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Over the past few decades, tremendous efforts have been devoted to understanding self-duality at the quantum
critical point, which enlarges the global symmetry and constrains the dynamics. A one-dimensional spin chain
is an ideal platform for the theoretical investigation of these exotic phenomena, due to powerful simulation
methods such as the density matrix renormalization group. Deconfined quantum criticality with self-duality at
the critical point has been found in an extended short-range spin chain. In this work, we employ large-scale
density matrix renormalization group simulations to investigate a critical spin chain with long-range power-law
interaction V (r) ∼ 1/rα . Remarkably, we reveal that the long-range interaction drives the original deconfined
criticality towards a first-order phase transition as α decreases. More strikingly, the emergent self-duality leads
to an enlarged symmetry and manifests at these first-order critical points. This discovery is reminiscent of self-
duality protected multicritical points, and it provides an example of the critical line with generalized symmetry.
Our work has far-reaching implications for ongoing experimental efforts in Rydberg atom quantum simulators.

DOI: 10.1103/PhysRevB.108.245152

I. INTRODUCTION

Quantum critical points (QCPs) and associated emergent
phenomena in strongly correlated many-body systems stand
as central topics within realms of both condensed matter and
high-energy communities [1–3]. A special property observed
in certain QCPs is self-duality. Its origin can trace back to the
Kramers-Wannier duality of the two-dimensional (2D) classi-
cal Ising model [4,5], and it has subsequently been established
in a series of models featuring deconfined quantum critical
points (DQCPs) [6–17]. More specifically, DQCPs exhibit
anomalies [18], fractionalization [19], self-duality [12,20],
and emergent symmetry [21–23]. Despite extensive theo-
retical [12,16,24–39], numerical [40–75], and experimental
explorations [76–78], there are still ongoing efforts surround-
ing how exactly they have been implemented in lattice models
and experimental setups.

Recently, quantum simulators such as Rydberg atoms
and ion traps have emerged as powerful tools for simulat-
ing exotic quantum phases and phase transitions [79–89].
These systems offer intriguing opportunities for explor-
ing long-range interactions in many-body systems, an
area extensively investigated in condensed matter and ul-
tracold atom physics [90–97]. The critical behavior of
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long-range interacting systems has been widely studied
in both quantum spin models [98–112] and interacting
fermion models [113–116]. The presence of long-range
interactions can effectively modify the system’s dimen-
sionality [91,94,99,100,107], leading to effects such as the
breakdown of quantum-classical correspondence and the
Mermin-Wagner theorem [105,106,109,110], thus they can
dramatically alter the phases and phase transitions. For in-
stance, even in the case of conventional QCPs, the influence
of long-range interactions generally gives rise to three dis-
tinct universality classes [91]: the mean-field universality
class, the long-range “nonclassical” universality class, and the
short-range universality class. Certainly, a crucial question
arises: How do long-range interactions influence unconven-
tional QCPs such as the DQCP? Does this interaction lead to
new physical phenomena? Currently, these questions remain
unanswered.

In this work, we address the fate of a 1D DQCP with
long-range power-law decay interaction V (r) ∼ 1

rα , using
both lattice simulations of a frustrated quantum spin model
and renormalization-group (RG) calculations of a proposed
Luttinger-liquid field theory. Remarkably, we find that there
still exist DQCPs and emergent symmetry for fast decay of the
long-range interaction above a critical power αc ≈ 1.95. This
result is consistent with the predictions from bosonization and
RG analyses. The most intriguing observation is that as the
long-range interaction decays slower (i.e., α < αc), the DQCP
turns into a first-order phase transition with enlarged sym-
metry preserved by the emergent self-duality. This discovery

2469-9950/2023/108(24)/245152(16) 245152-1 ©2023 American Physical Society

https://orcid.org/0000-0002-8900-1100
https://orcid.org/0000-0002-1935-1463
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.245152&domain=pdf&date_stamp=2023-12-21
https://doi.org/10.1103/PhysRevB.108.245152


YANG, PAN, LU, AND YU PHYSICAL REVIEW B 108, 245152 (2023)

(a)

(b)

FIG. 1. (a) Schematic representation of the long-range JM
model. (b) Phase diagram of the 1D spin Hamiltonian (1), mapped
out by the VBS order parameter with L = 128. The markers obtained
from the extrapolation of UzFM crossing points demarcate the bound-
aries between the zFM and VBS ordered phases, and the dashed
line is a guide to the eye (see Figs. 6 and 8 for the details). The
black squares indicate the continuous phase transition, while the
blue circles indicate the first-order phase transition (α < αc with the
estimated multicritical point αc ≈ 1.95 marked by the red star).

goes beyond traditional understandings, particularly as emer-
gent symmetry is generally associated with continuous QCPs.
Our work clarifies and significantly extends the discussion of
the DQCP phenomena in long-range interacting systems, and
its signatures should be detectable in existing Rydberg atom
experiments.

The rest of this paper is organized as follows: Sec. II
presents the lattice model of the 1D DQCP with long-range
power-law interaction, and it outlines the employed numerical
method. Sections III and IV depict the phase diagram of
the 1D DQCP with long-range interaction and the finite-size
scaling of the critical behavior, along with an effective field
theory to explain the aforementioned numerical results. The
discussion and conclusion are presented in Sec. V. Additional
data for our analytical and numerical calculations are provided
in the Appendixes.

