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We consider multicomponent Abelian Higgs (AH) gauge theories with multiparameter scalar quartic po-
tentials, which are extensions of the SU(N )-invariant AH theories, with a smaller global symmetry group. In
particular, we consider an AH model with a two-parameter scalar potential and SO(N ) global symmetry. We
discuss the renormalization-group flow of the SO(N )-invariant AH field theory and the phase diagram and
critical behavior of a corresponding three-dimensional (3D) noncompact lattice AH model. We argue that the
phase diagram of 3D noncompact SO(N )- and SU(N )-symmetric lattice AH models are qualitatively similar. In
both cases, there are three phases: the high-temperature Coulomb phase, and the low-temperature molecular and
Higgs phases that differ for the topological properties of the gauge correlations. However, the main features of the
low-temperature ordered phases and, in particular, of the Higgs phase, differ significantly in SO(N ) and SU(N )
models. In particular, in SO(N ) models they depend on the sign of the self-interaction parameter v that controls
the symmetry breaking from SU(N ) to SO(N ). As a consequence, the universal features of the transitions related
with the spontaneous breaking of the global symmetry (those between the high-temperature Coulomb phase and
the low-temperature molecular and Higgs phases) also depend on the sign of v.

DOI: 10.1103/PhysRevB.108.245154

I. INTRODUCTION

Many emergent collective phenomena in condensed-matter
physics [1,2] admit an effective description in terms of
Abelian Higgs (AH) gauge theories, in which charged scalar
fields are minimally coupled with an Abelian gauge field. The
phase structure and universal features of the transitions in this
broad class of systems have been extensively studied [3–94],
paying particular attention to the role of the topological fea-
tures of the gauge correlations, to the interplay of gauge and
scalar excitations, and to the role of the global symmetry
whose spontaneous breaking is crucial for the emerging Higgs
phases, see, e.g., Ref. [95]. Several lattice AH gauge models
have been investigated, using both compact and noncompact
gauge variables. They provide examples of topological tran-
sitions, which are driven by extended charged excitations
without a local order parameter or by a nontrivial interplay be-
tween long-range scalar fluctuations and nonlocal topological
gauge modes. Most studies on multicomponent systems have
focused on AH theories with N-component fields and global
SU(N ) symmetry, see, e.g., Refs. [3,24,33,75,86,91,94]. In
this paper, we consider field-theoretical and lattice AH models
with more complex scalar self-interactions, which are invari-
ant under a smaller group, focusing mainly on systems with
a reduced SO(N ) invariance. Some extensions of the SU(N )-
symmetric AH field theories have already been discussed in
Ref. [17], where a number of applications are also mentioned.
We return to this issue and extend the analysis to the phase
diagram and critical behaviors of their lattice counterparts
and, in particular, to the SO(N )-symmetric lattice AH models
with noncompact gauge variables.

In the SU(N )-symmetric AH field theory (UAHFT), an
N-component complex scalar field φ(x) is minimally coupled
with a U(1) gauge field Aμ(x). The Lagrangian reads

LU = 1

4g2
F 2

μν + |Dμφ|2 + r φ̄ · φ + u (φ̄ · φ)2, (1)

where Fμν ≡ ∂μAν − ∂νAμ and Dμ ≡ ∂μ + iAμ. Besides the
Abelian U(1) gauge invariance, the UAHFT has a global
SU(N ) symmetry, φ → V φ with V ∈ SU(N ). The UAHFT
is expected to describe the critical behavior of lattice models
with analogous properties, i.e., a U(1) gauge invariance and an
SU(N ) global symmetry, but only when the U(1) gauge field
develops critical correlations at the transition [91]. Transitions
where the gauge fields play only the role of hindering the
non-gauge-invariant modes from becoming critical are not de-
scribed by a gauge field-theory model; they generically admit
a description in terms of a gauge-invariant bilinear scalar order
parameter only [81,91,96,97].

SU(N )-symmetric lattice AH models (ULAHM) have
been extensively investigated, using compact and non-
compact gauge fields, see, e.g., Refs. [7,41,81,85] and
Refs. [4,6,12,14,15,31,32,86,91,94], respectively. In particu-
lar, a noncompact lattice formulation of the three-dimensional
(3D) ULAHM is obtained by considering N-component unit-
length complex vectors zx (satisfying z̄x · zx = 1) defined on
the sites of a cubic lattice, noncompact gauge variables Ax,μ ∈
R (μ = 1, 2, 3) defined on the lattice links, and the nearest-
neighbor Hamiltonian

HU = κ

2

∑
x,μ>ν

F 2
x,μν − 2NJ

∑
x,μ

Re (λx,μz̄x · zx+μ̂), (2)
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where μ̂ are the lattice unit vectors, and

Fx,μν ≡ �μAx,ν − �νAx,μ, λx,μ ≡ eiAx,μ , (3)

where �μAx,ν = Ax+μ̂,ν − Ax,ν . The ULAHM has a local
U(1) gauge invariance, zx → ei�x zx and Ax,μ → Ax,μ + �x −
�x+μ̂ with �x ∈ R, and a global SU(N ) symmetry zx → V zx

with V ∈ SU(N ).
In this paper, we consider extensions of the SU(N )-

symmetric AH field theories, such as those already introduced
in Ref. [17], obtained by adding scalar gauge-invariant
self-interactions that are not invariant under SU(N ) transfor-
mations, but only under a smaller symmetry group. However,
we require the global symmetry group to be such that
φ̄ · φ is the only quadratic combination of the scalar fields
that is invariant under the global and local symmetry trans-
formations. This requirement guarantees that the effective
field theory describes a standard critical behavior [98,99],
which can be observed by tuning a single Hamiltonian pa-
rameter. Indeed, in the presence of two or more quadratic
terms that are invariant under the global symmetry group,
the effective field theory describes a multicritical behav-
ior [99–103]. In the context of scalar theories without
gauge fields, this issue has been extensively studied, con-
sidering Landau-Ginzburg-Wilson (LGW) �4 with complex
symmetry-breaking patterns [98,99,104,105].

To be concrete, in most of the paper we will consider the
simplest breaking of the SU(N ) global symmetry, adding a
term |φ · φ|2 to the Lagrangian Eq. (1). We therefore con-
sider the SO(N )-symmetric AH field theory (OAHFT) with
Lagrangian

LO = 1

4g2

∑
μν

F 2
μν +

∑
μ

|Dμφ|2 + r φ̄ · φ + VO(φ), (4)

VO(φ) = u (φ̄ · φ)2 + v |φ · φ|2, (5)

with u � 0 and u + v � 0, to guarantee the stability of the
potential. The added term breaks the global SU(N ) symmetry,
making the theory invariant only under SO(N ) transforma-
tions. However, the symmetry group is still large enough to
guarantee that φ̄ · φ is the only quadratic invariant allowed by
the global and local symmetries. For N = 1, the two terms
in VO are equivalent, thus one recovers the standard one-
component AH field theory.

