epc series derived ν

eµc
µ

and ν
eµc
e vary considerably upon replacing the reference ρµ

and ρe with their SCF-derived counterparts. The justification
lies in the pronounced differences between the reference and
SCF-derived ρe as well as the less localized nature of ρµ com-
pared to ρp (see Fig. 3). Figure 8 also reveals that the minima
of the epc series derived ν

eµc
µ and ν

eµc
e are all displaced to the
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FIG. 8. The reference and functional-derived correlation poten-
tials for H/Mu-DHT. The reference correlation potentials are the
exact results, depicted previously in Fig. 4, while the others have
been deduced using the considered electron-proton/muon correlation
functionals. The potentials deduced for each functional are com-
puted using the reference/exact ρp/µ and ρe. The insets are zoomed
views of the functional-derived potentials. Since all the potentials are
isotropic, the direction of the z axis is arbitrary and the center of the
coordinate system is placed at the joint center of the double harmonic
traps.

joint center of the traps upon using the reference ρµ and ρe

instead of the SCF-derived one-particle densities. Evidently,
the lighter Mu-DHT is a more sensitive probe to check the
density-dependence of the correlation potentials than H-DHT.
Interestingly, in contrast to the ν

eµc
µ and ν

eµc
e derived from

the epc series of functionals, those of eµc-1 are less sensi-
tive to the replacement of the SCF-derived ρµ and ρe with
the reference densities. One may conclude at this stage that
among the considered functionals, eµc-1 is least affected by
density errors, as far as one is concerned with the correlation
potentials.

Table II offers the functional-derived Ee(p/µ)c for H/Mu-
DHT computed using the uncorrelated, the SCF-derived
(retrieved from Table I) and the reference one-particle den-
sities. Inspection of the last two columns of the table
demonstrates that in the case of H-DHT the computed Eepc

from the epc series of functionals using the SCF-derived ρp

and ρe is much more accurate than those derived using the
uncorrelated densities. The same is true about the computed
Eeµc for Mu-DHT using eµc-1, however, surprisingly, the epc
series of functionals seem to work better when using the un-
correlated ρµ and ρe. This is probably the result of some type
of error cancellation, though it is hard to pinpoint its exact
nature. Nevertheless, these observations once again witness
the model’s capacity to differentiate between the epc series
and eµc-1 functionals, revealing their system-specific perfor-
mance. With these results at hand, we may now proceed to
compute the density-driven and intrinsic functional errors in
total energies.

In order to disentangle the density-driven and intrinsic
functional errors of the functionals in reproducing the total
energies, the following equation is used where for consis-
tency, the notation is borrowed from the original literature
[274–276]:

	E = Ẽ [ρ̃e, ρ̃p/µ] − E [ρe, ρp/µ]

= (Ẽ [ρ̃e, ρ̃p/µ] − Ẽ [ρe, ρp/µ])

+ (Ẽ [ρe, ρp/µ] − E [ρe, ρp/µ])

= 	ED + 	EF. (7)

In this equation, tildes are used to denote the SCF-derived to-
tal energies and the one-particle densities while those without
tildes are the references; 	ED is the density-driven error and
	EF is the intrinsic error of a functional in reproducing the
total exact energy. Table III offers 	E , 	ED and 	EF for the
five considered functionals using the data from Tables I and II.
In the case of H-DHT, 	EF is the dominant error for epc17-1
and epc18-1 while for the remaining functionals and at the
no-epc level, the values of 	ED are comparable to those of
	EF. As discussed previously, epc17-2 and epc18-2 are capa-
ble of reproducing the KS energetics of H-DHT accurately

TABLE II. The functional-derived Ee(p/µ)c computed using the uncorrelated, E no-e(p/µ)c
e(p/µ)c , the SCF-derived, ESCF

e(p/µ)c, (retrieved from Table I),
and the reference, E ref

e(p/µ)c, one-particle densities for H/Mu-DHT. The differences in the last two columns are given in kcal/mol.

Functional E no-e(p/µ)c
e(p/µ)c ESCF

e(p/µ)c E ref
e(p/µ)c E no-e(p/µ)c

e(p/µ)c − E ref
e(p/µ)c ESCF

e(p/µ)c − E ref
e(p/µ)c

H
epc17-1 −0.0344 −0.0636 −0.0565 13.9 −4.5
epc17-2 −0.0189 −0.0314 −0.0346 9.9 2.0
epc18-1 −0.0208 −0.0532 −0.0427 13.8 −6.6
epc18-2 −0.0140 −0.0297 −0.0293 9.5 −0.3
eµc-1 −0.0048 −0.0314 −0.0191 9.0 −7.7

Mu
epc17-1 −0.0524 −0.0696 −0.0406 −7.4 −18.2
epc17-2 −0.0379 −0.0439 −0.0367 −0.7 −4.5
epc18-1 −0.0469 −0.0637 −0.0461 −0.5 −11.0
epc18-2 −0.0312 −0.0399 −0.0258 −3.4 −8.8
eµc-1 −0.0337 −0.0619 −0.0700 22.8 5.1
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TABLE III. The density-driven, 	ED, and the intrinsic, 	EF, and
the total energy, 	E , errors of the considered functionals computed
for H/Mu-DHT [see Eq. (7) for the definitions]. The numbers are
given in kcal/mol.