II. MODEL AND METHOD

The system under study is a frustrated quantum spin
chain proposed by Jiang and Motrunich (the JM model) [15],
with additional long-range power-law interactions, depicted in
Fig. 1(a). The model is defined by the following Hamiltonian:

HLRJM =
∑

i

(−JxSx
i Sx

i+1 + KxSx
i Sx

i+2 + KzS
z
i Sz

i+2

)

− Jz

N (α)

∑
i< j

Sz
i Sz

j

|i − j|α , (1)

where Si = (Sx
i , Sy

i , Sz
i ) represents the spin-1/2 operator on

each site i. Jγ /Kγ (γ = x, z) corresponds to the nearest/next-
nearest-neighbor ferromagnetic (FM)/antiferromagnetic
(AFM) couplings. For simplicity, we set Kx = Kz = 0.5 and
Jx = 1.0 as the energy unit below. The parameter α tunes the

power of long-range Sz − Sz interactions, which tends to the
nearest-neighbor short-range JM model in the limit α → ∞.
The Kac factor N (α)(= 1

L−1

∑
i< j

1
|i− j|α ) is included to keep

the Hamiltonian extensive.
When α → ∞, the original JM model exhibits a 1+1D

analogy of DQCP [15,69,117,118]. By tuning Jz, the system
undergoes a continuous quantum phase transition between a
valence-bond-solid (VBS) phase (Jz ≈ 1) and a spin-ordered
ferromagnetic (called zFM) phase (Jz � 1), which corre-
sponds to the horizontal line 1/α = 0 in Fig. 1(b). The phase
transition is analogous to the 2+1D DQCP [8] as it repre-
sents a direct continuous transition between two incompatible
spontaneous symmetry breaking phases [15,69]. Moreover, it
can be analytically described by a Luttinger-like field theory
with central charge c = 1, featuring an emergent O(2) × O(2)
symmetry at the deconfined critical point [118].

To obtain the ground-state properties of the Hamiltonian
HLRJM, we adopt the density matrix renormalization group
(DMRG) [119–121] based on the matrix product state (MPSs)
technique [121,122], which has established itself as one of
the best numerical approaches nowadays for one-dimensional
strongly correlated systems. Our focus lies in exploring the
resulting critical behaviors arising from the interplay between
the DQCP and long-range interactions. For most of the cal-
culations, we consider system sizes L = 32–256, while for
reliable finite-size scaling analyses, we simulate systems of
size L = 192–384. To guarantee the numerical accuracy and
efficiency in practical calculations, we perform at most 50
DMRG sweeps with a gradually increased MPS bond dimen-
sion, χ � χmax = 2048, under the open boundary condition.
Once the MPS energy has converged up to the order 10−10,
the sweeping route would be stopped and the final MPS is
believed to be a faithful representation of the true ground state.

III. NUMERICAL RESULTS

A. Quantum phase diagram: An overview

Before the illustration of the numerical results, we first
summarize the main findings about the long-range JM model
in Eq. (1). An accurate ground-state phase diagram expanded
by the axes of 1/α and Jz is displayed in Fig. 1(b). It is
found that the long-range interaction physics can be classified
into two distinct regimes separated by a critical power αc.
For α > αc, the long-range power-law interaction decays very
fast such that the interaction tail does not bring any essential
change to the DQCP compared with the original model with
nearest interaction. The VBS-to-zFM transition remains a di-
rect continuous transition characterized by DQCP properties.
This large-α regime is in some sense roughly consistent with
the classification given in Ref. [91], which asserts that if α is
larger than a certain critical value, the critical behavior should
be indistinguishable from its short-range limit. However, the
long-range interaction does extend the zFM phase region,
and the critical point shifts gradually towards smaller Jz with
decreasing α, as expected. Remarkably, what makes our re-
sults fundamentally different from the previous literature (see
Ref. [91] and references therein) is the small-α regime. For the
case of α < αc, the phase transition is no longer continuous
but is now driven into a first-order one by the sufficiently
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FIG. 2. The finite-size scaling analysis of order parameters OzFM

and OVBS for the long-range JM model with α = 2.50 [(a1),(a2)],
α = 3.33 [(b1),(b2)], and α = +∞ [(c1),(c2)].

strong long-range interaction. More strikingly, our numerical
calculations and low-energy field theory analysis consistently
support that the self-duality that emerged at the 1+1D DQCP
survives from the strong long-range interaction, giving rise to
a first-order phase transition with an enlarged O(2) × O(2)
symmetry, which is not well-studied in previous works.

B. Continuous phase transition at α > αc

Similar to the case of conventional QCPs, it is found that
the 1+1D analogy of the DQCP hosted in the original short-
range JM model is robust against the long-range interaction
when the power α is large enough.

To unveil the continuous nature of the transition, we cal-
culate the associated order parameters, respectively, given by

OzFM = 1

L′
∑

i

Sz
i and OVBS = 1

L′
∑

i

(−1)iSi · Si+1, (2)

where the summation is restricted within the middle L′ = L/2
subsystem to reduce the boundary effect, and we resort to
standard finite-size scaling analyses according to the scaling
form [123]

〈OzFM/VBS〉 = L−β/ν f
[
L1/ν

(
Jz − Jc

z

)]
, (3)

where β and ν are critical exponents of order parameter and
correlation length, respectively. If the phase transition is con-
tinuous, the critical exponents extracted independently from
the data collapses of OzFM and OVBS should be identical.

As elaborated in Fig. 2, we have performed conventional
finite-size scaling analysis for several representative α values.
It is noted that we have added a pinning field of strength 1 at
both boundaries when we calculate the zFM order parameter,
and we also further restrict the summation in Eq. (2) within
the central two sites to minimize the boundary effect as much
as we can. Similar to Refs. [124,125], we first adjust the
exponent η = β/ν such that the curves Lη〈Ox〉 as a function of
Jz intersect with each other for all system sizes, and Jc

z can be

estimated by the crossing point. Then we adjust the exponent
1/ν until a good collapse of Lη〈Ox〉 versus L1/ν (Jz − Jc

z ) for
all L is achieved.