An analogous extension can be considered for the ULAHM
Eq. (2), considering the 3D SO(N )-symmetric lattice AH
model (OLAHM) defined by the partition function

ZO =
∑
{z,A}

e−HO (z,A), (6)

HO = HU + v
∑

x

|zx · zx|2. (7)

One can easily check that the OAHFT Eq. (4) corresponds
to the formal continuum limit of the OLAHM with κ = g−2,
after relaxing the unit-length constraint for the scalar field.

We show that some qualitative features of the phase
diagram are the same in the ULAHM and OLAHM: In
both models, three different phases occur that differ in the
properties of the gauge correlations, in the confinement or
deconfinement of the charged excitations, and in the behavior
under the global symmetry transformations. However, the or-

dered phases, in particular, the Higgs phase, and the nature of
the transition lines crucially depend on the global symmetry-
breaking pattern that is determined by the specific form of the
scalar self-interaction potential.

We remark that the study of the phase diagrams and critical
behaviors of extensions of the AH gauge theories, allowing for
more general scalar potentials and different global symmetry
groups, may lead to a more thorough understanding of the
possible critical behaviors that can be observed in the presence
of an emergent Abelian gauge symmetry.

The paper is organized as follows. In Sec. II, we study
the possible symmetry-breaking patterns and investigate the
RG flow of the OAHFT Eq. (4) close to four dimensions. In
Sec. III, we discuss the phase diagram and the nature of the
phase transitions of the OLAHM Eq. (7). Finally, in Sec. IV
we draw our conclusions and briefly discuss further extensions
of the scalar potential.

II. SO(N)-SYMMETRIC ABELIAN HIGGS
FIELD THEORIES

A. Global symmetry breaking patterns and order parameters

As in the ULAHM, also in SO(N ) invariant models we
expect transitions characterized by the breaking of the global
symmetry. It is therefore important to determine the possible
symmetry-breaking patterns. This analysis can be performed
in the mean-field approximation, since space fluctuations are
only relevant along the transition lines. To characterize the
different phases within the mean-field framework, we need to
determine the minima of the effective Hamiltonian:

Hmf = rφ̄ · φ + VO(φ). (8)

The analysis is straightforward. For r > 0, the minimum
corresponds to φ = 0, so, for r > 0, the system is in the
disordered phase in which the symmetry is unbroken. For
r < 0, we find two nontrivial sets of minima. For −u < v < 0,
the minimum of Hmf is obtained for

φ = eiαs, (9)

where s is a real N-component vector, and α an arbitrary
phase. For v > 0, the fields corresponding to the minimum
configurations can be parametrized as

φ = 1√
2

(s1 + is2), s1 · s2 = 0, (10)

where s1 and s2 are orthogonal real vectors satisfying |s1| =
|s2|, so φ̄ · φ = s2 ≡ s2

1 = s2
2.

Using these results, we can determine the global symmetry
of the broken phases. For v < 0, the broken phase is invariant
under O(N − 1) transformations, while for v > 0 the residual
symmetry is SO(2) ⊗ O(N − 2). Note that the SO(2) sub-
group for v > 0 corresponds to the transformations that rotate
the two vectors s1 and s2 in the plane in which they lie together
with a change of phase. To write these transformations explic-
itly, let us note that, by an appropriate SO(N ) rotation, we can
always take φ = (A,±iA, 0, . . . , 0). It is then immediate to
verify that the vector φ is left invariant by the transformation

φa → e∓iα
∑

ab

V abφb, (11)
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where V = V2 ⊕ IN−2, IN−2 is the (N − 2)-dimensional iden-
tity matrix and

V2 =
(

cos α sin α

− sin α cos α

)
. (12)

We should also consider discrete transformations, as they can
also play a role at the transitions. The Lagrangian Eq. (4) and
the mean-field Hamiltonian Eq. (8) are invariant under the Z2

transformation φ → φ̄.
Because of gauge invariance, minimum configurations that

differ by gauge transformations are equivalent. For negative v,
we can therefore set α = 0 in Eq. (9) and consider only real
vectors. The invariance group of the broken phase is Z2 ⊗
O(N − 1), the Z2 transformations corresponding to φ → φ̄.
For positive values of v, if we apply a gauge transformation to
the minimum configurations, we obtain φ′a = s′a

1 + is′a
2 with

s′a
1 = cos α sa

1 + sin α sa
2,

s′a
2 = − sin α sa

1 + cos α sa
2. (13)

We can thus freely rotate the two vectors in the plane in which
they lie. This implies that, modulo gauge transformations,
minimum configurations are classified by the relative orien-
tation of the two vectors (chirality) and by the plane in which
s1 and s2 lie. The SO(2) symmetry Eq. (11) is irrelevant, as it
also involves a gauge transformation, so the invariance group
of the ordered phase is O(N − 2).

We wish now to identify appropriate order parameters for
the two different symmetry-breaking patterns. In the UAHFT,
an order-parameter field is provided by the complex gauge-
invariant bilinear operator:

Qab(x) = φ̄a(x)φb(x) − 1

N
φ̄(x) · φ(x) δab. (14)

We now show that

Rab(x) = Re Qab(x), T ab(x) = Im Qab(x), (15)

which transform under different representations of the SO(N )
group, provide the order-parameter fields for the SO(N ) the-
ory. Indeed, if the minimum configurations are given by
Eq. (9), thus for v < 0, we have T ab = 0 and

Rab = sasb − s2

N
δab, (16)

where s = |s|. Instead, if the minimum configurations are
given by Eqs. (10), thus for v > 0, we have

Rab = 1

2

(
sa

1sb
1 + sa

2sb
2

) − s2

N
δab,

T ab = 1

2

(
sa

1sb
2 − sb

1sa
2

)
, (17)

where s2 = |s1|2 = |s2|2. Note that only the order parameter
T ab is sensitive to the breaking of the Z2 symmetry φ → φ̄.
Moreover, Eq. (17) implies the relation

(T 2)ab = − s2

2
Rab − s4

2N
δab, Tr T 2 = − s4

2
. (18)

In particular, for N = 2 we have that Rab = 0 (taking into
account that s1 · s2 = 0), and we can write T ab = 1

2σ s2εab,
where εab is the two-index antisymmetric tensor (ε12 =

−ε21 = 1 and ε11 = ε22 = 0) and σ is a variable that takes
only the values ±1, which is related to the relative orientation
(chirality) of the orthogonal pair (s1, s2).

