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Competing magnetic fluctuations and orders in a multiorbital model of doped SrCo2As2
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We revisit the intriguing magnetic behavior of the paradigmatic itinerant frustrated magnet SrCo2As2, which
shows strong and competing magnetic fluctuations yet does not develop long-range magnetic order. By cal-
culating the static spin susceptibility χ (q) within a realistic 16-orbital Hubbard-Hund model, we determine
the leading instability to be ferromagnetic (FM). We then explore the effect of doping and calculate the
critical Hubbard interaction strength Uc that is required for the development of magnetic order. We find that
Uc decreases under electron doping and with increasing Hund’s coupling J , but increases rapidly under hole
doping. This suggests that magnetic order could possibly emerge under electron doping but not under hole
doping, which agrees with experimental findings. We map out the leading magnetic instability as a function
of doping and Hund’s coupling and find several antiferromagnetic phases in addition to FM. We also quantify
the degree of itinerant frustration in the model and resolve the contributions of different orbitals to the magnetic
susceptibility. Finally, we discuss the dynamic spin susceptibility χ (q, ω) at finite frequencies, where we recover
the anisotropy of the peaks at Qπ = (π, 0) and (0, π ) observed by inelastic neutron scattering that is associated
with the phenomenon of itinerant magnetic frustration. By comparing results between theory and experiment,
we conclude that the essential experimental features of doped SrCo2As2 are well captured by an itinerant
Hubbard-Hund multiorbital model if one considers a small shift of the chemical potential towards hole doping.
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I. INTRODUCTION

The tetragonal 122 cobalt arsenides SrCo2As2,
CaCo2−yAs2, and BaCo2As2 are members of a wider class
of cobalt pnictides that exhibit strong competition between
ferromagnetic (FM) and stripe-type antiferromagnetic (AF)
fluctuations in the square Co layers. Unlike the structurally
and chemically similar 122 iron-based systems AFe2As2

(A = Ca, Sr, Ba) that exhibit long-range stripe-type AF
order in the Fe layers [1], the cobalt arsenides show either
FM order in the Co layers, e.g., CaCo2−yAs2 [2–5], or
remain paramagnetic (PM) down to the lowest temperatures
measured, e.g., SrCo2As2 [6–8] and BaCo2As2 [9,10].
Different stackings of the two-dimensional (2D) FM planes
are observed. While CaCo2−yAs2 shows AF stacking (A type),
one finds three-dimensional (3D) FM in Sr1−xLaxCo2As2 [11]
and a more complex helical stacking of the FM planes in
Sr(Co1−xNix )2As2 [12] and Ca1−xSrxCo2As2 [13–16].

Stripe-type AF fluctuations are believed to play a key role
for the emergence of superconductivity in the Fe pnictides
[17,18]. Inelastic neutron scattering (INS) [8,19,20] and NMR
[7] measurements have revealed that strong stripe-AF fluctu-
ations are also present in the Co arsenides. Contrary to the
doped Fe-based materials, the Co-based materials, however,
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do not exhibit superconductivity under slight doping. This
may be related to the coexistence of strong FM fluctuations
and long-range FM order, which generally tend to inhibit
superconducting singlet pairing. It is therefore interesting to
explore the fate and possible suppression of FM with elec-
tronic doping.

A general underlying open question is what causes the
observed competition of stripe-AF and FM fluctuations in
the cobalt arsenides, whose Fermi surfaces lack clear nesting
wave vectors [6,8,21] In previous works, this competition
was phenomenologically captured within a frustrated local-
moment J1-J2 Heisenberg model on the square lattice with FM
first-neighbor interactions J1 and AF second-neighbor interac-
tions J2 [16,19]. Close to the value η = J1/(2J2) = −1, where
the ground state of the classical model transitions from FM or-
der (η < −1) to stripe-AF order (η > −1), the local-moment
description captures several features of the INS results. For
example, the unusually steep and ridgelike magnetic fluctu-
ation dispersion observed for CaCo2−yAs2, which is atypical
for an A-type antiferromagnet, and the anisotropic shape of the
INS peaks at the stripe wave vectors Qπ = (π, 0) and (0, π )
are recovered in the local-moment model close to maximal
frustration η ≈ −1.

In SrCo2As2, which is the focus of this work, one exper-
imentally extracts a more modest frustration ratio between
η ≈ −0.5 at T = 5 K and η ≈ −0.7 at T � 100 K from the
anisotropy of the INS peaks at Qπ [8]. This still corresponds
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ANA-MARIJA NEDIĆ et al. PHYSICAL REVIEW B 108, 245149 (2023)

to substantial magnetic frustration and one expects stripe-AF
fluctuations to prevail at low temperatures. Indeed, INS re-
sults indicate that stripe-AF fluctuations develop and suppress
FM fluctuations at temperatures below T ≈ 100 K [8]. A
detailed comparison reveals, however, that one cannot obtain
a fully consistent description within a local-moment model.
Experimentally, it appears that SrCo2As2 is much more frus-
trated than expected for −0.7 < η < −0.5, where stripe-AF
fluctuations should clearly dominate over FM ones. Instead,
the observed competition between FM and AF fluctuations
is much more severe and some properties, such as the size
and temperature scale of the FM fluctuations compared to
the characteristic magnetic energy scale, can only be captured
by a maximally frustrated local moment model with η ≈ −1.
This was traced back to a large magnetic energy scale, which
has been argued to be more characteristic of itinerant magnets,
and led to the characterization of SrCo2As2 as an itinerant
frustrated magnet [8].

The notion of itinerant frustration is supported by the
observation that SrCo2As2 remains paramagnetic down to
the lowest temperatures. The absence of magnetic order in
SrCo2As2 was confirmed in NMR measurements down to
50 mK [8]. While magnetic order is absent under hole dop-
ing to KCo2As2 [22,23], minute amounts of electron doping
induce long-range FM order in the Co layers. This suggests
a complex and delicate balance between FM and AF fluctu-
ations. For example, Sr(Co1−xNix )2As2 exhibits long-range
magnetic order for 0.013 < x < 0.25 with a complex helical
magnetic structure, where FM Co layers (with moments in
the layer) stack to form an incommensurate helix [12]. We
note that a symmetry-equivalent incommensurate spin-density
wave structure is also consistent with the diffraction results.
Electron doping via La substitution in Sr1−xLaxCo2As2 and
2.5% Nd substitution in Sr0.975Nd0.025Co2As2 [24] leads to the
formation of 3D FM order [11].

Here, we provide a more complete understanding of the
intriguing magnetic behavior of doped SrCo2As2 by investi-
gating the magnetic susceptibility of a multiorbital itinerant
model of doped SrCo2As2. We obtain a realistic tight-binding
band structure from density functional theory (DFT) calcula-
tions and include electronic interactions via a Hubbard-Hund
Hamiltonian. The leading magnetic instability in the PM state
is found by computing the static transverse spin suscepti-
bility χ (q) within the random-phase approximation (RPA).
This method was previously successfully applied to study the
low-temperature phase diagram of multiorbital models of Fe
pnictides [25–29].

We map out the weak-coupling RPA magnetic phase di-
agram as a function of carrier doping x (which, in our
convention, is positive for electron doping and negative for
hole doping) and the ratio J/U of Hund’s coupling J to the
Hubbard interaction U . Since the ratio J/U that describes
the experimental systems is not known exactly, we consider
a range of realistic J/U values. It contains a wide region of
FM order around the undoped parent compound, but stripe-AF
phases appear for sufficiently large hole doping. The criti-
cal Hubbard interaction Uc that triggers the development of
long-range magnetic order at a given temperature increases
under hole doping, but is reduced for electron doping. Since
increasing U has similar effects as decreasing the temperature

T (it is known to be qualitatively equivalent in the single-band
case), the behavior of Uc is a good proxy for the expected
behavior of the critical temperature Tc [29]. We choose to
tune U in our calculations and fix the temperature to T =
30 meV as it requires significantly less computational effort
than tuning T . We note that the RPA is known to overes-
timate transition temperatures as it neglects certain types of
fluctuations [28,30], and the simulation temperature should
thus not be directly compared with the experimental transi-
tion temperatures. Rather, our choice of T = 30 meV arises
from balancing the computational demand with the ability to
properly resolve spectral features in the band structure and the
density of states.