Following the detailed procedure, we present final data
collapses of the order parameters in Fig. 2. It is evident that
both order parameters obey the standard scaling relation (3)
quite well, and the extracted critical exponents β/ν are in
agreement with each other within numerical accuracy, cor-
roborating that the 1+1D DQCP hosted in the original JM
model is robust against the long-range Sz-Sz interaction when
α > αc. It is also interesting to notice that the exponents η ≡
β/ν and ν both decrease gradually with increasing 1/α, but
the equality 2ν(1 − 2η) = 1 still holds roughly for all the α

values examined here, which is consistent with the prediction
from the dual Luttinger-like theory calculations shown below.

C. First-order phase transition at α < αc

Different from the large-α regime, the VBS-to-zFM phase
transition evolves from continuous to first order as the power
α is decreased smaller than a certain critical value αc, which is
beyond the conventional classification of the critical behaviors
affected by long-range interactions (see Sec. I or Ref. [91]).

A faithful quantity commonly used to distinguish between
the continuous and first-order phase transitions is the Binder
ratio U [126], which is defined by (for the zFM order here)

UzFM = 1

2

(
3 −

〈
O4

zFM

〉
〈
O2

zFM

〉2
)

. (4)

This observable has a vanishing scaling dimension and hence
it can give reliable information on the nature and position
of the QCP. For continuous phase transitions, UzFM typically
shows a monotonic behavior, while for first-order phase tran-
sitions, UzFM displays instead a nonmonotonic behavior and
exhibits a diverged negative peak near the QCP with increas-
ing system size [127–129].

As shown in Figs. 3(a) and 3(b) and Fig. 6, it is found
that there exists a critical value αc ≈ 1.95, such that when
α > αc, the Binder ratio UzFM shows a monotonic growth as Jz

is increased, but when α < αc, UzFM exhibits a nonmonotonic
behavior with Jz and develops a diverged negative peak near
the transition point. The distinct behaviors of UzFM imply that
the quantum phase transition changes into a first-order type as
α is decreased smaller than αc. Furthermore, the precise crit-
ical point Jc

z can be determined by extrapolation based on the
relation J∗

z (L) = Jc
z + aL−b, where J∗

z (L) is the crossing point
of UzFM(L) and UzFM(L + 32) [128]. In Figs. 3(c) and 3(d),
one can see a similar diverged negative peak developed in the
VBS Binder ratio, UVBS = (3 − 〈O4

VBS〉/〈O2
VBS〉2)/2, and the

critical points obtained independently from UzFM and UVBS are
close to each other. Other results of such least-squares fitting
are included in Appendix C, and the estimated critical points
are used to demarcate the phase boundaries in Fig. 1(b).

To further confirm the first-order phase transition that
occurred at α < αc, in Fig. 3(e) we also calculate the ground-
state energy density eg and its corresponding first derivative
∂eg/∂Jz near the transition point for α = 1.8. It is found that
the first-derivative curves are more and more steep, and a
distinct jump is expected in the thermodynamic limit, which
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FIG. 3. (a),(b) The Binder ratio of the magnetization UzFM vs Jz.
(c) The Binder ratio of the VBS order UVBS vs Jz. (d) The cross-
ing points J∗

z (L) of Ux (L) and Ux (L + 32) (x = zFM or VBS) are
displayed vs 1/L. The dashed curves are least-squares fit according
to J∗

z (L) = Jc
z + aL−b. (e) The ground-state energy per site and its

first derivative with respect to Jz. (f) The squared order parameter
〈O2

x〉 (x = zFM or VBS) at the finite-size pseudocritical points J∗
z (L).

The curves are second-order polynomial fits. Parts (a) and (c)–(f) are
plotted for α = 1.8, but (b) is plotted for α = 2.5.

is definite evidence of first-order phase transitions. More-
over, order parameters at their respective pseudocritical points
J∗

z (L) (i.e., crossing points of UzFM and UVBS) are displayed
versus 1/L in Fig. 3(f). The coexistence of zFM and VBS
orders at the critical point can be another decisive indicator
of the first-order transition.

In summary, all the elaborated results consistently cor-
roborate a first-order phase transition in the small-α regime.
As we have examined the observed phase transition from
three different perspectives, each of which has been used as
the main evidence for first-order transitions in many works,
the first-order transition found here should be reliable with
these self-consistent results. It is also worth mentioning that
a bimodal histogram of energy or certain quantities may
give other evidence for the first-order transition, however,
such an illustration seems not to be practicable within the
adopted DMRG framework fundamentally distinct from the
sampling-based Monte Carlo simulation. On the other hand,
in the present work, we only focus on the properties of the
first-order and continuous transitions. The tricritical point αc

is very interesting and can be studied by the flowgram method
developed in [130], but we leave it for future investigations.

FIG. 4. (a),(b) The ratio of the squared order parameters R2 vs Jz.
(c) The cross ratio of the squared order parameters R4 vs Jz. (d) The
crossing locations J∗

z (L) of R2/4(L) and R2/4(L + 32) are shown vs
1/L. The dashed curves are least-squares fit according to the relation
J∗

z (L) = Jc
z + aL−b. (e) The variance ratio σVBS/σzFM, where σx ≡

(〈O4
x〉 − 〈O2

x〉2)1/2 (x = zFM or VBS), as a function of Jz for several
system sizes. (f) The ratio σVBS/σzFM as a function of L for several Jz

near the critical point Jc
z . Parts (a) and (c)–(f) are plotted for α = 1.8,

but (b) is plotted for α = 2.5.

D. Enlarged symmetry on the critical line

One of the most significant features of the 1+1D DQCP
in the original short-range JM model is the O(2) × O(2)
symmetry that emerged exactly at the deconfined critical
point [15,69,118]. Therefore, it is natural to ask whether this
enlarged symmetry still exists at the QCPs of the long-range
JM model.