The analysis of the possible phases could have also been
performed in the real formulation of the model. Indeed, the
Lagrangian Eq. (4) can also be written in terms of a real
matrix field ϕai (a = 1, ..., N and i = 1, 2) defined by φa =
ϕa1 + iϕa2. We obtain the equivalent Lagrangian

L = 1

4g2

∑
μν

F 2
μν +

∑
μ,ai

(Dμϕ)2
ai + r

∑
ai

ϕ2
ai + ũ

(∑
ai

ϕ2
ai

)2

+ ṽ

⎡
⎣∑

i j

(∑
a

ϕaiϕa j

)2

−
(∑

ai

ϕ2
ai

)2
⎤
⎦, (19)

where ṽ = 2v and ũ = u + v, (Dμϕ)ai = ∂μϕai − iAμεabϕbi.
Of course, the results for the symmetry-breaking patterns re-
ported in Ref. [106] are equivalent to those reported above.
The real-field formulation with Lagrangian Eq, (19) shows
that the OAHFT can be interpreted as the Abelian gauge
theory obtained by gauging the SO(2) group of the global
symmetry group O(2) ⊗ O(N ).

B. RG flow and fixed points

Let us now discuss the RG flow of the OAHFT. Its main
features can already be inferred from earlier field-theoretical
perturbative analyses [5,17], in particular, from the one-loop
perturbative computations within the minimal subtraction
renormalization scheme of the dimensional regularizaton, re-
ported in Ref. [5]. As we shall see, they indicate that, as it
occurs for the UAHFT, the RG flow of the OAHFT has a stable
fixed point for a sufficiently large number of scalar compo-
nents, N > N∗

O(d ), where N∗
O(d ) depends on the dimension d

of the system.
Close to four dimensions. the RG flow can be studied by

using the β functions computed in dimensional regularization
with the minimal subtraction renormalization scheme. Setting
α ≡ g2 and ε ≡ 4 − d , the β functions associated with the
couplings u, v, and α are given by [5]1

βu = −εu + (N + 4)u2 + 4uv + 4v2 − 18uα + 54α2,

βv = −εv + Nv2 + 6vu − 18vα, (20)

βα = −εα + Nα2.

1The one-loop series reported in Eqs. (20) can be obtained by
some straightforward manipulations of the one-loop series reported
in Ref. [5] for scalar O(N ) gauge theories. Some checks are ob-
tained by noting that (i) for v = 0, one should reobtain the UAHFT
series [3]; (ii) for α = 0, one should reproduce the series for the
purely scalar model reported in Refs. [107,108], known up to five
loops [107,108]; (iii) since the addition of the v-term changes the
global symmetry of the model, the v = 0 plane must be a separatrix
of the RG flow, which implies βv = −εv + v fv (u, v, α); and (iv)
since for N = 1 the two quartic terms are equivalent, for N → 1 the
relation βu(u, s − u, α) + βv (u, s − u, α) = βu(s, 0, α) holds.

245154-3



BONATI, PELISSETTO, AND VICARI PHYSICAL REVIEW B 108, 245154 (2023)

The normalizations of the renormalized couplings u, v, α have
been chosen to simplify the formulas (they can be easily
inferred from the above expressions).

Stable fixed points of the RG flow correspond to zeros of
the β functions Eqs. (20), such that the eigenvalues of the
stability matrix �i j = ∂βi/∂g j , computed at the zero, are all
positive. In the large-N limit, a stable fixed point occurs for

α∗ = u∗ = v∗ = ε

N
+ O(ε2, N−2). (21)

The analysis of the β functions shows that this stable fixed ex-
ists for N > N∗

O(d ), where N∗
O(d ) = N∗

O,4 + O(ε) with N∗
O,4 ≈

210, which is the only positive solution of the fourth-order
equation [17]:

n4 − 204n3 − 1356n2 − 864n − 15552 = 0. (22)

For comparison, we mention that the UAHFT has a sta-
ble fixed point for N > N∗(d ) with N∗(d ) = N∗

4 + O(ε) and
N∗

4 = 94 + 24
√

15 ≈ 183. Therefore, for ε � 1, OAHFT and
UAHFT have comparable boundary values for the existence
of a stable fixed point. In the case of the UAHFT, N∗(d )
significantly decreases approaching d = 3: one finds N∗(d =
3) ≈ 7 [78,86,91,93]. We also mention that N∗(d ) is expected
to converge to a small value for d → 2 [78], and that an anal-
ogous argument indicates that |N∗

O(d → 2)| = O(1) as well.
This suggests that N∗

O(d ) has a d dependence similar to N∗(d )
for the UAHFT. Therefore, we may guess that N∗

O(d = 3) is
of order 10, as in the SU(N ) case.

It is important to note that the stable fixed point for the
OAHFT lies in the region v > 0. Therefore, this fixed point is
only relevant for transitions between a disordered phase and a
Higgs phase with a global O(N − 2) symmetry. On the other
hand, on the basis of this RG analysis, no charged transition is
expected if the Higgs phase is invariant under Z2 ⊗ O(N − 1).

The analysis of the RG flow of the OAHFT provides in-
formation on the behavior of the transitions in 3D lattice AH
systems, where gauge fields become critical. If the symmetry
of the broken phase is the one observed in the OAHFT model
for v < 0, only first-order transitions are possible. If, instead,
the symmetry-breaking pattern is the one observed for v > 0,
the behavior depends on the number of components of the
scalar field. For N > N∗

O(d = 3), continuous charged transi-
tions are possible, provided the lattice system is effectively
inside the attraction domain of the stable fixed point. Instead,
for N < N∗

O(d = 3), only first-order transitions are possible
(unless there are additional 3D universality classes that are
not analytically related with the 4D RG fixed points, as occurs
for the one-component AH models [21,34,94]).

Beside the stable fixed point, the β functions admit other
zeroes with unstable directions. The fixed point with v∗ =
0 that is stable in the SU(N )-symmetric field theory (in
the large-N limit, it corresponds to α∗ = u∗ ≈ ε/N) is un-
stable with respect to the perturbation proportional to v,
with a negative eigenvalue λv = −ε + O(ε2, N−1). Therefore,
the parameter v is a relevant perturbation of the SU(N )-
symmetric fixed point, with positive RG dimension yv = −λv .
The addition of the term proportional to v drives the flow away
from the stable SU(N ) fixed point, either towards the O(N)
stable fixed point (this is only possible for v > 0) or towards
infinity (in this case first-order transitions are observed).