Method 	ED 	EF 	E

H
no-epc −7.1 20.7 13.7
epc17-1 −2.0 −14.7 −16.7
epc17-2 −0.8 −1.0 −1.8
epc18-1 −1.9 −6.1 −7.9
epc18-2 −1.4 2.4 1.0
eµc-1 −5.1 8.8 3.7

Mu
no-eµc −18.4 55.5 37.1
epc17-1 −31.3 30.0 −1.3
epc17-2 −21.0 32.5 11.5
epc18-1 −24.0 26.6 2.6
epc18-2 −24.5 39.4 14.9
eµc-1 −4.0 11.6 7.6

and while their overall 	E is small compared to the other
considered functionals, 	ED seems to have a non-negligible
contribution to this success. In the case of Mu-DHT, 	ED is
also a major source of error for all the considered functionals
except for eµc-1, which as discussed is capable of reproducing
KS energetics accurately, although even for this functional its
contribution is not negligible. Interestingly, in most cases, the
signs of 	ED and 	EF are different and 	ED masks the larger
intrinsic errors of the considered functionals. We conclude
that the success of the considered correlation functionals to
reproduce KS energetics is not solely revealing their intrinsic
performance, but partly it is the result of the density-driven
errors.

IV. CONCLUSIONS AND PROSPECTS

The electron-PCP correlation functional design is a vital
part of MCDFT, however, in contrast to eDFT [277–287],
based on the number of currently available functionals and
the used design strategies, it is a much less developed re-
search area. Particularly entertaining is the accessibility to
few-body systems containing solely electron-PCP correlation
to calibrate the performance of the newly proposed correlation
functionals. The two-particle electron-PCP system within the
double harmonic trap, proposed in the present study, is the
first step in this direction. Notwithstanding, by adding more
particles (electrons and/or PCPs) to the model, one may con-
sider the interplay between various types of correlations, i.e.,
electron-electron, electron-PCP and PCP-PCP. Also, a more
comprehensive study of the model itself in a larger domain of
the parameters namely, PCP’s mass and the frequency of oscil-
lation, may widen its application beyond protonic and muonic
systems and the usual ambient conditions. Another interesting
possibility is the application of such simple model systems
to gain insight into the design of efficient electron-PCP cor-
relation functionals. As the present study demonstrates, the
currently available local electron-proton/muon functionals,
with all their achievements, yet have clear weaknesses like

the inability to yield correct protonic/muonic correlation po-
tentials and corresponding orbital energies. Even more, part
of their success in predicting correct energetics seems to be
the result of the density-driven errors that mask the intrinsic
shortcomings of the used functionals. All these point to the
fact that much remains to be done in this research area.
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APPENDIX A: THE BASIS SET DESIGN
FOR THE H/MU-DHT

The uncontracted [7s7p7d/7s7p7d] Gaussian basis set was
designed as follows. The exponents of the Gaussian func-
tions were derived through a nonlinear energy optimization
at the MCHF/[7s/7s] level and then used without any mod-
ification also for the p- and d-type Gaussian functions in
the [7s7p7d/7s7p7d] basis set. Two series of exponents were
derived, one for the proton’s mass and the other for the muon’s
mass within the corresponding frequencies of oscillation, all
given in Table IV. This basis set is also used without further
modifications to solve the MCKS equations for the model.

APPENDIX B: THE COMPUTATIONAL PROCEDURE
OF DEDUCING THE ONE-PARTICLE DENSITIES

OF HCN AND MuCN

In the case of HCN and MuCN, since we do not have
access to the exact ground state wave functions, the refer-
ence ρp/µ was derived by employing the double-adiabatic
approximation [108,288]. Within the context of this ap-
proximation, the proton/muon experiences an effective field
produced by electrons and the clamped carbon and nitrogen
nuclei. The resulting single-particle Schrödinger equation is
solved using the generalized Numerov method [289], and

TABLE IV. The exponents of the s-, p- and d-type Gaussian
functions in the [7s7p7d/7s7p7d] basis set.

Exponent Electron Proton/Muon

H
1 15.3638 22.5435
2 4.6647 13.6540
3 0.6693 6.9399
4 0.0573 5.7960
5 1.6563 4.1400
6 0.1286 2.0700
7 0.2893 1.0350

Mu
1 7.2212 15.8560
2 3.2589 10.4040
3 0.6472 7.0649
4 0.0574 5.2960
5 1.4523 4.1400
6 0.1287 2.0700
7 0.2879 1.0350
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the derived one-proton/muon wave function was then squared
to yield the reference ρp/µ. To construct the effective po-
tential, the electronic Schrödinger equation was first solved
at the B3LYP/pc-2 level [290,291], for the fixed equilib-
rium arrangement of the clamped carbon and nitrogen nuclei,
while the clamped proton was placed at various points of a
3D cubic grid (for the grid details see [108]). The uncorre-
lated ρp/µ was obtained at the B3LYP/pc-2//no-epc/14s14p14d
and B3LYP/pc-2//no-eµc/14s14p14d levels, respectively.
Note that in this notation no-e(p/µ)c implies that no
electron-proton/muon correlation functional is used in the
MCKS equations while [14s14p14d] is the protonic/muonic
basis set used to expand the protonic/muonic KS spatial
orbital (for the basis set details see [108]). The refer-
ence ρe for XCN species were computed at the B3LYP/

pc-2//epc17-1/14s14p14d and B3LYP/pc-2//eµc-1/14s14p14d
levels wherein epc17-1 and eµc-1 are the electron-
proton/muon correlation functionals [104,108], while the
uncorrelated ρe were derived at the B3LYP/pc-2//no-
epc/14s14p14d and B3LYP/pc-2//no-eµc/14s14p14d levels.

