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The Li-Haldane correspondence [Phys. Rev. Lett. 101, 010504 (2008)] is often used to help identify wave
functions of (2 + 1)-dimensional chiral topological phases (i.e., with nonzero chiral central charge) by studying
low-lying entanglement spectra (ES) on long cylinders of finite circumference. Here we consider such ES of
states [in fact, of wave functions of certain projected entangled pair states (PEPSs)] that are not chiral (i.e.,
having zero chiral central charge) but which strongly break time-reversal as well as reflection symmetry, while
preserving their product, thus exhibiting the same symmetry properties as a chiral topological state. This leads
to ES which have branches of both right- and left-moving chiralities, but with vastly different velocities. For
circumferences much smaller than the inverse entanglement gap scale, the low-lying ES appear chiral in some
topological sectors, and precisely follow the Li-Haldane state counting of a truly chiral phase. On its face, this
could lead one to mistakenly identify the phase as chiral. However, by considering the ES in all possible sectors,
one can observe distinct differences from a chiral phase. We explore this phenomenon in the setting of an SU(3)
spin liquid PEPS studied by Kurečić et al. [Phys. Rev. B 99, 045116 (2019)], where the topologically trivial
sector appeared to have the characteristic Li-Haldane counting of a chiral SU(3)-level-one [SU(3)1] conformal
field theory (CFT). In fact, the PEPS has D(Z3) topological order, with nine sectors. We compute the ES in
minimally entangled states corresponding to all these sectors, which map to the nine anyon types of doubled
SU(3)-level-one Chern-Simons topological field theory. The state countings of the ES in all sectors are exactly
consistent with our expectation: specifically, the ES contain representations of global SU(3) symmetry from the
tensor products of the (lowest-lying) multiplet of primary states of a “high-velocity” chiral SU(3)1 CFT with the
full content of a “low-velocity” chiral SU(3)1 CFT sector, a nonchiral structure beyond that observable in the
topologically trivial sector of the ES.

DOI: 10.1103/PhysRevB.108.245150

I. INTRODUCTION

Identifying chiral topological order in quantum states in
2 + 1 dimensions that break time-reversal symmetry is a prob-
lem of substantial import. By “chiral” here, and in the rest
of this work, we mean specifically that the chiral central
charge1 associated with the bulk topological state is nonzero.
Thus, even a state that strongly breaks time-reversal symme-
try may indeed be nonchiral by virtue of possessing a zero
chiral central charge, a point which is crucial to keep in mind
for what follows. One powerful tool for understanding the
topological order of such chiral states is the entanglement
spectrum, which for chiral topological states will be a “chiral”
entanglement spectrum, with distinct chiral branches. The Li-
Haldane entanglement-edge correspondence can then be used
to relate the low-lying entanglement spectrum at finite size
and properties of a corresponding theory of a physical edge
of the topological state [2], and so the chiral branches in such
a finite-size entanglement spectrum will additionally exhibit

*marildse@sissa.it
1See, e.g., Ref. [1].

characteristic “Li-Haldane” multiplicities of particular types
of low-lying states at fixed momentum. Yet more generally,
however, calculation of the low-lying entanglement spectrum
in only a subset of the available topological sectors can fail to
uniquely identify the correct nature, i.e., chiral or not chiral, of
the topological state. Diagnostic features of the entanglement
spectrum at finite size such as the characteristic “Li-Haldane”
multiplicities can appear the same in some sectors for distinct
types of topological state. This can lead to a low-lying entan-
glement spectrum in those sectors which appears chiral, even
for a nonchiral topological state. Looking at all of the sectors
of the entanglement spectrum, however, can reveal the full
picture. This approach provides a way to correctly diagnose
topological states that are “close-to-chiral,” in the sense that
they possess some features consistent or nearly consistent
with chirality (such as, e.g., possessing identical symmetry
properties, namely broken time-reversal as well as reflection
symmetries, while preserving their product), as nonchiral.

Topological states satisfy an entanglement entropy area
law [3], and one way to build quantum states that obey, by
construction, the entanglement entropy area law is by the
use of projected entangled pair states (PEPS) tensor net-
work methods [4,5]. PEPS tensors are able to encode the
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symmetries of quantum states directly at the microscopic level
and have been constructed to represent a wide variety of
topological quantum states. A famous result [6,7] states that,
in the case of noninteracting fermions, PEPS wave functions
can describe corresponding chiral noninteracting (2 + 1)-
dimensional topological phases. (A Hamiltonian possessing
such a wave function of noninteracting fermions as a ground
state is required to be either long-ranged, or gapless if local,
a statement referred to as the “no-go theorem.”) The gener-
alization to interacting PEPS, however, is an open question.
Thus, the question of whether “close-to-chiral” PEPS can,
perhaps in certain limits, represent truly chiral states is one
of significant particular interest.

The type of chiral topological state whose representation
by PEPS is addressed in this work is the SU(3) chiral spin liq-
uid. SU(N ) chiral spin liquids with N > 2 have experimental
relevance: there is a long-standing proposal for implementa-
tion of SU(N ) magnetism in ultracold alkaline-earth atoms in
optical lattices through decoupling of nuclear spin and elec-
tronic angular momentum [8]. Theoretical work has identified
an Abelian SU(N ) chiral spin liquid state feasible on such a
platform [9]. The ultracold alkaline-earth atom approach to
SU(N ) symmetric systems has seen extensive experimental
activity [10], including to implement an SU(N ) fermionic
liquid in one dimension (1D) [11], to access SU(N ) Mott
insulators [12–14] and to investigate SU(N ) quantum mag-
netism [15–18]. Beyond ultracold atoms, SU(N ) chiral spin
liquids may also occur in condensed-matter systems such as
a proposed SU(4) chiral spin liquid in double-layer moiré
superlattices [19]. As more such modalities come online, it
will be important to be able to guarantee the presence of
chiral topological order. Appropriate probes will be required
to accomplish this goal in these experimental settings. How-
ever, in the context of numerical models, as discussed above,
the entanglement spectrum has proven to be an accessible
diagnostic.

Our goal in this work is thus to understand a PEPS through
the content of its entanglement spectrum. The SU(3) spin
liquid PEPS we analyze was first studied in Ref. [20], which
found that the PEPS is nonchiral but possesses left- and
right-moving branches in the entanglement spectrum that dif-
fer significantly in velocity. On the other hand, the same
analysis also observed that the low-lying entanglement spec-
trum of this PEPS on the cylinder, in a particular charge
and flux sector, has SU(3) representation content, at given
momentum, that is precisely consistent with the presence
of the (1 + 1)-dimensional [(1 + 1)D] chiral SU(3)-level-
1 [SU(3)1] Wess-Zumino-Witten (WZW) conformal field
theory (CFT). Ordinarily, the presence of this counting of
representation content is regarded as an indicator of chiral
topological behavior due to the Li-Haldane correspondence,
as discussed above. Through a full accounting of the repre-
sentation content of the low-lying levels of the entanglement
spectrum in all charge and flux sectors of the PEPS, how-
ever, we are able to understand that the counting results
in this case are actually consistent with the nonchiral topo-
logical order of the PEPS, in a sense extending the result
of Li and Haldane, and we are able to use the entangle-
ment spectrum to quantitatively validate the nonchiral picture
above.

The first task in this effort is to understand the mapping
between the topological order reflected in the PEPS and
a corresponding (2 + 1)D topological quantum field theory.
Specifically, we wish to establish the correspondence be-
tween the charge and flux topological sectors of the PEPS
(accessible by charge projection and flux threading, as dis-
cussed below) and the corresponding anyonic sectors of the
topological quantum field theory. The PEPS we consider has
D(Z3) (Z3 Drinfeld double) topological order, which is the
same topological order as that of doubled SU(3)-level-one
Chern-Simons theory [in short: “SU(3)1 ⊗ SU(3)1 doubled
Chern-Simons theory”]. Therefore, in Sec. II, we write down
a mapping between the D(Z3) charge and flux sectors and the
topological (anyonic) sectors of (2 + 1)D SU(3)1 ⊗ SU(3)1

doubled Chern-Simons theory. We then use this mapping to
understand the appropriate correspondence of the content of
this doubled Chern-Simons theory to each of the nine charge
and flux sectors of D(Z3).

Next, we must consider how the entanglement spectrum,
computed on a bipartitioned (surface of an) infinite cylinder, is
able to detect these topological sectors. In Sec. III, we describe
the entanglement Hamiltonian (the spectrum of which is the
entanglement spectrum) and first outline why we might expect
that this spectrum must exhibit the content of a (1 + 1)D
conformal field theory (CFT) reflecting the theory underlying
the description of a physical boundary (“edge state”) of the
topological state.2 The minimally entangled states (MESs)
are also explained. These allow us direct access to states in
the space of ground states that can be assigned particular
topological quantum numbers. The construction of the MES
is briefly outlined as well. This discussion explains how the
entanglement spectrum is able to obtain the topological data
necessary to realize the mapping of Sec. II.

The construction of the PEPS wave function itself is set
out in Sec. IV, where it is shown to be describable as a
tensor network on the square lattice. Section IV additionally
discusses the method of actually constructing the minimally
entangled sectors in the PEPS through charge projection and
flux threading, taking advantage of the symmetries of the
PEPS. Finally, we describe how to compute the entanglement
spectrum from the PEPS, including the numerical methods
used to do this.

We detail our expectations for that entanglement spectrum
in Sec. V. Each of the nine topological sectors of the en-
tanglement spectrum as understood in the charge and flux
basis of the D(Z3) Drinfeld double description of the PEPS
can be mapped by our mapping of Sec. II to the anyonic
basis of SU(3)1 ⊗ SU(3)1 doubled (2 + 1)D Chern-Simons
theory. In this formulation we can, building on the results

2In the case under consideration, the entanglement spectrum, just
as a physical boundary of our topological state, will eventually be
gapped in the limit of large system size (cylinder circumference).
However, we investigate the entanglement spectrum at system sizes
much smaller than the inverse entanglement gap (proportional to the
correlation length). In this limit the entanglement spectrum (as well
as the spectrum of a physical boundary) reflects the spectrum of the
underlying gapless CFT, and thus the entanglement spectrum serves
as a direct diagnostic of the underlying topological field theory.
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of Refs. [21] and [22], understand the CFT content of the
low-lying entanglement spectrum, which will be seen to con-
sist of two chiral, left- and right-moving branches of SU(3)1

WZW CFT. We calculate, based on this CFT description,
the countings of irreducible representations under the global
SU(3) symmetry that we expect to be present in the spectrum
due to the two chiral, left- and right-moving SU(3)1 branches
of WZW CFT. In our PEPS, since one of these two chiral
branches turns out to have a substantially lower velocity than
the other, we see that the content of the low-lying ES should
consist of the tensor products of SU(3) representations of
the full content (primary and descendant states) of the entire
low-velocity chiral SU(3)1 branch, with only the lowest-level
primary SU(3) representation from the high-velocity chiral
SU(3)1 branch. We also clarify why this CFT content shows
up in the entanglement spectrum, making use of the conformal
boundary state approach to the Li-Haldane correspondence
outlined in Refs. [21] and [22], generalized to the nonchiral,
but “close-to-chiral” case that we have here.