Our findings of Uc(x) are thus in good agreement with
the experimental observation that magnetic order only occurs
under electron doping. Interestingly, we find that Uc at x = 0
is located close to a shallow minimum, which explains why
SrCo2As2 lies on the verge to magnetic ordering and shows
a high sensitivity to small changes of electron density, as
observed for Ni-doped SrCo2As2. It can also be related to
a peak in the density of states (DOS) that occurs at small
positive x. We generally associate the theoretically observed
slow variation of Uc with x with the phenomenon of itinerant
frustration since it corresponds to an accidental fine tuning
of the system close to an instability. Magnetic ordering can
thus be induced by small increases in carrier density x. Alter-
natively, we find that Uc decreases for increasing interaction
parameter ratio J/U , suggesting that systems with larger J/U
are more likely to exhibit magnetic order. We note that recent
first-principles studies have reported that J/U can be con-
trolled to some extent via pressure or strain [31,32]. Pressure
tuning of SrCo2As2, however, is complicated by the presence
of a structural phase transition to a collapsed tetragonal phase
that occurs under pressure [33].

We also quantify the degree of competition between FM
and AF fluctuations and identify the leading orbital contribu-
tions to the different magnetic states. This allows us to make
a direct connection between the orbitally resolved DOS at the
Fermi energy and the leading magnetic instability. Close to an
instability towards FM order, the susceptibility is dominated
by contributions arising from the Co dxy orbitals, while hy-
bridization of dxy with the other Co d orbitals is much more
prominent close to a stripe-AF instability. The closeness of
the Fermi energy to the DOS peak arising from partially flat
bands with dxy character thus largely determines the type of
magnetic instability as a function of doping. While (Stoner)
FM order is found if the Fermi level lies close to the DOS peak
consisting of dxy (and dz2 ) states, we observe stripe-AF states
when the other orbitals contribute equally to the DOS. Finally,
we calculate the dynamic magnetic susceptibility χ (q, ω),
and find good agreement with INS, demonstrating that the
defining features of itinerant frustration are well captured by
the interacting multiorbital model.

The remainder of the paper is organized as follows: In
Sec. II we introduce a realistic 16-band Hubbard-Hund model
for SrCo2As2 and describe how to obtain the RPA magnetic
susceptibility χ (q, ω). Results for the static susceptibility
χ (q, 0) as a function of electronic doping x, Hubbard U , and
Hund’s coupling J are discussed in Sec. III. We determine
the leading magnetic instability and its critical Hubbard Uc
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FIG. 1. (a) Conventional unit cell of SrCo2As2 containing two
square layers of Co atoms with As atoms centered above and below.
The primitive unit cell contains one Sr, two Co, and two As atoms as
labeled. The material has a bct crystal structure of ThCr2Si2 type and
is described by space group I4/mmm (c > a) with Z = 2 formula
units per unit cell. The Sr atoms are located at the Wyckoff site
2a (0 0 0), the two equivalent Co atoms are at the 4d (0 1

2
1
4 ) sites,

and the two equivalent As atoms are at the 4e (0 0 zAs) sites with
zAs = 0.36. Top view of unit cell depicts dxy (blue) and dx2−y2 (olive)
orbitals on Co sites. (b) First Brillouin zone with primitive reciprocal
lattice vectors b1, b2, and b3 (orange), conventional reciprocal basis
vectors (gray vectors). and high-symmetry points. The black dashed
line follows the high-symmetry path used in Fig. 2.

as a function of x and J . To quantify magnetic frustration
we calculate the difference between Uc and the critical U of
the first subleading instability. We also discuss the individual
orbital contributions to the physical susceptibility, which are
markedly different at FM and AF magnetic instabilities. In
Sec. IV, we present results for the dynamic RPA spin sus-
ceptibility χ (q, ω) and in Sec. V we compare theory and
experimental results. We present conclusions in Sec. VI and
delegate details of the calculations into several Appendixes.

II. MODEL AND METHODS

The crystal structure of SrCo2As2 lies in the body-centered
tetragonal (bct) symmorphic space group I4/mmm (No. 139)
with c > a and has the ThCr2Si2 structure type. We focus on
the uncollapsed tetragonal structure, where c � 2.8a [6,33].
The corresponding point group is D4h. The crystal contains
square layers of Co atoms with puckered As atoms lying
above and below the square centers. The conventional unit
cell is shown in Fig. 1(a) and contains two Sr, four Co, and
four As atoms. The primitive unit cell of the bct lattice (not
shown) contains only one Sr, two Co, and two As atoms. A
top view of the unit cell shows two Co d orbitals, where dxy

has a large spectral weight close to the Fermi energy. In our
convention of using a global coordinate system, the Co dxy

orbitals point along the nearest-neighbor Co-Co bonds, while
the Co dx2−y2 orbitals point in-between those bonds along the
second-neighbor Co-Co bonds. Figure 1(b) depicts the corre-
sponding first Brillouin zone (1BZ) together with the primitive
reciprocal lattice vectors (orange) and the conventional ones
(gray). In the following, we describe the realistic electronic

structure and a downfolded 16-band Wannier tight-binding
model that is valid in a wide region of ±2 eV around the Fermi
energy. We then derive the RPA susceptibility for this model
in the presence of electronic interactions.

A. Electronic structure of SrCo2As2

We obtain a realistic electronic band structure of SrCo2As2

using first-principles DFT calculations. We neglect the ef-
fects of spin-orbit coupling in the DFT calculations since
they are expected to be rather small in the material since
the spin-orbit coupling energy scale of Co is about 70 meV,
but Hubbard and Hund coupling energies are expected to be
larger than 1.0 and 0.1 eV, respectively [34]. The details of
the DFT approach are discussed in Appendix A. We construct
a multiorbital tight-binding model from a set of maximally
localized Wannier functions (MLWFs) on both the Co and the
As atoms that are computed by the tool WANNIER90 [35–37].
We keep all five d orbitals on both Co atoms and all three
p orbitals on the two As atoms in the unit cell, resulting
in a 16-orbital model. We have checked that including Sr s
orbitals in the Wannierization has negligible effects on the
tight-binding band structure in the region of ±1 eV around
the Fermi energy. We find that the MLWFs closely resemble
the Co d orbitals and the As p orbitals, respectively. We thus
use notation that identifies the MLWF with the atomic orbital
it approximately represents and introduce the following 16-
dimensional Wannier orbital basis vector:

φR(r) = (dCo1,R(r), dCo2,R(r), pAs1,R(r), pAs2,R(r)). (1)

Here, R denotes a Bravais lattice site, the vectors (dCo1,R ) j

and (dCo2,R ) j contain all five atomic d orbitals j ∈
{z2, xz, yz, x2 − y2, xy} at the Co sites, and the vectors
(pAs1,R )k and (pAs2,R )k contain all three p orbitals k ∈ {x, y, z}
at the As sites. In the following, we use a, b = 1, . . . , 16 to
label the orbital basis: φRa(r) = 〈r|φRa〉. We work with the
tight-binding Hamiltonian matrix

hab(R) = 〈φ0a|H |φRb〉, (2)

which we obtain from downfolding the DFT band structure
using the tool WANNIER90 [35–37]. Here, H refers to the
Hamiltonian used in DFT. We choose to selectively localize
the Co d orbitals at the Wyckoff sites that the Co atom oc-
cupies in the crystal. This was shown to help preserve the
point-group symmetry of the resulting tight-binding Hamil-
tonian, which can otherwise be weakly violated during the
maximal-localization procedure [38]. Note that we only se-
lectively localize the 10 d orbitals, but not the 6 p orbitals,
which ensures a good tight-binding representation of the DFT
band structure.