For this purpose, we calculate the ratio of the squared
order parameters defined by R2 = 〈O2

VBS〉/〈O2
zFM〉. Accord-

ing to Refs. [22,59,131,132], if the VBS and zFM order
parameters have the same scaling dimension, the ratio R2

should be size-independent at the transition point, and the
QCP would have an enlarged symmetry that rotates these
two orders. The results of R2 are detailed and summarized in
Figs. 4(a) and 4(b) and Fig. 7; it is obvious that R2 becomes
size-independent near the QCP for all α, indicating that the
VBS-to-zFM transition still hosts the O(2) × O(2) symmetry
even when its nature has been driven into first-order. Similarly,
as shown in Figs. 4(c) and 4(d), the cross ratio of order pa-
rameters, R4 = 〈O2

VBSO2
zFM〉/〈O4

zFM〉, of different system sizes
also intersects with each other roughly at a single point, and
the extrapolation of the pseudocritical point is also close to the
one obtained from the ratio R2.
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FIG. 5. The finite-size scaling analysis of order parameters OzFM

and OVBS for the original JM model with Kz = 0.2 [(a1),(a2)],
Kz = 0.4 [(b1),(b2)], and Kz = 0.6 [(c1),(c2)].

In Fig. 4(e), we also examine the variance ratio σVBS/σzFM,
where σx = (〈O4

x〉 − 〈O2
x〉2)1/2 [22,133], which is another use-

ful detector for symmetries at QCPs. Similar to R2, we can
indeed see an intersection of σVBS/σzFM curves of all L at
the transition point. Figure 4(f) explicitly shows the depen-
dence of σVBS/σzFM on L near the critical point. The universal
behavior of σVBS/σzFM around Jz ≈ 0.8908 gives additional
evidence for the enlarged O(2) × O(2) symmetry at the first-
order phase transition.

Until now, the presented numerical simulations have been
consistent with each other and pointed to a first-order phase
transition with enlarged O(2) × O(2) symmetry beyond con-
ventional understandings. Therefore, it is necessary to explain
our results, and the key point is the emergent self-duality that
survived from the long-range interaction, which preserves the
O(2) × O(2) symmetry.

E. Transition nature of the original JM model with Kz �= 1/2

Before the presentation of the low-energy field theory anal-
ysis, it is also necessary to verify that the observed first-order
phase transition is not induced by the naive modification of
Kz, since the inclusion of the long-range Sz-Sz interaction in
the JM model can effectively change the value of Kz. For
this purpose, we investigate the quantum phase transition of
the original JM model with the parameter setting, Jx = 1,
Kx = 1/2, and Kz �= 1/2.

Following the same procedure explained in Sec. III B, we
utilize the standard finite-size scaling analysis according to
Eq. (3) to extract the quantum critical point Jc

z and related
critical exponents, β and ν. As summarized in Fig. 5, it is clear
that the obtained critical exponents β/ν are almost identical
for zFM and VBS orders, which is a key property of the DQCP
theory [15], indicating that the quantum phase transition is
still continuous. As the effective value of Kz modified by
the long-range Sz-Sz interaction, Keff

z = 1/2 − Jz/[2αN (α)],
is larger than 0.2 at the critical point for α = 1.8, the results
shown here can support that the first-order phase transition

found in the long-range JM model at α = 1.8 is indeed in-
duced by the long-range Sz-Sz interaction, thus ruling out the
possibility that the first-order transition is caused by a naive
modification of the coupling Kz in the original JM model.

IV. LOW-ENERGY EFFECTIVE THEORY

The phase transition between the zFM and VBS orders
is second order when α is large and first order when α is
small. The continuous to first-order transition happens at the
critical power αc. This continuous to first-order transition is
driven by the long-range Sz-Sz interaction. According to the
bosonization method [15,117,134] (see Appendix A for the
details), the spin operators can be represented by a bosonic
field φ in the continuous limit,

Sz
j ∼ cos φ(x)/2, Sx

j ∼ − sin φ(x)/2, (5)

where the discrete coordinate is replaced by its continuous
version, x j → x. Thus, the 1D long-range Sz-Sz interaction
takes the following form in the effective continuum the-
ory [109]:

∑
i, j

Sz
i Sz

j

|i − j|α ∼
∫

dxdy
cos[φ(x)] cos[φ(y)]

4|x − y|α , (6)

where x, y are the 1D continuous coordinates. The effec-
tive action in the Euclidean path integral formulation under
bosonization is given by [15,134]

S =
∫

dτ dx

[
i

π
∂τφ∂xθ + v

2π

(
1

g
(∂xθ )2 + g(∂xφ)2

)]

+
∫

dτ dx [λu cos(4θ ) + λa cos(2φ)] + SLR, (7)

with imaginary time τ , spatial coordinates x, velocity v, and
Luttinger parameter g. λu and λa are the most relevant short-
range interactions, which preserve the symmetry of the JM
model. The long-range part in the Lagrangian is deduced from
Eq. (6),

SLR = λ+
2

∫
dτdxdr

1

|r|α cos[φ(x + r, τ ) + φ(x, τ )]

+ λ−
2

∫
dτdxdr

1

|r|α cos[φ(x + r, τ ) − φ(x, τ )], (8)

where r denotes the relative distance of the fields. Here, the
cos - cos correlation in Eq. (6) has been separated into two
parts, whose effects would be different. For smaller interac-
tion range r, λ− will contribute to the renormalization of the
Luttinger parameters. We would focus on the renormalization
of the long-range contribution, and we can omit this shorter-
range r contribution at this stage. Moreover, it should also be
noticed that the Luttinger parameter g could be a nonuniversal
quantity at the critical point. While for the pure XXZ model,
the explicit value of g could be deduced from the microscopic
parameters based on the Bethe ansatz [135–137], for the
general spin model, e.g., for the JM model with long-range
interaction, it would be hard to determine the explicit value of
g from the microscopic parameters.