Finally, in Sec. VI, we exhibit the low-lying states of the
numerical entanglement spectra of the PEPS, computed as
discussed in Sec. IV. These confirm the expected countings
of Sec. V A in all nine sectors. We are also able to extract the
velocity ratio of the velocities of the high- and low-velocity
branches, which allows us to confirm that none of the de-
scendant representations from the high-velocity chiral SU(3)1

branch appear in numerical ES data that are available to us for
analysis. These results show that we have correctly diagnosed
the nature of the nonchiral topological order in the PEPS we
analyze.

II. ANYONS

We consider (2 + 1)-dimensional SU(3)1 ⊗ SU(3)1 dou-
bled Chern-Simons theory, which possesses, as already
mentioned, the same D(Z3) (Z3 quantum double) topological
order as the PEPS model. We can then write down an explicit
mapping between the anyons present in the PEPS [and D(Z3)]
and the corresponding anyons of SU(3)1 ⊗ SU(3)1 Chern-
Simons theory that will (as discussed below) determine the
characteristic state countings of the entanglement spectrum.

To write down the mapping, we must understand the ex-
pression of the topological order on both sides. In D(Z3) (as
realized, for example, in the Z3 generalization of the toric
code [23], although what matters for our purposes here will
be the anyonic statistics) we have anyons of type eqmφ , where
e and m are unit Z3 gauge charge and flux, respectively, and
q and φ are integers modulo three (i.e., e2 is equivalent to ē =
e−1, and similarly for m). There are thus nine such anyons,
which we can denote by (q, φ). The associated modular S
matrix is given by (see, e.g., Ref. [24])

SD(Z3 )
(q1,φ1 )(q2,φ2 ) = ω−q1φ2−q2φ1 , (2.1)

where ω = e2π i/3. In turn, we consider (2 + 1)-dimensional
doubled Chern-Simons theory.3 The Chern-Simons theory

3Its topological order can be related, e.g., to the topological order
of the stacking of a fractional quantum Hall state at filling fraction
ν = 1/3 and its time-reversed partner.

TABLE I. This table illustrates the relation between the anyons
of the quantum double Z3 of type eqmφ (which identify the rows and
columns) and the anyons of the SU(3)1 ⊗ SU(3)1 doubled Chern-
Simons theory of type (κ, κ̄ ) that possess the same statistics (which
occupy the table entries).

Charge q

(κ, κ̄ ) 0 1 2

Flux φ 0 (0,0) (−1,−1) (+1, +1)

1 (−1, +1) (+1, 0) (0,−1)

2 (+1, −1) (0, +1) (−1, 0)

will again have nine types of anyon, which can be written
as (κ, κ̄ ) for κ, κ̄ integers modulo three, corresponding to the
anyons in chiral SU(3)1 and antichiral SU(3)1 Chern-Simons
theories, respectively. We can then write the modular S matrix
for the doubled Chern-Simons theory as (see, e.g., Ref. [25])

SSU(3)1⊗SU(3)1
(κ1,κ̄1 )(κ2,κ̄2 ) = ωκ1κ2−κ̄1κ̄2 . (2.2)

In the same notation, we can write the modular T matrices as

T D(Z3 )
(q1,φ1 )(q2,φ2 ) = δq1q2δφ1φ2ω

q1φ1 , (2.3)

T SU(3)1⊗SU(3)1
(κ1,κ̄1 )(κ2,κ̄2 ) = δκ1κ2δκ̄1κ̄2ω

κ2
1 −κ̄2

1 . (2.4)

From equating the entries of the S and T matrices of
Eqs. (2.1)–(2.4) we can obtain equations relating the (q, φ)
anyon type in the D(Z3) theory to the corresponding (κ, κ̄ )
type in SU(3)1 ⊗ SU(3)1 doubled Chern-Simons theory. This
is worked out in Appendix A. Up to a choice of the sign of κ

and κ̄ , which amounts to the choice of the assignment of the
sign of κ and κ̄ to the nontrivial topological sectors of chiral
SU(3)1 and SU(3)1 Chern-Simons theories, respectively, we
have

q = κ + κ̄ (mod 3), (2.5)

φ = κ − κ̄ (mod 3). (2.6)

This correspondence between the nine D(Z3) anyons of type
eqmφ and those of SU(3)1 ⊗ SU(3)1 doubled Chern-Simons
theory of type (κ, κ̄ ) is made explicit in Table I.

III. ENTANGLEMENT SPECTRUM AND MINIMALLY
ENTANGLED STATES

In this section, we introduce entanglement spectra, and
explain how they decompose into topological sectors, how
these sectors can be constructed, and how they are labeled by
the anyons of the theory.

A. Entanglement spectrum

Let us consider a system on a cylinder of length 2L and
circumference N , where L � N , and—for now—a unique
ground state of a gapped Hamiltonian on that system, or an
otherwise uniformly generated state (e.g., a uniform PEPS)
with exponentially decaying correlations, which we denote
by |�〉. The gap (or decay of correlations) ensures that the
properties in the bulk become independent of the choice of
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FIG. 1. Construction of minimally entangled states, cf. text.
(a) Bipartition on a cylinder. (b) The operator Oa measures the effect
of transporting an anyon a along a loop around the cylinder; its
eigenspaces (for a complete set of Oa) yield the minimally entangled
states. (c) Minimally entangled states can be transformed into each
other by moving an anyon b from one end of the cylinder to the other
(“threading it through the cylinder”), which changes the eigenvalue
of Oa as determined by the anyonic braiding statistics.

boundary conditions as L becomes sufficiently large. Now
consider a bipartition of the cylinder in the middle, Fig. 1(a),
and consider its Schmidt decomposition:

|�〉 =
∑

i

e−Ei |αi〉A|βi〉B, Ei ∈ R, (3.1)

where we have expressed the Schmidt coefficients in terms of
“entanglement energies” Ei. The system (as the ground state
of a gapped Hamiltonian, or a PEPS) obeys an area law for the
entanglement entropy: the entanglement between any region
and its complement scales as the length of the boundary, and
thus the amount of entanglement in the considered bipartition
scales linearly with N but is independent of L. Thus, only
on the order of cN Schmidt coefficients e−Ei dominate the
Schmidt decomposition, i.e., have a low entanglement energy
Ei. At the same time, the local distribution of the entanglement
implies that those dominant Ei capture the entangled degrees
of freedom close by to the cut, and will thus not depend on the
boundary conditions as L increases.

The fact that the number of low-lying Ei scales as the num-
ber of degrees of freedom along the cut suggests that those
Ei can be interpreted as the spectrum of a 1D Hamiltonian
H1D associated with the boundary at the cut, the entangle-
ment Hamiltonian. To further fix H1D, we can make use of
quantum numbers in the Schmidt decomposition. For any
symmetry of |�〉, we can choose a Schmidt decomposition
where multiplets {|αi〉} and {|βi〉} transform as conjugate ir-
reducible representations (irreps) of the symmetry group, and
thus, the Ei can correspondingly be labeled by those irreps.
In particular, this applies to translational symmetry around
the cylinder (i.e., momentum), as well as to on-site symme-
tries such as the SU(3) symmetry relevant in this work. The
resulting spectrum Ei, labeled by the appropriate quantum
numbers, is accordingly termed entanglement spectrum. In-
deed, using momentum labels it has first been observed by
Li and Haldane [2] in a slightly different setup, considering
fractional quantum Hall wave functions on a sphere, that the
resulting entanglement spectrum given by the low-lying Ei re-
produces the spectrum of a chiral (1 + 1)D CFT. In PEPS, this

connection of the entanglement spectrum to a one-
dimensional theory can be made explicit, and a corresponding
H1D can be directly computed (see below). Furthermore, in
Sec. V, we are able to clearly describe the relation of that
H1D to the Hamiltonian of a (1 + 1)D nonchiral, “doubled”
CFT, where “doubled” refers to the presence of both chiral
sectors, “right-moving” and “left-moving”: upon employing
a conformal boundary state description [21,22], we then see
why the structure of H1D ought to have this form, an extension
of the observation of Li and Haldane [2].

B. Entanglement spectrum of topologically ordered systems
and minimally entangled states

Let us now turn towards the entanglement spectrum of
systems with topological order, as before on a cylinder. Topo-
logically ordered systems on the cylinder exhibit a degenerate
space of ground states, spanned by topological sectors. As
before, the properties in the bulk, including the entanglement
spectrum, are independent of the details of the boundary con-
ditions, except for the selection of the topological sectors.
Clearly, an entanglement spectrum can be obtained from any
state in the space of ground states. However, it turns out
that there is a discrete set of extremal states which spans
the ground space manifold, the so-called minimally entangled
states (MESs) |�θ 〉. They are characterized by the fact that
in the Schmidt decomposition, the states in either half of the
system are entirely supported in a subspace characterized by
a topological quantum number θ ,

|�θ 〉 =
∑

i

e−Ei,θ
∣∣αθ

i

〉∣∣βθ
i

〉
, (3.2)

where 〈αθ
i |αθ ′

i′ 〉 = δθ,θ ′δi,i′ (and correspondingly for the |βθ
i 〉),

and states with a different label θ are distinguished by a
topological property. It thus follows that a general ground
state is of the form

|�〉 =
∑

cθ |�θ 〉 =
∑
θ,i

e−(Ei,θ−log |cθ |)
(

cθ

|cθ |
∣∣αθ

i

〉) ∣∣βθ
i

〉
,

(3.3)
and thus, the full entanglement spectrum of |�〉 is obtained
by mixing the (shifted) entanglement spectra of the individual
topological sectors |�θ 〉. (This also confirms that the |�θ 〉 are
the states with the minimal entanglement across the biparti-
tion [26].)