APPENDIX C: THE EXPLICIT FORMS
OF THE CONSIDERED FUNCTIONALS

The used functional forms are given below for comparison:

Eepc17[ρe, ρp]

= −
∫

d�r ρe(�re)ρp(�rp)

a − b(ρe(�re)ρp(�rp))1/2 + cρe(�re )ρp(�rp)
,

Eepc18[ρe, ρp] = −
∫

d�r ρe(�re)ρp(�rp)

a′ − b′(ρe(�re)1/3 + ρp(�rp)1/3)
3 + c′(ρe(�re)1/3 + ρp(�rp)1/3)

6 ,

Eeµc-1
[
ρα

e , ρβ
e , ρµ

] = −
∫

d�r 2ρα
e (�re)ρµ(�rµ) − ρα

e (�re)ρµ(�rµ)3/2

1 + 8ρα
e (�re)ρµ(�rµ) + 4ρα

e (�re)ρµ(�rµ)3/2 + 2ρβ
e (�re)ρµ(�rµ) − ρβ

e (�re)ρµ(�rµ)3/2

1 + 8ρ
β
e (�re)ρµ(�rµ) + 4ρ

β
e (�re)ρµ(�rµ)3/2

. (C1)

In these expressions,
∫

d�r ≡ ∫
d�re

∫
d�rp/µ δ(�re − �rp/µ), and

ρe = ρα
e + ρβ

e where ρα
e and ρβ

e stand for the spin-up and
spin-down electron densities, respectively. The constants in
the epc series have been derived through regression proce-
dures: a = 2.35, b = 2.4, c = 3.2 for epc17-1 [104], a =
2.35, b = 2.4, c = 6.6 for epc17-2 [157], a′ = 1.8, b′ = 0.1,
c′ = 0.03 for epc18-1 [105], and a′ = 3.9, b′ = 0.5, c′ = 0.06
for epc18-2 [105]. Also, it is noteworthy that the kernel of

eµc-1 functional for the closed-shell case, where ρα
e = ρβ

e =
ρe

2 , reduces to the following form [108]:

Eeµc-1[ρe, ρµ]

= −
∫

d�r 2ρe(�re)ρµ(�rµ) − ρe(�re)ρµ(�rµ)3/2

1 + 4ρe(�re )ρµ(�rµ) + 2ρe(�re)ρµ(�rµ)3/2 . (C2)
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[167] N. R. Kestner and O. Sinanoḡlu, Study of electron correlation
in helium-like systems using an exactly soluble model, Phys.
Rev. 128, 2687 (1962).

[168] E. Santos, Calculo aproximado de la energia de correlacion
entre dos electrones, Anal. R. Soc. Esp. Fis. Quim. 64, 177
(1968).

[169] D. F.-t. Tuan, Double perturbation theory for He-like systems,
J. Chem. Phys. 50, 2740 (1969).

[170] R. J. White and W. B. Brown, Perturbation theory of the
Hooke’s law model for the two-electron atom, J. Chem. Phys.
53, 3869 (1970).

[171] J. M. Benson and W. B. Brown, Perturbation energies for the
Hooke’s law model of the two-electron atom, J. Chem. Phys.
53, 3880 (1970).

[172] S. Kais, D. R. Herschbach, and R. D. Levine, Dimensional
scaling as a symmetry operation, J. Chem. Phys. 91, 7791
(1989).

[173] A. Samanta and S. K. Ghosh, Correlation in an exactly solv-
able two-particle quantum system, Phys. Rev. A 42, 1178
(1990).

[174] S. K. Ghosh and A. Samanta, Study of correlation effects in an
exactly solvable model two-electron system, J. Chem. Phys.
94, 517 (1991).

[175] M. Taut, Two electrons in an external oscillator potential: Par-
ticular analytic solutions of a Coulomb correlation problem,
Phys. Rev. A 48, 3561 (1993).

[176] A. Turbiner, Two electrons in an external oscillator potential:
The hidden algebraic structure, Phys. Rev. A 50, 5335 (1994).

[177] H. F. King, The electron correlation cusp, Theoret. Chim. Acta
94, 345 (1996).

[178] J.-L. Zhu, Z.-Q. Li, J.-Z. Yu, K. Ohno, and Y. Kawazoe, Size
and shape effects of quantum dots on two-electron spectra,
Phys. Rev. B 55, 15819 (1997).

[179] G. Lamouche and G. Fishman, Two interacting electrons in a
three-dimensional parabolic quantum dot: A simple solution,
J. Phys.: Condens. Matter 10, 7857 (1998).

[180] J. Cioslowski and K. Pernal, The ground state of harmonium,
J. Chem. Phys. 113, 8434 (2000).

[181] T. M. Henderson, K. Runge, and R. J. Bartlett, Electron corre-
lation in artificial atoms, Chem. Phys. Lett. 337, 138 (2001).

[182] E. Romera, Electron-pair uncertainty relationships and the
intracule-extracule isomorphism, J. Phys. B: At. Mol. Opt.
Phys. 35, L309 (2002).

[183] L. Cyrnek, The energy spectrum of harmonium, in Symmetry

and Structural Properties of Condensed Matter (World Scien-
tific, Singapore, 2003), pp. 373–377.

[184] D. P. O’Neill and P. M. W. Gill, Wave functions and two-
electron probability distributions of the Hooke’s-law atom and
helium, Phys. Rev. A 68, 022505 (2003).

[185] S. Mandal, P. K. Mukherjee, and G. H. F. Diercksen, Two
electrons in a harmonic potential: An approximate analytical
solution, J. Phys. B: At. Mol. Opt. Phys. 36, 4483 (2003).