When going to momentum space, we use the convention
to include the orbital basis location τa (in the primitive lattice
vector convention) in the Fourier transform

|φka〉 = 1√
N

∑
R

eik·(R+τa ) |φRa〉 . (3)

Here, N refers to the number of real-space unit cells. As shown
in detail in Appendix B, this phase convention that keeps the
information of the intra-unit-cell placement of the different
orbitals through the vector τa turns out to be crucial to retain
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FIG. 2. (a) Orbitally resolved tight-binding band structure εn(k) for SrCo2As2 along a high-symmetry path through the Brillouin zone
shown in Fig. 1(b) in the energy window [−2, 2] eV. The bands are colored according to their dominant orbital weight. The Fermi level
corresponds to a filling of n = 13 electrons per spin per unit cell. (b) Density of states (DOS) peaks near the Fermi level on the electron-doped
side. Different colors denote the orbital contributions to the DOS, which shows that the dominant weight of the peak at E ≈ 0 is carried by d
orbital states of type dxy and dz2 . The As weight is about half of the Co weight at the Fermi energy. The orbitals are given in a global coordinate
system. (c) Orbitally resolved DOS near Fermi level.

the spatial symmetries when calculating the magnetic sus-
ceptibility and recover the expected transformation properties
under symmetry operations. The Hamiltonian matrix elements
in the orbital Bloch basis then become

hab(k) =
∑

R

eik·(R−τa+τb)hab(R). (4)

Even with selective localization of the d orbitals at the Co
sites, we find that the tight-binding Hamiltonian weakly vi-
olates some of the point symmetries of D4h. While this is a
small effect, we choose to enforce fourfold rotation symmetry:
we explicitly symmetrize the Hamiltonian by averaging over
points in the Brillouin zone that are related by a fourfold
rotation. The procedure is described in detail in Appendix C
(a similar procedure is implemented in WANNIERTOOLS [39]).
This explicit symmetrization together with the phase conven-
tion in Eq. (4) ensures that the tight-binding model properly
obeys the symmetries of the space group I4/mmm. Keeping
the point-group symmetry of the Wannier eigenstates and
energies intact is important to obtain a properly symmetric
magnetic susceptibility.

Diagonalization of the tight-binding matrix hab(k) yields
the energy band dispersion εn(k), which is shown in Fig. 2(a)
along a high-symmetry path in the 1BZ. A comparison to the
full DFT band structure is provided in Fig. 11 of Appendix A.
The Appendix also contains the orbitally resolved Fermi sur-
faces of the undoped compound in Fig. 13. We note again
that spin-orbit coupling is neglected and the band structure is
thus identical for the two spin states σ = ±1. The Fermi level
(E = 0) is set to correspond to a filling of n = 13 electrons per
spin per unit cell, corresponding to 6 electrons per As atom
and 7 electrons per Co atom. Deviations from this filling are
parametrized using

x = n − 13, (5)

where x > 0 corresponds to electron and x < 0 to hole doping.
As shown in Fig. 2(a), the band structure exhibits partially flat
bands along the �-X , �-M, and X -P directions [see Table I].
While the first direction describes dispersion arising from
electron hoppings within the Co layers, the flatness along �-M
and X -P corresponds to weakly dispersing bands along the
kz direction due to a weak coupling between the Co layers.
The orbital character of the flat bands is mostly dxy, which

leads to a pronounced peak in the density of states (DOS)
close to (but slightly above) the Fermi energy, as shown in
Fig. 2(b). The plot is obtained for 80×80×80 k points. Close
to the Fermi energy, the DOS is dominated by states with
dxy and dz2 orbital weight, while the three other d orbitals
and the As p orbitals are subdominant. As noted above, we
here use a global coordinate system (or unit-cell coordinate
system) when defining the orbitals such that the dxy orbitals
point along the nearest-neighbor Co-Co bonds (see Fig. 1).
We note that the literature on the Fe pnictides typically uses
a local coordinate system, which is rotated by 45◦ around the
c axis with respect to the global system we use. This rotation
results in a permutation of the dxy and dx2−y2 orbitals.

B. Multiorbital Hubbard-Hund model

To study the magnetic spin susceptibility in doped
SrCo2As2 we include onsite electronic interactions beyond
DFT and consider the following multiorbital Hubbard-Hund
Hamiltonian:

H = H0 + Hint. (6)

Here, the noninteracting part reads as

H0 =
∑
kσ,ab

[hab(k) − μδab]c†
kaσ ckbσ (7)

and corresponds to the 16-orbital Wannierized tight-binding
model introduced in Sec. II A. The onsite Coulomb inter-
action part takes the standard Hubbard-Kanamori form in

TABLE I. Momentum-space coordinates of several high-
symmetry points in primitive and conventional unit-cell notation.

BZ point Primitive coordinate Conventional coordinate

X
(
0, 0, 1

2

) (
1
2 , 1

2 , 0
)

P
(

1
4 , 1

4 , 1
4

) (
1
2 , 1

2 , 1
2

)
N

(
0, 1

2 , 0
) (

1
2 , 0, 1

2

)
M

(
1
2 , 1

2 , − 1
2

)
(0,0,1)
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momentum space [40–43]:

Hint = U

N

∑
qa

nqa↑n−qa↓ + U ′

2N

∑
qσσ ′
a �=b

nqaσ n−qbσ ′

+ J

2N

∑
kk′q
σσ ′
a �=b

c†
k+qaσ ckbσ c†

k′−qbσ ′ck′aσ ′ + J ′

2N

×
∑
kk′q
σ

a �=b

c†
k+qaσ c†

k′−qaσ
ck′bσ ckbσ . (8)

We note that Eq. (8) is obtained by Fourier transformation
from a purely local real-space Hubbard-Kanamori interaction
Hamiltonian. The operator c†

kaσ creates an electron with mo-
mentum k in the first Brillouin zone in orbital a ∈ {1, . . . 16}
and spin σ ∈ {↑,↓}. The symbol σ takes the opposite value
of σ and N is the number of unit cells (or equivalently k
points in the first Brillouin zone). The orbital basis is defined
in Eq. (1). The orbital- and momentum-dependent density
operator is defined as nqaσ = ∑

k c†
k+qaσ ckaσ , where k runs

over the momenta in the 1BZ. The interaction Hamiltonian
contains intraorbital repulsion with strength U and interorbital
repulsion with strength U ′ at the same site. It also contains
a Hund’s coupling J and a pair-hopping term proportional
to J ′. In the following, we assume spin and orbital rotation
invariance. This restricts the parameter space to J ′ = J and
U ′ = U − 2J , such that one is left with two interaction pa-
rameters U and J .

C. Magnetic spin susceptibility

We are interested in calculating both the static and dy-
namic spin susceptibility in the paramagnetic phase of doped
SrCo2As2. The static susceptibility is used to determine the
leading magnetic instability as a function of U and J , which
yields the weak-coupling magnetic phase diagram. Theoret-
ical results for the dynamic susceptibility can be directly
compared to INS experimental results and help interpreting
these results.

Longitudinal and transverse spin susceptibilities are pro-
portional to each other in the paramagnetic phase and we will
thus focus on the transverse part here. The bare transverse spin
susceptibility is given by

χ
(0)
abcd (q, iωn) = 1

N

∫ β

0
dτ eiωnτ 〈Tτ S+

ad (q, τ )S−
bc(−q, 0)〉0.

(9)

Here Tτ is the time-ordering operator in imaginary time τ

and S+
ab(q, τ ) = ∑

k c†
k+qa↑(τ )ckb↓(τ ) is the spin-raising op-

erator. The spin-lowering operator is given by S−
ab(q, τ ) =

[S+
ab(−q, τ )]

†
. The angle brackets 〈 · 〉0 denote the thermal

expectation value with respect to the noninteracting Hamilto-
nian H0, and β ≡ 1/kBT is the inverse temperature. Applying
Wick’s theorem and performing a summation over Matsubara
frequencies we find the bare spin susceptibility

χ
(0)
abcd (q, iωn) = 1

N

∑
k,mn

Mmn
abcd (k, q)

nF
(
εm

k

) − nF
(
εn

k+q

)
εn

k+q − εm
k − iωn

.