How can the MES |�θ 〉 be constructed? To this end,
let us first define loop operators Oa: These are operators
which transport an anyon of type a once around the cylinder
[Fig. 1(b)]. Due to the topological nature of the system, it
does not matter along which specific path Oa is applied. For
the given scenario, where the anyons transform as represen-
tations of an Abelian group, we have that some k copies of
a fuse to the vacuum, and thus, the eigenvalues of Oa are
kth roots of unity. We can thus decompose any state |�〉 into
eigenspaces of Oa. To obtain an exhaustive decomposition,
we have to consider a maximal set A of anyons where no
a ∈ A can be obtained by fusing any of the other anyons in
A. Specifically, for D(Z3), it is sufficient to consider e.g.,
A = {(q = 1, φ = 0), (q = 0, φ = 1)}, while for chiral SU(3)1

Chern-Simons theory, considering a single anyon κ = 1
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suffices. [For doubled SU(3)1 ⊗ SU(3)1 Chern-Simons the-
ory, one then accordingly chooses A = {(κ = 1, κ̄ = 0), (κ =
0, κ̄ = 1)}.] Any such sector is then labeled by the eigenvalues
of the Oa for all a ∈ A, which we denote by θ . We can then
write

|�〉 =
∑

θ

cθ |�θ 〉. (3.4)

Since the Oa act the same way anywhere and the eigenspace
projections can be applied more than once—specifically, once
in each half of the system—the label θ equally applies to
the basis vectors in the Schmidt decomposition, cf. (3.2).
Moreover, the different |�θ 〉 (and the corresponding Schmidt
vectors) live in different eigenspaces of the Oa, and thus
in different topological sectors. Finally, since the number of
different θ equals the number of anyons and thus the dimen-
sion of the space of degenerate ground states on the cylinder,
they cannot be decomposed further. They thus form a basis
of minimally entangled states spanning the whole space, as
introduced above.

It remains to discuss how the different MES can be related;
this will be in particular relevant to the construction of the
MES states in the PEPS representation in Sec. IV. To this end,
take |�θ0〉, where θ0 denotes the sector with trivial irrep for
all a ∈ A. Now create an anyon b at the left boundary and
move it to the right boundary, Fig. 1(c). As the trajectory
of anyon b crosses the loop operator Oa, this will give rise
to a phase Sb,a in the eigenvalue of Oa, and thus transform
|�θ0〉 to another |�θ ′ 〉, where θ ′ is obtained from updating
the eigenvalues of all a ∈ A which do not braid trivially with
b according to the modular S matrix. It is immediate to see
that this way, all MES |�θ 〉 can be obtained by threading an
arbitrary anyon b through the cylinder, starting from |�θ0〉;
this establishes a one-to-one correspondence between MES
(and thus the sectors of the entanglement spectrum) and the
anyons of the theory.

Overall, this discussion provides two different ways to
construct the MES: Either, one starts from a state |�〉 which
has overlap with all MES sectors, and applies projections
onto the eigenspaces of the Oa, a ∈ A, or one starts from a
specific MES, such as |�θ0〉, and creates the other MES by
threading anyons along the cylinder. Moreover, both schemes
can be combined; that is, one starts from a superposition of
a subset of MES |�〉 and constructs the full set of MES by
a combination of applying irrep projections and threading
anyons for suitable subsets of anyons; this approach will be
used for the PEPS in the next section.

Finally, the labeling of MES, and thus entanglement spec-
tra, by the anyons of the theory, combined with the mapping
from Sec. II between the anyons of the Drinfeld double D(Z3)
and the SU(3)1 ⊗ SU(3)1 doubled Chern-Simons theory, pro-
vides us with a mapping between the different sectors of the
entanglement spectra of the respective theories.

IV. THE PROJECTED ENTANGLEMENT PAIR STATE
MODEL AND ITS ENTANGLEMENT SPECTRUM

In this section, we introduce the topological SU(3) spin
liquid which we study. We give its construction in terms
of projected entangled pair states (PEPS), discuss how to

construct the minimally entangled sectors, and explain how
to extract the entanglement spectrum.

A. The model

The model wave function which we focus on has been
constructed and studied in Ref. [20] as an SU(3) topological
spin liquid on the kagome lattice. It was found numerically
that it describes a gapped system with D(Z3) topological
order. It possesses a gapped entanglement spectrum and is
thus nonchiral; yet, the left- and right-moving branches of the
entanglement spectrum possess very different velocities, giv-
ing rise to a clearly recognizable right-moving branch which
was found to exhibit a Li-Haldane state-counting compatible
with the trivial sector of a chiral SU(3)1 CFT in the sectors
studied.

We start by briefly reviewing the construction of the wave
function. We start from a tripartite state |τ 〉 ∈ V⊗3, with the
seven-dimensional virtual space V transforming as the 1 ⊕
3 ⊕ 3 irrep of SU(3), with orthonormal basis vectors |0〉, |s〉,
and |s̄〉, s = 1, 2, 3. It is defined as

|τ 〉 = |0, 0, 0〉 − i√
6

∑
εpqr (|p, q, r〉 + | p̄, q̄, r̄〉)

+ 1√
3

∑
(|s, s̄, 0〉 + |s̄, s, 0〉

+ |s, 0, s̄〉 + |s̄, 0, s〉 + |0, s, s̄〉 + |0, s̄, s〉) (4.1)

(with ε being the fully antisymmetric tensor), that is, it is an
equal-weight superposition of all nine SU(3) singlets in the
tensor product V⊗3. Here, the phases are chosen such that |τ 〉
is rotationally invariant and acquires a complex conjugation
under reflection (a “chiral” symmetry also used in the con-
struction of chiral PEPS [27,28]). We then arrange states |τ 〉
on the triangles of the kagome lattice as shown in Fig. 2(a),
with the sites oriented clockwise, and subsequently apply a
map P : V ⊗ V → C3 at each vertex, which maps the two
virtual systems adjacent to the vertex to a physical system
equipped with the 3 representation. Here, P is given by

P = 1

3

∑
s

|s〉
[
〈0, s| − 〈s, 0| −

√
3

2

∑
pq

εspq〈p̄, q̄|
]
. (4.2)

As P transforms odd under reflection, its alignment does not
matter (up to a global phase). Since P commutes with the
action of SU(3), and |τ 〉 transforms trivially under SU(3), the
construction thus yields an SU(3) invariant wave function |�〉
on the torus.

The wave function can alternatively also be written as a
tensor network, by defining tensors Tpqr := 〈p, q, r|τ 〉 and
Ps

pq = 〈s|P|p, q〉. Then, the overall wave function (that is,
the expansion coefficient |�〉 = ∑

cs1,...,sN |s1, . . . , sN 〉 in the
canonical local basis) is obtained by contracting the tensors as
shown in Fig. 2(b). In particular, we can choose the unit cell
indicated in the figure, containing two T and three P tensors,
and thus three physical spins. By denoting the overall tensor
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FIG. 2. (a) The PEPS model considered is constructed from
tripartite |τ 〉 tensors, Eq. (4.1), aligned clockwise, to which the
projection P , Eq. (4.2), is applied as indicated, resulting in a wave
function on the kagome lattice. The dashed lines indicate the unit
cell. (b) Tensor network representation of model, after shearing
around the cylinder axis to obtain a square lattice from the indicated
unit cell. The cylinder has periodic boundaries in vertical direction,
with the cylinder axis aligned horizontally. (c) The resulting square
lattice tensor has an SU(3) symmetry, with physical representation
Ug ≡ 3 ⊗ 3 ⊗ 3, and virtual representation Wg = 1 ⊕ 3 ⊕ 3̄.

of one unit cell by A, we can now describe the model as a
tensor network on a square lattice.4

B. Symmetry and minimally entangled sectors

Each unit cell is invariant under a virtual Z3 symmetry
action acting jointly on all indices [Fig. 3(a)], with represen-
tation Vφ = Zφ , φ = 0, 1, 2,

Z = |0〉〈0| + ω
∑

s

|s〉〈s| + ω̄
∑

s

|s̄〉〈s̄|, ω = e2π i/3, (4.3)

which assigns phases ω and ω̄ to the 3 and 3̄ subspace, respec-
tively. This can be seen immediately from the transformation
properties of T and P under a virtual Z symmetry action:
While T transforms trivially, each P acquires a phase ω, cor-
responding to its physical SU(3) charge 3; as there are three
Ps in each unit cell, the overall phase is trivial. The trivial
SU(3) charge per unit cell also indicates that a possible no-go
result for certain topological spin liquids in generalization of
Zaletel and Vishwanath’s no-go result for SU(2) [29] would
not apply.

The virtual Z3 symmetry is reflected in a “pulling through”
condition for strings of Vφ = Zφ operators on the virtual
level—that is, such strings can be pulled through individual
tensors [Fig. 3(b)] and thus through the tensor network, mak-
ing them topological objects. This allows them to be used to

4Note that the mapping does not preserve lattice angles. However,
this is only relevant if we want to consider a torus, or if we want to
consider momenta with a component along the cylinder axis. For our
scenario, where we consider the system on a cylinder and only care
about momenta around the torus, the shearing of the unit cell has no
consequences.

FIG. 3. (a) The SU(3) PEPS defined in Fig. 2 possesses a virtual
Z3 symmetry with representation Vφ = Zφ , with Z from Eq. (4.3).
(b) This virtual symmetry can be interpreted as a “pulling-through”
condition for strings of Vφs. (c) Anyons can be described by (i) strings
of Vφ with open ends (illustrated here for Vφ = Z), corresponding
to fluxes φ and −φ at their endpoints, and (ii) by localized defects
Rc, transforming as an irreducible representation c of Z3 when com-
muted with Z , corresponding to a single charge c.

build anyonic excitations as well as to parametrize the ground
space manifold and in particular to construct the minimally
entangled states [5,30,31].

Specifically, flux-like excitations are constructed through
a string of Z operators (or Z2 operators) with open ends,
with fluxes ±1 (∓1) associated with the endpoints, while
charge-like excitations are constructed by locally modifying
the tensor network to transform as a nontrivial irreducible rep-
resentation Rc under the virtual Z symmetry [5], see Fig. 3(c).

From this, we can directly see how to construct the min-
imally entangled sectors on the cylinder and link them to
the different anyons, see also Ref. [32]: First, recall that the
minimally entangled sectors are given by a cylinder with
boundary conditions corresponding to a well-defined anyon
flux through the cylinder. This flux can be measured through
the phase observed when looping a dual anyon a around the
cylinder, denoted Oa in Sec. III. Looping a magnetic particle
around the cylinder corresponds to placing a closed loop of
Zs around the cylinder [5], and the eigenspaces of the loop
operator Z⊗Nv with eigenvalue 1, ω, and ω2 thus correspond
to the three different charges threaded through the cylinder.
The different sectors are thus obtained by applying a charge
projector

�c = 1

3

∑
φ=0,1,2

(Z⊗Nv )φωcφ (4.4)

around the cylinder [Fig. 4(a)]. Importantly, �c can be moved
to any position along the cylinder due to the pulling through
condition and, thus, a single �c is sufficient to ensure a con-
stant charge threaded through the cylinder everywhere. Note
that since Rc′�c = �c+c′Rc′ for an Rc′ which transforms as an
irrep c′, threading an additional charge c′ through the cylinder
indeed changes the label in the right way.