[186] C. Amovilli, Á. Nagy, and N. H. March, Approximate ansatz
for the expansion of the spherically averaged wave function in
terms of interelectronic separation r12 for the Hookean atom,
atomic ions, and the H2 molecule, Int. J. Quantum Chem. 95,
21 (2003).

[187] J. Karwowski and L. Cyrnek, Harmonium, Ann. Phys. 516,
181 (2004).

[188] P. M. W. Gill and D. P. O’Neill, Electron correlation in
Hooke’s law atom in the high-density limit, J. Chem. Phys.
122, 094110 (2005).

[189] J. Katriel, S. Roy, and M. Springborg, Effect of the one-body
potential on interelectronic correlation in two-electron sys-
tems, J. Chem. Phys. 123, 104104 (2005).

[190] A. Akbari, N. H. March, and A. Rubio, Momentum density
and spatial form of correlated density matrix in model two-
electron atoms with harmonic confinement, Phys. Rev. A 76,
032510 (2007).

[191] S. Ragot, Comments on the Hartree–Fock description of
Hooke’s atom and suggestion for an accurate closed-form
orbital, J. Chem. Phys. 128, 164104 (2008).

[192] P.-F. Loos and P. M. W. Gill, Correlation energy of two elec-
trons in the high-density limit, J. Chem. Phys. 131, 241101
(2009).

[193] E. Matito, J. Cioslowski, and S. F. Vyboishchikov, Properties
of harmonium atoms from FCI calculations: Calibration and
benchmarks for the ground state of the two-electron species,
Phys. Chem. Chem. Phys. 12, 6712 (2010).

[194] K. Ebrahimi-Fard and J. M. Gracia-Bondía, Harmonium as a
laboratory for mathematical chemistry, J. Math. Chem. 50, 440
(2012).

[195] J. Karwowski and H. A. Witek, Biconfluent Heun equation in
quantum chemistry: Harmonium and related systems, Theor.
Chem. Acc. 133, 1494 (2014).

[196] I. Nagy and M. L. Glasser, Information-theoretic aspects of
friction in the quantum mechanics of an interacting two-
electron harmonic atom, J. Math. Chem. 53, 1274 (2015).

[197] J. Cioslowski and K. Strasburger, Harmonium atoms at
weak confinements: The formation of the Wigner molecules,
J. Chem. Phys. 146, 044308 (2017).

[198] A. Galiautdinov, Ground state of an exciton in a three-
dimensional parabolic quantum dot: Convergent perturbative
calculation, Phys. Lett. A 382, 72 (2018).

[199] J. Cioslowski, Natural orbitals of the ground state of the
two-electron harmonium atom, Theor. Chem. Acc. 137, 173
(2018).

[200] T. M. Rusin and W. Zawadzki, Pauli exclusion operator: An
example of Hooke’s atom, Phys. Rev. A 103, 052221 (2021).

[201] A. G. Ushveridze, Quasi-Exactly Solvable Models in Quantum
Mechanics, 1st ed. (Institute Of Physics Publishing, Bristol
England; Philadelphia, 1994).

[202] K. Burke, J. P. Perdew, and M. Levy, Semilocal density func-
tionals for exchange and correlation: Theory and applications,

245155-17

https://doi.org/10.1080/00268970410001668525
https://doi.org/10.1103/PhysRev.128.2687
https://doi.org/10.1063/1.1671438
https://doi.org/10.1063/1.1673854
https://doi.org/10.1063/1.1673855
https://doi.org/10.1063/1.457247
https://doi.org/10.1103/PhysRevA.42.1178
https://doi.org/10.1063/1.460368
https://doi.org/10.1103/PhysRevA.48.3561
https://doi.org/10.1103/PhysRevA.50.5335
https://doi.org/10.1007/BF00186448
https://doi.org/10.1103/PhysRevB.55.15819
https://doi.org/10.1088/0953-8984/10/35/018
https://doi.org/10.1063/1.1318767
https://doi.org/10.1016/S0009-2614(01)00157-9
https://doi.org/10.1088/0953-4075/35/13/104
https://doi.org/10.1103/PhysRevA.68.022505
https://doi.org/10.1088/0953-4075/36/22/009
https://doi.org/10.1002/qua.10705
https://doi.org/10.1002/andp.20045160403
https://doi.org/10.1063/1.1862237
https://doi.org/10.1063/1.2033747
https://doi.org/10.1103/PhysRevA.76.032510
https://doi.org/10.1063/1.2904874
https://doi.org/10.1063/1.3275519
https://doi.org/10.1039/B926389F
https://doi.org/10.1007/s10910-011-9822-7
https://doi.org/10.1007/s00214-014-1494-5
https://doi.org/10.1007/s10910-015-0487-5
https://doi.org/10.1063/1.4974273
https://doi.org/10.1016/j.physleta.2017.11.001
https://doi.org/10.1007/s00214-018-2362-5
https://doi.org/10.1103/PhysRevA.103.052221


NAHID SADAT RIYAHI et al. PHYSICAL REVIEW B 108, 245155 (2023)

in Theoretical and Computational Chemistry, Modern Density
Functional Theory, Vol. 2, edited by J. M. Seminario and P.
Politzer (Elsevier, Amsterdam, 1995), pp. 29–74.

[203] P. M. Laufer and J. B. Krieger, Test of density-functional
approximations in an exactly soluble model, Phys. Rev. A 33,
1480 (1986).

[204] R. W. Hall, Comparison of path integral and density functional
techniques in a model two-electron system, J. Phys. Chem. 93,
5628 (1989).

[205] A. Samanta and S. K. Ghosh, Density-functional approach to
the calculation of correlation energies of two-electron atoms
and ions, Phys. Rev. A 43, 6395 (1991).