We also mention that the RG flow of the scalar model
without gauge fields with Lagrangian Eq. (19) has been exten-
sively studied, because it is relevant for the normal-to-planar
superfluid transition in 3He [107,109], and for transitions
in some frustrated magnetic systems with noncollinear or-
der [106,110,111]. The RG flow of the scalar theory close
to four dimensions can be inferred from the analysis of the
zeros of the β functions βu and βv , cf. Eqs. (20), setting
α = 0. Close to four dimensions, there is a stable fixed point
for N � 22 [111,112]. However, the analyses of high-order
3D perturbative expansions [106,107] show that, in 3D there
are stable RG fixed points for N = 2 and N = 3 that are not
connected with those existing close to four dimensions.

The stable fixed point of the scalar theory without gauge
fields is unstable with respect to the gauge parameter α ∼ κ−1.
A simple analysis of the β functions Eqs. (20) shows that the
RG dimension of the gauge perturbation is positive, i.e.,

yα = −λα = − ∂βα

∂α

∣∣∣∣
α=0,u=u∗,v=v∗

= ε = 4 − d, (23)

where λα is one of the eigenvalues of the stability matrix
�i j = ∂βi/∂g j computed at the scalar fixed point with α = 0.
Note that yα = 4 − d corresponds to the dimension of the
gauge coupling α ∼ κ−1 in d dimensions. This result holds
to all order of the ε expansion, due to the fact that βα has
the general form βα = −εα + α2F (α, u, v), where F (α, u, v)
has a regular perturbative expansion [81]. Therefore, we find
yα = 1 in three dimensions. Note that the relevance of the
gauge fluctuations at the fixed points of the purely scalar the-
ory, and therefore the crossover towards a different asymptotic
behavior, is independent of the existence of the stable fixed
point of the full theory, which is only relevant to predict the
eventual asymptotic behavior.

The RG analysis reported above shows that SO(N )-
symmetric Abelian gauge systems for large values of N
may undergo continuous phase transitions. It is interest-
ing to compute the corresponding critical exponents. The
correlation-length exponent ν in the large-N limit can be
computed by using the results of Ref. [5], which considered
scalar-gauge theories obtained by gauging the O(M ) subgroup
of the global symmetry O(M ) ⊗ O(N ). Assuming the exis-
tence of a critical transition, the critical exponents for fixed
M and d were computed in the large-N limit. For M = 2 and
d = 3, the correlation-length exponent ν is given by

ν = 1 − 176

3π2N
+ O(N−2), (24)

which is numerically close to the large-N result for the
UAHFT [3]:

ν = 1 − 48

π2N
+ O(N−2). (25)

III. NONCOMPACT SO(N)-SYMMETRIC LATTICE
ABELIAN HIGGS MODELS

We now discuss the phase diagram and the nature of the
phase transitions in the OLAHM, whose Hamiltonian is given
in Eq. (7). As we shall see, some qualitative features of
the OLAHM phase diagram are analogous to those of the
ULAHM. However, substantial changes are expected in the
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J
C

H
IXY

O(2)

N = 1

J

C

H
M

IXY

N ≥ 2

FIG. 1. The κ-J phase diagram of lattice AH models for N = 1
(top) and generic N � 2 (bottom). For N � 2, three phases are
present: the small-J Coulomb (C) phase, in which the scalar field
is disordered and gauge correlations are long ranged, and the large-J
molecular (M) and Higgs (H) ordered phases, in which the global
symmetry is spontaneously broken. For N = 1, there are only two
phases: the Coulomb and the Higgs phase.

nature of the ordered low-temperature phases, in particular, of
the Higgs phase and of the transition lines, which crucially
depend on the global symmetry-breaking pattern that, in turn,
depends on the specific form of the scalar self-interaction
potential.

A. SU(N)-symmetric lattice Abelian-Higgs models

We begin by reviewing what is known for the SU(N )-
symmetric ULAHM. A sketch of the κ-J phase diagram of the
ULAHM is shown in Fig. 1. For N � 2, three phases occur. In
the small-J Coulomb (C) phase, the scalar field is disordered
and gauge correlations are long ranged. For large J two phases
occur, the molecular (M) and the Higgs (H) ordered phase,
in which the global symmetry is spontaneously broken from
SU(N ) to U (N − 1), with the emergence of 2N − 2 long
ranged Goldstone modes [33]. An appropriate order parameter
is the gauge-invariant bilinear operator

Qab
L,x = z̄a

xzb
x − 1

N
δab, (26)

which is the lattice analog of the field-theory bilinear oper-
ator (14). For N = 1, there is no global symmetry, therefore
there are only two phases, see Fig. 1, the Coulomb phase
and the Higgs phase, that are characterized by the behavior
of nonlocal gauge-invariant charged operators [12,13,16,92],
which are confined in the former and deconfined in the latter.

The two ordered phases of multicomponent systems are
distinguished by the behavior of the gauge modes: the gauge
field is long ranged in the M phase (small κ), while it is
gapped in the H phase (large κ). Moreover, while the C and
M phases are confined phases, the H phase charged excita-
tions, represented by gauge-invariant nonlocal dressed scalar
operators [12,13,92,113], are deconfined [12,13,16,92]. The
transition lines may be of first order or continuous and, in the
latter case, belong to universality classes that may depend on
the number N of scalar components. The continuous transi-
tions are related with the stable (charged or uncharged) fixed

points of the RG flow, each one with its own attraction domain
in the model parameter space.

The CH and CM transitions are both characterized by the
spontaneous breaking of the global SU(N ) symmetry, but dif-
fer in the role of the gauge fields. The continuous transitions
along the CH line are charged transitions, where gauge fields
become critical and are associated with the stable fixed point
of the RG flow of the UAHFT (1). As already mentioned
in Sec. II B, continuous transitions can only be observed for
N > N� with N� = 7(2) [86]. At the CM transitions, gauge
fields play no role (gauge correlations are long ranged on
both sides of the transition) and thus an effective description
can be obtained by considering an SU(N ) symmetric LGW
theory defined in terms of the complex Hermitian field �ab

that corresponds to the bilinear operator Qab, without gauge
fields [80,86]. This predicts that continuous transitions occur
only in two-component systems, i.e., for N = 2. Their critical
behavior belongs to the O(3) vector (Heisenberg) universality
class [98,99].