On the other hand, looping a charge around the cylinder
does not accumulate any phase, since in the chosen tensor
network representation, the charge is a point-like object trans-
forming as an irrep with no string attached [5]: We thus infer
that the state we just constructed is threaded by a trivial flux.
To change this sector, we have to thread a flux through the
cylinder; that is, create a flux-antiflux pair ±φ at one end of
the cylinder and move the flux to the other end. This results in
a flux-antiflux pair at the two ends of the cylinder, connected
by a string (Zφ )⊗Nh along the cylinder, see Fig. 4(b). Indeed,
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FIG. 4. Construction of minimally entangled sectors on a cylin-
der with boundary conditions 〈χL| and |χR〉. (a) A state with
well-defined charge c (and trivial flux) along the torus is obtained
by applying a charge projector �c = ∑

(Z⊗Nv )φωcφ/3 along a cut
around the cylinder. (b) A state with well-defined flux φ (and trivial
charge) is obtained by threading a string (Zφ )⊗Nh along the torus,
illustrated here for φ = 1. (c) A general minimally entangled state is
obtained by combination of the two. Note that the charge projector
�c can be moved [using Fig. 3(b)] and thus alternatively be absorbed
into the choice of at least one of the boundary conditions.

looping a charge c around the cylinder will now acquire a
phase ωφc due to the commutation relation with Z , as required.

Overall, the minimally entangled states on the cylinder
are thus constructed as shown in Fig. 4(c), namely, by (i)
projecting onto a charge sector c through the projector �c,
Eq. (4.4), and (ii) placing a string (Zφ )⊗Nh along the cylin-
der. For a system on a sufficiently long cylinder, and in a
gapped topological phase, the resulting state deep in the bulk,
as well as its entanglement spectrum, will be independent
of the specific boundary conditions chosen, as long as they
are compatible (i.e., have nonzero overlap) with the chosen
symmetry sectors.

C. Entanglement spectrum

As explained in Sec. III, the entanglement spectrum is ob-
tained by considering bipartitions of the minimally entangled
states on the cylinder, labeled by the quantum numbers for
momentum (translation) and SU(3). In PEPS, the entangle-
ment spectrum can be extracted by cutting the PEPS on the
cylinder across the bonds, and computing the density operator
obtained at the bond degrees of freedom when tracing out the
physical degrees of freedom, cf. Fig. 5(a). Let us denote these
states by σL and σR. The entanglement spectrum is then ob-
tained as spec(σL(σR)T ), or equivalently spec(

√
σL(σR)T √

σL )
(the latter being Hermitian). From the SU(3) symmetry of the
tensors [Fig. 2(c)], it follows that σL and σ T

R commute with
a global SU(3) action,5 and thus, the spectrum of σL(σR)T

can be labeled by SU(3) quantum numbers. Moreover, we
can assume that both σL and σR are supported on the sector
onto which �c projects (e.g., by placing a �c on both half
cylinders, or by choosing suitable boundary conditions).

5As long as we either choose boundary conditions with a fixed
SU(3) irrep, or consider the limit of an infinitely long cylinder
and use that the transfer operator has a unique fixed point in each
topological sector, which is given in the topological phase [32].

FIG. 5. (a) In PEPS, the entanglement spectrum can be computed
from the left and right virtual boundary states σL and σR at the respec-
tive cut (obtained by tracing the physical indices) as spec(σLσ

T
R ).

(b) In the case of a PEPS threaded by a flux string (top, here
illustrated for φ = 1), the action of the translation operator (acting
jointly on the physical and the virtual system, or equivalently—after
tracing the physical system—at the virtual ket + bra layer) displaces
the flux string (bottom right). The string can be moved back to its
original position in the bulk using the virtual symmetry of Fig. 3(a),
at the cost of one Zφ operator appearing at the boundary (bottom
left). This gives rise to a dressed translation operator Tφ = T Zφ

1 , and
subsequently to a momentum shift (c/3)(2π/Nv ) in the sector with
charge c.

It remains to discuss how to assign momentum quantum
numbers to σ• (• = L, R). The nontrivial point here lies in
the fact that the cylinder can be threaded by a flux, rendering
the underlying tensor network not translationally invariant—
while the physical state is independent of where the flux string
is located, the boundary states σ• are not. Rather, the different
string locations are related through a gauge transformation,
just as for any 1D chain threaded by a flux. Specifically,
as illustrated in Fig. 5(b), translation corresponds to rotating
the cylinder by one site, and thus displaces the (Zφ )-string
accordingly. By virtue of the pulling-through condition, this is
again equal to the original string location up to a gauge trans-
formation Zφ applied to the virtual index at the boundary just
adjacent to the location of the string (without loss of general-
ity, we assume this is position i = 1, denoted Zφ

1 ). Thus, we
have that in the limit of an infinitely long cylinder, both σ =
σL, σ T

R transform under the translation operator T as T σT † =
Zφ

1 σ (Zφ

1 )†, or [T Zφ

1 , σ ] = 0. This implies that the eigenvalues
of σ are labeled by quantum numbers of the dressed trans-
lation operator Tφ = T Zφ

1 . Since T Nv

φ = (T Zφ

1 )Nv = (Zφ )⊗Nv ,

we have that T Nv

φ ≡ ωc for the minimally entangled state with
charge c, for which σ is supported on �c. Thus, we find
that for the sector with charge c, the allowed momenta are
k = (2π/Nv )(n + c/3), n = 0, . . . , Nv − 1.

The described procedure allows us to obtain the bound-
ary states σ• = σL, σR, and thus the entanglement spectrum
spec(σLσ T

R ), for each of the minimally entangled topological
sectors. However, it does not provide us with the normal-
ization of σ• and thus of the entanglement spectrum, as the
latter depends on the chosen boundary condition. On the other
hand, the relative normalization of the entanglement spectrum
in different sectors contains important information about the
underlying CFT, as it allows us to relate the entanglement en-
ergies in the different sectors. To fix the relative normalization
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of the different sectors in a canonical way, we thus follow the
procedure set forth in Ref. [32] and normalize the sectors such
that the trace of the entanglement spectrum is identical for all
topological sectors. This is motivated by the fact that this is
the only choice consistent with the entanglement spectrum,
taken jointly for all sectors with the corresponding weight,
being the Gibbs state of a local entanglement Hamiltonian (see
Supplemental Material of Ref. [32]), and thus an underlying
CFT.

D. Numerical methods

To numerically compute the entanglement spectrum of the
PEPS for the different sectors, we proceed as follows [20,28]:
First, we determine the left and right fixed point of the PEPS
transfer matrix on an infinite system, by approximating each
by a matrix product state (MPS) of some bond dimension χ ,
described by a tensor A. To this end, we repeatedly apply the
transfer matrix (with tensor T ) to the MPS; that is, we replace
A by A contracted with T . Subsequently, we truncate the bond
dimension of the MPS, by discarding all Schmidt coefficients
below some threshold δ. This is iterated until convergence is
reached. (In practice, we repeatedly ramp down the threshold
δ → δ/2.) For the data reported, we used δ = 10−6 × 2−8 ≈
3.9 × 10−9, resulting in an MPS with χ = 111, and an ac-
curacy (overlap squared per site of old and new MPS) of
≈10−12.

From the MPS for left and right fixed point, we can then
construct σL and σR for a finite cylinder, by separating ket and
bra indices—resulting in a matrix product operator (MPO)—
and wrapping the MPO on a cylinder. (Note that this is only
an approximation to the true fixed points on the cylinder, since
the MPO has been optimized for an infinite system.) When
closing the boundary, we can insert a flux; that is, a symmetry
action Ẑφ on the virtual ket and bra index of the MPO, to select
a topological sector. Ẑ amounts to the “compressed” version
of the symmetry action Z ⊗ Z̄ along the cylinder. While we do
not encode the SU(3) or Z3 symmetry, Ẑ can be numerically
determined from the symmetry action Z ⊗ Z̄ on the “physi-
cal” indices of the MPO, using the fundamental theorem of
MPS [33]. To determine the entanglement spectrum—which,
as we explained, equals the spectrum of σL(σR)T —we how-
ever do not explicitly construct σL and σR, as this would be
too memory-intensive. Rather, we use a Krylov method to
determine the leading eigenvalues of σL(σR)T , where we only
need to be able to apply (σR)T and σL to a given vector �v; this
can be carried out by contracting one MPO tensor after the
other with �v, and additionally manually summing over one of
the open virtual MPO indices, and thus only requires roughly
a vector of size χ × 7N (D = 7 being the dimension of �v per
site) to be stored (which limits the χ we can use). In addition,
we apply projections onto momentum sectors and onto charge
sectors after each application of σL(σR)T , as detailed above, to
retrieve the entanglement spectrum in a given topological and
momentum sector. For each sector, we determine this way the
1500 leading eigenvalues. Since we do not encode the SU(3)
symmetry, the irrep labels of the SU(3) multiplets are deter-
mined from their multiplicities. Note that the normalization
(recall that all sectors have the identical normalization) can
be computed exactly, without having to restrict to the Krylov

data, as tr(σLσ T
R ) equals the trace of the N’s power of the

transfer matrix for σLσ T
R , which is a χ2 × χ2 matrix.

V. FINDING CONFORMAL FIELD THEORY
IN THE ENTANGLEMENT SPECTRUM

A. State countings in (1 + 1)-dimensional conformal field theory

From the construction and computation of the PEPS of
Sec. IV, we are able to obtain the entanglement Hamiltonian
H1D. We can define the excitation energies �Ei to be the
values of the (entanglement) energy eigenvalues Ei of H1D [as
defined in Eq. (3.3)] less the ground-state energy E0:

�Ei = Ei − E0. (5.1)

As will be elaborated on below, the �Ei of the low-lying
entanglement Hamiltonian will scale inversely with N in the
system under consideration.6

The entanglement excitation energies �Ei will be those
depicted in the spectra of Figs. 7–9 in Sec. VI. Using an exten-
sion of the arguments given in Refs. [21] and [22], we see that
the SU(3) representation content of those spectra at a given
momentum is in one-to-one correspondence with that of the
spectrum of a physical boundary (“edge”), a correspondence
which we understand from the conformal boundary state point
of view in Sec. V B. First, we give the necessary prelimi-
naries for understanding the theory of a physical boundary
and ultimately its implications for the CFT content of the
entanglement spectrum. The theory will be determined by the
topological order of the system which, as discussed in Sec. II,
can be described by SU(3)1 ⊗ SU(3)1 doubled Chern-Simons
theory. To describe a physical boundary (and also the entan-
glement spectrum) of the doubled Chern-Simons theory, we
must first understand the chiral SU(3)1 WZW CFT taken on
its own. The theory, being at level k = 1, has three sectors,
each with an associated set of primary states, which corre-
spond to one of the three lowest-dimensional representations
of SU(3): 1, 3, and 3. There is also a Noether current Ja(x)
corresponding to the eight generators of SU(3) symmetry,
where a = 1, . . . , 8. Considering this chiral CFT as present
on the circular edge of a cylinder of circumference N , we can
write the mode expansion of this current as

Ja(x) = 2π

N

∞∑
n=−∞

Ja
n e2π inx/N . (5.2)

Then the Hilbert space of the chiral SU(3)1 WZW CFT is
built by acting with the modes Ja

−n as raising operators to build
states of the form

Ja1−n1
· · · Jam−nm

|ρ, sρ〉, (5.3)

where |ρ, sρ〉 is a primary state multiplet with representation
ρ ∈ {1, 3, 3}, sρ is the specific state in the representation,
and the ni are positive integers. In the sector rooted in a
given primary state multiplet, the Hilbert space consists of a
tower of states at different (1D momentum) levels K = ∑

ni

6When, as was mentioned before, N is much smaller than the
inverse entanglement gap.
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TABLE II. The multiplet content of the 1 and 3 primary sectors of the chiral SU(3)1 WZW theory [34]. Note that the content of the 3
primary sector can be obtained by taking the conjugates of the representations given for the 3 primary sector.