(10)

Here, N is the number of unit cells, the labels m, n denote
energy bands εn

k of the tight-binding Hamiltonian H0, and
nF (εn

k ) = 1/[eεn
k/T + 1] denotes the Fermi-Dirac distribution

function at temperature T . Note that the energies εn
k are

defined with respect to the chemical potential μ, which is
included in H0 in Eq. (7). The tensor Mmn

abcd (k, q) contains
information about the orbitals via the eigenfunctions of the
Bloch tight-binding Hamiltonian when going from orbital to
band space:

Mmn
abcd (k, q) = un

a(k + q)∗um
b (k)∗un

c (k + q)um
d (k). (11)

Here, un
a(k) is the nth eigenstate of hab(k) − μδab in Eq. (7) at

momentum k whose eigenenergy is εn
k.

We include the effect of onsite Coulomb interactions H1

through RPA. Diagrammatically, this corresponds to summing
all ladder diagrams with no crossing interactions [26,44]. The
summation involves only interaction processes connected by
opposite spins, and can be exactly carried out to yield the RPA
spin susceptibility

χabcd (q, ω) = (
δaeδdf − χ

(0)
egh f (q, ω)U ga

hd

)−1
χ

(0)
ebc f (q, ω).

(12)

Here, we have carried out the analytical continuation iωn =
ω + iηω and suppressed the infinitesimal iηω for brevity.
Moreover, U ga

hd is given in terms of the U , U ′, J , and J ′ inter-
action parameters on the Co and As atoms (see Appendix D).
Note that this expression reduces to the known Stoner formula
in the case of a single orbital. One can derive a physical RPA
susceptibility that transforms as a scalar (see Appendix B for
details) via the contraction [26,45]

χ (q, ω) = 1

2

∑
ab

χabba(q, ω). (13)

A divergence of the static physical spin susceptibility χ (q) ≡
χ (q, ω = 0) with infinitesimal ηω at a specific wave vector
Q indicates a weak-coupling magnetic instability and the
condensation of magnetic order with ordering vector Q. We
confine ourselves to ordering wave vectors along the high-
symmetry path in the 1BZ shown in Fig. 1(b).

In our work, the wave vector Q of the leading magnetic
instability is found by increasing the Hubbard interaction pa-
rameter U , keeping the ratio J/U and the temperature kBT =
30 meV fixed, and recording the first Q among 60 uniformly
chosen points along the high-symmetry path for which the
physical susceptibility diverges, i.e.,

χ−1(Q, ω = 0;Uc, J/Uc, T, μ) = 0. (14)

Here, we have explicitly added the dependence on U, J , T ,
and μ. To map out the behavior under electronic doping, we
vary the electronic density per spin per unit cell, n = 13 + x,
through a rigid shift of the chemical potential μ(x, T ). The
dependence of μ as a function of x is shown in Fig. 12 of
Appendix A. For the summation over k in Eq. (10) we use a
momentum-space grid with 25×25×25 k points and we set
ηω = 3 meV when computing the static susceptibility.

The magnetic instability can be induced either by increas-
ing the interaction strength at a fixed temperature T , or by
reducing T at fixed interactions. In Fig. 3, we compare the two
ways of reaching the instability, χ−1(Q,Uc, J/Uc, Tc, μ) = 0.
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FIG. 3. Comparison of the two ways to reach the magnetic instability corresponding to a divergence of the physical RPA susceptibility χ

at the ordering wave vector. The panels show χ−1 for SrCo2As2 (x = 0) along a high-symmetry path in the first Brillouin zone and are obtained
using a k-point discretization with N = 253 points in the first Brillouin zone. In (a) we reach χ−1(Q) = 0 by tuning U → Uc = 1.85 eV at
fixed temperature T = 30 meV and fixed J/U = 0.25. The bare susceptibility is obtained in the noninteracting system. We observe that the
leading magnetic instability occurs at the wave vector Q = 0 (� point), corresponding to the development of long-range ferromagnetic order.
In (b), we fix U = Uc(T = 30 meV) = 1.85 eV, set J/U = 0.25, and vary the temperature T between 40 and 30.15 meV corresponding to
the indicated ratios of T/Tc with Tc = 30 meV (at this value of U ). We observe that the effect of tuning U away from criticality (at fixed J/U )
is qualitatively similar to tuning T away from Tc at fixed U (and J). This can be understood from the fact that the leading magnetic instability
is determined by the smallest eigenvalue of (χ−1)abcd (and the associated eigenvector). Close to Uc, this eigenvalue is largely determined by x
and J/U and to a lesser extent by T (which, e.g., determines the size of the magnetic order parameter below Tc) (see also Ref. [29]).

We keep the relative interaction energy ratio J/U fixed when
tuning U → Uc in order to not change the relative importance
of Hubbard to Hund interactions. In this case, we observe that
both ways of tuning towards the instability are qualitatively
equivalent. This is expected as the temperature T ≈ 30 meV
we consider is smaller than the typical energy scale of the
relevant features in the band structure and the density of
states. This is consistent with the fact that the spin-orbit cou-
pling constant of Co 3d orbitals can be estimated to 74 meV,
more than two times larger than the T we use. Since it is
numerically much less costly to tune U compared to tuning
T , because one needs to perform the numerically intensive
computation of χ0 for each temperature T , we here choose to
induce the instability by increasing U towards Uc at fixed T .
To a very good approximation, this can be regarded as tuning
T towards Tc, provided that Tc > 0 for the chosen value of U .

Specifically, Fig. 3(a) shows the behavior of χ−1 at fixed
temperature T = 30 meV and J/U = 0.25 when tuning
U → Uc. Changing U largely corresponds to a rigid shift of
the bare inverse susceptibility and the minimal value occurs
at q = 0 for all values of U . Figure 3(b) shows χ−1 at fixed
U = Uc(T = 30 meV) and J/U = 0.25 when varying T
between 40 and 30.15 meV, close to the critical temperature
T = 30 meV (for this value of U ). Comparing the two panels
shows that tuning T over this range 1.005Tc � T � 1.33Tc

corresponds to changing 0.9Uc � U � Uc. The susceptibility
is thus more sensitive to changes in U compared to changes
in T .

Finally, we make two remarks. First, our analysis does
not determine whether the resulting magnetic order contains
only Q or also symmetry-related (inequivalent) partners of
Q. To address this question, one would have to perform a
self-consistent mean-field calculation [46] or calculate higher-
order coefficients of the free energy [28], which we leave
for future studies. Second, the orbital content of χabba on
right-hand side of Eq. (13) yields additional information about
which orbitals contribute most to the diverging physical sus-
ceptibility. We analyze the orbital content of the susceptibility

for different doping x and in the different magnetic phases in
Sec. III E.

III. STATIC SPIN SUSCEPTIBILITY RESULTS

In this section, we present results for the static RPA spin
susceptibility χabcd (q, ω = 0) for both undoped and doped
SrCo2As2. We discuss the behavior of the static physical
RPA susceptibility χ (q) in momentum space and map out the
leading magnetic instability as a function of x and J/U . Then
we investigate the competition between FM and stripe-AF
fluctuations by calculating the closeness of the first subleading
magnetic instability. Finally, we analyze the orbital content of
χabcd (q) close to the different magnetic instabilities and relate
it to the density of states.