Based on the RG analysis (in Appendix B), the long-range
Sz-Sz interaction Eq. (8) is irrelevant or less relevant than
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the short-range one when the exponent is greater than some
critical value, α > αc. In the large-α regime, the continu-
ous transition between the VBS and zFM phases driven by
short-range interaction [15] is stable against the long-range
perturbation. On the other hand, when α is smaller than the
critical value, the long-range Sz-Sz interaction becomes the
most relevant operator of the system, and it drives the con-
tinuous transition to a first-order transition. To decode the
nontrivial transition between the VBS and zFM phases, it will
be more sufficient to work in the effective dual theory formu-
lation, as was done in the original JM model [15,69,117,118].

A. Dual field theory

The dual field theory description plays an important role
for understanding the 1D DQCP nature of the JM model [15].
Especially, the continuous transition between VBS and zFM
phases in the original JM model has emergent self-duality, as
shown in [15,69,117,118], since the scaling dimensions of the
two order parameters are the same in both numerical and theo-
retical calculations. While the construction of the dual theory
field requires much effort, the final formulation is direct and
simple, that is, the z-FM and VBS order parameters could be
represented by the continuous dual field θ̃ as �zFM ∼ sin(θ̃ )
and �VBS ∼ cos(θ̃ ) [15]. The dual field theory unifies zFM
and VBS order parameters together by the single field θ̃ . The
self-duality manifests in the dual Luttinger liquid theory in the
imaginary-time path integral action [15,134],

S̃ =
∫

dτ dx

[
i

π
∂τ φ̃∂x θ̃ + ṽ

2π

(
1

g̃
(∂x θ̃ )2 + g̃(∂xφ̃)2

)]

+
∫

dτ dx [λ̃ cos(2θ̃ )] + S̃LR, (9)

with the (1 + 1)D spatial-time coordinates (x, τ ), effective
velocity ṽ, and Luttinger parameter g̃. The tilde symbol is
used to emphasize the difference from the original field the-
ory in Eq. (9). (θ̃ , φ̃) is a pair of conjugate fields in the
dual field theory [15]. We first summarized some basic re-
sults in the short-range system without S̃LR [15,69,117,118].
Since the relevant problem lying in the parameter regime
g̃ ∈ (1/2, 2), λ̃ is the only relevant short-ranged operator that
could drive the phase transition between the z-FM and VBS
orders. A relevant positive (negative) λ̃ will pin down the
dual field θ̃ = π

2 (θ̃ = 0), which corresponds to the zFM
(VBS) phase, �zFM �= 0 (�VBS �= 0). On the contrary, φ̃ field
could be fully integrated out in the path integral since its
interaction term is irrelevant in the critical theory, leading
to a pure sine-Gordon theory for the field θ̃ . Instantly, zFM
and VBS order parameters have the same scaling dimensions
dim[�zFM] = dim[�VBS] = g̃/4 [15,69]. The emergent self-
duality permutes VBS and zFM order parameters. Combined
with the global symmetry O(2), the emergent self-duality pro-
motes the global symmetry to O(2) × O(2).

From the above numerical simulations, the substantial evi-
dence shows that the emergent self-duality still persists in the
first-order transition when the long-range Sz-Sz interaction is
relevant. Indeed, the long-range Sz-Sz interaction is effectively
self-dual preserving at the critical point. Based on the dual
bosonization approach, the long-range Sz-Sz interaction in the

dual theory is represented as

S̃LR = λ̃−
2

∫
dτdxdr

1

|r|α cos[θ̃ (x + r, τ ) − θ̃ (x, τ )]

− λ̃+
2

∫
dτdxdr

1

|r|α cos[θ̃ (x + r, τ ) + θ̃ (x, τ )].

(10)

Here, the effective coupling λ̃− drives the system to a spatial
uniform pattern, while the sign of λ̃+ leads to the VBS or
zFM order. In the infrared limit, long-range λ̃+ has a similar
effect to the short-range λ̃, and a combination of them leads
to a renormalized driving coupling, which will tune the phase
transition between VBS and zFM order. This effective tuning
coupling also accounts for the shift of the phase boundary to
the left in Fig. 1(b). Under the RG flow (in Appendix B), λ̃−
becomes more relevant than λ̃+, while the VBS-zFM phase
transition is still tuned by λ̃+. When the power of long-range
interaction becomes smaller than the critical value α < αc, λ̃−
becomes the most relevant operator of the system, driving the
second-order transition into a first-order one. Therefore, only
λ̃− affects the infrared fate along the critical line.

Under the self-duality sin(θ̃ ) ↔ cos(θ̃ ), the long-range in-
teraction transforms as λ̃− → λ̃−, λ̃+ → −λ̃+. The λ̃− term
is manifestly self-dual invariant. On the contrary, the λ̃+ term
breaks the self-duality and transforms the same as λ̃. Along
the critical line, the VBS to zFM tuning coupling tends to zero
and the system is self-dual invariant in the low-energy field
theory. The emergent self-duality persists along the transition
line from continuous to first-order transition. This can be
understood as the self-duality protected criticality [138]. Since
the self-duality permutes the two phases VBS and zFM, the
self-duality invariant region should be the interface between
them, and that is the phase boundary in Fig. 1(b).

V. DISCUSSIONS AND CONCLUSIONS

We noticed that some researchers have discovered emer-
gent symmetry at special [139,140] or weakly first-order
transitions [131,132,141]. They explained that the absence
of a free energy barrier allows different orders to transform
into each other. However, we emphasize that our model ex-
hibits an unambiguous enlarged O(2) × O(2) symmetry at
the strong first-order phase transition, which is different from
the previous cases. Our findings reveal that, in the low-
energy effective field theory, the self-dual invariant long-range
operator changes from being irrelevant to relevant as α de-
creases, resulting in a first-order critical point with emergent
self-duality, which leads to enlarged O(2) × O(2) global sym-
metry. Additionally, emergent supersymmetry [142] has also
been discovered at first-order critical points.