[206] A. Samanta and S. K. Ghosh, Study of correlation in
Kohn—Sham density functional theory for exactly solv-
able two-electron systems, Chem. Phys. Lett. 180, 121
(1991).

[207] S. Kais, D. R. Herschbach, N. C. Handy, C. W. Murray, and
G. J. Laming, Density functionals and dimensional renormal-
ization for an exactly solvable model, J. Chem. Phys. 99, 417
(1993).

[208] C. Filippi, C. J. Umrigar, and M. Taut, Comparison of exact
and approximate density functionals for an exactly soluble
model, J. Chem. Phys. 100, 1290 (1994).

[209] C.-J. Huang and C. J. Umrigar, Local correlation energies of
two-electron atoms and model systems, Phys. Rev. A 56, 290
(1997).

[210] M. Taut, A. Ernst, and H. Eschrig, Two electrons in an external
oscillator potential: Exact solution versus one-particle approx-
imations, J. Phys. B: At. Mol. Opt. Phys. 31, 2689 (1998).

[211] Z. Qian and V. Sahni, Physics of transformation from
Schrödinger theory to Kohn-Sham density-functional theory:
Application to an exactly solvable model, Phys. Rev. A 57,
2527 (1998).

[212] N. H. March, T. Gál, and Á. Nagy, Differential equation for
the ground-state electron density in a Hookean atom with two
electrons repelling coulombically, Chem. Phys. Lett. 292, 384
(1998).

[213] K.-C. Lam, F. G. Cruz, and K. Burke, Virial exchange–
correlation energy density in Hooke’s atom, Int. J. Quantum
Chem. 69, 533 (1998).

[214] P. Hessler, J. Park, and K. Burke, Several theorems in time-
dependent density functional theory, Phys. Rev. Lett. 82, 378
(1999).

[215] P. Hessler, J. Park, and K. Burke, Erratum: Several theorems
in time-dependent density functional theory [Phys. Rev. Lett.
82, 378 (1999)], Phys. Rev. Lett. 83, 5184(E) (1999).

[216] S. Ivanov, K. Burke, and M. Levy, Exact high-density limit of
correlation potential for two-electron density, J. Chem. Phys.
110, 10262 (1999).

[217] N. H. March, C. Amovilli, and D. J. Klein, The wavefunction
when antiparallel spin electrons coincide and its relation to
the ground-state electron density in the Hookean atom, Chem.
Phys. Lett. 325, 645 (2000).

[218] D. Frydel, W. M. Terilla, and K. Burke, Adiabatic connection
from accurate wave-function calculations, J. Chem. Phys. 112,
5292 (2000).

[219] E. V. Ludeña, V. Karasiev, A. Artemiev, and D. Gómez,
Functional N-representability in Density Matrix and Den-
sity Functional Theory: An Illustration for Hooke’s Atom,
in Many-Electron Densities and Reduced Density Matrices,

Mathematical and Computational Chemistry, edited by J.
Cioslowski (Springer US, Boston, MA, 2000), pp. 209–230.

[220] A. Artemyev, E. V. Ludeña, and V. Karasiev, A DFT vari-
ational approach to Hooke’s atom based on local-scaling
transformations, J. Mol. Struct.: THEOCHEM 580, 47 (2002).

[221] C. Amovilli and N. H. March, Exact density matrix for a two-
electron model atom and approximate proposals for realistic
two-electron systems, Phys. Rev. A 67, 022509 (2003).

[222] A. Holas, I. A. Howard, and N. H. March, Wave functions
and low-order density matrices for a class of two-electron
‘artificial atoms’ embracing Hookean and Moshinsky models,
Phys. Lett. A 310, 451 (2003).

[223] N. March and A. Holas, Kinetic energy density of the two-
electron Hookean atom in terms of the ground-state electron
density, J. Math. Chem. 33, 163 (2003).

[224] N. H. March and E. V. Ludeña, Effective one-body potential
of DFT plus correlated kinetic energy density for two-electron
spherical model atoms, Phys. Lett. A 330, 16 (2004).

[225] E. V. Ludeña, D. Gómez, V. Karasiev, and P. Nieto, Exact
analytic total energy functional for Hooke’s atom generated
by local-scaling transformations, Int. J. Quantum Chem. 99,
297 (2004).

[226] J. Katriel, S. Roy, and M. Springborg, A study of the adia-
batic connection for two-electron systems, J. Chem. Phys. 121,
12179 (2004).

[227] P. Capuzzi, N. H. March, and M. P. Tosi, Differential equation
for the ground-state density of artificial two-electron atoms
with harmonic confinement, J. Phys. A: Math. Gen. 38, L439
(2005).

[228] S. Ragot, Exact Kohn-Sham versus Hartree-Fock in momen-
tum space: Examples of two-fermion systems, J. Chem. Phys.
125, 014106 (2006).

[229] D. Gómez, E. V. Ludeña, V. Karasiev, and P. Nieto, Applica-
tion of exact analytic total energy functional for Hooke’s atom
to He, Li+ and Be++: An examination of the universality of the
energy functional in DFT, Theor. Chem. Acc. 116, 608 (2006).

[230] W. Zhu and S. B. Trickey, Exact density functionals for two-
electron systems in an external magnetic field, J. Chem. Phys.
125, 094317 (2006).

[231] M. Seidl, P. Gori-Giorgi, and A. Savin, Strictly correlated elec-
trons in density-functional theory: A general formulation with
applications to spherical densities, Phys. Rev. A 75, 042511
(2007).