A. RPA susceptibility of the parent compound

In this subsection, we discuss both the bare and RPA spin
susceptibility of the undoped parent compound SrCo2As2.
Our results show that both the bare and RPA susceptibilities
peak at the � point. The leading instability when increasing
interactions is towards FM order with a critical Hubbard Uc

that decreases with increasing Hund’s coupling J .
Figure 4(a) shows the inverse physical susceptibility along

a high-symmetry path in the 1BZ. We observe that the bare
susceptibility χ0(q) peaks at the � point and shows a local
minimum along the path to the X point. Nonzero interactions
enhance this trend and, as a result, the RPA physical suscepti-
bility diverges at � for all values of J/U . The figure shows
χ−1 at two different values of J/Uc, which qualitatively
agree. The critical value of U , however, significantly reduces
from Uc(J = 0) = 2.10 eV to Uc(J/Uc = 0.25) = 1.75 eV as
Hund’s coupling J increases, which is in agreement with
expectations that Hund’s coupling favors FM order. The fact
that the peak in the bare χ0 determines the ordering vector
for sufficiently strong interactions agrees with standard Stoner
theory. We will see below that this picture does not always
hold true for the doped system.
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FIG. 4. (a) Inverse static bare physical susceptibility χ−1
0 (black)

and inverse static RPA physical susceptibility χ−1 (blue, brown) for
undoped SrCo2As2, plotted along a high-symmetry path in the 1BZ.
The plot shows χ−1 for J/U = 0 (blue) and J/U = 0.25 (brown) in
the vicinity of ordering U/Uc = 0.995. The arrow indicates that the
leading instability is at � towards FM order in both cases. (b) Static
RPA spin susceptibility χ (q) as function of (qx, qy ) for fixed values
of qz = {0, 1

2 , 1} π

c in conventional coordinates. Interaction parame-
ters are J/Uc = 0.25 and U = 0.995Uc. The black line denotes the
1BZ. The temperature and the broadening used in the calculations
are T = 30 meV and ηω = 3 meV, respectively.

Figure 4(b) shows a color map of χ (q) at U = 0.995Uc and
J/U = 0.25 for three different slices of fixed qz in the full 2D
BZ plane. One clearly recognizes the peak at � from which
streaks emerge along the in-plane directions �-X and �-Y and
to a lesser extent also along the out-of-plane direction �-M.
Here, magnetic order at X = ( 1

2 , 1
2 , 0) and Y = (− 1

2 , 1
2 , 0)

(in conventional coordinates) corresponds to stripe-AF order.
The observed overall behavior of χ (q) qualitatively remains
the same for a wide range of interaction ratios J/U down
to J = 0. We conclude that SrCo2As2 exhibits dominant FM
fluctuations and a leading instability towards FM order for all
values of J/U . This can be traced back to the partially dxy-type
flat bands along the X − P direction and the resulting large
DOS that peaks on the lightly electron-doped side (see Fig. 2).

B. RPA susceptibility of the hole-doped system

In this subsection, we present the physical susceptibility
of the hole-doped system with x = −0.2. The behavior of the
susceptibility at sufficiently large hole doping x � −0.2 is dif-
ferent from the undoped and lightly doped material. We find

that the bare susceptibility at x = −0.2 peaks at the X and Y
points and, furthermore, that the leading magnetic instability
depends on the interaction ratio J/U .

Figure 5 shows the inverse bare physical susceptibility
χ−1

0 at x = −0.2 together with the inverse RPA susceptibil-
ity χ−1 for two different ratios J/Uc = 0 and J/Uc = 0.25.
The Hubbard interaction is set to be close to the instability
U = 0.995Uc, where Uc(J = 0) = 3.16 eV and Uc(J/Uc =
0.25) = 2.94 eV. These values are about 50%–70% larger
than those at x = 0, which can be understood from the fact that
the DOS is reduced under hole doping (see Fig. 2). Figure 5(a)
displays the inverse susceptibilities along a high-symmetry
path in the BZ, while Figs. 5(b) and 5(c) contain χ as a
function of qx and qy for three values of qz and two different
Hund’s coupling values.

Interestingly, while χ0 peaks at the X point (and the
symmetry-related Y point, which is not shown), χ diverges
at � for J/U = 0. In contrast, for J/U = 0.25 the leading
instability has shifted to X (and to Y ). Increasing Hund’s cou-
pling thus suppresses FM in favor of stripe-AF order. As we
show below in Sec. III E, this can be related to the dominant
orbital contributions to χ . While the FM instability is mostly
driven by the xy orbital contribution, other orbital components
make a larger contribution to stripe-AF. Since Hund’s cou-
pling tends to favor alignment of spins in different orbitals,
it is generally expected to increase the orbital participation
of subleading orbitals z2, xz, yz, and x2 − y2, which we find
to favor stripe-AF over FM. Importantly, this is an example
where the leading magnetic instability is not determined by
the peak in the bare physical susceptibility alone, a multior-
bital phenomenon that does not occur for single-band systems
with onsite interactions only [see Eq. (12)].

In addition, we notice that χ−1
0 is nearly flat and com-

parable along the X -P and the �-M directions. It exhibits
a local minimum at an incommensurate wave vector along
�-M. The flatness along the kz direction is due to the weak
coupling of the Co layers and the resulting flat dispersion
along kz. More interesting is that χ0 is of similar size at
� and X,Y , which we interpret as a signature of itinerant
frustration, as it signals large and comparable fluctuations
close to in-plane FM and stripe-AF wave vectors. Close to the
instability at U = 0.995Uc, the RPA susceptibility χ−1 still
remains flat along the X -P direction, corresponding to a high
degree of competition between in-plane stripe-AF orders with
commensurate and incommensurate qz components. The fact
that different magnetic states remain nearly degenerate in the
immediate proximity of the magnetic transition is one of the
hallmarks of itinerant frustration. The flatness along the �-M
direction, however, is largely lifted close to Uc and there now
appears a clear minimum at � (and a local minimum at M for
J/Uc = 0.25). We conclude that while the parent compound
SrCo2As2 is clearly dominated by FM fluctuations for all
values of J/U , the competition between FM and stripe-AF
fluctuations increases with hole doping and is much stronger
and dependent on J/U for a system with x = −0.2.

C. Phase diagram of leading magnetic instabilities

This section discusses the phase diagram of the leading
magnetic instability as a function of electronic filling x and

245149-7
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FIG. 5. (a) Inverse static bare physical susceptibility χ−1
0 (black) and inverse static RPA physical susceptibility χ−1 (blue, brown) at

x = −0.2 hole doping, plotted along a high-symmetry path in the 1BZ. The plot shows χ−1 for J/U = 0 (blue) and J/U = 0.25 (brown) in
the vicinity of ordering U/Uc = 0.995. In contrast to the undoped case in Fig. 4, χ depends strongly on J/U . The arrows indicate the leading
instabilities which shift from � at J = 0 to X at J/Uc = 0.25. Notice the flatness of χ−1 along the X -P direction, which is a sign of itinerant
frustration. (b), (c) Static RPA spin susceptibility χ (q) as function of (qx, qy ) for fixed values of qz = {0, 1

2 , 1} π

c . The interaction parameters
are identical to (a) and the black line denotes the 1BZ. Note that the susceptibility exhibits peaks at multiple distinct wave vectors, in particular
for stronger Hund’s coupling J/Uc = 0.25. The temperature and the broadening used in the calculations are T = 30 meV and ηω = 3 meV,
respectively.

