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Generalized Majorana edge modes in a number-conserving periodically
driven p-wave superconductor
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We study an analytically solvable and experimentally relevant number-conserving periodically driven p-wave
superconductor. Such a system is found to support generalized Majorana zero and π modes, which, despite being
non-Hermitian, are still capable of encoding qubits. Moreover, appropriate winding numbers characterizing the
topology of such generalized Majorana modes are defined and explicitly calculated. We further discuss the fate
of the obtained generalized Majorana modes in the presence of finite charging energy. Finally, we shed light on
the quantum computing prospects of such modes by demonstrating the robustness of their encoded qubits and
explicitly braiding a pair of generalized Majorana modes.
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I. INTRODUCTION

Since the seminal work of Kitaev [1], p-wave superconduc-
tors have been studied extensively for their potential ability
to host the sought-after Majorana zero-energy excitations at
their edges. Such Majorana zero modes (MZMs), which are of
interest to condensed matter and quantum computing commu-
nities alike, are exotic quasiparticles that could be understood
as the building blocks of fermions [2]. In particular, two
spatially separated MZMs at the edges of a p-wave super-
conductor form a nonlocal fermion that could potentially be
utilized as a highly resilient qubit. Such a qubit could in turn
be manipulated by moving its MZM constituents around one
another, a process referred to as braiding [3,4]. Remarkably,
quantum gate operations that result from braiding processes
are topologically protected and are thus expected to be ro-
bust against errors and imperfections [5]. For this reason,
Majorana-based qubits are considered one of the most promis-
ing building-blocks of fault-tolerant quantum computers.

At present, significant theoretical advances have been
made towards harnessing the robust quantum computational
power of MZMs. Indeed, the set of all topologically protected
quantum gate operations realizable from braiding of MZMs
have been identified [6], while the potential realization of
braiding itself has been proposed by several groups since the
past decade [7–10]. In recent years, measurement-only braid-
ing protocols that do not involve physically moving MZMs
were further developed [11–14]. Such protocols have in turn
stimulated various proposals for Majorana-qubit architecture
designs [15–17] and Majorana-based quantum error correc-
tions [18–21].

Being the main ingredient of MZMs, true (spin-triplet)
p-wave superconductivity is very scarce in nature. In
the past decade, two independent groups proposed a
means to artificially engineer p-wave superconductivity by
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proximitizing a more common spin-singlet s-wave supercon-
ductor to a semiconducting wire of finite spin-orbit coupling
under the influence of a magnetic field [22,23]. Such a pro-
posal has since been implemented in the laboratory by various
experimental groups [24–28]. Despite these extensive efforts,
however, an unambiguous signature of MZMs has yet to be
observed.

The very large gap between theoretical and experimental
progresses above could be attributed to a number of fac-
tors. Among others, the fact that many existing theoretical
studies employ the mean-field descriptions of p-wave super-
conductors may lead to difficulties in establishing their exact
correspondence with actual experimental systems. For this
reason, several works have been devoted to exploring the
full interacting version of p-wave superconductors in recent
years [29–37]. As compared to their mean-field counterparts,
which obey the parity (Z2) conservation law, such systems
obey the more physical number conservation law. This radical
change in the systems’ global symmetry may in turn affect
the properties of MZMs therein and, potentially, their ability
to perform as topological qubits. Unfortunately, the necessity
to account for interaction effect in such number-conserving
p-wave superconductors makes their characterizations signif-
icantly harder as compared to their mean-field counterparts.
As a result, many existing works rely on sophisticated tech-
niques such as density matrix renormalization group [32] and
bosonization [29–31], which, however, obscure any intuitive
physical pictures.

A rigorous analytical investigation of a particular number-
conserving p-wave superconducting model was recently
performed in Ref. [37]. Specifically, the model describes
a one-dimensional (1D) fermionic lattice interacting with
a bulk superconductor, which is thus of relevance to ex-
isting experiments involving semiconductor-superconductor
heterostructures [24–28]. The main results of Ref. [37] in-
clude the emergence of Majorana-like zero modes at the edges
of the system, which are no longer Hermitian like their mean-
field counterparts, the finite energy gap between the unique
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ground state and the excited states at a fixed particle number
sector, and the preservation of the corresponding Majorana-
like parity.

In this paper, we analytically and numerically investigate a
periodically driven version of the number-conserving p-wave
superconductor studied in Ref. [37]. Our work is especially
motivated by the knowledge that time-periodic mean-field
p-wave superconductors may harbor the so-called Majorana
π modes (MPMs), which have no static counterparts [38–44].
As the name suggests, MPMs are another type of Majo-
rana quasiparticle excitations that occurs at half the driving
frequency [45]. In particular, as MPMs may emerge simulta-
neously with the more common MZMs, time-periodic p-wave
superconductors have the potential to support more qubits
than their static counterparts under the same physical resource
[46–49]. In addition, there exists a way to geometrically braid
an MZM and an MPM in a strictly 1D setting [50,51], thus
bypassing the necessity for engineering a quasi-1D design that
may present a number of issues [52].

To our knowledge, all existing studies on time-periodic
p-wave superconductors and the corresponding formation of
MPMs assume mean-field treatment. The fate and quantum
computational abilities of Majorana modes in number-
conserving time-periodic p-wave superconductors have so
far remained unexplored. This paper thus aims to initiate
and stimulate studies along this direction. Our main findings
demonstrate that a generalization of both MZMs and MPMs
emerge in the number-conserving setting. Due to the simplic-
ity of the model under consideration, we are able to analyt-
ically derive the exact expressions for the generalized Majo-
rana modes under a semi-infinite geometry, and subsequently
derive the conditions under which they exist. In addition, we
manage to establish bulk-edge correspondence by analytically
defining and evaluating the appropriate topological invari-
ants under a closed geometry. Remarkably, we further show
numerically that braiding the obtained generalized Majorana
modes in a strictly 1D setup is possible, thus serving as a first
step towards harnessing their quantum computational power.

This paper is organized as follows. In Sec. II, we present
the main Hamiltonian analyzed in this paper, which describes
a number-conserving periodically driven p-wave supercon-
ductor, and we highlight the conserved number operator. We
then start our investigation with the time-independent version
of the Hamiltonian in Sec. II A, where we not only verify
the results of Ref. [37] both numerically and via a different
analytical method, but we also establish the topological nature
of the system by explicitly defining and computing an appro-
priate topological invariant. The full time-periodic version of
the Hamiltonian is then analyzed in Sec. II B, where we obtain
and topologically characterize a generalization of the MPMs
that may simultaneously coexist with generalized MZMs. In
Sec. II C, we discuss the effect of finite charging energy
on the previously obtained generalized Majorana modes. In
Sec. III A, we demonstrate the robustness of the generalized
Majorana modes against disorders, whereas the robustness of
the qubits they encode at finite charging energy is the subject
of Sec. III B. We further develop and explicitly execute a
braiding protocol between two generalized Majorana modes
in Sec. III C. Finally, we conclude this manuscript and present
potential future directions in Sec. IV.

II. NUMBER-CONSERVING PERIODICALLY DRIVEN
TOPOLOGICAL SUPERCONDUCTOR

We consider a number-conserving variation of a peri-
odically driven p-wave superconductor described by the
Hamiltonian

H (t ) =
L−1∑
j=1

(J (t )c†
j+1c j + �(t )eiφ̂c jc j+1 + H.c.)

+μ(t )

⎛
⎝ L∑

j=1

c†
j c j − L

2

⎞
⎠ + Ec(2n̂ − 2nc)2. (1)

It physically represents a one-dimensional (1D) fermionic
lattice in proximity to a bulk p-wave superconductor, in which
the degrees of freedom of both the 1D lattice and the su-
perconductor reservoir are taken into account [37]. There,
J (t ), μ(t ), and �(t ) are, respectively, the time-periodic hop-
ping, chemical potential, and p-wave superconducting pairing
strength, c j (c†

j ) is the fermionic annihilation (creation) op-
erator acting on site j, L is the system size, n̂ describes the
number operator of Cooper pairs on the reservoir, Ec is the
charging energy, nc is the reference number of Cooper pairs
in the reservoir, and eiφ̂ is the Cooper-pair creation operator,
which satisfies [n̂, eiφ̂] = eiφ̂ . In particular, Eq. (1) commutes
with the operator

M̂ =
L∑

j=1

c†
j c j + 2n̂, (2)

which counts the total number of particles in the lattice and
reservoir combined. In Secs. II A and II B, we analyze the
topological aspects of Eq. (1) in the special case of Ec = 0.
The effect of finite charging energy Ec will be elucidated in
Sec. II C.