[232] J. Katriel, M. Bauer, M. Springborg, S. P. McCarthy, and A. J.
Thakkar, Nonlocal Wigner-like correlation energy density
functional: Parametrization and tests on two-electron systems,
J. Chem. Phys. 127, 024101 (2007).

[233] J. P. Coe, A. Sudbery, and I. D’Amico, Entanglement and
density-functional theory: Testing approximations on Hooke’s
atom, Phys. Rev. B 77, 205122 (2008).

[234] J. P. Coe, A. Sudbery, and I. D’Amico, Erratum: Entangle-
ment and density-functional theory: Testing approximations
on Hooke’s atom [Phys. Rev. B 77, 205122 (2008)], Phys. Rev.
B 82, 089902(E) (2010).

[235] J. Sun, Extension to negative values of the coupling constant
of adiabatic connection for interaction-strength interpolation,
J. Chem. Theory Comput. 5, 708 (2009).

[236] P. Gori-Giorgi and A. Savin, Study of the discontinuity of the
exchange-correlation potential in an exactly soluble case, Int.
J. Quantum Chem. 109, 2410 (2009).

245155-18

https://doi.org/10.1103/PhysRevA.33.1480
https://doi.org/10.1021/j100351a058
https://doi.org/10.1103/PhysRevA.43.6395
https://doi.org/10.1016/0009-2614(91)87127-W
https://doi.org/10.1063/1.465765
https://doi.org/10.1063/1.466658
https://doi.org/10.1103/PhysRevA.56.290
https://doi.org/10.1088/0953-4075/31/12/007
https://doi.org/10.1103/PhysRevA.57.2527
https://doi.org/10.1016/S0009-2614(98)00726-X
https://doi.org/10.1002/(SICI)1097-461X(1998)69:4<533::AID-QUA10>3.0.CO;2-0
https://doi.org/10.1103/PhysRevLett.82.378
https://doi.org/10.1103/PhysRevLett.83.5184
https://doi.org/10.1063/1.478959
https://doi.org/10.1016/S0009-2614(00)00696-5
https://doi.org/10.1063/1.481099
https://doi.org/10.1016/S0166-1280(01)00594-2
https://doi.org/10.1103/PhysRevA.67.022509
https://doi.org/10.1016/S0375-9601(03)00408-0
https://doi.org/10.1023/A:1023256000287
https://doi.org/10.1016/j.physleta.2004.07.049
https://doi.org/10.1002/qua.10858
https://doi.org/10.1063/1.1824879
https://doi.org/10.1088/0305-4470/38/24/L01
https://doi.org/10.1063/1.2212935
https://doi.org/10.1007/s00214-006-0106-4
https://doi.org/10.1063/1.2222353
https://doi.org/10.1103/PhysRevA.75.042511
https://doi.org/10.1063/1.2747242
https://doi.org/10.1103/PhysRevB.77.205122
https://doi.org/10.1103/PhysRevB.82.089902
https://doi.org/10.1021/ct800515w
https://doi.org/10.1002/qua.22021


QUANTIFYING ERRORS OF ELECTRON-PROTON/ … PHYSICAL REVIEW B 108, 245155 (2023)

[237] M. Seidl and P. Gori-Giorgi, Adiabatic connection at negative
coupling strengths, Phys. Rev. A 81, 012508 (2010).

[238] J. Cioslowski, M. Piris, and E. Matito, Robust validation of ap-
proximate 1-matrix functionals with few-electron harmonium
atoms, J. Chem. Phys. 143, 214101 (2015).

[239] R. S. Chauhan and M. K. Harbola, Study of adiabatic
connection in density functional theory with an accurate wave-
function for two-electron spherical systems, Int. J. Quantum
Chem. 117, e25344 (2017).

[240] D. P. Kooi and P. Gori-Giorgi, Local and global interpolations
along the adiabatic connection of DFT: A study at different
correlation regimes, Theor. Chem. Acc. 137, 166 (2018).

[241] R. Singh, A. Kumar, M. K. Harbola, and P. Samal, Semian-
alytical wavefunctions and Kohn–Sham exchange-correlation
potentials for two-electron atomic systems in two-dimensions,
J. Phys. B: At. Mol. Opt. Phys. 53, 035001 (2020).

[242] M. Goli and S. Shahbazian, Deciphering the “chemical” nature
of the exotic isotopes of hydrogen by the MC-QTAIM analy-
sis: The positively charged muon and the muonic helium as
new members of the periodic table, Phys. Chem. Chem. Phys.
16, 6602 (2014).

[243] M. Goli and S. Shahbazian, Topological and AIM analyses
beyond the Born–Oppenheimer paradigm: New opportunities,
Comput. Theor. Chem. 1053, 96 (2015).

[244] M. Goli and S. Shahbazian, Where to place the positive muon
in the Periodic Table? Phys. Chem. Chem. Phys. 17, 7023
(2015).

[245] M. Goli and S. Shahbazian, Developing effective electronic-
only coupled-cluster and Møller–Plesset perturbation theories
for the muonic molecules, Phys. Chem. Chem. Phys. 20,
16749 (2018).

[246] J. Stetzler and V. A. Rassolov, Comparison of Born–
Oppenheimer approximation and electron-nuclear correlation,
Mol. Phys. 121, e2106321 (2023).

[247] F. M. Fernández, The confined hydrogen atom with a moving
nucleus, Eur. J. Phys. 31, 285 (2010).

[248] F. M. Fernández, Variational treatment of the confined hydro-
gen atom with a moving nucleus, Eur. J. Phys. 31, 611 (2010).