Level K 1 primary sector multiplets 3 primary sector multiplets

0 1 3

1 8 3 + 6

2 1 + 2(8) 2(3) + 6 + 15

3 2(1) + 3(8) + 10 + 10 3(3) + 3(6) + 2(15)

4 3(1) + 6(8) + 10 + 10 + 27 6(3) + 4(6) + 4(15) + 24

5 4(1) + 10(8) + 3(10) + 3(10) + 2(27) 9(3) + 8(6) + 7(15) + 15′ + 2(24)

above the primary state. These states are organized into mul-
tiplets (irreducible representations) of SU(3) which we label
by their dimension. There will be a characteristic number of
multiplets of each dimension at each level K of the tower.
Table II contains the expected countings for the multiplets in
the chiral SU(3)1 WZW CFT. The Sugawara expression of
the energy-momentum tensor T (x) of the chiral CFT can be
written as [35]

T (x) = 1

k + 3

8∑
a=1

(JaJa)(x), (5.4)

where we use round brackets () around JaJa to indicate normal
ordering, and the level k = 1 for SU(3)1. We can then expand
T (x) in terms of modes L−n:

T (x) =
(

2π

N

)2
(

− c

24
+

∞∑
n=−∞

Lne2π inx/N

)
, (5.5)

where the central charge c = 2 for the SU(3)1 WZW CFT.
Thus we see that the Hamiltonian of this theory, which de-
scribes the chiral edge states on a physical boundary of a
cylinder, will be

HL = vL

2π

∫ N

0
T (x)dx = 2πvL

N

(
L0 − c

24

)
, (5.6)

where the subscript L on the Hamiltonian HL and the velocity
vL indicates that these are left-moving edge states, and L0 is
the zero-mode of T (x). The momentum PL is given by

PL = 2π

N
L0. (5.7)

The eigenvalues of HL and PL are determined by those of L0,
which are the states of Eq. (5.3), and we have

L0
(
Ja1−n1

· · · Jam−nm
|ρ, sρ〉

) = (
hρ + KL

)(
Ja1−n1

· · · Jam−nm
|ρ, sρ〉

)
,

(5.8)

where hρ = C2(ρ)/(k + 3) is the conformal weight of the
primary state at representation ρ, C2(ρ) is the quadratic
Casimir of ρ, and KL = ∑m

i=1 ni is the level of the state.
[For the primary states of SU(3)1 we have C2(1) = 0 and
C2(3) = C2(3) = 4/3, leading to L0 eigenvalues for the pri-
mary states equal to their conformal weights h1 = 0 and
h3 = h3 = 1/3.]

We now discuss the nonchiral WZW CFT. This theory
consists of two time-reversed copies of the chiral WZW CFT,
one left-moving (“holomorphic”) CFT denoted by SU(3)1,

and one right-moving (“antiholomorphic”) CFT denoted by
SU(3)1. We can take the definitions so far presented for the
chiral theory [Eqs. (5.2)–(5.8)] as describing the left-moving
theory. The right-moving theory, then, is described in terms of
conjugate currents and their modes:

J̄a(x) = 2π

N

∞∑
n=−∞

J̄a
−ne2π inx/N , (5.9)

T̄ (x) = 1

k + 3

8∑
a=1

(J̄aJ̄a)(x), (5.10)

T̄ (x) =
(

2π

N

)2
(

− c

24
+

∞∑
n=−∞

L̄−ne2π inx/N

)
, (5.11)

and

H̄R = v̄R

2π

∫ N

0
T̄ (x)dx = 2π v̄R

N

(
L̄0 − c

24

)
, (5.12)

P̄R = 2π

N
L̄0, (5.13)

in contrast with the HL and PL of Eq. (5.6). The eigenvalues of
L̄0 take the same form as those of L0,

L̄0J̄ ā1−n̄1
· · · J̄ ām−n̄m

|ρ̄, s̄ρ̄〉R = (h̄ρ̄ + K̄R)J̄ ā1−n̄1
· · · J̄ ām−n̄m

|ρ̄, s̄ρ̄〉R,

(5.14)

but now with the eigenstates J̄ ā1−n̄1
· · · J̄ ām−n̄m

|ρ̄, s̄ρ̄〉R, which are
constructed in a manner analogous to Eq. (5.3). (The primary
states of the left-moving theory will now be denoted |ρ, sρ〉L.)
We denote the conformal weights of the primary states in the
R sector in the representation ρ̄ by h̄ρ̄ , and the level of the state
is then K̄R = ∑m

i=1 n̄i.
In the nonchiral CFT, which we sometimes also refer to,

in short, as the “doubled SU(3)1 ⊗ SU(3)1 CFT”,7 the states
can be organized into multiplets of the global, diagonal SU(3)
symmetry acting simultaneously on SU(3) and SU(3), which
is now the total SU(3) found from the decompositions of
tensor products of the corresponding SU(3) multiplets from
the left- and right-moving chiral theories. It is this SU(3)

7Not to be confused with the SU(3)1 ⊗ SU(3)1 doubled Chern-
Simons theory, the latter being a (2 + 1)-dimensional topological
gapped theory, while the former is a (1 + 1)-dimensional gapless
CFT.
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TABLE III. The multiplet content of the sectors of the doubled theory with charge zero. Note that the first (φ = 0) section of the table, in
which the fast-moving theory is in the trivial 1 primary sector, has the same multiplet content as that of the 1 primary state sector of the chiral
SU(3)1 theory in Table II.

Charge q = 0

Flux Fast (L) Slow (R) Level K Multiplet content

φ = 0 1 1 0 1

1 8

2 1 + 2(8)

3 2(1) + 3(8) + 10 + 10

κ = 0 κ̄ = 0 4 3(1) + 6(8) + 10 + 10 + 27

5 4(1) + 10(8) + 3(10) + 3(10) + 2(27)

φ = 1 3 3 0 1 + 8

1 1 + 2(8) + 10

2 2(1) + 4(8) + 10 + 10 + 27

3 3(1) + 8(8) + 2(10) + 3(10) + 2(27)

κ = −1 κ̄ = +1 4 6(1) + 14(8) + 4(10) + 5(10) + 5(27) + 35

5 9(1) + 24(8) + 8(10) + 10(10) + 9(27) + 35 + 2(35)

φ = 2 3 3 0 1 + 8

1 1 + 2(8) + 10

2 2(1) + 4(8) + 10 + 10 + 27

3 3(1) + 8(8) + 3(10) + 2(10) + 2(27)

κ = +1 κ̄ = −1 4 6(1) + 14(8) + 5(10) + 4(10) + 5(27) + 35

5 9(1) + 24(8) + 10(10) + 8(10) + 9(27) + 2(35) + 35

symmetry that can be determined from the PEPS, as described
in the previous section. With this in mind, the Hamiltonian for
the overall theory becomes

Htotal = Hdoubled + Hinteraction, (5.15)

where

Hdoubled = HL + H̄R = 2π

N

(
vLL0 + v̄RL̄0 − (vL + v̄R)

c

24

)

= vLPL + v̄RP̄R − πc

12N
(vL + v̄R),

(5.16)

is the nonchiral CFT, and Hinteraction represents a glob-
ally SU(3)-symmetric coupling term between the left- and
right-moving sectors of the CFT. This interaction term will
eventually generate a gap, but as discussed above we will be
mostly interested in the limit where the system size is much
smaller than the inverse gap (proportional to the associated
correlation length). In this limit, as already mentioned, the
underlying gapless features of the CFT will appear. We also
have

P = P̄R − PL and K = K̄R − KL (5.17)

for the total momentum and level, respectively.
Here we consider the case of strong time-reversal sym-

metry breaking, reflected in vastly different velocities of the
right- and the left- moving branches of the CFT, vL � v̄R. In
such a case, due to the substantial energy penalty assigned to
any but the lowest-lying states in the high-velocity left-moving

theory, we see that the SU(3) representations (multiplets)
available to us at low energies will come from the tensor
products of the representations of only the primary states (no
descendants) of the left-moving theory {|1〉L, |3〉L, |3〉L} with
the representations of the full low-energy multiplet content
(see Table II), i.e., including the descendant states, of the
three low-velocity right-moving primary state sectors (with
lowest states {|1〉R, |3〉R, |3〉R}). Some of the lowest levels of
the multiplet content of the nonchiral L/R theory are recorded
in Tables III–V, where we refer to the left-moving theory as
the “fast” theory and the right-moving theory as the “slow”
theory. Note that the levels K denoted in these tables, which
are also those that will be exhibited in the spectra of Sec. VI,
are equal to the levels K̄R of the R side, since the L contri-
butions are only from the primary states, which have level
KL = 0. [See Eqs. (5.8), (5.14), and (5.17).]

B. The conformal boundary state description of the
entanglement spectrum of the (2 + 1)-dimensional

topological theory

The previous section outlines how we can write down a
Hamiltonian Htotal, Eq. (5.15), that is the sum of a left-moving
CFT Hamiltonian HL, a right-moving CFT Hamiltonian H̄R,
and their interactions Hinteraction. In this section, we wish to
describe the relationship of this Htotal to the numerically com-
puted entanglement Hamiltonian H1D. For a chiral topological
state described by chiral Chern-Simons theory (as opposed
to doubled Chern-Simons theory), leading to a chiral CFT
Hamiltonian (such as either HL or H̄R) considered on its own
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TABLE IV. The multiplet content of the sectors of the doubled theory with charge one. Note that the final (φ = 2) section of the table, in
which the fast-moving theory is in the trivial 1 primary sector, has the same multiplet content as that of the 3 primary state sector of the chiral
SU(3)1 theory in Table II.