A. Time-independent case

A time-independent version of Eq. (1), which has been
rigorously studied in Ref. [37], amounts to setting J (t ) = J0,
�(t ) = �0, and μ(t ) = μ0. In particular, by considering the
special case of μ0 = 0 and J0 = �0, the system’s Hamilto-
nian commutes with the two edge operators �̂A,1 ≡ eiφ̂c1 +
c†

1 and �̂B,L ≡ i(eiφ̂cL − c†
L ) [37], which could be regarded

as the number-conserving generalizations of MZMs in the
mean-field model. Indeed, by defining a set of mutually anti-
commuting operators �̂A, j ≡ eiφ̂c j + c†

j and �̂B, j ≡ i(eiφ̂c j −
c†

j ), Eq. (1) under these special parameters can be written in
the form

Hstat = −
L−1∑
j=1

J0i�̂†
A, j+1�̂B, j . (3)

As �̂A,1 and �̂B,L are absent in Eq. (3), they commute with
and are thus zero modes of Hstat. Reference [37] further shows
that within a fixed total number of particles, i.e., M̂ = M, the
system’s ground state is well-gapped from the excited states.

In this subsection, we develop an alternative framework to
verify these findings. Our framework has the advantage of
clearly demonstrating the topological nature of the obtained
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zero modes. Moreover, the same framework could be easily
adapted to investigate the presence of similar generalized Ma-
jorana edge modes in the more general time-periodic case,
which will be the subject of the next subsection. We start
by writing Eq. (1) in a Bogoliubov–de Gennes (BdG) -like
form as

H = 1
2ψ†Hψ, (4)

where ψ = (c1, c2, . . . , cN , c†
1, . . . , c†

N )T is the Nambu vector.
The infinite-dimensional BdG matrix H can be written as

H = J0σzηx + i�0(e−iφ̂σ+ − eiφ̂σ−)ηy + μ0σzη0, (5)

where σx/y/z are the usual Pauli matrices, σ± = σx ± iσy, and
η0 and ηx/y are N × N matrices acting on the lattice site de-
gree of freedom, which, respectively, act as identity, [ηx] j, j′ =
δ j+1, j′ + δ j−1, j′ , and [ηy] j, j′ = −iδ j+1, j′ + iδ j−1, j′ .

In the same spirit of the mean-field case, the energy
excitation spectrum of our number-conserving model
can be obtained by diagonalizing Eq. (5). In particular,
generalized MZMs (gMZMs) are obtained from the zero
eigenvalue solutions of H that are localized near one of the
system ends. As detailed in Appendix A, in the special case
J0 = �0, gMZMs exist whenever |μ| < |2J0| and they are
approximately given by

�̂L ≈
L∑

j=1

(
− μ0

2J0

) j−1

�̂A, j,

�̂R ≈
L∑

j=1

(
− μ0

2J0

) j−1

�̂B,L− j+1, (6)

which become exact in the limit L → ∞. In particular, at
μ0 = 0, �̂L and �̂R, respectively, reduce to �̂A,1 and �̂B,L

correctly. It is worth noting that, unlike MZMs that emerge
in the mean-field model, the gMZMs �̂L and �̂R are not
Hermitian and are thus not Majorana operators. However, as
discussed in Sec. III B, such gMZMs could still be utilized to
encode a nonlocal qubit in the same spirit of true MZMs.

The topological nature of the above-obtained gMZMs
could also be uncovered by analyzing the system’s symme-
try and defining an appropriate topological invariant. Under
periodic boundary conditions (PBCs), we may further write

H =
∑

k

1

2
ψ

†
k Hkψk, (7)

where ψk = (ck, c†
−k )T and Hk is obtained from Eq. (5) under

the replacement of ηx → 2 cos(k) and ηy → 2i sin(k). It is
then easily verified that the system respects the particle-hole
symmetry PHkP† = −H−k , where P = Kσx and K is the
complex conjugation operator. The system also respects two
chiral symmetries C1HkC†

1 = −Hk and C2HkC†
2 = −Hk with

C1 = 
xσy and C2 = 
yσx, where 
x and 
y are operators
acting on the Cooper-pair subspace that are explicitly given
by (in the Cooper-pair number basis) [53]

[
x]ab = δ1−a,b,

[
y]ab = (−i)2b−1δ1−a,b. (8)

In particular, 
x and 
y are defined as the infinite-
dimensional generalizations of the Pauli matrices, which
are simultaneously Hermitian, unitary, and squaring to
identity. Moreover, they anticommute with each other and
satisfy the commutation relations (as verified in Appendix B)

x cos φ̂
x = −
y cos φ̂
y = cos φ̂ and −
x sin φ̂
x =

y sin φ̂
y = sin φ̂. The system consequently also
respects two time-reversal symmetries T1HkT †

1 = H−k and
T2HkT †

2 = H−k with T1 = PC1 and T2 = PC2. This places
the system in class BDI of Altland-Zirnbauer symmetry
classification [54], whose topology is determined by a Z
invariant.

A suitable Z invariant for our system can be constructed
by first writing the matrix representation for Hk in the basis
where C1 is diagonal. In this case, Hk also takes the antidiag-
onal form

Hk →
(

0 W
W† 0

)
, (9)

from which we can define the normalized winding number as

w = 1

2π iTr(Ic)

∮
Tr

(
W−1dW

)
, (10)

where Ic is the identity in the Cooper-pairs subspace. Here,
the division over Tr(Ic) is considered to avoid the possible
infinity value arising from Tr(W−1dW ), i.e., the trace is taken
over the infinite-dimensional Cooper-pairs subspace. As de-
tailed in Appendix C, the normalized winding number above
can be written in the form

w =
∑
s=±

1

4π i

∮
1

zs + μ0
dzs, (11)

where z± = 2J0 cos(k) ± i2�0 sin(k). Using the residue the-
orem, it then follows that the integration is only nonzero if
μ0 lies inside the loop enclosed by z± in the complex plane,
which occurs whenever |2J0| > |μ0|. Therefore, at |2J0| <

|μ0|, w = 0 and consequently the system is topologically
trivial. At |2J0| > |μ0|, w = ±1, rendering the system topo-
logically nontrivial with a pair of gMZMs. This analysis thus
confirms the topological origin of the above-obtained gMZMs
and is summarized in the phase diagram of Fig. 1(a). It is
worth mentioning that the definition of w above takes into
account all possible values of the conserved quantity M̂. Con-
sequently, the calculated Z invariant and the corresponding
phase diagram in Fig. 1(a) completely describe the whole
system and are not restricted to a specific value of M.

Finally, to verify that gMZMs are well-gapped from the
rest of the bulk energy excitations, we numerically plot the full
energy excitation spectrum of our number-conserving system
in Fig. 1(b). There, each data point implies the existence of
an energy excitation operator �E which maps any energy
eigenstate |ε〉 to some |ε + E〉 that is shifted in energy by E .
In particular, zero-energy excitation solutions correspond to
the presence of gMZMs. In the present Ec = 0 case, we find
that such zero solutions, if they exist, are infinitely degenerate
instead of being twofold degenerate as in their mean-field
counterpart. The reason for this is because in the number-
conserving setting, a gMZM could map any energy eigenstate
|ε〉 corresponding to a value of M to another eigenstate of the

245153-3



RADITYA WEDA BOMANTARA PHYSICAL REVIEW B 108, 245153 (2023)

FIG. 1. (a), (c) The phase diagram of our number-conserving
p-wave superconductors from calculating the appropriate normal-
ized winding numbers under (a) static parameters J0 = �0 = J and
μ0 = μ, and (c) time-periodic parameters of Sec. II B. (b) The en-
ergy excitation spectrum of the static number-conserving p-wave
superconducting system discussed in Sec. II A. (d) The quasienergy
excitation spectrum of the periodically driven number-conserving
p-wave superconductor discussed in Sec. II B, at a fixed JT = �T =
0.2π (left subpanel) and JT = �T = 0.8π (right subpanel). In panel
(c), the red and black horizontal lines show the parameters used
in panel (d). In panels (b) and (d), the system size is taken as
L = 15, Ec = 0, and the Cooper-pairs degree of freedom is truncated
at nmin = −10 and nmax = 10.

same energy but of M + (2n + 1) value for any n ∈ Z, thus
generalizing the ability of an MZM in the mean-field model
to connect two degenerate energy eigenstates with opposite
parity eigenvalues. Finally, note that at μ = 0, we find that
the gap between the gMZMs and other bulk modes is J , which
agrees with the finding of Ref. [37].