[249] F. M. Fernández, N. Aquino, and A. Flores-Riveros, Varia-
tional approach to the confined hydrogen atom with a moving
nucleus, Int. J. Quantum Chem. 112, 823 (2012).

[250] J. M. Randazzo and C. A. Rios, Endohedrally confined hydro-
gen atom with a moving nucleus, J. Phys. B: At. Mol. Opt.
Phys. 49, 235003 (2016).

[251] Y. Kayanuma, Wannier exciton in microcrystals, Solid State
Commun. 59, 405 (1986).

[252] S. V. Nair, S. Sinha, and K. C. Rustagi, Quantum size effects in
spherical semiconductor microcrystals, Phys. Rev. B 35, 4098
(1987).

[253] Y. Kayanuma, Quantum-size effects of interacting electrons
and holes in semiconductor microcrystals with spherical
shape, Phys. Rev. B 38, 9797 (1988).

[254] Y. Kayanuma and H. Momiji, Incomplete confinement of
electrons and holes in microcrystals, Phys. Rev. B 41, 10261
(1990).

[255] J. M. Elward, J. Hoffman, and A. Chakraborty, Investigation
of electron–hole correlation using explicitly correlated config-
uration interaction method, Chem. Phys. Lett. 535, 182 (2012).

[256] J. M. Elward, B. Thallinger, and A. Chakraborty, Calculation
of electron-hole recombination probability using explicitly

correlated Hartree-Fock method, J. Chem. Phys. 136, 124105
(2012).

[257] D. McIntyre, C. Manogue, and J. Tate, Quantum Me-
chanics: A Paradigms Approach, 1st ed. (Pearson, Boston,
2012).

[258] D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli,
The Handbook of Infrared and Raman Characteristic Frequen-
cies of Organic Molecules, 1st ed. (Academic Press, Boston,
1991).

[259] U. A. Jayasooriya, F. L. Pratt, G. M. Aston, S. Hall,
P. L. Hubbard, and M. McCoustra, A strategy for the
measurement of the vibrations of a muoniated radical
centre: Experimental evidence, ChemPhysChem 5, 257
(2004).

[260] C. J. Umrigar and X. Gonze, Accurate exchange-correlation
potentials and total-energy components for the helium isoelec-
tronic series, Phys. Rev. A 50, 3827 (1994).

[261] O. V. Gritsenko, R. van Leeuwen, and E. J. Baerends,
Molecular Kohn-Sham exchange-correlation potential from
the correlated ab initio electron density, Phys. Rev. A 52, 1870
(1995).

[262] O. V. Gritsenko, R. van Leeuwen, and E. J. Baerends, Molec-
ular exchange-correlation Kohn–Sham potential and energy
density from ab initio first- and second-order density matrices:
Examples for XH (X=Li, B, F), J. Chem. Phys. 104, 8535
(1996).

[263] A. A. Kananenka, S. V. Kohut, A. P. Gaiduk, I. G. Ryabinkin,
and V. N. Staroverov, Efficient construction of exchange and
correlation potentials by inverting the Kohn–Sham equations,
J. Chem. Phys. 139, 074112 (2013).

[264] I. G. Ryabinkin, S. V. Kohut, and V. N. Staroverov, Reduction
of electronic wave functions to Kohn-Sham effective poten-
tials, Phys. Rev. Lett. 115, 083001 (2015).

[265] B. Kanungo, P. M. Zimmerman, and V. Gavini, Exact
exchange-correlation potentials from ground-state electron
densities, Nat. Commun. 10, 4497 (2019).

[266] A. Kumar, R. Singh, and M. K. Harbola, Accurate effec-
tive potential for density amplitude and the corresponding
Kohn–Sham exchange–correlation potential calculated from
approximate wavefunctions, J. Phys. B: At. Mol. Opt. Phys.
53, 165002 (2020).

[267] B. Kanungo, P. M. Zimmerman, and V. Gavini, A compar-
ison of exact and model exchange–correlation potentials for
molecules, J. Phys. Chem. Lett. 12, 12012 (2021).

[268] T. Udagawa, T. Tsuneda, and M. Tachikawa, Development of
Colle-Salvetti type electron-nucleus correlation functional for
MC_DFT, AIP Conf. Proc. 1702, 090065 (2015).

[269] M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, Den-
sity functional theory treatment of electron correlation in the
nuclear-electronic orbital approach, J. Phys. Chem. A 111,
4522 (2007).

[270] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert,
M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga,
K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A.
Montgomery, General atomic and molecular electronic struc-
ture system, J. Comput. Chem. 14, 1347 (1993).

[271] Q. Zhao, R. C. Morrison, and R. G. Parr, From electron
densities to Kohn-Sham kinetic energies, orbital energies,
exchange-correlation potentials, and exchange-correlation en-
ergies, Phys. Rev. A 50, 2138 (1994).