While transitions along the CM and CH lines are related
with the spontaneous breaking of the global symmetry, the
MH line separates two ordered phases that differ only in the
behavior of the gauge correlations, without a local gauge-
invariant order parameter. The continuous transitions along
the MH line belong to the same universality class as those in
the inverted XY (IXY ) model [94], which is related with the
standard XY model with Villain action by a duality transfor-
mation [34]. This is the same universality class controlling the
topological critical behavior of the CH transitions in the one-
component lattice AH model [94]. Note that this apparently
simple behavior along the MH transition line is not obvious
because of the simultaneous presence of the massless gauge
modes that drive the IXY transitions, and of the long-ranged
(zero-mass) Goldstone bosons, related with the breaking of
the global SU(N ) symmetry. The numerical analyses reported
in Ref. [94] show that, along the MH line, the massless Gold-
stone modes effectively decouple from the massless gauge
modes that drive the critical behavior, so the finite-J transi-
tions belong to the IXY universality class.

B. SO(N)-symmetric lattice Abelian Higgs models

We now wish to discuss the general features of the phase
diagram—the OLAHM. We will argue that the phase diagram
is similar to that of the ULAHM, shown in Fig. 1. Indeed,
the OLAHM presents three phases as well: one small-J disor-
dered phase and two large-J phases in which the global SO(N )
symmetry is spontaneously broken. As in the ULAHM, the
ordered phases differ in the confinement properties of the
nonlocal charged excitations [13,16,92,94] and in the nature
of the gauge modes.

To characterize the spontaneous breaking of the SO(N )
symmetry, we consider the lattice analog of the field-theory
operators defined in Eqs. (15),

Rab
L,x = Re Qab

L,x = 1

2

(
z̄a

xzb
x + z̄b

xza
x

) − 1

N
δab, (27)

T ab
L,x = Im Qab

L,x = 1

2i

(
z̄a

xzb
x − z̄b

xza
x

)
, (28)
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which transform under two different irreducible represen-
tations of the SO(N ) group. As already discussed, in the
disordered phase both order parameters vanish. Since the
symmetry-breaking pattern depends on the sign of v, the be-
havior of Rab

L,x and T ab
L,x depends on the sign of v. For v < 0,

Rab
L,x condenses in the ordered phase, while T ab

L,x still vanishes.
For v > 0 and N = 2, T ab

L,x condenses, while Rab
L,x vanishes.

Finally, for v > 0 and N � 3, both order parameters condense
in the ordered phase.

1. The MH transition line at low temperature

The existence of two different large-J ordered phases
which differ for the topological properties of the gauge field—
charged excitations are confined/deconfined in the M and H
phase, respectively—is suggested by the existence of a transi-
tion point for J = ∞. The argument is the same that holds
for the ULAHM. For J → ∞, the relevant configurations
are those that maximize

∑
x,μ Re (z̄x · λx,μ zx+μ̂), indepen-

dently of the scalar potential. This implies zx = λx,μ zx+μ̂,
and therefore λx,μ λx+μ̂,ν λ̄x+ν̂,μ λ̄x,ν = 1 for each lattice pla-
quette. Then, by an appropriate gauge transformation, we
can set Ax,μ = 2πnx,μ, where nx,μ ∈ Z, obtaining the IXY
model, which has a transition in the XY universality class,
at κc = 0.076051(2) [34,86] (estimates of critical exponents
can be found in Refs. [114–116]). Therefore, for J → ∞ the
OLAHM has a transition for any value of v.

A natural hypothesis is that the J → ∞ IXY transition
point is the starting point of a finite-J line (MH line) of
transitions, whose nature, as in the ULAHM [94], is indepen-
dent of J , at least for sufficiently large finite J (we cannot
exclude that the transitions turn into first-order ones before the
multicritical point, where the three transition lines meet). The
transitions should belong to the IXY universality class, as the
MH transitions in the ULAHM and the CH transitions in the
one-component lattice AH model, see Fig. 1. This universal
behavior of the MH transitions is possible if, as observed
in the ULAHM, the gauge critical modes driving the IXY
transitions decouple from the long-range Goldstone modes
present in the ordered phases. If this occurs, the scalar degrees
of freedom are irrelevant and so are the global symmetry and
the symmetry-breaking pattern.

2. The CM transition line

As in the ULAHM, we expect transitions along the CM
line, i.e., for small values of κ , to have the same universal
features as those occurring for κ = 0. For κ = 0, the gauge
variables can be integrated out in the partition function Eq. (6),
obtaining the model with Hamiltonian

HO,κ=0 = −
∑
x,μ

ln I0(2NJ|z̄x · zx+μ̂|) + v
∑

x

|zx · zx|2,

(29)

where I0(x) is the modified Bessel function. We recall
that I0(x) = I0(−x), I0(x) = 1 + x2/4 + O(x4) and I0(x) ≈
ex/

√
2πx for large x. In the absence of the v term, this Hamil-

tonian provides a lattice formulation of the CPN−1 model [8],
which is equivalent, as far as the critical behavior is con-

cerned, to the standard one with Hamiltonian

HCP = −JN
∑
x,μ

|z̄x · zx+μ̂|2. (30)

For κ = 0, and for sufficiently small values of κ along the
CM transition line, gauge fluctuations are not expected to play
an active role at the transition. Indeed, the gauge properties
of the C and M phases are the same: gauge modes are long
ranged and charged excitations are confined in both of them.
Therefore, the transition should be uniquely driven by the
breaking of the global symmetry. Therefore, we expect that an
effective description of the critical universal behavior can be
obtained by considering a LGW theory for the gauge-invariant
scalar order parameter that condenses at the transition, without
considering the gauge fields [80,81,86].

For v < 0, the relevant order parameter is Rab
L,x, which is

a real symmetric operator. Therefore, we expect the small-κ
transitions along the CM line to be described by a LGW for
a real symmetric traceless N × N matrix field �ab(x) that
represents a coarse-grained average of Rab

L,x over a large, but
finite, lattice domain. The corresponding LGW Lagrangian
is obtained by considering all monomials in �ab(x) that are
allowed by the global SO(N ) symmetry up to fourth order.
We obtain

L = Tr(∂μ�)2 + r Tr �2 + s tr �3

+ u (Tr �2)2 + v Tr �4. (31)

For N = 2, the cubic term vanishes and the two quartic terms
are equivalent. The resulting LGW theory is equivalent to
that of the O(2)-symmetric vector model, thus predicting that
continuous transitions belong to the XY universality class.
On the other hand, for N � 3 the cubic �3 term is generally
present. This is usually considered as the indication that phase
transitions occurring in systems sharing the same global prop-
erties are of first order, as one can easily infer using mean-field
arguments. We expect this behavior to hold for any v < 0,
up to v = 0 where the SU(N ) symmetry is restored, and we
recover the CPN−1 model, whose transition is continuous for
N = 2, in the O(3) vector universality class, and of first order
for any N � 3 [80,84].