B. Time-periodic case

The mean-field version of Eq. (1) in its general time-
periodic form has been extensively studied since the past
decade, the main interest of which lies in the presence of
MPMs that have no static counterparts [38–42]. The ad-
vantages of utilizing MPMs for quantum computation have
further been uncovered in recent years [46–51]. Due to the
lack of existing studies, the fate of these MPMs in the
number-conserving description of periodically driven topo-
logical superconductors has remained unknown and will be
the subject of this section.

For simplicity, we take a binary drive throughout this work
under which μ(t ) = 0, J (t ) = J , and �(t ) = � in the first
half of the period, while μ(t ) = μ, J (t ) = �(t ) = 0 in the
second half of the period. We further denote T as the driving
period and work in units where h̄ = 1. In such a time-periodic
system, we define the Floquet operator as the one-period time
evolution operator

UT = T exp

(
−i

∫ T

0
H (t )dt

)
, (12)

where T is the time-ordering operator. Any eigenvalue of
UT can be written in the form e−iεT , where ε is termed the
quasienergy due to its analogy with the notion of energy in
static systems. The eigenstates of UT are consequently also
termed the quasienergy eigenstates [55,56].

We may write the system’s Floquet operator in BdG
form as

UT = exp
(−i 1

2ψ†HeffT ψ
)
, (13)

where the effective BdG Hamiltonian can be found from the
BdG Floquet operator

UT ≡ e−iHeff T

= e−iμσzη0T/2e−i[Jσzηx+i�(e−iφ̂σ+−eiφ̂σ− )ηy]T/2. (14)

In this case, the quasienergies of the BdG Floquet operator
UT form the quasienergy excitation spectrum of the system.
In particular, a quasienergy excitation solution ε implies the
presence of an operator �ε which maps any quasienergy
eigenstate |ε〉 to some |ε + ε〉 that is shifted in quasienergy
by ε. In analogy to its mean-field counterpart, we expect
gMZMs to emerge as edge-localized zero quasienergy ex-
citations, whereas the number-conserving analogs of MPMs
are expected to instead arise as π/T quasienergy excitation
solutions.

Under PBC, the system’s Floquet operator can further be
written as

UT = exp

(
−i

∑
k

1

2
ψ

†
k Hk,eff T ψk

)
, (15)

where the momentum space effective BdG Hamiltonian Hk,eff

can be found from the corresponding momentum space BdG
Floquet operator, which in the symmetric time frame [48,57]
takes the form

Uk,sym = e−iμσz
T
4 e−i

[
2J cos(k)σz−2� sin(k)(e−iφ̂σ+−eiφ̂σ−)

]
T
2 e−iμσz

T
4 .

(16)

It is easily verified that the system respects particle-hole,
two chiral, and two time-reversal symmetries under the
same operators defined in the previous section. In the
time-periodic setting, these symmetries read PHk,t,symP† =
−H−k,t,sym, C1Hk,t,symC†

1 = C2Hk,t,symC†
2 = −Hk,T −t,sym, and

T1Hk,t,symT †
1 = T2Hk,t,symT †

2 = H−k,T −t,sym, where Hk,t,sym

is the time-periodic BdG Hamiltonian that generates Uk,sym

over one period. The system thus also belongs to the BDI class
in the classification of Floquet topological phases [58], which
is characterized by a Z × Z invariant.

As detailed in Appendix D, two types of normalized wind-
ing number invariants w0 and wπ could be defined from the
half-period BdG time-evolution operator in the symmetric
time frame and in the basis where C1 is diagonal. At J = �,
these invariants are found as (see Appendix D)

w0 =
∑
s=±

1

4π i

∮
1

zs,0 + cos(JT/2) sin(μT/4)
dzs,0, (17)

wπ =
∑
s=±

1

4π i

∮
1

zs,π + cos(JT/2) cos(μT/4)
dzs,π , (18)
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which, respectively, determine the number of pairs of
gMZMs and generalized MPMs (gMPMs). There, z±,0 =
e±ik cos(μT/4) sin(JT/2) and z±,π = e±ik sin(μT/4)
sin(JT/2). Using the residue theorem, it then follows
that w0 = ±1 if | tan(μT/4)| < | tan(JT/2)| and w0 = 0
otherwise, while wπ = ±1 if | tan(μT/4)| > | cot(JT/2)|
and wπ = 0 otherwise. In the regime (μT, 2JT ) =
(0, 2π ] × (0, 2π ], which will be assumed throughout the
rest of this paper, gMZMs (gMPMs) exist whenever μ < 2J
(μ > 2π/T − 2J). In particular, gMZMs and gMPMs can
both coexist if both conditions are satisfied simultaneously.
This leads to a phase diagram shown in Fig. 1(c). It is worth
noting that such a phase diagram is identical to that of the
mean-field p-wave superconductor [42], further highlighting
the correspondence between the gMZMs and gMPMs in our
number-conserving system and their true Majorana mode
counterparts. Moreover, as the definitions of w0 and wπ in
Appendix E involve all values of M, the above conclusion
holds generally and not only at specific values of M. In the
following, we will further present the exact expressions for
gMZMs and/or gMPMs at three special points.

(i) μ = 0 case: Equation (14) then becomes equivalent to
the time-evolution under Eq. (3), which is known to support
gMZMs of the form �̂A,1 and �̂B,L as defined in Sec. II A.

(ii) μT = 2π case: We may first write

UT = e− ∑
j iπc†

j c jUs, (19)

where Us = e−iHstatT/2 is the time evolution under Eq. (3). It
then follows that [Us, �̂A,1] = [Us, �̂B,L] = 0 as �̂A,1 and �̂B,L

are gMZMs of Hstat. Meanwhile, by using the identity

e
∑

j iθc†
j c j c je

− ∑
j iθc†

j c j = e−iθ c j, (20)

it is easily checked that e
∑

j iπc†
j c j �̂A,1e− ∑

j iπc†
j c j = −�̂A,1 and

e
∑

j iπc†
j c j �̂B,Le− ∑

j iπc†
j c j = −�̂B,L. Consequently, �̂A,1 and

�̂B,L are both gMPMs of the system with U †
T �̂A,1UT = −�̂A,1

and U †
T �̂B,LUT = −�̂B,L.

(iii) μT = JT = π case: The Floquet operator reads

UT = e− ∑
j iπ/2c†

j c j e− ∑
j π/2�̂

†
A, j+1�̂B, j , (21)

where the operators �̂A, j and �̂B, j are as defined in Sec. II A.
As shown in Appendix E, the following identities hold:

uθ �̂A,�+1u†
θ = cos(2θ )�̂A,�+1 − sin(2θ )�̂B,�,

uθ �̂
†
B,�u†

θ = cos(2θ )�̂†
B,� + sin(2θ )�̂†

A,�+1, (22)

where uθ = e
∑

j θ�̂
†
A, j+1�̂B, j , � = 1, . . . , L − 1 (�̂A,1 and �̂B,L

commute with uθ ). Together with Eq. (20), this leads to

U †
T �̂A,1UT = −�̂B,1,

U †
T �̂B,1UT = −�̂A,1. (23)

In particular, �̂±,1 ≡ �̂A,1 ± �̂B,1 satisfy U †
T �̂±,1UT = ∓�̂±,1.

That is, �̂+,1 and �̂−,1 are, respectively, the system’s gMPMs
and gMZMs localized near the left end. In a similar fashion,
it can be shown that �̂+,L and �̂−,L are, respectively, the
system’s gMZMs and gMPMs localized near the right end.

Finally, to support our analytical results above, we plot in
Fig. 1(d) the quasienergy excitation spectra of our system at

two fixed parameter J = � values, one of which supports a
regime with coexisting gMZMs and gMPMs. As expected,
the presence of gMZMs and gMPMs agrees with the phase
diagram of Fig. 1(c). Moreover, such gMZMs and gMPMs
are well-gapped from the bulk modes.