Regarding experimental realization, Lee et al. [143] re-
cently proposed a Landau-forbidden quantum phase transition
with an emergent symmetry in a one-dimensional strongly
interacting array of trapped neutral Rydberg atoms. This can
be experimentally observed with measurement snapshots on a
standard computational basis.

In conclusion, we perform large-scale DMRG simulations
to decipher the critical properties of the JM model with long-
range interactions. Our numerical simulation unambiguously
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demonstrates that the emergent self-duality appears along the
critical line, from the continuous transition to the first-order
transition. And the self-duality enlarges the global symmetry
to O(2) × O(2). This finding aligns with the Luttinger-liquid
theory calculations, where part of the long-range spin-spin
interaction becomes the self-dual invariant relevant operator
and drives the continuous transition to the first-order transi-
tion. This is reminiscent of the tricritical Ising model, where
the self-dual invariant operator can drive the tricritical point
to either the Ising transition or the first-order transition. In
particular, the first-order transition is a gapped phase with
three ground-state degeneracies due to the anomalous self-
duality [144,145].

We leave for future work the determination of a precise
value of αc, comparisons of universal quantities with long-
range interactions through renormalization-group analysis,
and a comparative study of the quantum critical behavior

at the multicritical point. Our work paves the way for un-
derstanding the interplay between unconventional quantum
critical points and long-range physics in an experimental and
theoretically controlled manner.
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APPENDIX A: EFFECTIVE THEORY FOR THE 1D SPIN CHAIN WITH SHORT-RANGE INTERACTION

In this Appendix, we summarize the basic effective continuum theory description of the generalized 1D spin-1/2 chain JM
model [15,69,117,118],

H =1

4

∑
j

( − Jxσ
x
j σ

x
j+1 − Jzσ

z
j σ

z
j+1

) + 1

4

∑
j

( + Kxσ
x
j σ

x
j+2 + Kzσ

z
j σ

z
j+2

)
, (A1)

where the spin operators have been represented by Pauli matrices S j = 1
2σ j = 1

2 (σ x
j , σ

y
j , σ

z
j ). The effective field theory could be

obtained from the bosonization approach based on the transformation [15,117,134]

σ
y
j ∼ 2

π
(θ j+1/2 − θ j−1/2), σ z

j ∼ cos(φ j ), σ x
j ∼ − sin(φ j ), [θ j+1/2, φ j′ ] = iπ�( j + 1/2 − j′), (A2)

where θ and φ are a pair of conjugate fields, and �(x) is a Heaviside step function. Taking the continuum limit, the effective
action in the imaginary-time path integral formulation is given by [15]

S[φ, θ ] =
∫

dτ dx

[
i

π
∂τφ∂xθ + v

2π

(
1

g
(∂xθ )2 + g(∂xφ)2

)]
+

∫
dτ dx [λu cos(4θ ) + λa cos(2φ)], (A3)

where τ is the imaginary time, x is the spatial coordinate, v is the velocity, and g is the Luttinger parameter. λu and λa are the most
relevant operators that have the largest scaling dimension and reflect the symmetries of the system. They will drive the possible
transition to the ordered phase, reflecting by the pinning of the (θ, φ) fields. In the continuum theory, the order parameters for
the z-FM phase and the VBS phase are represented by the continuous bosonic fields

�zFM ∼ cos(φ), �VBS ∼ cos(2θ ).

The z-FM state �zFM is invariant under the lattice translational symmetry Tx(φ, θ ) → (φ, θ + π/2) and Zz
2 spin rotation

symmetry around z-axis gz(φ, θ ) → (−φ,−θ ), but it breaks the Zx
2 spin rotation symmetry around the x-axis gx(φ, θ ) →

(−φ + π,−θ ) and time-reversal symmetry T (φ, θ, i) → (φ + π,−θ,−i). The VBS state �VBS is invariant under gx, gz, and
T , but it breaks Tx. The tree-level scalings of the cos-operators are given by dim[cos(2nθ )] = n2g and dim[cos(mφ)] = m2

4g . The
tree-level β-functions for the short-ranged λu- and λa-term are given by

dλu

dl
= (2 − dim[cos(4θ )])λu = (2 − 4g)λu,

dλa

dl
= (2 − dim[cos(2φ)])λu =

(
2 − 1

g

)
λu. (A4)

The scaling behaviors of the zFM correlation and the VBS correlation are given by

〈�zFM(r)�zFM(0)〉 ∼ 1

r1/2g
, 〈�VBS(r)�VBS(0)〉 ∼ 1

r2g
.

However, such continuum theory is not complete for the understanding of a deconfined quantum critical point between z-FM
and VBS order, and a dual theory is necessary to fully characterize the critical behavior [15].
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Dual Luttinger-like theory

To describe the deconfined quantum phase transition between z-FM and VBS order, it is more sufficient to work in the duality
formulation, which is also represented by a Luttinger-like theory [15,69],

S[φ̃, θ̃ ] =
∫

dτ dx

[
i

π
∂τ φ̃∂x θ̃ + ṽ

2π

(
1

g̃
(∂x θ̃ )2 + g̃(∂xφ̃)2

)]
+

∫
dτ dx [λ cos(2θ̃ ) + λ′ cos(4θ̃ ) + κ cos(4φ̃)], (A5)

where φ̃ and θ̃ are a pair of conjugate fields in the dual theory, and ṽ and g̃ are the corresponding velocity and Luttinger parameter.
λ, λ′, and κ are several lowest-order short-range interactions.

The phase transition between z-FM and VBS order lies within the regime g̃ ∈ (1/2, 2) such that the λ-term is the single
relevant operator that drives the phase transition when its sign alters. The correlation length exponent at the critical point follows
the scaling dimension of λ cos(2θ̃ ), that is [15],

ν−1 = 2 − dim[cos(2θ̃ )] = 2 − g̃, ν = 1

2 − g̃
.