Charge q = 1

Flux Fast (L) Slow (R) Level K Multiplet content

φ = 0 3 3 0 3 + 6

1 2(3) + 6 + 15

2 3(3) + 3(6) + 2(15) + 24

3 6(3) + 5(6) + 5(15) + 2(24)

κ = −1 κ̄ = −1 4 10(3) + 10(6) + 9(15) + 15′ + 4(24) + 42

5 17(3) + 16(6) + 17(15) + 2(15′) + 21 + 8(24) + 2(42)

φ = 1 3 1 0 3

1 3 + 6 + 15

2 3(3) + 2(6) + 2(15)

3 5(3) + 4(6) + 4(15) + 15′ + 24

κ = +1 κ̄ = 0 4 9(3) + 7(6) + 8(15) + 15′ + 2(24) + 42

5 14(3) + 13(6) + 15(15) + 3(15′) + 5(24) + 2(42)

φ = 2 1 3 0 3

1 3 + 6

2 2(3) + 6 + 15

3 3(3) + 3(6) + 2(15)

κ = 0 κ̄ = +1 4 6(3) + 4(6) + 4(15) + 24

5 9(3) + 8(6) + 7(15) + 15′ + 2(24)

TABLE V. The multiplet content of the sectors of the doubled theory with charge two. Note that the middle (φ = 1) section of the table in
which the fast-moving theory is in the trivial 1 primary sector has the same multiplet content as that of the 3 primary state sector of the chiral
SU(3)1 theory, which contains conjugate representations to those found in the 3 primary state sector delineated in Table II.

Charge q = 2

Flux Fast (L) Slow (R) Level K Multiplet content

φ = 0 3 3 0 3 + 6

1 2(3) + 6 + 15

2 3(3) + 3(6) + 2(15) + 24

3 6(3) + 5(6) + 5(15) + 2(24)

κ = +1 κ̄ = +1 4 10(3) + 10(6) + 9(15) + 15
′ + 4(24) + 42

5 17(3) + 16(6) + 17(15) + 2(15
′
) + 21 + 8(24) + 2(42)

φ = 1 1 3 0 3

1 3 + 6

2 2(3) + 6 + 15

3 3(3) + 3(6) + 2(15)

κ = 0 κ̄ = −1 4 6(3) + 4(6) + 4(15) + 24

5 9(3) + 8(6) + 7(15) + 15
′ + 2(24)

φ = 2 3 1 0 3

1 3 + 6 + 15

2 3(3) + 2(6) + 2(15)

3 5(3) + 4(6) + 4(15) + 15
′ + 24

κ = −1 κ̄ = 0 4 9(3) + 7(6) + 8(15) + 15
′ + 2(24) + 42

5 14(3) + 13(6) + 15(15) + 3(15
′
) + 5(24) + 2(42)
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HL

HR

H̄L

H̄R

FIG. 6. The boundaries of two concentric cut cylinders are de-
picted along the cut. The outer cylinder colored blue represents
the chiral, SU(3)1 part of the doubled Chern-Simons theory, while
the inner, red cylinder represents the antichiral SU(3)1 part. The
blue cylinder boundary hosts a left-moving edge (on the bottom),
with boundary Hamiltonian HL , and a right-moving edge (on the
top), with boundary Hamiltonian HR. Meanwhile, the red cylinder
boundary hosts a right-moving edge (on the bottom), with boundary
Hamiltonian H̄R, and a left-moving edge (on the top), with boundary
Hamiltonian H̄L . Short vertical bars between the edges in each cylin-
der represent the coupling between them (i.e., between HL and HR,
or between H̄R and H̄L), present in the original system, that gaps the
ground state.

(and consequently with no Hinteraction either), this relationship
amounts to the statement of the Li-Haldane correspondence,
as touched upon in Sec. III. Below, we first briefly review in a
bit more detail how this works from the conformal boundary
state point of view, an approach which we then use to general-
ize the correspondence to the case of a nonchiral topological
state described by doubled Chern-Simons theory, which will
lead to the appearance of a (nonchiral) Hamiltonian Htotal.

This point of view was first exhibited in Ref. [21]. Our
brief recapitulation of the chiral CFT case here will follow
the discussion in Ref. [22]. Consider the case of a chiral
topological state on a cylinder such that, when the cylindrical
geometry is bipartitioned, the theory of one of the two phys-
ical edges (specifically, the left-moving edge), produced by
a physical cut at the location of that bipartition, is governed
by the CFT Hamiltonian HL above. We can take the so also
generated decoupled, counterpropagating, right-moving edge
to have Hamiltonian HR. (Note that this is distinct from H̄R,
as we are currently only working with opposite edges of a
chiral topological state—we return to H̄R below.) Consider
a quantum quench, which begins at time t = 0 with the full
Hamiltonian of what will become the partition, before the
cut, i.e., a Hamiltonian including terms for HL and HR, as
well as any coupling between them present in the original
system, which gaps the ground state of the system composed
of the two counterpropagating edges produced by the physical
cut; compare the blue parts of Fig. 6, where the short bars
represent such a coupling. At times t > 0 the quench proceeds
to a dynamics with a decoupled Hamiltonian HL + HR. In
effect, this quench enacts the physical cutting of the cylinder.
The initial condition of the quench at t = 0 will then be the
topological ground state |G〉 of the entire state on the cylinder.
The state |G〉 is a state in the Hilbert space of a nonchiral
CFT on which HL and HR act, and can be understood to
be related to a conformally invariant fixed-point boundary

state |G∗〉 of this CFT by a renormalization-group (RG) flow
into the deep infrared. |G∗〉 itself is not normalizable, but
the “deformation” of |G∗〉 to the actual ground state |G〉 by
irrelevant boundary operators8 will have finite norm. The set
of irrelevant boundary operators consists of the boundary
energy-momentum tensor, and others [36]. The effect of the
additional irrelevant operators, besides the boundary energy-
momentum tensor, is manifest in splittings of the levels of
the chiral entanglement spectrum [22]. For now, we first just
take the boundary energy-momentum tensor of the CFT as our
(currently sole) irrelevant boundary operator.9 The boundary
energy-momentum tensor has integrals HL [on the left-moving
edge, Eq. (5.6)] and HR [on the right-moving edge, Eq. (5.12)].
Therefore we can represent

|G〉 ∝ e−τ0(HL+HR )|G∗〉, (5.18)

for some “extrapolation length” τ0. From this, we can then
proceed to obtain the reduced density matrix in a particular
sector, reduced by tracing out all the right-moving degrees of
freedom which are located (in a suitable convention) on the
left-hand side of the cut (the upper blue edge in Fig. 6); that
is [21],

ρL,a = TrR(|Ga〉〈Ga|) ∝ Pae−4τ0HLPa, (5.19)

where |G〉a, the ground state in the topological flux sector
a, corresponds in the language of Sec. III B to a particular
minimally entangled state. (Pa is the projector onto the sector
a.) We then see that the spectrum spec(− ln ρL,a) is the en-
tanglement spectrum in that sector, which can now be seen to
exhibit a correspondence with the characteristic degeneracies,
and here the SU(3) multiplet content, of the left-moving chiral
CFT governed by the Hamiltonian HL.

We return to the case of Htotal, of Eq. (5.15), which is
needed for the (nonchiral) PEPS discussed here. As opposed
to the chiral wave function considered in the previous para-
graph, when we consider instead this nonchiral PEPS wave
function on the surface of a bipartitioned cylinder, the Hamil-
tonians describing the theory on the two sides of the physical
cut will now be Htotal and H̄total, respectively. Compare Fig. 6,
where the blue parts represent the cut of the chiral SU(3)1

part of the doubled SU(3)1 ⊗ SU(3)1 Chern-Simons theory
(reviewed above), while the red parts represent the cut of the
antichiral SU(3)1 part: From Eqs. (5.15) and (5.16), and their
antichiral counterpropagating counterparts, we have that

Htotal = HL + H̄R + Hinteraction, (5.20)

H̄total = H̄L + HR + H̄interaction. (5.21)

Note that, referring again to Fig. 6, on the left-hand side
of the cut reside (in a suitable convention) the upper blue
and red counterpropagating edge states (denoted by HR and
HL, respectively), whereas on the right-hand side of the cut
resides the lower blue and red counterpropagating edge states

8Moving the state within the basin in attraction of the boundary
fixed point away from that fixed point.

9This is the approach of Refs. [37,38] and others, which we follow
here first for simplicity.
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(denoted HL and HR, respectively). Upon tracing over the
degrees of freedom on the left-hand side of the cut we are left
with the lower pair of counterpropagating blue and red edge
states (denoted by HL and HR), residing on the right-hand
side of the cut. Since the microscopic PEPS wave function
will contain interactions between degrees of freedom arising
from the chiral and the antichiral parts of the doubled Chern-
Simons topological field theory [reflected, e.g., in the fact that
this wave function only possesses global diagonal SU(3), and
not SU(3) × SU(3) symmetry], there will be interaction terms
present between the (blue and red) counterpropagating edge
states on either side of the cut, as displayed in Eqs. (5.20)
and (5.21) above. For these two equations to encompass the
whole low-energy entanglement spectrum, including split-
tings which arise from within each of the chiral and antichiral
parts of the doubled Chern-Simons topological field theory
(of the kind discussed in the previous paragraph), rather than
due to the interaction between them, we need to include the
integrals of the additional irrelevant boundary operators men-
tioned above as well. The specific operators are not crucial
here,10 so we simply say that we can formally include their
integrals into the definition of what we call HL, H̄R, H̄L, and
HR of Eqs. (5.20) and (5.21). In the absence of Hinteraction, we
could simply carry out the analysis of the previous paragraph
concerning the chiral case for decoupled HL and H̄R in par-
allel. The resulting entanglement spectrum would possess the
characteristic degeneracies, and (in our case) the total SU(3)
multiplet content, of Hdoubled = HL + H̄R. These multiplets
consist, as discussed in the previous section, of the tensor
products of the SU(3) multiplets from the (in this case de-
coupled) left- and right-moving branches of the entanglement
spectrum. For the decoupled Hdoubled, the multiplets of the
total SU(3) corresponding to a given tensor product will all
be degenerate in energy. Introducing a nonzero [and, recall,
SU(3)-symmetric] Hinteraction, however, can split this type of
degeneracy, in cases where both of the multiplets factoring
into the tensor product have a dimension greater than one.
That is to say, the SU(3) ⊗ SU(3) symmetry of Hdoubled [from
the SU(3) symmetry of HL and SU(3) symmetry of H̄R] is
broken to the total (diagonal) SU(3) by adding Hinteraction.
Thus, the presence of splittings among the multiplets in the
entanglement spectrum that come from the same tensor prod-
uct of multiplets in the two, left- and right-moving, chiral
branches serves as evidence (in addition to the previously
mentioned gapped nature of the entanglement spectrum seen
in Ref. [20]) that Hinteraction is nonzero. In the case where
the entanglement gap (proportional to the inverse correlation
length) induced by the interaction Hinteraction is sufficiently
small as compared with the inverse system size (length of
the circular cut), however, the entanglement spectrum will,
as already mentioned, be close to what it would be in the
ideal noninteracting doubled case, up to the likewise weak but
clearly visible splittings of the otherwise degenerate groups
of multiplets from the same tensor product which are, as
discussed above, a consequence of these interactions. This

10They are spelled out in detail for a number of chiral cases in
Ref. [22].

is the case that we find here—the conformal boundary state
approach is able to guide our understanding of the underlying
physics of the entanglement spectrum as expected in this
limit, despite the gapped nature of the actual, no longer chiral
boundary theory along the cut.