We can explicitly verify the above predictions by con-
sidering the limit v → −∞. In this limit, the relevant
configurations are those that minimize the potential VO, as
discussed in Sec. II A. Indeed, we should again minimize Hmf ,
where r now plays the role of the Lagrange multiplier that
enforces the condition z̄ · z = 1. For v < 0, we have

zx = eiθx sx, (32)

where sx is a real unit-length N-component vector. This repre-
sentation is redundant as the pair sx, θx and the pair s′

x = −sx,
θ ′

x = θx + π both correspond to zx. Thus, this parametriza-
tion of the scalar field introduces an additional kinematical
Z2 gauge invariance. Using the parametrization Eq. (32), the
scalar hopping term becomes

z̄x · zx+μ̂ = ei(θx+μ̂−θx ) sx · sx+μ̂. (33)

If we choose the unitary gauge, we can set θx = 0, obtaining
a theory in terms of Ax,μ̂ and sx, which is invariant under Z2
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gauge transformations that involve both sx and Ax,μ. Substitut-
ing Eq. (33) into the κ = 0 Hamiltonian Eq. (29), we obtain

H = −
∑
x,μ

ln I0(2NJ|sx · sx+μ̂|). (34)

This Hamiltonian is invariant under global O(N ) and local Z2

transformations and is ferromagnetic (for large J the fields
sx order). Thus, it represents a variant Hamiltonian of the
so-called RPN−1 model, which is characterized by a global
O(N ) invariance and a local Z2 gauge symmetry. This result
is consistent with the LGW description given above. Indeed,
in the RPN−1 models the relevant order parameter is

Sab
x = sa

xsb
x − 1

N
δab, (35)

so the LGW fundamental field is a real symmetric trace-
less tensor �ab. The corresponding Lagrangian is given in
Eq. (31).

The behavior changes when we consider the opposite case
v > 0. To understand some general features of the critical
behavior, we begin by studying the lattice model in the limit
v → ∞. The relevant configurations are those that minimize
the potential VO for v > 0; see Sec. II A. Since |zx| = 1, they
can be written as

zx = 1√
2

(s1,x + is2,x), s1,x · s2,x = 0, (36)

where s1 and s2 are two real orthogonal unit-length vectors
(s2

1 = s2
2 = 1 so z̄ · z = 1). One can easily check that the κ = 0

Hamiltonian Eq. (29) can be written in terms of the antisym-
metric tensor field T ab

L,x only. Indeed, since QL,x = RL,x + iTL,x

and

|z̄x · zx+μ̂|2 = Tr QL,xQL,x+μ̂ + 1

N

= Tr RL,xRL,x+μ̂ − Tr TL,xTL,x+μ̂ + 1

N
, (37)

using Eqs. (18) with s2 = 1, we obtain

|z̄x · zx+μ̂|2 = −Tr TL,xTL,x+μ̂ + 4Tr T 2
L,xT 2

L,x+μ̂. (38)

This expression drastically simplifies for N = 2 and N = 3.
For N = 2, the only relevant degree of freedom is the chirality
of the configuration, which can be expressed in terms of the
variable σx = ∑

ab εabsa
1,xsb

2,x that can only take the values ±1.
As expected, the gauge-invariant tensor T ab

L,x depends only on
σx: T ab

L,x = 1
2εabσx. Substituting in Eq. (38), we obtain

|z̄x · zx+μ̂|2 = 1
2σxσx+μ̂ + 1

2 . (39)

We therefore obtain an Ising Hamiltonian.
For N = 3, configurations should be labeled by the unit-

length vector τ = s1 × s2 that encodes both the chirality of
the two vectors and the plane in which they lie. The gauge-
invariant tensor T ab

L,x is related with τ by T ab
L,x = 1

2

∑
c εabcτ c

x .
Substituting in Eq. (38), we obtain

|z̄x · zx+μ̂|2 = 1
2τx · τx+μ̂ + 1

4 (τx · τx+μ̂)2 + 1
4 . (40)

We thus obtain a ferromagnetic Heisenberg model.
These results are confirmed by a standard LGW analysis. In

the critical limit, the Hamiltonian with hopping term Eq. (38)

becomes equivalent to the LGW model for an antisymmetric
N × N field �ab(x), which represents the coarse-grained av-
erage of T ab

L,x. The corresponding LGW Lagrangian reads

L = Tr ∂μ�t∂μ� + r Tr �t�

+ u (Tr �t�)2 + v Tr (�t�)2, (41)

where we have written the quadratic terms in terms of the
transpose �t (since � is antisymmetric �t = −�) to show
explicitly their positivity. Note that the cubic term is absent
because Tr�n = 0 for any odd n.

Using the above LGW theory, we can easily recover the
results obtained in the large-v limit for N = 2 and 3, For
N = 2, we can write �ab in terms of a single real scalar
field φ, i.e., �ab = εabφ. The two quartic terms are equivalent
and we obtain the LGW model for a real scalar field that is
associated with the Ising universality class. For N = 3, we
can write �ab(x) in terms of a single three-component vector
as �ab = εabcφc, where εabc is the completely antisymmetric
tensor. Again, the quartic terms are equivalent and we obtain
the O(3) vector LGW Hamiltonian. Thus, continuous transi-
tions should belong to the O(3) vector universality class.

No simplifications occur for N � 4. To determine the crit-
ical behavior one should therefore study the RG flow of the
model Eq. (41) in the space of the quartic couplings u and
v. The RG flow of the LGW theory Eq. (41) was studied in
Ref. [117] within the perturbative ε expansion close to four
dimensions, to one-loop order. This one-loop analysis shows
that there are not stable fixed points for N � 5, while a stable
fixed point exists for N = 4 in the region with v > 0. Actually,
for N = 4 the LGW model Eq. (41) can be exactly mapped
into one of the so-called mn models [104], more precisely
the model with m = 2 and n = 3 [118]. The RG flow of mn
models has been largely investigated by various methods, in
particular, high-order pertubation theory within ε expansion
and 3D schemes [99,119,120]. On the basis of these RG
analyses, one can demonstrate the existence of a stable 3D
fixed point for N = 4, describing two decoupled O(3) critical
behaviors [104,120]. Note that such a stable 3D fixed point is
not related to the one found close to four dimensions reported
in Ref. [117].