J/U . To obtain the phase diagram shown in Figs. 6(a) and
6(b), we use the same method as described in the context
of Figs. 4 and 5. Specifically, for a given filling x, we first

determine the chemical potential μ(x, T = 30 meV) using
the curve shown in Fig. 12. We thus approximate the ef-
fect of doping x by a rigid band shift. The covered range

FIG. 6. (a) Phase diagram showing the leading magnetic instability as a function of J/Uc and doping x. We find four commensurate
magnetic orders: FM order with ordering wave vector Q = � = (0, 0, 0), A-type order with Q = M = (0, 0, 1), 2D stripe-AF order with Q =
X = ( 1

2 , 1
2 , 0), and 3D stripe-AF order with Q = P = ( 1

2 , 1
2 , 1

2 ). The transition between 2D and 3D stripe-AF occurs through incommensurate
phases with ordering vectors Q = ( 1

2 , 1
2 , τ ), where 0 < τ < 1

2 . The phase diagram is obtained for UAs = 0, JAs = 0 and the pink lines trace
the phase boundaries for UAs = UCo and JAs = JCo. (b) Phase diagram with data shown in (a) and smoothed boundaries, but using Hund’s
coupling J in units of eV as the x-axis scale. No data are shown in the gray region for which U ′ < 0. Colored lines denote cuts at fixed
J/Uc = 0.1, 0.25, 0.4 (yellow, red, purple) [see also (c)]. Due to the variation of Uc with J , the straight vertical lines in (c) appear distorted.
(c) Critical Hubbard Uc as a function of J/Uc and x. While electron doping (x > 0) lowers Uc, hole doping increases Uc. Increasing Hund’s
coupling J/Uc tends to reduce Uc. White lines follow phase boundaries shown in (a). Vertical colored lines denote cuts at fixed J/Uc shown in
(d). (d) Uc versus x for different values of J/Uc shown in (c). While Uc steeply increases on the hole-doped side, Uc is almost flat but slightly
decreases on the electron-doped side near x = 0. We associate this behavior with the presence of flat bands (see Fig. 2). Horizontal dotted lines
denote Uc at x = 0 for the three J/Uc values. The vertical yellow line illustrates the value of x (for J/Uc = 0) on the electron-doped side which
has the same value of Uc as the undoped compound. This bounds the region where we expect magnetic order to exist since SrCo2As2 is not
ordered. The size of this region is almost independent of J/Uc. (e) The value of J in units of eV at the instability as a function of J/Uc and x.
Data are obtained directly from Uc shown in (c) and the x-axis value J/Uc. (f) Frustration between in-plane ferromagnetic and stripe AF-type
phases defined via the parameter �F in Eq. (15) as a function of interaction ratio J/Uc and filling x. Smaller values of �F correspond to a
higher level of frustration. Black lines trace phase diagram of (a).
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FIG. 7. Stoner-type phase diagrams as a function of electronic doping x and Hubbard interaction U . Three panels are for Hund’s couplings
J/Uc = 0.1, 0.25, 0.4 from left to right (a)–(c). The lines denoting Uc are identical to those in Fig. 6(d). We find that for U < Uc the system is
paramagnetic (PM) and that the critical Hubbard interaction Uc is minimal for slight electron doping and towards the FM phase. The minimal
critical value minxUc(x) at a fixed Hund’s coupling J/Uc is reduced from Uc ≈ 2 eV for J/Uc = 0.1 to Uc ≈ 1.5 eV for J/Uc = 0.4. As we
increase Hund’s coupling a stripe-AF phase appears at hole doping x < −0.2, whose width increases with J . We do not observe any specific
feature in Uc in the highly frustrated regime where FM and AF phases meet.

in x ∈ (−0.4, 0.4) corresponds to a rigid shift in the chem-
ical potential ∼(−0.2, 0.1) meV. While the approximation
of a rigid band shift is justified for small values of |x|, it
is known that chemical substitution can affect other prop-
erties of the system in addition to the electron filling. This
includes introducing site disorder and modifications of the
lattice structure. Specifically, in Ni-doped SrCo2As2 (i.e., on
the electron-doped side) the uncollapsed tetragonal phase is
found over a wide range of x < 0.4 at T = 300 K [12]. On the
hole-doped side, the band structure of KCo2As2 also exhibits
features such as a partially flat band between � and X that
are consistent with a rigid band description. Given μ(x, T ),
we then calculate the bare static susceptibility χ

(0)
abcd (q) for

60 equally spaced points along the high-symmetry path in
the BZ shown in Fig. 4(a). The chemical potential is set
to μ(x, T = 30 meV) and the temperature is T = 30 meV.
We use a small broadening parameter ηω = 3 meV and sum
over 25×25×25 k points in Eq. (9). Computationally, this
is the most expensive step in the calculation. Once we have
obtained the bare susceptibility, we calculate the physical RPA
susceptibility χ using Eqs. (12) and (13) for different U at
fixed J/U . We increase U until χ (q) diverges, or χ−1(q)
becomes zero at one of the 60 wave vectors q along the path
in the BZ.

As shown in Figs. 6(a) and 6(b), we find the leading in-
stability to be towards FM in a wide region around x = 0,
regardless of the value of Hund’s coupling J . FM prevails for
electron doping x > 0 at all values of 0 � J/Uc � 0.5. We
note that larger values of J are unphysical as they correspond
to interorbital attraction due to the relation U ′ = U − 2J; this
region is shown in gray in Fig. 6(b). On the hole-doped side,
other magnetic phases appear at x � −0.2 and J/Uc > 0.1
(or J > 0.35 eV). In the range of smaller Hund’s coupling,
a dome of AF A-type magnetic order appears, where FM
planes are AF stacked along the c direction. We find the
transition from FM to A-type order to be abrupt. At larger
Hund’s couplings J/Uc � 0.25 (or J � 0.7 eV), we observe
the emergence of stripe-AF phases, both with qz = 0 and
π/c. The order with qz = 0 corresponds to the magnetic
order observed in the Fe-based 122 systems. The crossover
between these two stripe-AF phases occurs gradually via

incommensurate magnetic orders with Q = ( 1
2 , 1

2 , τ ), where
0 < τ < 1

2 .
In Fig. 6(c), we plot the critical Hubbard Uc required to de-

velop magnetic order versus x and J/Uc. One observes that Uc

generally decreases with increasing J , i.e., Hund’s coupling
enhances the tendency to develop magnetic order. As a func-
tion of x, we find that Uc increases quickly under hole doping
x < 0, as the chemical potential moves away from the peak
in the DOS (see Fig. 2). In contrast, Uc decreases slightly and
is almost flat under electron doping as the chemical potential
reaches the peak in the DOS. This behavior is independent
of the value of J as shown in Fig. 6(d). We thus conclude
that magnetic order is not expected on the hole-doped side,
but may occur on the electron-doped side. The flatness of Uc

versus x > 0 and the fact that one experimentally observes
the emergence of magnetic order already for small x in fact
suggests that SrCo2As2 lies close to a FM instability. Assum-
ing that U is only slightly below Uc at x = 0, our calculations
predict a region of width �x ≈ 0.2 where magnetic order
should occur on the electron-doped side [vertical dashed lines
in Fig. 6(d)]. This is in good agreement with experimental
results on Sr(Co1−xNix )2As2 [12]. In Fig. 7, we plot these
data in a Stoner-type phase diagram as a function of x and U .
This phase diagram includes a paramagnetic (PM) phase at
U < Uc and the different magnetically ordered phases (FM, A
type, stripe AF) for U > Uc. Our calculations do not show any
specific features of Uc across phase boundaries into different
magnetic regions, where we expect magnetic frustration to be
strongest.

Another finding of our study is that stripe-AF order only
emerges at sufficiently large values of the Hund’s coupling
J > 0.7 eV [see Figs. 6(b) and 6(e)]. This may explain the
absence of stripe order in real systems, even though the sys-
tem exhibits prominent stripe-AF fluctuations [8]. Finally, we
investigate the impact of Hubbard and Hund’s interactions on
the As sites and find that these play a minor role in the phase
diagram. As shown in Fig. 6(a), the inclusion of significant
correlations on the As sites by setting UAs = UCo and JAs =
JCo shifts the phase boundaries (pink lines) only by a small
amount compared to the ones obtained with UAs = JAs = 0
(colored phases).
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D. Quantifying itinerant magnetic frustration

We can quantify the degree of itinerant magnetic frustra-
tion between FM and stripe-AF magnetic order as a function
of x and J/U by determining the closeness of the sublead-
ing instability. Mathematically, we introduce a frustration
parameter that depends on the difference between the critical
Hubbard Uc for the leading and the subleading instability

�F = |Uc(QFM) − Uc(QAF)|
max[Uc(QFM),Uc(QAF)]

. (15)

Here, QFM = (0, 0, τ ) with 0 � τ � 1 is a wave vector that
corresponds to in-plane FM order and Uc(QFM) is the minimal
Hubbard U for which χ−1(QFM) = 0. The stripe AF wave
vector QAF = ( 1

2 , 1
2 , τ ) with 0 � τ � 1

2 describes the compet-
ing stripe-AF order and Uc(QAF) is the minimal Hubbard U
for which χ−1(QAF) = 0. Small values of �F thus correspond
to high levels of frustration. We additionally checked that no
other ordering vector occurs as a subleading instability along
the BZ path in Fig. 1(b), which includes the �-X and P-N-�
directions. Note that we neglect the presence of magnetic
order for U values greater than the critical Uc of the leading
instability and are simply increasing U further in our results
of the paramagnetic χ until a competing subleading instability
is reached. This still provides a simple approximate method
to quantify and compare the degree of frustration in different
regions of the phase diagram.