C. Effect of finite charging energy

It is convenient to write the charging energy term as
Ec(2n̂ − 2nc)2 = ψ† Ec

L (2n̂ − 2nc)2ψ , where ψ is the Nambu
vector defined in Sec. II A. Indeed, by using the fermionic
anticommutation relation {c†

j , c j} = 1, it is easily verified that
ψ†ψ = L, thus justifying the above equality. In this case,
Eq. (1) can be written in the BdG-like form as

H (t ) = 1

2
ψ†H(t )ψ,

H(t ) = J (t )σzηx + i�(t )(e−iφ̂σ+ − eiφ̂σ−)ηy + μ(t )σzη0

+2Ec

L
(2n̂ − 2nc)2σ0η0, (24)

where σ0 is the 2 × 2 identity matrix and the other matrices
are the same as those defined in Sec. II A.

By first focusing on the time-independent case with J (t ) =
J0, �(t ) = �0, and μ(t ) = μ0, it follows that the presence
of the charging energy term breaks the two chiral symme-
tries C1 and C2 identified in Sec. II A. Consequently, it is
expected that the previously identified gMZMs, if they re-
main present, are generally no longer pinned at zero energy.
Indeed, at μ0 = 0 and �0 = J0, the energy shift associated
with the gMZM solutions �̂A,1 and �̂B,L can be estimated
via applying the first-order perturbation theory in Ec with
respect to |A, 1〉 ≡ (eiφ̂ , 0, . . . , 1, · · ·, 0)/

√
2 and |B, L〉 ≡

i(0, . . . , eiφ̂ , 0, . . . ,−1)/
√

2 states in the Nambu basis. In
both cases, we find

�En ≈ 〈Ec(2n̂ − 2nc)2σ0η0〉
= 4Ec

L
[(n − nc)2 + (n − (nc − 1))2], (25)

where n is the number of Cooper pairs. In particular, the
dependence of the energy shift on n implies that the charg-
ing energy term breaks the infinite degeneracy of gMZMs
discussed in Sec. II A in the Cooper-pairs subspace at zero
energy into twofold degeneracy at �En, each comprised of
a left-edge localized and a right-edge localized generalized
Majorana mode. To support these results, we numerically
compute the energy spectrum of the BdG-like Hamiltonian
in Figs. 2(a) and 2(b) as a function of Ec without making
a first-order approximation. In particular, the linear relation
between the energy excitations of gMZMs and Ec shown in
Fig. 2(b) agrees very well with Eq. (25). Moving on to the
time-periodic case, we take the same driving scheme as that in
Sec. II B. The system’s BdG Floquet operator can be written
explicitly as

UT = e−i(μσz+ 2Ec
L (2n̂−2nc )2σ0 )η0T/2

× e−i[Jσzηx+i�(e−iφ̂σ+−eiφ̂σ− )ηy+ 2Ec
L (2n̂−2nc )2σ0η0]T/2. (26)

Similarly to the time-independent case above, the presence of
the charging energy term breaks the two chiral symmetries
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FIG. 2. (a) The energy excitation spectrum of the static number-conserving p-wave superconductor in the presence of charging energy at
J = � = 1, μ = 0. Panel (b) is the zoomed-in version of panel (a) in the vicinity of zero energy. (c), (f) The quasienergy excitation spectrum
of the periodically driven p-wave superconductor in the presence of charging energy, under parameter values that support (c) both gMZMs
and gMPMs at JT = �T = μT = π , and nc = 0, and (d) gMPMs only at JT = �T = π/2, μT = 2π . Panels (d) and (g) are, respectively,
the zoomed-in version of panels (c) and (f) in the vicinity of −π/T quasienergy. Panel (e) is the zoomed-in version of panel (c) in the vicinity
of zero quasienergy. In all panels, green and red marks, respectively, represent solutions that are localized near the left and right ends of the
system. The system size is taken as L = 15, nc = 0, and the Cooper-pairs degree of freedom is truncated at nmin = −10 and nmax = 10.

C1 and C2 of Sec. II B, thus shifting the existing gMZMs
and gMPMs in quasienergy away from zero and ±π/T ,
respectively.

At JT = �T = μT = π , our analysis in Sec. II B shows
that the system supports a pair of gMPMs as �̂+,1 and
�̂−,L and a pair of gMZMs as �̂−,1 and �̂+,L. The shift
in quasienergy of the above gMZMs and gMPMs away
from zero and ±π/T , respectively, can be obtained pertur-
batively up to first order in Ec with respect to the BdG
states |±, 1〉 = e±iπ/4√

2
(1, 0, . . . ,∓ie−iφ̂ , . . . , 0) and |±, L〉 =

e±iπ/4√
2

(0, 0, . . . , 1, 0, . . . ,∓ie−iφ̂ ). In all cases, we find that

�ε(gMZM)
n = �ε(gMPM)

n = �En mod 2π/T, (27)

where ε
(gMZM)
n (ε(gMPM)

n ) is the shift in quasienergy of the
gMZMs (gMPMs), �En is given by Eq. (25), and the modulus
of 2π/T exists to account for the fact that quasienergy is only
defined within (−π/T, π/T ].

At J = � and μT = 2π , our analysis in Sec. II B shows
that the system only supports a pair of gMPMs as �̂A,1 and
�̂B,L, which, respectively, correspond to the BdG states |A, 1〉
and |B, L〉. Up to first order in Ec, both gMPMs then ac-
quire a shift in quasienergy away from ±π/T by �εn =
�En mod 2π/T , where �En is given by Eq. (25). This result
is confirmed numerically in Figs. 2(f) and 2(g).

III. QUANTUM COMPUTING PROSPECTS
OF GMZMS AND GMPMS

A. Robustness against spatial disorders

Any realistic system is inherently imperfect. Spatial
disorders are some of the most ubiquitous sources of imper-
fection that could result, e.g., from our inability to fine-tune
system parameters and/or from the presence of impurities in
the systems. It is widely known that MZMs and MPMs in
the mean-field description of periodically driven topological

superconductors are robust against such disorders. This is one
of the most important features that makes Majorana-based
qubits incredibly attractive. Whether gMZMs and gMPMs
in the number-conserving periodically driven topological su-
perconductors also enjoy the same robustness against spatial
disorders has, however, remained unexplored, thus obscuring
their potential quantum computing advantages. It is natural to
expect that gMZMs and gMPMs should be similarly resilient
against disorders due to the presence of protecting topological
invariants, provided such disorders do not accidentally close
the bulk gap. If such an accidental bulk gap closing occurs, a
topological phase transition may take place, which ultimately
leads to the destruction of gMZMs and gMPMs. To rule out
this possibility, studying the effect of disorder on the above-
obtained gMZMs and gMPMs is of great importance.

In view of the above, we explicitly investigate the presence
of spatial disorders in our system of Eq. (1) by replac-
ing the system parameters J (t ) → Jj (t ), �(t ) → � j (t ), and
μ(t ) → μ j (t ) (we set Ec = 0 for simplicity). In Fig. 3(a), we
plot the disorder-averaged energy excitation spectrum of our
static number-conserving p-wave superconductor described in
Sec. II A. There, the parameters J0, j , �0, j , and μ0, j are drawn
uniformly from [P − W P, P + W P], where P ∈ {J0,�0, μ0}
is the associated system parameter introduced in Sec. II A, and
W is the disorder strength. In Fig. 3(b), we further plot the
disorder-averaged quasienergy spectrum of our periodically
driven system described in Sec. II B. There the parameters
are drawn uniformly from [P − W P, P + W P], where P ∈
{J,�,μ} is the associated system parameter introduced in
Sec. II B, and W is the disorder strength. Our results demon-
strate that gMZMs and gMPMs are indeed robust against
small to moderate spatial disorders. In particular, not only
do they remain present at finite disorders, but they are also
pinned at their expected quasienergies (0 for gMZMs and
π/T for gMPMs). These modes only disappear or lose their
topological protection at a very large disorder, which results
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FIG. 3. (a) The disorder-averaged energy excitation spectrum of
the static system in Sec. II A at J0 = �0 = 0.4π and μ0 = 0.5π .
(b) The disorder-averaged quasienergy excitation spectrum of the
periodically driven system in Sec. II B at JT = �T = 0.8π and
μT = π . All data points are taken at Ec = 0, L = 15, by truncating
the Cooper-pairs degree of freedom at nmin = −10 and nmax = 10,
and by averaging over 100 disorder realizations.

in a bulk gap closing. However, as shown in Fig. 3, this only
occurs at disorder strengths � 25% of the system parameter
values, which are easily avoided in experiments.