Assuming, as usual, that the LGW analysis is valid for
any v, the previous results indicate that, for N = 2, an Ising
behavior should also occur for finite positive values of v, down
to the point v = 0, where the symmetry enlarges to SU(2)
and the model undergoes a Heisenberg transition. The finite-v
behavior for N = 2 can also be understood by considering
a variant model in which the SO(N )-symmetric potential VO

is added to the standard CPN−1 Hamiltonian HCP defined in
Eq. (30). For this purpose, we parametrize the fields in terms
of a real three-component unit vector tx defined by

tk,x = z̄xσkzx, (42)

where σ k (k = 1, 2, 3) here represent the Pauli matrices. It is
then easy to verify that

HCP + v
∑

x

|zx · zx|2

= −1

2
NJ

∑
xμ

(tx · tx+μ̂ + 1) + v
∑

x

(
1 − t2

2,x

)
. (43)
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Thus, the Hamiltonian is equivalent to a Heisenberg model
with a symmetry-breaking term −vt2

2,x. For positive v, only
the second component of t becomes critical, so the transition is
in the Ising universality class. On the other hand, for negative
v the system magnetizes in the (1,3) plane, undergoing an
XY transition, as already discussed. Transitions for v = 0
correspond to O(3)-symmetric multicritical points, belonging
to the Heisenberg universality class (accurate estimates of the
critical exponents and other universal features can be found in
Refs. [121–124]), where the XY transition line for v < 0 and
the Ising transition line for v > 0 meet.

To understand the finite-v behavior for N = 3, we recall
that the lattice CP2 model undergoes a first-order transition,
see e.g., Ref. [80], so it is natural to expect first-order tran-
sitions also for small positive values of v. As a consequence,
we predict the existence of a tricritical value v∗, such that the
transition is in the Heisenberg universality class for v > v∗
and of first order for v < v∗.

We do not further discuss the more complicated cases
with N � 4. Further work is clearly necessary to clarify their
critical behavior for positive values of v.

3. The CH transition line

As CM transitions, CH transitions are also characterized
by the spontaneous breaking of the SO(N ) symmetry. As
discussed in Sec. II A, the symmetry-breaking pattern de-
pends on the sign of v and thus different Higgs phases are
obtained for v > 0 and v < 0. However, at variance with the
CM transitions, along the CH line the gauge-field modes are
expected to play an active role, since the CH line separates a
Coulomb phase with long-range gauge modes from a Higgs
phase with massive gauge excitations. Therefore, as in the
ULAHM [86,91], the critical behavior along the CH line
is expected to be described by the OAHFT Eq, (4), which
can be obtained by taking the formal continuum limit of the
OLAHM.

The analysis of the RG flow of the OAHFT reported in
Sec. II shows that a stable charged fixed point only exists for
N larger than a critical value N∗(d = 3), unless new univer-
sality classes emerge in three dimensions that are unrelated
with the RG flow close to four dimensions, as occurs for the
one-component AH models [21,34,94]. In analogy with what
occurs in the ULAHM [86,91], we expect N∗(d = 3) to be of
order 10. This fixed point is located in the region v > 0 and is
therefore different from the charged fixed point that controls
the critical behavior of the ULAHM, which belongs to the line
v = 0.

The field theory results allow us to predict the nature of
the CH transitions. For N < N∗(d = 3), all transitions along
the CH line are expected to be of first order, as no stable
charged fixed point exists. For N > N∗(d = 3), the nature of
the transition depends on the sign of v. Since the line v = 0
is a separatrix of the RG flow, and the charged fixed point lies
in the region v > 0, the charged fixed point is unreachable for
systems with negative v. Thus, CH transitions that separate a
Coulomb disordered phase from a Higgs phase with residual
Z2 ⊗ O(N − 1) invariance—this is the symmetry-breaking
pattern characterizing systems with v < 0—are expected to
be of first order. Continuous transitions can only be observed

in systems with v > 0, provided that the system is in the
attraction domain of the stable fixed point.

For κ = ∞, the gauge variables freeze, thus we can fix
all gauge variables to the trivial value λx,μ = 1, obtaining an
O(2) ⊗ O(N ) model with Hamiltonian

HO,κ→∞ = −2NJ
∑
x,μ

Re (z̄x · zx+μ̂) + v
∑

x

|zx · zx|2. (44)

As already mentioned in Sec. II, the corresponding LGW
theory has 3D stable fixed points, and therefore continuous
transitions are possible in the lattice model Eq. (44). How-
ever, as already discussed in Sec. II, any stable fixed point
of the purely scalar theory is unstable with respect to gauge
fluctuations. Therefore, for finite κ , one can never observe the
same asymptotic critical behavior as for κ = ∞. However, the
κ = ∞ criticality may give rise to substantial preasymptotic
crossover effects for finite large values of κ .

IV. CONCLUSIONS

We have investigated some generalizations of the standard
multicomponent AH models with SU(N ) symmetry, such as
the AH field theory defined in Eq. (1) and the lattice AH model
defined in Eq. (2). By adding an appropriate scalar potential,
we obtain models with a reduced symmetry, which, therefore,
may undergo transitions belonging to different universality
classes and have Higgs phases with different symmetries. In
this paper, we focus on AH models with SO(N ) invariance,
the field theory with Lagrangian Eq. (4) and the lattice AH
model with Hamiltonian Eq. (7). We determine the possible
symmetry-breaking patterns and the symmetry of the Higgs
phases, finding that they depend on the sign of the Hamil-
tonian parameter v. Thus, for v > 0 and v < 0, we observe
different ordered phases characterized by the condensation of
different gauge-invariant order parameters. In particular, there
are different Higgs phases.

The analysis of the RG flow of the OAHFT, using the per-
turbative and large-N computations of Refs. [5,17], indicates
that the quartic scalar term that breaks the SU(N ) symmetry
is a relevant perturbation of the SU(N )-symmetric fixed point.
Therefore, in the absence of exact SU(N ) symmetry, under
RG transformations the system flows away from the SU(N )
fixed point, possibly toward a stable fixed point—in this case
one may observe an SO(N )-symmetric critical behavior—or
toward infinity—in this case, a first-order transition would
occur. The analysis of the RG flow close to four dimensions
and in the large-N limit [5] shows that an SO(N )-symmetric
stable fixed point exists for N > N∗

O(d ) and lies in the re-
gion v > 0. We expect this fixed point to also exist in three
dimensions for N sufficiently large, i.e., for N > N∗

O(d = 3)
[by analogy with the SU(N )-symmetric case, we guess that
N∗

O(d = 3) is of order 10]. It would control the behavior
of lattice systems at transitions where the gauge degrees of
freedom are critical. We should note, however, that we cannot
exclude the existence of 3D stable fixed points that are not
related with the fixed points identified by the ε expansion
close to four dimensions, as happens in the one-component
3D ULAHM [21,34,94] and in LGW theories that are ef-
fective models of the O(2) ⊗ O(N ) scalar models that are
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obtained by taking the κ → ∞ limit of the multicomponent
OLAHM [106,107].