In this dual Luttinger-like theory, the order parameters for the z-FM and VBS phase are decoded into a compatible form based
on a single field θ̃ ,

�zFM ∼ sin(θ̃ ), �VBS ∼ cos(θ̃ ), (A6)

which, of course, have the same scaling dimension dim[�zFM] = dim[�VBS] = g̃/4 and similar correlation behavior at the
critical point,

〈�zFM(r)�zFM(0)〉 ∼ 1

r2dim�zFM
= 1

rg̃/2
, 〈�VBS(r)�VBS(0)〉 ∼ 1

r2dim�VBS
= 1

rg̃/2
.

The phase transition between z-FM and VBS phase is tuned by λ, while at the critical point λ = 0 there exists an emergent O(2)
symmetry corresponding to the θ̃ part.

APPENDIX B: DETAILS OF RENORMALIZATION-GROUP CALCULATIONS FOR THE LONG-RANGE
SINE-GORDON MODEL

In this work, we consider the long-range interaction Hamiltonian,

HLRP =
∑

i

( − JzS
z
i Sz

i+1 + KxSx
i Sx

i+2 + KzS
z
i Sz

i+2

) − Jz

N (α)

∑
i, j

Sz
i Sz

j

|i − j|α , (B1)

where J is the interaction strength, and the parameter α tunes the power of long-range interactions. N (α)(= 1
N−1

∑
i �= j

1
|i− j|α ) is

the Kac factor to preserve the Hamiltonian extensively. To connect this model with the known short-range model (A1), we can
separate the long-range term in the form

− Jz

N (α)

∑
i, j

Sz
i Sz

j

|i − j|α = − Jz

N (α)

∑
|i− j|=1

Sz
i Sz

j − Jz

N (α)

∑
|i− j|>1

Sz
i Sz

j

|i − j|α = −J ′
z

∑
i

Sz
i Sz

i+1 − Jz

N (α)

∑
|i− j|>1

Sz
i Sz

j

|i − j|α .

Here the first term is just the conventional nearest-neighbor coupling. We consider the effective continuum theory for the long-
range interactions,

HLR = −
∑
i, j

JL

|i − j|α σ z
i σ z

j = −
∑
i, j

JL

|i − j|α cos φi cos φ j → −
∫

dxdx′ JL

|x − x′|α cos φ(x) cos φ(x′)

→ −1

2

∫
dxdr

JL

|r|α (cos[φ(x + r) − φ(x)] + cos[φ(x + r) + φ(x)]). (B2)

Expanding the first term for small r, we can obtain

1

2

∫
dxdr

JL

|r|α cos[φ(x + r) − φ(x)] ≈ 1

2

∫
dxdr

JL

|r|α
(

1 − 1

2
(r∇φ)2

)
,

which only normalize the Luttinger parameters. In general, the long-range correlated interaction part of the action is given by

SLR = 1

2

∫
dτ

∫
dx dr

1

|r|α (λ+ cos[φ(x + r, τ ) + φ(x, τ )] + λ− cos[φ(x + r, τ ) − φ(x, τ )])

with the bare interaction strength λ+ < 0 and λ− < 0.
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FIG. 6. The Binder ratio of the zFM order as a function of Jz for (a) α = 1.85, (b) α = 1.90, (c) α = 1.95, (d) α = 2.00, (e) α = 2.10, (f)
α = 2.20, (g) α = 2.30, (h) α = 2.40, (i) α = 3.33, (j) α = 5.00, (k) α = 10.0, and (l) α = +∞.

For the effective bosonization theory, we follow the conventional tree-level RG analysis of the sine-Gordon model [134].
Separating the field into slow and fast modes (φ = φ< + φ> and φ = θ< + θ>) and integrating over the fast mode (φ>, θ>), the
partition function can be expanded in the form

Z =
∫

DφDθ e−S0−S1 =
∫

Dφ<Dθ<

∫
Dφ>Dθ> e−S0,<−S0,>−S1 =

∫
Dφ<Dθ< e−S0,<

∞∑
n=0

1

n!
〈(−S1)n〉>,

where the integral of the fast mode gives the average,

〈· · · 〉> ≡
∫

Dφ>Dθ> e−S0,> (· · · ).

The effective action under the renormalization is

Seff = S0,< + 〈S1
〉
>

− 1
2

〈
S2

1〉>,c. (B3)

The tree-level scalings of the operators can be obtained from the first-order term 〈S1〉>. We consider the tree-level scaling for the
long-range correlated terms,

Sσ = 1

2
λσ

∫
dτ

∫
dxdr

1

|r|α cos[φ(x + r, τ ) + σφ(x, τ )] ≡ 1

2
λσ

∫
dτ

∫
dxdr

1

|r|α cos
[
�σ

r φ
]

= 1

2
λσ

∫
dτ

∫
dxdr

1

|r|α cos
[
�σ

r φ< + �σ
r φ>

]
.

Integrating out the fast mode, the lowest-order correction is

〈Sσ 〉> = 1

2
λσ

∫
dτ

∫
dxdr

1

|r|α cos
[
�σ

r φ<

]〈
cos

[
�σ

r φ>

]〉
>
.
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FIG. 7. The ratio of the squared order parameters R2 as a function of Jz for (a) α = 1.85, (b) α = 1.90, (c) α = 1.95, (d) α = 2.00, (e)
α = 2.10, (f) α = 2.20, (g) α = 2.30, (h) α = 2.40, (i) α = 3.33, (j) α = 5.00, (k) α = 10.0, and (l) α = +∞.