B. Robustness against finite charging energy

In Sec. II C, we have shown that at finite charging en-
ergy, the generalized Majorana modes of number-conserving
p-wave superconductors remain present, but they are shifted
from zero energy (zero or π/T quasienergy) in the static
(time-periodic) case. A natural question then arises in regard
to the impact of such a shift in energy/quasienergy on their
ability to store and process qubits.

To address the above question, we analyze the generalized
Majorana parity P1,2 = i�̂†

1�̂2 associated with two generalized
Majorana modes �̂1 and �̂2. In the static case when �̂1 and
�̂2 are necessarily gMZMs, such a parity operator satisfies
[H, P1,2] = 0, which implies that all eigenenergies of H can
be arranged according to the ±1 eigenvalues of P1,2. In the
absence of the charging energy, we additionally have that
[H, �̂1] = [H, �̂2] = 0. Due to the anticommutation relation

{P1,2, �̂1} = {P1,2, �̂2} = 0, (28)

the operators P1,2, �̂1, and �̂2 cannot all be simultaneously
diagonalized. Therefore, given an energy eigenstate |E ,+〉
that satisfies H |E ,+〉 = E |E ,+〉 and P1,2|E ,+〉 = +|E ,+〉,
the corresponding state �̂1|E ,+〉 is easily shown to satisfy
H �̂1|E ,+〉 = E �̂1|E ,+〉 and P1,2�̂1|E ,+〉 = −�̂1|E ,+〉.
That is, �̂1|E ,+〉 represents another energy eigenstate of
the same E but of opposite −1 parity eigenvalue. As this
is true for any energy eigenstate of H , it follows that all
energy eigenvalues of H are at least twofold-degenerate.
Similar to its mean-field counterpart, any of these degenerate
energy subspaces may in turn be utilized to store a qubit.
In particular, as the degenerate subspace is characterized by
an inherently nonlocal operator P1,2, the encoded qubit is
expected to be very robust.

At finite charging energy, H no longer commutes with �̂1

and �̂2. However, if H still manages to commute with P1,2, its
energy eigenvalues could still be labeled by the eigenvalue of
P1,2. Moreover, as the anticommutation relation Eq. (28) still
holds, it follows that �̂1|E ,+〉 = |E ′,−〉, but with E �= E ′ in
general. Therefore, one may in principle encode a qubit in

the (nondegenerate) subspace spanned by |E ,+〉 and |E ′,−〉,
which is also expected to enjoy the topological robustness due
to the nonlocality of the parity operator P1,2.

While a nonlocal qubit could still be encoded with two
gMZMs at finite charging energy, the use of nondegenerate
subspace might make the resulting qubit more prone to de-
phasing. Fortunately, one may recover the degeneracy of the
nonlocal qubit subspace by utilizing at least four gMZMs, e.g.,
�̂1, �̂2, �̂3, and �̂4, and requiring that [H, P1,2] = [H, P1,3] =
0. Indeed, as {P1,2, P1,3} = 0, the three operators H , P1,2, and
P1,3 cannot be simultaneously diagonalized. By choosing to
simultaneously diagonalize H and P1,2, the remaining P1,3 op-
erator then guarantees that all eigenenergies of H are at least
twofold-degenerate, as P1,3|E ,±〉 ∝ |E ,∓〉, where |E ,±〉 is
the energy E eigenstate of H associated with P1,2 = ±1 eigen-
value. In this case, P1,2 and P1,3 serve as the effective Pauli
matrices σz and σx in the degenerate qubit subspace.

The above argument demonstrates that the preservation of
zero commutator between the system’s Hamiltonian and the
parity operators is crucial for the ability of gMZMs to form a
nonlocal qubit subspace. We will now show that this is indeed
the case for our number-conserving p-wave superconductors,
even at finite charging energy. To this end, we first define the
zero-energy excitation spectral function s

(Pi, j )
0 associated with

the parity operator Pi, j as [59–62]

s
(Pi, j )
0 = 1

N (Pi, j )

∑
|E〉∈χ

∫ δ

−δ

S(Pi, j )(|E〉, η)dη,

N (Pi, j ) =
∑
|E〉∈χ

∫ ∞

−∞
S(Pi, j )(|E〉, η)dη,

S(Pi, j )(|E〉, η) =
∑

|E ′〉∈H
δ(E − E ′ − η)|〈E ′|Pi, j |E〉|2, (29)

where δ is a sufficiently small number in units of energy, H is
the set of all eigenstates of the system’s Hamiltonian, and χ ∈
H contains a smaller number (taken as 32 in this manuscript)
of the system’s randomly chosen energy eigenstates.

Note that s
(Pi, j )
0 = 1 if [Pi, j, H] = 0. In general, Pi, j may

not commute exactly with H due to the finite system size.
However, it is expected that s

(Pi, j )
0 is still close to unity as

long as Pi, j approximately commutes with H . For our static
number-conserving p-wave superconductor of Sec. II A, we
define the relevant parity operator as PL,R = i�̂†

L�̂R. Here, the
gMZMs �̂L and �̂R at finite charging energy are obtained by
adiabatically evolving Eq. (6) as Ec is slowly increased from
0. In Fig. 4, it is indeed verified that s(PL,R )

0 is very close to
1 for all values of Ec under consideration. This result thus
demonstrates the robustness of the nonlocal qubit subspace in
the presence of the charging energy even though its gMZM
constituents are shifted in energy. A similar analysis will
now be repeated to demonstrate the robustness of the nonlocal
qubit subspace formed by the gMZMs and gMPMs of our
periodically driven p-wave superconductor of Sec. II B at a
finite charging energy. To this end, we first note that Eq. (28)
is satisfied regardless of whether �̂1 and �̂2 are gMZMs or
gMPMs. By further requiring that [UT , P1,2] = 0, the same
argument above then implies that a qubit subspace spanned by
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FIG. 4. (a) The spectral function s
(PL,R )
0 for the static number-

conserving p-wave superconductor of Sec. II A at J0 = �0 = 1 and
μ0 = 0. (b)–(d) The spectral functions for the periodically driven
number-conserving p-wave superconductor of Sec. II B correspond-
ing to (b) s

(P(π,L),(π,R) )
0 , (c) s

(P(π,L),(0,L) )
π , and (d) s

(P(0,L),(π,R) )
π , at JT =

�T = μT = π . In all panels, nc = 0 and the Cooper-pairs degree
of freedom is truncated at nmin = −8 and nmax = 8.

some (generically nondegenerate) quasienergy states |ε,+〉
and |ε′,−〉 ∝ �̂1|ε,+〉.

A scenario of interest in our periodically driven p-wave
superconductor involves the presence of two gMZMs �̂0,L and
�̂0,R and two gMPMs �̂π,L and �̂π,R [see the gray region of
Fig. 1(c)]. In this case, two types of generalized Majorana
parity operators can be defined, e.g., P(π,L),(π,R) = i�̂†

π,L�̂π,R

and P(0,L),(π,L) = i�̂†
0,L�̂π,L, which satisfy [UT , P(π,L),(π,R)] =

0 and {UT , P(0,L),(π,L)} = 0. The additional parity operator
which anticommutes with the Floquet operator implies that
the quasienergies ε and ε′ spanning the qubit subspace have a
difference of π/T . Consequently, the qubit subspace is effec-
tively degenerate when viewed by U 2

T . It is then expected that
performing a stroboscopic quantum computing—in which
gate operations and measurements are executed at discrete
times that are integer multiples of 2T —on such a qubit sub-
space will yield the same advantage as that on a typical static
degenerate qubit subspace. Here, the use of periodic driving
has the advantage of reducing the physical resource needed
to support four generalized Majorana modes, i.e., due to the
presence of gMPMs.

In view of the above, we will now numerically check
that the appropriate generalized parity operators tend to
commute/anticommute with the Floquet operator even at fi-
nite charging energy. To this end, we now define two sets of
spectral functions:

s
(Pi, j )
0 =

∑
|ε〉∈χ

∑
n=0,±1

∫ 2πn/T +δ

2πn/T −δ

S(Pi, j )(|ε〉, η)

N (Pi, j )
dη,

s
(Pi, j )
π =

∑
|ε〉∈χ

∑
n=±1

∫ πn/T +δ

πn/T −δ

S(Pi, j )(|ε〉, η)

N (Pi, j )
dη, (30)

where δ is a sufficiently small number in units of quasienergy,
S(Pi, j )(|ε〉, η) is as defined in Eq. (29), but with H being

the set of all quasienergy eigenstates, χ ∈ H contains a
smaller number (taken as 32 in this manuscript) of the sys-
tem’s randomly chosen quasienergy eigenstates, and N (Pi, j ) =∑

|ε〉∈χ

∫ π/T
−π/T S(Pi, j )(|ε〉, η)dη is the normalization constant.