Concerning the 3D lattice models, we argue that some
features of the phase diagram of SO(N )-symmetric lattice
AH models are independent of the Hamiltonian parameter v

and similar to those of the SU(N )-symmetric models. In all
cases, the qualitative phase diagram is the one reported in
Fig. 1, with three different phases—the Coulomb, the molec-
ular, and the Higgs phase—which differ in the properties of
the gauge correlations, in the confinement or deconfinement
of the charged excitations, and in the residual symmetry of
the ordered (molecular and Higgs) phases.

As far as the nature of the phase transitions, we argue that
MH transitions always belong to the IXY universality class,
as in SU(N ) invariant models. This is due to the fact that MH
transitions are topological transitions only driven be gauge
modes. Scalar fields play no role at the transition. On the other
hand, the nature of the CM and CH transitions depends on v

and different behaviors are observed for positive and negative
values of v. This is due to the fact that the breaking of the
SO(N ) symmetry differs for v > 0 and v < 0 [the residual
symmetry is O(N − 2) and Z2 ⊗ O(N − 1) in the two cases,
respectively], with the condensation of different order param-
eters, such as Rab

L,x and T ab
L,x defined in Eqs. (27) and (28).

The behavior along the CH line is essentially determined
by the presence or absence of the field-theoretical fixed point.
For N < N∗(d = 3), we expect only first-order transitions
along the CH line. For N > N∗(d = 3), if the Higgs phase
is symmetric under Z2 ⊗ O(N − 1) transformations, which
is the residual symmetry for v < 0, the CH line is again a
line of first-order transitions. Indeed, if the RG flow starts in
a point v < 0, it necessarily runs toward infinity. Instead, if
the Higgs phase is O(N − 2)-symmetric, i.e., v is positive,
CH transitions may be continuous in the universality class
associated with the field-theory fixed point.

Also, the behavior along the CM line depends on v. For
negative v, transitions are driven by the condensation of Rab

x ,
defined in Eq. (27). Gauge modes play no role, so one can
perform a simple LGW analysis to determine the nature of the
phase transitions. It predicts first-order transitions for any N �
3. For N = 2, continuous transitions in the XY universality
class are possible. For positive v, we argue that the criti-
cal behavior is effectively described by the O(N )-symmetric
LGW theory for an antisymmetric rank-two tensor, which is
the coarse-grained analog of T ab

x , see Eq. (41). This allows
us to predict that, for N = 2, CM transitions should belong
to the Ising universality class for all positive values of v. For
N = 3, instead, we expect the existence of a tricritical value
v∗ > 0, such that the transition is of first order for v < v∗ and
in the Heisenberg universality class for v > v∗. The existence
of a tricritical value is due to the first-order nature of the
CM transitions in SU(3) invariant AH models, i.e., for v = 0.
The behavior for larger N is less clear and currently under
investigation.

Of course, numerical checks of the above predictions
would be useful and welcome. However, we believe that
the theoretical arguments reported in this paper, that also
rely on the known behavior of SU(N ) invariant AH models

(which have been carefully studied numerically, see, e.g.,
Refs. [86,91,94]), are sound and can be easily extended to AH
models with more general scalar interactions. We also stress
that the predictions reported above should not only apply to
the OLAHM but also to more general models, in which the
unit-length constraint for the lattice variable zx is relaxed.

We remark that one may also consider a more general
quartic scalar potential. For instance, one may consider the
AH field theory with quartic potential [17]

VP (φ) = u (φ̄ · φ)2 + v |φ · φ|2 + w

N∑
a=1

(φ̄aφa)2, (45)

which is only invariant under the permutation group PN . A
one-loop analysis of the RG flow close to four dimensions was
reported in Ref. [17], showing that a stable fixed point appears
only for very large values of N , more precisely for N �
5494. Note that for N = 2 the quartic potential VP (φ) is the
most general one, preserving the U(1) gauge invariance and
the uniqueness of the quadratic φ̄ · φ term. For N > 2 there
are other quartic terms satisfying these conditions, such as∑N

a=1 φ̄aφaφ̄a+1φa+1 (we identify φN+1 = φ1), which leaves
a residual ZN symmetry only. Analogous terms can be added
to the lattice AH models.

Lattice AH counterparts with residual PN global symmetry
can be simply obtained by adding a term w

∑
x

∑N
a=1(z̄aza)2

to the SO(N )-symmetric Hamiltonian Eq. (7). We expect the
phase diagram of these lattice AH models (keeping the quar-
tic parameters fixed) to be qualitatively the same as that of
SU(N )- and SO(N )-symmetric theories, with three phases and
three transition lines, as sketched in Fig. 1. MH transitions
are always expected to belong to the IXY universality class.
Instead, the nature of the transitions, and the universality
classes of the continuous ones along the CM and CH lines,
are expected to change. In particular, in the N = 2 lattice AH
model with quartic potentials analogous to VP (φ), the residual
symmetry is P2 = Z2. Thus, we expect CM transitions to be
Ising transitions. This behavior can be easily confirmed by
rewriting the Z2-symmetric scalar potential in terms of the
variable Eq. (42), obtaining VP(z) = v(1 − t2

2 ) + 1
2w(1 + t2

3 ).
Thus, for generic values of v and w the system undergoes
Ising transitions. On the planes v = 0, w = 0, and 2v + w =
0 one can observe both Ising and XY transitions, depending on
the symmetry of the low-temperature phase. The nature of the
CH transitions is less clear, but we believe these transitions
to be of first order, since no stable fixed points are found
in the corresponding AH field theory, at least close to four
dimensions [17]. Although we believe that the phase diagram
and critical behaviors of these extended lattice AH theories
are worth being investigated, we have not pursued this study
further.

We finally stress that the understanding of the possible
extensions of the AH gauge theories, allowing for more gen-
eral scalar potentials, may be useful to get a more thorough
understanding of the possible phases and critical behaviors
that can be observed in critical phenomena characterized by
an emerging Abelian gauge field.
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