In Fig. 6(f), we show �F as a function of x and J/U . First,
we observe that, as expected, �F vanishes at the phase bound-
aries between FM and AF order. However, we also notice an
interesting and nonrivial behavior of �F: the local minimum
of �F that occurs between A-type and stripe-AF phases at
larger hole doping continues into the FM region at smaller
doping and reaches x ≈ −0.1 at J/U = 0. The parent com-
pound at x = 0 is in this sense much more connected to the
hole-doped region, where �F is noticeably smaller, than to the
electron-doped region. At x = 0 one still finds a substantial
amount of itinerant frustration: �F (x = 0, J/U = 0) = 0.16.

Comparing Figs. 6(c) and 6(f), we also learn that the be-
havior of Uc and �F as a function of x and J/U are quite
different. While Uc is correlated with the value of the DOS
at the Fermi energy and the size of Hund’s coupling J , the
frustration parameter �F is largely determined by the distance
to the location of the FM-AF phase boundary. As noted above,
it extrapolates the A-type-to-stripe-AF phase boundary line
even into the FM regime. This can help explain the puzzling
experimental behavior that the magnetic fluctuations in the
parent compound (x = 0) are dominantly stripe-AF at low
temperatures (due to the small value of �F) yet small amounts
of electron doping lead to FM order (due to the reduction of
Uc by approaching the DOS peak).

E. Orbitally resolved RPA susceptibility

In this section, we discuss the orbital-resolved con-
tributions χabba to the physical RPA susceptibility χ =
1
2

∑
a,b χabba. We focus on the behavior close to a magnetic

instability and set U = 0.995Uc in the following. As U ap-
proaches Uc, the relative weight of the orbital contributions
to χabba get amplified, but the general trend is already present
further away from Uc (we have explicitly checked it at U =

FIG. 8. Absolute value of RPA susceptibility elements χabba for
x = 0 close to an FM instability. The elements are normalized by the
maximal element. (a) For J = 0 and (b) is for J/Uc = 0.4 at U =
0.995Uc. Here, T = 30 meV and ηω = 3 meV.

0.9Uc). We find χabba to be different for each of the four
magnetic instabilities in the phase diagram in Fig. 6(a). For
brevity, we will refer to the four phases by the magnetic
ordering wave vector in this section, i.e., refer to FM as �, to
A type as M, to 2D stripe AF as X , and to 3D stripe AF as P.
We also note that the orbital labeling uses a global (unit-cell)
coordinate system, shown in Fig. 1.

The RPA susceptibility components χabba that enter the
physical susceptibility χ = 1

2

∑
a,b, χabba can be conveniently

arranged in a 16×16 matrix form. In Figs, 8 and 9 we show
the absolute value of the components, normalized by the
maximum element, as a color matrix plot. Figure 8 contains
results for the x = 0 parent compound at two different values
of J/U = 0, 0.4, where the leading instability is towards a FM
state. The four different panels in Fig. 9 show χabba for the four
magnetic instabilities �, M, X , P in the hole-doped region at
x = −0.2 (upper row) and x = −0.3 (lower row). While we
find some degree of variation of the form of χabba within a
given phase, the main features are invariant and the four plots
are thus representative of the form of χabba in the full phase
region.

Let us describe the main features of these plots and the
conclusions we draw from them. First, we observe that the
diagonal contributions from the dxy orbital are dominant in all
four phases, and we find significant contributions from both
intrasite elements (Co1-Co1 and Co2-Co2) as well as from
the intersite elements (Co1-Co2). The next largest elements
at x = 0 arise from off-diagonal elements between the dxy

and dz2 orbitals. As shown in Table II, this can be understood
from the large spectral weight of the dxy orbitals at the Fermi
energy and the second largest contribution from dz2 at x = 0.
To understand the dominance of dxy elements for x = −0.3 we
note that our calculations are performed at finite temperature
T = 30 meV. Even though dxy states at the x = −0.3 Fermi
energy μ = −0.13 meV have the least weight [see Fig. 2(a)
and Table II], the susceptibility still includes contributions
from the region with large dxy weight at finite T . Similarly,
the DOS peak of the dz2 orbitals at x = 0 explains that off-
diagonal elements between dxy and dz2 are still the largest at
x = −0.3 and T > μ.
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FIG. 9. Normalized elements of the RPA susceptibility χabba

close to four magnetic instabilities, �, X , M, and P, as indicated.
First row is for x = −0.2 and J/Uc = 0.2 (left, �) and J/Uc = 0.4
(right, X ). Second row is for x = −0.3 and J/Uc = 0.2 (left, M) and
J/Uc = 0.4 (right, P). The figures are obtained for U/Uc = 0.995,
T = 30 meV, and ηω = 3 meV. The orbital content looks qualita-
tively the same within each phase at other parameter values, i.e.,
these results are representative for the four different types of mag-
netic instabilities in the system.

Second, we notice that increasing Hund’s coupling J re-
sults in larger off-diagonal elements since Hund’s coupling
tends to align spins in different orbitals, i.e., it benefits from
electrons occupying and scattering among different orbitals.
Third, we generally find that close to the stripe-AF insta-
bilities X and P, there is a larger hybridization of dxy with
the other d orbitals in the susceptibility, including dxz, dyz,
and dx2−y2 . Close to the A-type instability, the susceptibility
resembles that of FM with slightly increased dz2 contribu-
tions, which may arise from the AF coupling of FM layers
along z. Finally, we observe that contributions from As

TABLE II. Total DOS per spin at the Fermi energy and different
d-orbital contributions for different dopings x (see Fig. 2), chemical
potential μ(T ) (in units of meV) at T = 0 and T = 30 meV. The
DOS contributions of different d orbitals are normalized by the dxy

contribution.

x μ(0) (meV) μ (30 meV) DOS eV−1 dx2−y2 dxz, dyz dz2

0 0 −12 7.3 0.14 0.18 0.34
−0.2 −75 −82 2.8 0.77 0.62 0.31
−0.3 −129 −132 2.5 2.82 2.12 1.09

p orbitals are negligible, except close to the FM instabil-
ity, where off-diagonal elements between As px, py orbitals
and dxy contribute about 10% of the relative weight. Note
that we here set UAs = JAs = 0. This shows that while hy-
bridization with As contributes quantitatively to χ close to
the FM instability, especially at larger J , the Co d orbitals
are the main factors differentiating between the magnetic
instabilities.

IV. DYNAMIC RPA SPIN SUSCEPTIBILITY RESULTS

In this section, we present results for the imaginary
part of the physical RPA susceptibility at finite frequencies
Imχ (q, ω). This allows for a direct comparison with inelastic
neutron scattering (INS) results [8,20]. We consider both the
parent compound with x = 0 and a hole-doped system with
x = −0.2 at moderate Hund’s coupling J/Uc = 0.25. We fo-
cus on a Hubbard-U value close to the magnetic instability
U = 0.995Uc. The instability is towards FM for x = 0 and
towards 2D stripe (X ) at x = −0.2. The temperature is set to
T = 30 meV as in the rest of the paper.