VI. RESULTS

The dimensionalities of the SU(3) multiplets occurring in
each charge and flux topological sector of the entanglement
spectrum calculated from the PEPS of Sec. IV, at circum-
ference N = 6, are shown in Figs. 7–9. These results are
in exact agreement with those we would expect from the
indicated charge projection and flux threading of the PEPS
based on the mapping between anyon types in the Drinfeld
double D(Z3) and doubled SU(3)1 ⊗ SU(3)1 Chern-Simons
theory, described in Table I. In the notation of Table I, we
take κ and κ̄ to correspond to the “fast” and “slow” (left- and
right-moving) chiral branches, respectively, of the CFT under-
lying (as explained in the previous section) the entanglement
spectrum, with the anyon types 0, 1, and −1 corresponding
to the primary state sectors in SU(3) representations 1, 3,
and 3, respectively. We found in Eq. (2.5) that the charge is
given by q = κ + κ̄ (mod 3), and we use this to sort the nine
sectors into three groups based on their charge. The multiplet
content of the sectors with charge zero is found in Table III,
while that of sectors with charges one and two can be found
in Tables IV and V. Within each table of the same charge,
the flux [φ = κ − κ̄ (mod 3) from Eq. (2.6)] then uniquely
specifies the pair of chiral branch primary states (“fast” minus
“slow”) that determines which tensor products of the SU(3)
representation content of branches we expect in particular.

Looking at Figs. 7–9, we can now see that the dimension-
ality and multiplicity of the multiplets in each sector indeed
correspond with the multiplet content for the anyonic sectors
of the doubled theory, as described in Tables III–V. The data
of Figs. 7–9 consist of entanglement excitation energies �E
relative to the baseline entanglement energy E0 of the ground
state, as in Eq. (5.1). For the entanglement spectrum we ana-
lyze, E0 is the entanglement energy of the primary state (the
state at level K = 0) of the singlet |1〉L ⊗ |1〉R of the charge
zero, flux zero sector. Thus, for that state, as can be observed
in Fig. 7(a), the plotted entanglement (excitation) energy is
�E0,00 = 0. Note that here, and for the rest of this paper, we
use the notation �EK,qφ , defined as follows:11

�EK,qφ = numerical entanglement excitation energy

at level K in the charge q, flux φ sector. (6.1)

The sectors where the “fast” side is in the trivial |1〉L

(singlet) sector will simply have the counting of the chiral

11When there are several degenerate multiplets at level K in the
charge q, flux φ sector, the labeling of the corresponding eigenval-
ues of the entanglement Hamiltonian would require an additional
multiplicity label (these degeneracies will be split in entanglement
energy, as seen in the figures below); however, in the remainder of
this paper we use the explicit notation �EK,qφ only for nondegenerate
eigenvalues.

245150-13



ARILDSEN, SCHUCH, AND LUDWIG PHYSICAL REVIEW B 108, 245150 (2023)

FIG. 7. The entanglement spectra of the PEPS obtained at charge
q = 0 and with flux φ = 0, 1, and 2, in panels (a), (b), and (c), respec-
tively, corresponding to (κ, κ̄ ) = (0, 0), (−1, +1), and (+1, −1),
on a cylinder with circumference N = 6. The multiplet dimensions
and multiplicities correspond precisely to those of Table III. The
horizontal separation of the data points within each box at level K
has been artificially added in order to more clearly show overlapping
data.

SU(3)1 CFT sector corresponding to the “slow” R−side, as
is apparent from comparing the counting of Figs. 7(a), 8(c),
and 9(b) to Table II. Indeed, as L0|1〉L = h1|1〉L = 0, and we

FIG. 8. The entanglement spectra obtained at charge q = 1 and
with flux φ = 0, 1, and 2, in panels (a)–(c), respectively, correspond-
ing to (κ, κ̄ ) = (−1,−1), (+1, 0), and (0, +1), on a cylinder with
circumference N = 6. The multiplet dimensions and multiplicities
correspond precisely to those of Table IV. The horizontal separation
of the data points within each box at level K has been artificially
added in order to more clearly show overlapping data.

have effectively subtracted off the terms constant in L̄0 in
the entanglement excitation energy �E , we see that the only
piece of the Hamiltonian of the nonchiral (“doubled”) CFT of
Eq. (5.16) that will contribute to �E in these particular sectors
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FIG. 9. The entanglement spectra obtained at charge q = 2 and
with flux φ = 0, 1, and 2, in panels (a), (b), and (c), respectively,
corresponding to (κ, κ̄ ) = (+1, +1), (0,−1), and (−1, 0), on a
cylinder with circumference N = 6. The multiplet dimensions and
multiplicities correspond precisely to those of Table V. The horizon-
tal separation of the data points within each box at level K has been
artificially added in order to more clearly show overlapping data.

will be 2π
N v̄RL̄0, neglecting the effect of Hinteraction. The nu-

merical entanglement energy of the state transforming in the
irreducible representation 3 at level K = 0 in the charge one,
flux two sector [where (κ, κ̄ ) = (0,+1)] is �E0,12 ≈ 0.360,

while that transforming in the representation 3 at K = 0 in
the charge two, flux 1 sector [where (κ, κ̄ ) = (0,−1)] is
�E0,21 ≈ 0.358. Meanwhile, the conformal weight of the |3〉R

and |3〉R sectors is h̄3 = h̄3 = 1/3, so the results for �E0,12

and �E0,21 are quite close to the corresponding eigenvalues
of L̄0 we expect for these multiplets. Furthermore, the 8 mul-
tiplet at K = 1 in the charge zero, flux zero sector [where
(κ, κ̄ ) = (0, 0)], corresponding to the eight current descen-
dants J̄ ā

−1|1〉L ⊗ |1〉R, has eigenvalue one under L̄0, and we
have �E1,00 ≈ 0.945. Thus, empirically, it would seem that
at these lowest energy levels, we can approximate 2π

N v̄R ≈ 1.
We can also consider the charge one, flux one and charge

two, flux two sectors [where (κ, κ̄ ) = (+1, 0) and (κ, κ̄ ) =
(−1, 0), respectively], which have 3 and 3 multiplets, respec-
tively, at K = 0. Here, it is the “slow” side that is, at least
for the lowest-energy state, in the 1 representation. Thus the
“slow” primary states of these sectors will have h̄1 = 0, and so
the contribution of the nonchiral L/R “doubled” Hamiltonian
of Eq. (5.16) to the entanglement excitation energy �E of
the lowest-energy states in these sectors will instead reduce to
2π
N vLL0, again neglecting the effect of Hinteraction, and subject

to the assumption that vL is uniform across the |1〉L, |3〉L,
and |3〉L sectors.12 The primaries in both charge one, flux one
and charge two, flux two sectors of the L/R doubled theory
have L0 eigenvalue h3 = h3 = 1/3. The numerical entangle-
ment energies we find for these states are �E0,11 ≈ 2.39 and
�E0,22 ≈ 2.37.

Note that these numerical values for the entanglement en-
ergy are dependent on sector-by-sector normalizations of the
entanglement spectrum, which we have taken to be equal—
this is discussed in Sec. IV C, which notes that this is a
consequence of the locality of the entanglement Hamiltonian
of a PEPS as outlined in Ref. [32]. With this understand-
ing, we can make direct comparisons between the numerical
entanglement energies of the different sectors. In the earlier
case of the (h, h̄) = (0, 1/3) primary states, we had �E0,12 ≈
�E0,21 ∼ 2π

3N v̄R, while in the case of the (h, h̄) = (1/3, 0) pri-
mary states we have �E0,11 ≈ �E0,22 ∼ 2π

3N vL.13 Taking the
ratio of the numerical entanglement energies �E0,11 ≈ 2.39
and �E0,22 ≈ 2.37 of the latter to the entanglement energies
�E0,12 ≈ 0.360 and �E0,21 ≈ 0.358 of the former therefore
yields a rough estimate of vL/v̄R ≈ 6.6. Within the first 200
eigenvalues of the entanglement spectrum that we consider,
no entanglement excitation energy �E greater than six oc-
curs. Since the units are approximately those appropriate to
the “slow”-moving theory, with 2π

N v̄R ≈ 1, this shows that in

12Only the primary states of the “fast-moving” side factor into the
low-energy part of the entanglement spectrum that we see, so unlike
on the “slow” side for v̄R in the |1〉R sector, it is not possible to
deduce vL for the |1〉L sector from states within the same sector on the
fast-moving side. Thus we must assume that vL is the same, or close
to it, in all three sectors, such that setting �E0,00 = 0 to obtain the
entanglement excitation energy �E removes an identical constant
term [see Eq. (5.16)] from all sectors.

13This is again subject to the assumption that vL is uniform across
all primary state sectors. Then vL can be found from our knowledge
of the conformal weight of the primaries, which is the approach that
is taken here.
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the range of numerical data for the entanglement energies
we consider, we would not expect to see evidence of any
descendant states from the “fast”-moving theory, as their low-
est contribution to the entanglement energy (from states with
L̄0 eigenvalue one) is approximately 2π

N vL ∼ 6.6 2π
N v̄R ≈ 6.6.

This is in accord with the obtained result that all of the
entanglement spectrum data are consistent with the expected
countings for the L/R doubled theory including only the pri-
mary states on the “fast-moving” side; hence our focus on the
vL � v̄R case for the description of that theory in Sec. V A.

We note that an independent, rough, and less accurate
estimate of the velocity ratio can be obtained from the entan-
glement spectrum data in the thermodynamic limit N = ∞
(obtained by using an iMPS excitation ansatz), plotted in
Fig. 4(b) of Ref. [20]. These data exhibit two branches of
a “dispersion” relation which have (as already stressed in
that reference) different slopes for the right- and the left-
moving branch. Estimating the ratio of those slopes from
these plots14 yields values of the velocity ratio roughly in the
range vL/v̄R ≈ 5.4–7.3, values which are in rough agreement
with the value vL/v̄R ≈ 6.6 obtained from the independent
considerations detailed in the previous paragraph. The basic
rough agreement of the value of the velocity ratio obtained
by using independent methods serves as a confirmation of the
consistency of our approach and analysis.