Here, the renormalization gives the contribution〈
cos

[
�σ

r φ>

]〉
>

= exp
(
− 1

2

〈[
�σ

r φ>

]2〉
>

)
= exp

(− 1
2 〈[φ(x + r, τ ) + σφ(x, τ )]2〉>

)
= exp

( − 1
2 〈[φ(r, 0) + σφ(0)]2〉>

)
,

where the correlation function of φ(r) field can be calculated out directly,

1

2
〈[φ(r, 0) + σφ(0)]2〉> = 1

2

∫
>

dωdq

(2π )2
(2 + 2σ cos(|qr|))v

g

π

v2q2 + ω2
= 1

2g
(1 + σ cos(|�r|))d�

�
.

The lowest-order correction is

〈Sσ 〉> = 1

2
λσ

∫
dτ

∫
dxdr

1

|r|α cos
[
�σ

r φ<

]
exp

(
− 1

2g
(1 + σ cos(|�r|))d�

�

)
.

Up to tree level, the effective action under renormalization is Sσ,eff = Sσ,< + 〈Sσ 〉>. Under the rescaling transformation,

τ → edlτ, x → edlx, r → edl r, � → e−dl�,

the effective action becomes

Sσ,eff → 1

2
λσ e(3−α)dl

∫
dτ

∫
dxdr

1

|r|α cos
[
�σ

r φ
](

1 − 1

2g
dl − σ

2g
cos(|�r|)dl

)

= 1

2
λσ

∫
dτ

∫
dxdr

1

|r|α cos
[
�σ

r φ
](

1 +
(

3 − α − 1

2g

)
dl − σ

2g
cos(|�r|)dl

)

and the RG functional equations for λσ are

dλσ (r)

dl
=

(
3 − α − 1 + σ cos(|�r|)

2g

)
λσ (r).
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FIG. 8. The crossing locations J∗
z (L) of UzFM(L) [R2(L)] and UzFM(L + 32) [R2(L + 32)] are shown vs 1/L for (a) α = 1.85, (b) α = 1.90,

(c) α = 1.95, (d) α = 2.00, (e) α = 2.10, (f) α = 2.20, (g) α = 2.30, (h) α = 2.40, (i) α = 3.33, (j) α = 5.00, (k) α = 10.0, and (l) α = +∞.
The curves are least-squares fits according to J∗

z (L) = Jc
z + aL−b. The critical points obtained, respectively, from UzFM and R2 are consistent

with each other within numerical accuracy.

Here, the effective coupling has a nontrivial dependence on the momentum cutoff �. In the lattice formulation, the coordinates
of the system are represented by r = rn = na (n = 0, 1, . . . , N − 1), where a is the lattice constant, and the total lattice size
is L = Na. The corresponding discrete set of momentum is k = km = m π

L = m π
Na with −N

2 + 1, . . . , N
2 . In the infrared (long-

length) limit, the momentum will flow to the shortest momentum scale ∼π/L. For smaller r, the oscillation factor cos(|�r|)
becomes nearly unity, and we can approximately obtain

r < rc:
dλσ (r)

dl
=

(
3 − α − 1 + σ

2g

)
λσ (r).

For larger r, the scaling dimension of λ− is bigger than λ+. λ− is more relevant than λ+ in general. There exists a critical power
αc below which λσ becomes most relevant, dominating the physical behavior of the system.

Long-range interaction in the dual theory

We now transform to the effect of long-range interaction in the dual theory. From the representation of the order parameter in
Eq. (A6), the long-range interaction in the continuous dual theory is given by

SLR =
∫

dτ

∫
dxdr

λ̃

|r|α sin[θ̃ (x + r, τ )] sin[θ̃ (x, τ )]

= 1

2

∫
dτ

∫
dxdr

1

|r|α (λ̃− cos[θ̃ (x + r, τ ) − θ̃ (x, τ )] − λ̃+ cos[θ̃ (x + r, τ ) + θ̃ (x, τ )]).

The renormalization of λ̃± takes the same form as λ±, only taking the substitution g → 1/g̃,

dλ̃σ (r)

dl
=

(
3 − α − g̃

1 + σ cos(|�r|)
2

)
λ̃σ (r).
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As before, long-range λ̃− interaction will dominate the system when the power is smaller than some critical value, α < αc. The
scaling dimension of λ̃− is approximately given by

dim[λ̃−] = 3 − α − g̃
1 − δ

2

with some constant δ. Comparing the scaling dimension of the long-range λ̃− and short-range interaction λ at the tree level, we
can obtain the critical power αc,

3 − α − g̃
1 − δ

2
= 2 − g̃, → αc = 1 + g̃

2
(δ + 1).

The true critical power could lie between 1 + g̃
2 < αc < 1 + g̃.

APPENDIX C: ADDITIONAL DATA FOR zFM BINDER RATIO AND THE RATIO OF SQUARED ORDER PARAMETERS

In this Appendix, we provide additional results of the zFM Binder ratio UzFM and the ratio of squared order parameters R2 for
other α values.

In Fig. 6, we first present UzFM as a function of Jz for various system sizes at other representative α values. The distinct
behaviors of UzFM for α > αc or α < αc indicate a fundamental change of the transition nature as explained in the main text. An
extrapolation of the crossing points of UzFM, according to the relation J∗

z (L) = Jc
z + aL−b, where J∗

z (L) is the crossing point of
UzFM(L) and UzFM(L + 32), is also performed to determine the precise boundary between the ordered phases (see Fig. 8). The
obtained critical points are then used to complete the ground-state phase diagram displayed in the main text (see Fig. 1).

On the other hand, the ratio of squared order parameters R2 versus Jz is also analyzed in Fig. 7 for other α values. It is clear
that all the curves of different L intersect almost at a single point, which means that R2 becomes universal at the critical point.
The result can be supportive evidence for the O(2) × O(2) symmetry appearing along the whole transition line (the dashed line
in Fig. 1). Furthermore, a similar extrapolation of the R2 crossing points is also exhibited in Fig. 8, from which we can see that
the extrapolated critical points are consistent with the ones extracted from UzFM quite well.
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