The difference in the integration limit between Eqs. (29)
and (30) is to account for the fact that the quasienergies are
only defined modulo 2π/T . Note that s

(Pi, j )
0 = 1 if [UT , Pi, j] =

0 and s
(Pi, j )
π = 1 if {UT , Pi, j} = 0. In Figs. 4(b)–4(d), we plot

the appropriate spectral functions for three generalized Ma-
jorana parity operators as a function of the charging energy.
Observe that the spectral function s0 associated with a parity
that is made up of two gMPMs [panel (b)] remains very close
to 1 for all charging energy values under consideration. A
very qualitatively similar profile is obtained for the parity
made up of two gMZMs (not shown in the figure). These
results show that generalized Majorana parity operators made
up of two gMZMs or two gMPMs effectively commute with
the Floquet operator as expected, even at finite charging en-
ergy. For the two generalized Majorana parity operators made
up of one gMZM and one gMPM [panels (c) and (d)], the
spectral function sπ is still finite, albeit not very close to
unity. However, it is clearly observed that sπ moves closer
towards unity with an increase in the system size. In the
thermodynamic limit, it is then expected that sπ → 1 and,
consequently, the associated parities anticommute with UT .
These results demonstrate the robustness of the qubit subspace
in static and periodically driven number-conserving p-wave
superconductors in the presence of charging energy.

C. Braiding simulation between a gMZM and a gMPM

To fully demonstrate the quantum computing abilities of
gMZMs and gMPMs in a number-conserving periodically
driven topological superconductor, we explicitly design and
execute a braiding between a gMZM and a gMPM in our
system. To this end, we adapt the braiding scheme developed
in [50], which will be elaborated in the following.

We first consider the special parameter values of (iii)
considered in Sec. II B, under which our number-conserving
periodically driven p-wave superconductor supports �̂+,1 and
�̂−,1 as a gMZM and a gMPM, respectively. In this case, the
system’s Hamiltonian over one period can be written as

H (t ) =
⎧⎨
⎩

H1 ≡ −i
∑L−1

j=1
π
T �̂

†
A, j+1�̂B, j for 0 < t

T � 1
2 ,

H2 ≡ ∑L−1
j=1

π
T c†

j c j for 1
2 < t

T � 1.

(31)

Our braiding scheme consists of six steps and involves slowly
changing H1 at every other period while keeping H2 the same.
Specifically, at step x = 1, . . . , 6 in our scheme, we take
Hx(s) = sH1,x+1 + (1 − s)H1,x, where s = j

τ
when 2 jT <

t � 2( j + 1)T , j = 0, 1, . . . , τ so that t f = 2(τ + 1)T is the
total time to complete one step,

H1,1 = H1,4 = H1,7 = H1,

H1,2 = H1,5 , H1,3 = H1,6, (32)
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FIG. 5. (a) Schematic of our six steps braiding scheme in the generalized Majorana representation of our number-conserving periodically
driven p-wave superconductor. The generalized Majorana operators �̂A, j and �̂B, j are represented by dotted and solid circles, respectively. The
red and green filled circles represent the components of the left gMZM/gMPM that is being braided. The solid (dashed) lines represent the
term appearing in H1 (H2) of Eq. (31). (b), (c) The “super”-fidelities Fj (t ) defined in the main text [panel (b)] and the appropriate spectral
functions [panel (c)], plotted stroboscopically at every other period throughout our braiding protocol. In both panels, we take the truncation of
the Cooper-pairs degree of freedom at nmin = −9 and nmax = 9, L = 4, Ec = 0, and μT = JT = �T = π .

and

H1,2 = −i
π

T
(�̂†

A,1�̂B,2 − �̂
†
A,3�̂B,2) + H1,1,

H1,3 = −i
π

T
(�̂†

B,1�̂A,2 − �̂
†
A,3�̂A,2) + H1,2. (33)

In particular,

H1(s) = −i
π

T
[(1 − s)�†

A,3 + s�†
A,1]�B,2 + · · ·,

H2(s) = i
π

T
[(1 − s)�†

B,1 + s�†
A,3]�A,2 + · · ·,

H3(s) = −i
π

T
{(1 − s)(−�̂

†
A,3�̂A,2 + �̂

†
A,1�̂B,2)

+ s(�̂†
A,3�̂B,2 − �̂

†
B,1�̂A,2)} + · · ·. (34)

H4(s) = H1(s), H5(s) = H2(s), and H6(s) = H3(s). The ratio-
nale for varying the adiabatic parameter every other period
is to ensure that gMZMs and gMPMs become effectively
degenerate from the perspective of U 2

T , so that a non-Abelian
Berry phase could be accumulated to turn a gMZM into a
gMPM and vice versa [50].

It is easily verified that the left-edge localized gMZM and
gMPM during the first and second steps read

�̂
(1)
0 (s) = (1 − s)�̂+,1 − s�̂+,3,

�̂(1)
π (s) = (1 − s)�̂−,1 − s�̂−,3,

�̂
(2)
0 (s) = (1 − s)�̂+,3 + s�̂−,1,

�̂(2)
π (s) = (1 − s)�̂−,3 − s�̂+,1. (35)

Our braiding scheme will then turn �̂+,1 → −�̂+,3 → −�̂−,1

and �̂−,1 → −�̂−,3 → �̂+,1 by the end of step 2. Notice
that while �̂+,1 and �̂−,1 are essentially exchanged by the

end of step 2, the additional third step needs to be made to
bring the Hamiltonian back to its original form of Eq. (31).
However, we find that doing so also results in a nontriv-
ial non-Abelian Berry phase that further maps −�̂−,1 →
�̂+,1−�̂−,1√

2
and �̂+,1 → �̂+,1+�̂−,1√

2
. The same three steps are thus

repeated through steps 4–6 to yield the complete braiding, i.e.,
�̂+,1 → −�̂−,1 and �̂−,1 → �̂+,1 while returning the system
Hamiltonian back to Eq. (31). Our braiding scheme and the
evolution of its gMZM/gMPM are summarized in Fig. 5(a).
To numerically demonstrate the above braiding scheme in our
number-conserving setting, we evaluate two sets of metrics at
every other period during our braiding protocol. The first set
of such metrics is comprised of the “super”-fidelities,

F1(t ) ≡ 〈P(0,L),(0,R)(t )|P(0,L),(0,R)(0)〉〉,
F2(t ) ≡ 〈P(π,L),(π,R)(t )|P(π,L),(π,R)(0)〉〉,

(36)
F3(t ) ≡ 〈P(π,L),(π,R)(t )|P(0,L),(π,R)(0)〉〉,
F4(t ) ≡ 〈P(0,L),(0,R)(t )|P(π,L),(0,R)(0)〉〉,

where |P(α,L),(β,R)(t )〉 is a vector representation of the parity
P(α,L),(β,R)(t ). In particular, if the braiding process is suc-
cessful, it is expected that F1(0) = F2(0) = 1 and F1(t f ) =
F2(t f ) = 0, while F3(0)=F4(0)=0 and F3(t f ) = −F4(t f )=1,
as indeed demonstrated in Fig. 5(b).

The second set of metrics we evaluate is comprised of the
spectral functions sP(A,L),(A,R)

α (t ) with α = 0, π and A = 0, π ,
as defined in Sec. III B. Intuitively, the parities P(0,L),(0,R)

and P(π,L),(π,R) are both zero modes of the original Floquet
operator at the beginning. If the left-edge localized gMZM
and gMPM are then braided, these parities correspondingly
transform into P(π,L),(0,R) and P(0,L),(π,R), respectively, which
are both π modes of the Floquet operator. Therefore, if the

245153-9



RADITYA WEDA BOMANTARA PHYSICAL REVIEW B 108, 245153 (2023)

braiding process is successful, sP(A,L),(A,R)

0 (0) ≈ 1 and
sP(A,L),(A,R)
π (0) ≈ 0 for A = 0, π , while sP(A,L),(A,R)

0 (t f ) ≈ 0 and

sP(A,L),(A,R)
π (t f ) ≈ 1. This is exactly what we obtained in

Fig. 5(c).
The above results show that gMZMs and gMPMs can

be braided in a similar way to MZMs and MPMs in the
mean-field periodically driven topological superconductors.
As braiding forms a building block of topological quantum
gate operations, we thus conclude that gMZMs and gMPMs
found in the number-conserving periodically driven topolog-
ical superconductors could also be utilized for topological
quantum computing after appropriately defining their encoded
qubits from the corresponding generalized Majorana parity
operators.