One noticeable characteristic of the entanglement spec-
trum data we show here is the great degree of similarity
between the spectra in conjugate sectors. Conjugate sectors
are those where both the “slow” and “fast” primary states
have SU(3) representations conjugate to one another, resulting
in an overall multiplet content of conjugate representations.
These conjugate pairs of sectors include the following: the
charge zero, flux one and flux two sectors [where (κ, κ̄ ) =
(−1,+1), (+1,−1)]; the charge one and charge two, flux
zero sectors [where (κ, κ̄ ) = (−1,−1), (+1,+1)]; the charge
one, flux one and charge two, flux two sectors [where (κ, κ̄ ) =
(+1, 0), (−1, 0)]; and the charge one, flux two and charge
two, flux one sectors [where (κ, κ̄ ) = (0,+1), (0,−1)]. This
can be verified from Tables III–V. Since the countings in
the entanglement spectrum only show the dimension of the
multiplets, we observe the same multiplet countings in the
various levels K in the spectra of each of these conjugate pairs
of sectors in Figs. 7–9. This alone is not at all unexpected, and
a clear consequence of the spectra exhibiting the countings
of the nonchiral (“doubled”) CFT reflecting the underlying
doubled Chern-Simons topological field theory in the entan-
glement spectrum. Yet the commonality extends beyond this
in a nontrivial way: the relative orderings and energy levels
of the multiplets within each level K are substantially similar
between each pair of conjugate sectors’ spectra.

We end this section by a corollary of our analysis for
the nature of the low-lying entanglement spectrum at fi-

14Especially the green dispersion curve in the middle of the plot
giving a value vL/v̄R ≈ 6.1, or the blue curves giving a range of
values vL/v̄R ≈ 5.4–7.3; these two kinds of curves have a longest
discernible steep-slope segment, while the red curves are less suitable
as they are shifted upwards and thus have a shorter steep-slope
segment.

nite size in the limit of very large velocity ratio vL/v̄R of
nonchiral topological quantum states (including PEPS). It is
a fact that reliable data for numerical entanglement spectra
are typically only available for entanglement excitation en-
ergies �Ei below some threshold �Ethresh. If data for the
spectrum in the thermodynamic limit N � 1 are not avail-
able (the method used in this limit in Ref. [20] requires
special technology), one may ask whether such a finite-size
entanglement spectrum alone allows us to decide whether the
underlying (2 + 1)-dimensional topological quantum state is
chiral or not. Let us assume that, as in the case discussed in
the present paper, the system is actually nonchiral, but “close-
to-chiral” with a velocity ratio vL/v̄R which is so large that,
in the language of the previous paragraph, the entanglement
excitation energies �E0,11 ≈ �E0,22 ∼ 2π

3N vL [located in the
(κ, κ̄ ) = (1, 0) and (−1, 0) sectors] lie above the threshold
�Ethresh and we have no usable data on them. Since these
are the only entanglement excitation energies that have a
nonsinglet primary in the high-velocity left-moving “L” sec-
tor but a singlet primary in the low-velocity right-moving
“R” sector of the CFT, any of the other sectors which have
a nonsinglet primary in the high-velocity sector will have
even higher entanglement excitation energies and will thus
also lie beyond the threshold. In other words, all sectors
with (κ, κ̄ ) where κ �= 0 will be above threshold [these cor-
respond to (q, φ) = (0, 1), (0, 2), (1, 0), (1, 1), (2, 0), (2, 2)].
Thus, in this situation, the only states in the finite-size entan-
glement spectrum that will be below threshold, and thus be
visible, are the states in the sectors (κ, κ̄ ) = (0, κ̄ ): these are
precisely the states (and the only states) exhibiting a purely
chiral finite-size entanglement spectrum, based on consider-
ations of Li-Haldane state counting. Thus, from the point of
view of Li-Haldane state counting alone, such a finite-size
entanglement spectrum of the nonchiral, but “close-to-chiral”
topological theory would be indistinguishable from that of
a corresponding purely chiral topological theory. But there
is the possibility that a detailed analysis of splittings of the
multiplets could, even in this case, exhibit unique features that
would distinguish a close-to-chiral finite-size entanglement
spectrum, as discussed, from a purely chiral one. An analysis
of such splittings of the entanglement spectrum is not part of
this present paper. However, this question and a corresponding
analysis will be pursued in future work.

Summarizing the present section, the results presented
therein illustrate the successful correspondence of the entan-
glement spectrum of the PEPS we consider to the framework
of Sec. V. And we see that in addition to providing a full
understanding of the Li-Haldane counting of the low-lying
entanglement spectrum at finite size in the present nonchiral
case exhibiting counterpropagating branches, this framework
allows us to extract quantitative data of interest from the
spectrum.

VII. DISCUSSION AND OUTLOOK

In this paper we have shown that the entanglement spec-
trum illuminates characteristics of the topological order of
the nonchiral PEPS model of Ref. [20], which we considered
in this work. While the low-lying levels of the entangle-
ment spectrum appeared to have Li-Haldane counting of the
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multiplicities of SU(3) representations at given momentum
characteristic of a chiral spin liquid, i.e., of the chiral SU(3)1

CFT, in the q = 0 and φ = 0 sector investigated by Ref. [20]
[and shown in Fig. 7(a) of the present paper], and also in
the q = 1, φ = 2 and q = 2, φ = 1 charge, flux sectors [as
shown in Figs. 8(c) and 9(b) of the present paper], we have
demonstrated that the full entanglement spectrum of the PEPS
is characterized in all nine anyonic sectors by the multiplic-
ities of SU(3) representations characteristic instead of the
tensor product of two chiral, left- and right-moving SU(3)1

CFTs, one of which has a substantially higher velocity than
the other. The resulting Li-Haldane counting of multiplicities
in the remaining six sectors turns out to be very different from
that of a corresponding chiral theory. We have also shown
that the ratio of the two velocities, a key quantity of this
system, can be extracted from the finite-size entanglement
spectrum, without having to work in the thermodynamic limit.
We obtain our results by generalizing the conformal boundary
state description of the entanglement spectrum, introduced in
Ref. [21] and extended in Ref. [22], to the case of a nonchiral
topological state. While the resulting entanglement spectrum
is gapped, for system sizes much smaller than the inverse gap
it is characterized by consideration of the (1 + 1)-dimensional
CFT that reflects the characteristics of the underlying (2 +
1)-dimensional topological state: this is the regime of the
numerical finite-size data from Ref. [20] that we analyze. The
effects that we demonstrate are induced by the difference in
velocities provide new insight into the structure of finite-size
entanglement spectra of PEPS models in this “close-to-chiral”
regime. This deepened understanding of what occurs in a
“close-to-chiral” PEPS model may be able to shed light on the
problem of chiral PEPS (underscored in the case of noninter-
acting fermionic PEPS, with the corresponding no-go theorem
of Refs. [6,7]).

Indeed, such a close-to-chiral (2 + 1)-dimensional topo-
logical state represents an instructive model which is, in
a sense, intermediate between a chiral and a completely
nonchiral topological state (with equal velocities for the two
branches). This also suggests that a possibly interesting di-
rection to explore might be the limit of such close-to-chiral
models where the velocity of the high-velocity branch (in our
case the left-moving branch) diverges, and the other velocity
remains finite. In this limit, the models will effectively exhibit
entanglement spectra with one chirality. One way of varying
this velocity ratio could be by tuning the relative weights
of the different terms in the objects (4.1) and (4.2) which
define the PEPS wave function; for instance, in Ref. [20],
it was observed that changing the prefactor of the rightmost
term in (4.2) [equivalently, changing the weight of 3̄ in (4.1)]
has such an effect (cf. Fig. 3 vs Fig. 4(b) of Ref. [20]). A
systematic investigation of which choice of parameters results
in a wave function which is closest to chiral is an interesting
open problem left for future work.

One further avenue of investigation is the additional in-
formation contained in these finite-size entanglement spectra,
beyond the Li-Haldane countings of SU(3) representations
that this work considers: the level splittings in the entangle-
ment spectrum. This refers to the fact that those states in the
entanglement spectrum which are degenerate in momentum
(this degeneracy being the focus of “Li-Haldane counting”),

are in general not degenerate in entanglement energy, i.e., they
exhibit “level splittings.” As the present paper demonstrates,
it can often be difficult to infer chirality directly from the ac-
cessible subset of Li-Haldane countings alone. But accounting
for the splittings in the entanglement spectrum provides more
insight, as the behavior of splittings turns out to differ between
the nonchiral PEPS state considered here and a truly chiral
Abelian SU(3) PEPS state [39]. It should also be noted that
this analysis clarifies that while the nonchiral PEPS discussed
in the present paper is a representative of an important class
of possible scenarios for “close-to-chiral” PEPS, the existence
of this nonchiral PEPS does not by any means preclude the
possibility of PEPS representing truly chiral states.

Finally, this work could also be naturally generalized to
(2 + 1)-dimensional topological phases described by doubled
SU(N ) Chern-Simons theories at level k with N > 3 and/or
k > 1, including possible corresponding PEPS models.
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APPENDIX: DERIVATION OF POSSIBLE MAPPINGS
BETWEEN THE D(Z3) AND SU(3)1 ⊗ SU(3)1 THEORIES

To find the possible mappings between the anyons of the
D(Z3) and doubled SU(3)1 ⊗ SU(3)1 Chern-Simons theories
as described in Sec. II, we make use of the S and T matrices
found in Eqs. (2.1)–(2.4). We then obtain the equations

−q1φ2 − q2φ1 = κ1κ2 − κ̄1κ̄2, (A1)

q1φ1 = κ2
1 − κ̄2

1 , (A2)

q2φ2 = κ2
2 − κ̄2

2 . (A3)

Note that these equations relate integers modulo three. If we
consider the case where q1φ1 = 1, we therefore see that we
must have q1 = φ1. By Eq. (A2), then, κ2

1 − κ̄2
1 = 1, which

means that κ1 �= 0, while κ̄1 = 0. Then Eq. (A1) implies that
we have

−q1(φ2 + q2) = κ1κ2, (A4)

or, since we know that κ1 �= 0,

κ2 = −q1

κ1
(φ2 + q2). (A5)

κ2 must be dependent only on φ2 and q2, so q1/κ1 is a constant,
at least in this particular case where q1φ1 = 1. In this case we
also have q1 �= 0, so q1/κ1 = ±1. Thus κ2 = ∓(φ2 + q2), a
relation which will apply in general. To find a similar relation
for κ̄2, we instead consider the case where q1φ1 = −1, in
which we must have q1 = −φ1. Similar logic as above then
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shows that

κ̄2 = −q1

κ̄1
(q2 − φ2), (A6)

and so q1/κ̄1 = ±1, which in turn implies that κ̄2 = ∓(q2 −
φ2), a relation that again applies in general. We have therefore
found that

ακ = −(q + φ), (A7)

βκ̄ = −(q − φ), (A8)

where α2 = β2 = 1. Thus

q = ακ + βκ̄, (A9)

φ = ακ − βκ̄. (A10)

This provides the general form of the map between the anyons
of the two theories. The choice of α and β amounts to the
choice of sign of κ (and κ̄) for the two nontrivial sectors of
the chiral SU(3)1 (and the antichiral SU(3)1) Chern-Simons
theory. We take α = β = 1, and thus we obtain Eqs. (2.5)
and (2.6).
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