245155-19

https://doi.org/10.1103/PhysRevA.81.012508
https://doi.org/10.1063/1.4936583
https://doi.org/10.1002/qua.25344
https://doi.org/10.1007/s00214-018-2354-5
https://doi.org/10.1088/1361-6455/ab56be
https://doi.org/10.1039/c3cp55162h
https://doi.org/10.1016/j.comptc.2014.07.019
https://doi.org/10.1039/C4CP06006G
https://doi.org/10.1039/C8CP02489H
https://doi.org/10.1080/00268976.2022.2106321
https://doi.org/10.1088/0143-0807/31/2/005
https://doi.org/10.1088/0143-0807/31/3/018
https://doi.org/10.1002/qua.23066
https://doi.org/10.1088/0953-4075/49/23/235003
https://doi.org/10.1016/0038-1098(86)90573-9
https://doi.org/10.1103/PhysRevB.35.4098
https://doi.org/10.1103/PhysRevB.38.9797
https://doi.org/10.1103/PhysRevB.41.10261
https://doi.org/10.1016/j.cplett.2012.03.050
https://doi.org/10.1063/1.3693765
https://doi.org/10.1002/cphc.200300832
https://doi.org/10.1103/PhysRevA.50.3827
https://doi.org/10.1103/PhysRevA.52.1870
https://doi.org/10.1063/1.471602
https://doi.org/10.1063/1.4817942
https://doi.org/10.1103/PhysRevLett.115.083001
https://doi.org/10.1038/s41467-019-12467-0
https://doi.org/10.1088/1361-6455/ab9768
https://doi.org/10.1021/acs.jpclett.1c03670
https://doi.org/10.1063/1.4938873
https://doi.org/10.1021/jp0704463
https://doi.org/10.1002/jcc.540141112
https://doi.org/10.1103/PhysRevA.50.2138


NAHID SADAT RIYAHI et al. PHYSICAL REVIEW B 108, 245155 (2023)

[272] F. G. Cruz, K.-C. Lam, and K. Burke, Exchange-correlation
energy density from virial theorem, J. Phys. Chem. A 102,
4911 (1998).

[273] K. Burke, F. G. Cruz, and K.-C. Lam, Unambiguous exchange-
correlation energy density, J. Chem. Phys. 109, 8161 (1998).

[274] M.-C. Kim, E. Sim, and K. Burke, Understanding and reduc-
ing errors in density functional calculations, Phys. Rev. Lett.
111, 073003 (2013).

[275] E. Sim, S. Song, and K. Burke, Quantifying density errors in
DFT, J. Phys. Chem. Lett. 9, 6385 (2018).

[276] S. Vuckovic, S. Song, J. Kozlowski, E. Sim, and K. Burke,
Density functional analysis: The theory of density-corrected
DFT, J. Chem. Theory Comput. 15, 6636 (2019).

[277] U. von Barth, Basic density-functional theory—an overview,
Phys. Scr. 2004, 9 (2004).

[278] A. J. Cohen, P. Mori-Sánchez, and W. Yang, Insights into
current limitations of density functional theory, Science 321,
792 (2008).

[279] A. J. Cohen, P. Mori-Sánchez, and W. Yang, Challenges for
density functional theory, Chem. Rev. 112, 289 (2012).

[280] K. Burke, Perspective on density functional theory, J. Chem.
Phys. 136, 150901 (2012).

[281] A. D. Becke, Perspective: Fifty years of density-functional the-
ory in chemical physics, J. Chem. Phys. 140, 18A301 (2014).

[282] R. O. Jones, Density functional theory: Its origins, rise to
prominence, and future, Rev. Mod. Phys. 87, 897 (2015).

[283] A. Pribram-Jones, D. A. Gross, and K. Burke, DFT: A theory
full of holes? Annu. Rev. Phys. Chem. 66, 283 (2015).

[284] A. Wasserman, J. Nafziger, K. Jiang, M.-C. Kim, E. Sim, and
K. Burke, The importance of being inconsistent, Annu. Rev.
Phys. Chem. 68, 555 (2017).

[285] N. Mardirossian and M. Head-Gordon, Thirty years of density
functional theory in computational chemistry: An overview
and extensive assessment of 200 density functionals, Mol.
Phys. 115, 2315 (2017).

[286] P. Verma and D. G. Truhlar, Status and challenges of density
functional theory, Trends Chem. 2, 302 (2020).

[287] A. D. Kaplan, M. Levy, and J. P. Perdew, The predictive
power of exact constraints and appropriate norms in den-
sity functional theory, Annu. Rev. Phys. Chem. 74, 193
(2023).

[288] P. Bonfà, F. Sartori, and R. De Renzi, Efficient and reliable
strategy for identifying muon sites based on the double adia-
batic approximation, J. Phys. Chem. C 119, 4278 (2015).

[289] U. Kuenzer, J.-A. Sorarù, and T. S. Hofer, Pushing the limit for
the grid-based treatment of Schrödinger’s equation: A sparse
Numerov approach for one, two and three dimensional quan-
tum problems, Phys. Chem. Chem. Phys. 18, 31521 (2016).

[290] A. D. Becke, Density-functional thermochemistry. III. The
role of exact exchange, J. Chem. Phys. 98, 5648 (1993).

[291] F. Jensen, Polarization consistent basis sets: Principles,
J. Chem. Phys. 115, 9113 (2001).

245155-20

https://doi.org/10.1021/jp980950v
https://doi.org/10.1063/1.477479
https://doi.org/10.1103/PhysRevLett.111.073003
https://doi.org/10.1021/acs.jpclett.8b02855
https://doi.org/10.1021/acs.jctc.9b00826
https://doi.org/10.1238/Physica.Topical.109a00009
https://doi.org/10.1126/science.1158722
https://doi.org/10.1021/cr200107z
https://doi.org/10.1063/1.4704546
https://doi.org/10.1063/1.4869598
https://doi.org/10.1103/RevModPhys.87.897
https://doi.org/10.1146/annurev-physchem-040214-121420
https://doi.org/10.1146/annurev-physchem-052516-044957
https://doi.org/10.1080/00268976.2017.1333644
https://doi.org/10.1016/j.trechm.2020.02.005
https://doi.org/10.1146/annurev-physchem-062422-013259
https://doi.org/10.1021/jp5125876
https://doi.org/10.1039/C6CP06698D
https://doi.org/10.1063/1.464913
https://doi.org/10.1063/1.1413524