IV. CONCLUSION

In this paper, we have investigated the formation of gen-
eralized Majorana modes both in static and periodically
driven p-wave superconductors. Similar to their mean-field
counterparts, such generalized Majorana modes are topolog-
ically protected by the appropriate winding numbers, which
are defined under PBCs. Indeed, we have verified that the
obtained generalized Majorana modes are robust against
moderate spatial disorders. Moreover, while the obtained gen-
eralized Majorana modes are no longer pinned at a specific
energy/quasienergy in the presence of charging energy, we
have demonstrated that the corresponding parity operators still
robustly display their expected commutation relations with
respect to the system’s Hamiltonian (in the static case) or
Floquet operator (in the time-periodic case). Consequently,
such generalized Majorana modes could still yield a nonlo-
cal qubit subspace that exhibits the same robustness as that
formed by true Majorana modes. Finally, we have numerically
shown that a gMZM and a gMPM emerging in our number-
conserving periodically driven p-wave superconductor could
be braided. This in turn opens up opportunities for manipulat-
ing nonlocal qubits via topologically protected quantum gates
in the number-conserving topological superconductors.

Throughout this work, we have assumed that the system’s
p-wave superconductivity arises from the proximity to an ex-
ternal bulk superconductor. It would be interesting to explore
a different scenario in which p-wave superconductivity arises
internally among the fermions in the semiconducting chain,
either alone or on top of the above proximitized p-wave su-
perconductivity. Beyond mean-field treatment, the presence of
such an internal p-wave superconductivity amounts to adding
an interacting term of the form

∑
j δc†

j+1c†
j c j+1c j + H.c. The

exploration of Majorana-like quasiparticles in such a system
and their characterization would then require machinery from
the timely field of interacting topological phases [63–71],
which will thus be left for future studies.

Having uncovered the emergence of gMZMs and gMPMs
in number-conserving periodically driven p-wave supercon-
ductors, a natural question to raise concerns how they are
affected by the presence of nontopological stray quasiparticles
in the bulk, which may arise due to finite temperature or
broadening effects. In particular, the topological and braid-
ing properties of MZMs and MPMs in mean-field p-wave

topological superconductors have been shown to be mostly
unaffected by the presence of such quasiparticles [72]. It is
expected that the analyses presented in Ref. [72] could be
adapted to the number-conserving case to similarly investi-
gate the fate of the above gMZMs and gMPMs. Such an
adaptation could be made, e.g., by replacing the additional
coupling term between MZMs/MPMs and a stray quasipar-
ticle of the form iδ(a + a†)γ0 [72] to a number-conserving
version iδ(a + e−iφ̂a†)�0, the details of which will be reserved
for a follow-up work.

While the presence of stray quasiparticles in the bulk will
likely not significantly affect the properties of gMZMs and
gMPMs, they could cause unwanted transitions outside the
logical subspace encoded by the gMZMs and gMPMs, and
they are consequently detrimental to the stored qubits. Such a
quasiparticle poisoning event has remained an open problem
in the area of topological quantum computing even within
the mean-field framework [15,73–76]. It leads to the finite
lifetime of the Majorana-based qubits, which is found to
be between 0.1 µs and 1 ms [77] for a typical mean-field
topological superconductor. In this case, obtaining the life-
time estimate of the generalized Majorana-based qubits in
number-conserving p-wave superconductors due to quasipar-
ticle poisoning would constitute a very interesting aspect to
pursue in the future.

To mitigate the effect of quasiparticle poisoning above,
many existing studies have been devoted to developing
quantum error-correction protocols that are compatible with
(mean-field) Majorana-based qubits [18–21]. In this case,
modifying and applying these existing protocols to a number-
conserving setting serves as a natural and important next step.
To this end, more comprehensive studies on the possibility for
braiding generalized Majorana modes by means of measure-
ments only (which are essential for executing many existing
quantum error-correction codes) might need to be carried out.
Within the topic of topological quantum computing, it would
also be fruitful to investigate the number-conserving version
of interacting topological superconductors, which were re-
cently proposed to host the more exotic parafermions [78–80].
Finally, the number-conserving variations of other popular
platforms that also support Majorana modes such as second-
order topological superconductors [53,81–85], non-Hermitian
topological superconductors [86–90], and square-root topo-
logical superconductors [91–95] are expected to be worth
exploring.
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APPENDIX A: ANALYTICAL DETERMINATION
OF GMZMS IN THE NUMBER-CONSERVING

TIME-INDEPENDENT P-WAVE SUPERCONDUCTOR

We look for a zero energy solution to the eigenvalue equa-
tion H|E〉 = E |E〉, i.e., a solution at E = 0, where H is
given by Eq. (5) in the main text. To this end, we expand
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|0〉 = ∑
j (Aj |↑〉| j〉 + Bj |↓〉| j〉), where | j〉 is a basis vector

representing the lattice site, and |↑/ ↓〉 is the basis vector
representing the particle-hole sector. Specifically, |↑/ ↓〉 is the
+1/ − 1 eigenvector of the σz operator, whereas | j〉 is affected
by the ηx and ηy operators as ηx| j〉 = | j − 1〉 + | j + 1〉 and
ηy| j〉 = −i| j − 1〉 + i| j + 1〉. Moreover, we assume a semi-
infinite system in which j = 1, 2, . . . ,∞.

By explicitly evaluating H|0〉 and equating the resulting
coefficient of each basis state |↑/ ↓〉| j〉 to zero, we obtain the
following set of equations:

0 = μ0A1 + J0A2 + J0e−iφ̂B2,

0 = −μ0e−iφ̂B1 − J0e−iφ̂B2 − J0A2, (A1)

and

0 = J0Aj−1 − J0e−iφ̂Bj−1 + μ0Aj + J0Aj+1 + J0e−iφ̂Bj+1,

0 = J0e−iφ̂Bj−1 − J0Aj−1 + μ0e−iφ̂Bj

+J0e−iφ̂Bj+1 + J0Aj+1 (A2)

for j > 1. By adding the two lines of Eq. (A1), we obtain

A1 − e−iφ̂B1 = 0. (A3)

By subtracting the second line from the first line of Eq. (A2),
as well as adding both lines of Eq. (A2), we further obtain,
respectively,

2J0(Aj − e−iφ̂Bj ) + μ0(Aj+1 − e−iφ̂Bj+1) = 0,

2J0(Aj+1 + e−iφ̂Bj+1) + μ0(Aj + e−iφ̂Bj ) = 0. (A4)

By plugging Eq. (A3) into the first line of Eq. (A4), we obtain
(Aj − e−iφ̂Bj ) = 0 for all j. On the other hand, repeatedly
applying the second line of Eq. (A4) gives

Aj+1 + e−iφ̂Bj+1 =
(

− μ0

2J0

) j

(A1 + e−iφ̂B1). (A5)

It then follows that

|0〉 =
∑

j

(
− μ0

2J0

) j

(|↑〉| j〉 + eiφ̂|↓〉| j〉). (A6)

Note that such a solution is only physical and thus exists only
if |μ0| < |2J0|, under which (− μ0

2J0
) j → 0 as j → ∞. Finally,

the corresponding gMZM can be obtained by identifying
|↑〉| j〉 → c†

j and |↓〉| j〉 → c j , in which case it reads

�̂L =
∞∑
j=1

(
− μ0

2J0

) j

(c†
j + eiφ̂c j ). (A7)

By considering another semi-infinite system with j =
−∞, . . . , L, the above procedure can be straightforwardly
repeated to obtain a gMZM localized near the right end, i.e.,

�̂R =
∞∑
j=1

i

(
− μ0

2J0

) j−1

(c†
L− j+1 − eiφ̂cL− j+1). (A8)

It is worth noting that in a finite system, the gMZMs ob-
tained from the above procedure are not exact zero-energy
excitations, as Eq. (A4) stops at some j. However, as the
commutators [H, �̂L] and [H, �̂R] can be shown to decay

exponentially with L, �̂L and �̂R serve as good approximate
gMZMs of the system. Finally, by recalling �̂A, j ≡ eiφ̂c j + c†

j

and �̂B, j ≡ i(eiφ̂c j − c†
j ) defined in Sec. II A, Eq. (6) in the

main text is obtained.

APPENDIX B: COMMUTATION RELATION BETWEEN φ̂

MATRICES AND THE COOPER-PAIRS OPERATORS

In the main text, we defined two infinite-dimensional ma-
trices acting on the Cooper-pairs subspace as

[
x]ab = δ1−a,b,

[
y]ab = (−i)2b−1δ1−a,b. (B1)

Meanwhile, by writing the Cooper-pairs operators as infinite-
dimensional matrices, we obtain

[cos φ̂]ab = δa,b+1 + δa,b−1,

[sin φ̂]ab = i(δa,b+1 − δa,b−1). (B2)

Therefore, we find that (summation over repeated indices
is implied)

[
x cos φ̂
x]ab = [
x]ac[cos φ̂]cd [
x]db

= δ1−a,c(δc,d+1 + δa,d−1)δ1−d,b

= δ1−a,2−b + δ1−a,−b = [cos φ̂]ab,

[
y cos φ̂
y]ab = [
y]ac[cos φ̂]cd [
y]db

= (−i)2(b−a)(δ1−a,2−b + δ1−a,−b)

= −[cos φ̂]ab, (B3)

where we have used the property of the Kronecker delta func-
tions that δa,b = δα+βa,α+βb for any two constants α and β, as
well as f (a, b)δa,g(b) = f (g(b), b)δa,g(b) for any two functions
f and g. In a similar fashion, we obtain

[
x sin φ̂
x]ab = [
x]ac[cos φ̂]cd [
x]db

= iδ1−a,c(δc,d+1 − δa,d−1)δ1−d,b

= i(δ1−a,2−b − δ1−a,−b)

= i(δa,b−1 − δa,b+1) = −[sin φ̂]ab,

[
y sin φ̂
y]ab = [
y]ac[sin φ̂]cd [
y]db

= (−i)2(b−a)+1(δ1−a,−b − δ1−a,2−b)

= [sin φ̂]ab. (B4)

APPENDIX C: Z INVARIANT IN THE
TIME-INDEPENDENT p-WAVE SUPERCONDUCTOR

Starting with the usual basis in which the Pauli matrix σz is
diagonal, moving to a new basis in which C1 = 
xσy is diag-
onal is equivalent to staying in the same basis while applying
the unitary transformation u = exp(−i π

4 
xσx ) to Hk and all
symmetry operators. Indeed, it can be easily checked that such
a unitary transformation maps C1 → σz, which is diagonal as
intended. On the other hand, the same unitary transformation
also maps the momentum space BdG Hamiltonian to the block
antidiagonal form

Hk →
(

0 W
W† 0

)
, (C1)
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where

W = −i(2J0 cos(k) + μ0)
x + 2�0 sin(k)e−iφ̂ . (C2)

We may now evaluate the winding number

W = 1

2π i

∮
Tr(W−1dW ), (C3)

where the trace operates on the Hilbert space of Cooper-pairs.
We find that

Tr(W−1dW ) = 1

2

{
1

z+ + μ0
dz+ + 1

z− + μ0
dz−

}
Tr(Ic),

(C4)

where z± = 2J0 cos(k) ± i2�0 sin(k), and Ic is the identity in
the Cooper-pairs subspace. By recalling that the normalized
winding number is defined as

w = W

Tr(Ic)
, (C5)

together with Eq. (C4), Eq. (11) in the main text is obtained.

APPENDIX D: Z × Z INVARIANT DEFINITION IN THE
TIME-PERIODIC p-WAVE SUPERCONDUCTOR

We first note that Eq. (16) in the main text can be written
in the form

Uk,sym = FG, (D1)

where

F = e−iμσz
T
4 e−i[2J cos(k)σz−2� sin(k)(e−iφ̂σ+−eiφ̂σ− )] T

4 ,

G = C1F †C†
1 = C2F †C†

2

= e−i[2J cos(k)σz−2� sin(k)(e−iφ̂σ+−eiφ̂σ− )] T
4 e−iμσz

T
4 . (D2)

In the canonical basis where C1 = diag(Ic,−Ic), the matrix
representation for F can be written as

F=̂
(

A B
C D

)
, (D3)

where A, B, C, and D are infinite-dimensional matrices acting
on the Cooper-pairs subspace. In particular, at J = �,

B = −[cos(k) cos(μ̃) sin(J̃ ) + cos(J̃ ) sin(μ̃)]
x

+i sin(k) cos(μ̃) sin(J̃ )e−iφ̂ , (D4)

D = − sin(μ̃) sin(J̃ )[cos(k)Ic − i sin(k)
xe−iφ̂]

+ cos(μ̃) cos(J̃ )Ic, (D5)

where μ̃ = μT/4 and J̃ = JT/2. Generalizing the results of
Refs. [48,57], we define the normalized winding numbers

w0 = 1

2π iTr(Ic)

∮
Tr(B−1dB)

=
∑
s=±

1

4π i

∮
1

zs,0 + cos(JT/2) sin(μT/4)
dzs,0, (D6)

wπ = 1

2π iTr(Ic)

∮
Tr(D−1dD)

=
∑
s=±

1

4π i

∮
1

zs,π + cos(JT/2) cos(μT/4)
dzs,π , (D7)

where z±,0 = e±ik cos(μT/4) sin(JT/2) and z±,π =
e±ik sin(μT/4) sin(JT/2). In this case, w0 (wπ ) counts the
number of pairs of edge-localized zero (π/T ) quasienergies
of Uk,sym, which thus translates to the number of pairs of
gMZMs (gMPMs).

APPENDIX E: PROOF OF EQ. (22) IN THE MAIN TEXT

We first note that [�̂†
A, j+1�̂B, j, �̂

†
A, j′+1�̂B, j′ ] = 0. There-

fore,

e
∑

j θ�̂
†
A, j+1�̂B, j =

∏
j

eθ�̂
†
A, j+1�̂B, j . (E1)

Next, as (i�̂†
A, j+1�̂B, j )2 = 1, Taylor expansion gives an Euler-

like formula for

eθ�̂
†
A, j+1�̂B, j = cos(θ ) + sin(θ )�̂†

A, j+1�̂B, j . (E2)

Consequently,

eθ�̂
†
A, j+1�̂B, j �̂A, j′e

−θ�̂
†
A, j+1�̂B, j

=
{
�̂A, j′ for j′ �= j + 1,

cos(2θ )�̂A, j+1 − sin(2θ )�̂B, j for j′ = j + 1,

eθ�̂
†
A, j+1�̂B, j �̂

†
B, j′e

−θ�̂
†
A, j+1�̂B, j

=
{

�̂
†
B, j′ for j′ �= j,

cos(2θ )�̂†
B, j + sin(2θ )�̂†

A, j+1 for j′ = j.
(E3)

Finally, Eqs. (E1) and (E3) give

e
∑

j θ�̂
†
A, j+1�̂B, j �̂A,�+1e− ∑

j θ�̂
†
A, j+1�̂B, j

=
⎛
⎝∏

j

eθ�̂
†
A, j+1�̂B, j

⎞
⎠�̂A,�+1

⎛
⎝∏

j

e−θ�̂
†
A, j+1�̂B, j

⎞
⎠

= eθ�̂
†
A,�+1�̂B,� �̂A,�+1e−θ�̂

†
A,�+1�̂B,�

= cos(2θ )�̂A,�+1 − sin(2θ )�̂B,� (E4)

and

e
∑

j θ�̂
†
A, j+1�̂B, j �̂

†
B,�e− ∑

j θ�̂
†
A, j+1�̂B, j

=
⎛
⎝∏

j

eθ�̂
†
A, j+1�̂B, j

⎞
⎠�̂

†
B,�

⎛
⎝∏

j

e−θ�̂
†
A, j+1�̂B, j

⎞
⎠

= eθ�̂
†
A,�+1�̂B,� �̂

†
B,�e−θ�̂

†
A,�+1�̂B,�

= cos(2θ )�̂†
B,� + sin(2θ )�̂†

A,�+1, (E5)

thus recovering Eq. (22) in the main text.
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