Figure 10 contains results of Imχ (q, ω) for x = 0
[Figs. 10(a), 10(c), 10(e)] and for x = −0.2 [Figs. 10(b),
10(d), 10(f)]. Let us first focus on x = 0. Figure 10(a) shows
Imχ (q, ω) along a high-symmetry path in the qz = 0 plane
(note that M ′ is the M point in the second zone, see Fig. 1). We
observe well-defined paramagnon modes emerging from the �

point with velocity v� ≈ 1100 meV Å along �-X and a veloc-
ity v� ≈ 2800 meV Å along �-M ′ direction determined from
a linear fit in an energy range of (0–200) meV. The width is
roughly independent of energy and given by γ� � 0.07 Å−1.
The linewidth is smaller along the �-M ′ than along the �-X
direction. Low-energy excitations are also present close to the
X and the M ′ points in the Brillouin zone. The excitations
close to M ′ arise from the small energy scale associated with
the weak coupling of the different Co-As layers. In contrast,
the presence of low-energy excitations at in-plane momenta
X (and Y ) is a sign of competition and itinerant frustration
between FM and stripe-type fluctuations. The large spectral
weight around X is also observed experimentally [8].

To investigate the impact of frustration on the dynamic
response more systematically, we calculate χ (q, ω) in the
complete qz = 0 plane and ω = 50 meV. As shown in
Fig. 10(c) and in agreement with 10(a), we observe a main
peak close to �, but also significant spectral weight close to X
and M ′. Inspecting the anisotropy of the � peak, we observe
that there is slightly more (about 10% more) spectral weight
along the direction �-M ′ than along the direction �-X . The
peak around X is also anisotropic and the degree of anisotropy
was used in the literature to quantify the degree of itinerant
frustration [8,13]. Following these works, we quantify the
anisotropy of the elliptical peak at X by the ratio r of the two
radii of the ellipse. We relate r to frustration by defining the
frustration parameter

η = r2 − 1

r2 + 1
. (16)

The parameter η captures the anisotropy of the correlation
lengths along two orthogonal directions in the PM phase.
Within a phenomenological local-moment model description

245149-11
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FIG. 10. Imaginary part of the dynamical magnetic susceptibil-
ity, Imχ (q, ω), for x = 0 [(a), (c), (e)] and x = −0.2 [(b), (d), (f)].
Other parameters are J/Uc = 0.25, U = 0.995Uc, and T = 30 meV.
(a) and (b) show Imχ (q, ω) along a high-symmetry path in the
qz = 0 plane of the BZ. (c) and (d) show the susceptibility for
(qx, qy, qz = 0) at ω = 50 meV [see white dashed line in (a) and (b)].
Note that the center of the plots corresponds to the X point. (e) and
(f) show 1D cuts close to � (upper row) and X (lower row) along
directions indicated in (c) and (d) with the same color. We extract
the frustration parameter η from the ratio of the peak widths that we
obtain from a Gaussian fit.

of SrCo2As2 using the J1-J2 Heisenberg model on the square
lattice, the anisotropy of correlation lengths is related to the
ratio of nearest J1 to next-nearest-neighbor interactions J2

and one can identify η = J1/(2J2) [8,13]. Thus, η is a direct
measure of frustration with |η| = 1 corresponding to maximal
frustration. Here, we obtain η from Gaussian fits of the peak
in χ (q, ω) close to X and at fixed ω = 50 meV. As shown
in Fig. 10(e), a fit of the spectrum along the X -M ′ and X -�
directions around the X point yields a moderate anisotropy
(or frustration) parameter η = −0.20 at x = 0. Experimen-
tally, one finds a larger anisotropy in the parent compound
with ηINS ≈ −0.5 at low temperatures T = 5 K [8,13]. The
anisotropy increases with temperature and becomes ηINS ≈
−0.7 at T = 100 K, where the competition between FM
and stripe-AF fluctuations is experimentally most pronounced
(FM fluctuations seem to be suppressed below that tempera-
ture). In our model, we have to choose parameters closer to the
stripe-AF instability in order to reproduce such a large degree
of anisotropy. At hole doping x = −0.2 and J/Uc = 0.25, for

example, we find η = −0.66 [see Fig. 10(f) and discussion
below].

Analyzing the hole-doped system at x = −0.2 in more
detail, we observe in Fig. 10(b) a steep and broad param-
agnon mode emerging from the X point. This agrees with
the analysis of the static susceptibility χ (q) in Fig. 5, which
diverges at the X point (2D stripe-AF) for U → Uc. The mode
has a large stiffness in the range (0–100) meV with a broad-
ening of γX ≈ 0.07 Å−1. We estimate a lower bound on the
velocity vX � 1100 meV Å that is consistent with the lower
bound on the transverse velocity of 250 meV Å determined
from the INS measurements [8]. Figure 10(d) contains a two-
dimensional map at fixed ω = 50 meV and qz = 0 that shows
a main peak at X , but also significant spectral weight along the
X -M ′ and X -� directions. As shown in Fig. 10(f), we observe
that the peak amplitude around � is much smaller along the
�-M ′ compared to the �-X direction, which is opposite to our
findings at x = 0. The anisotropy of the peak at X is much
more pronounced compared to the parent compound and we
extract a significant anisotropy (or frustration) parameter of
η = −0.66, as mentioned above.

Regarding the degree of frustration and the anisotropy
of the inelastic peak around X , we thus conclude from our
model calculations that SrCo2As2 behaves experimentally like
a slightly hole-doped model that lies closer to the AF instabil-
ity than the undoped x = 0 model.

V. THEORY-EXPERIMENT COMPARISON

In this section, we compare the results of our model cal-
culations to the experimental ones. First, experimentally one
finds SrCo2As2 to be paramagnetic down to the lowest mea-
sured temperatures T = 50 mK [4,8]. This is reproduced in
our model when the Hubbard interaction is below the critical
value U < Uc. Like the experimental system, our model cal-
culations show pronounced anisotropic fluctuations at the �,
X , and Y points when U lies close to Uc. We thus conclude
that SrCo2As2 lies on the verge of ordering magnetically with
correlations as described by U being only slightly smaller than
the required critical Uc value.

We find that Uc(x) quickly increases under hole doping for
all values of J , but is almost flat and slightly decreasing under
electron doping [see Fig. 6(d)]. The origin of this behavior is
that hole doping moves the chemical potential further away
from the peak in the DOS at ω ≈ 30 meV, which is caused
by a partially flat dxy band that lies just above EF at x = 0.
Since our calculations are performed at finite temperatures
of T = 30 meV, the DOS peak is already within the thermal
window around EF , and moving μ closer to the peak by
electron doping has not much of an effect. Based on these
results, we predict magnetic order to not occur under hole
doping, but potentially develop under electron doping, where
Uc decreases. This prediction agrees well with experimen-
tal observation: while magnetic order has not been found
in lightly hole-doped materials, already minute amounts of
electron doping trigger the development of magnetic order
in Sr(Co1−xNix )2As2 (helical order with in-plane FM) and
LaxSr1−xCo2As2 (FM).

We note that the RPA method is known to overesti-
mate transition temperatures since it neglects certain types
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of fluctuations [28,30]. Thus, the temperature at which the
calculations are performed should not be directly compared
with experimental transition temperatures. We choose T =
30 meV to balance the computational costs with a sufficient
resolution of spectral features in the band structure and the
DOS. The computational complexity increases at lower tem-
peratures since a finer k-grid discretization is required to
accurately capture sharper features in the susceptibility. The
resulting critical Uc that we extract at T = 30 meV would be
reduced if the simulation was performed at a lower tempera-
ture, but the phase diagram would not change much. We note
that the spin-orbit coupling constant of the Co-3d orbital can
be estimated to be around 74 meV which is also significantly
larger than the temperature we consider, ensuring that effects
of spin-orbit coupling are already well captured at this T .

Our model also captures the essential features associ-
ated with itinerant frustration: the presence of both FM and
stripe-AF fluctuations and the interesting observation that
FM fluctuations dominate only at higher T > 150 K [8], but
stripe-AF fluctuations take over at lower T . To reproduce
such a behavior in our model, one needs to consider finite
hole doping x � −0.1 and finite Hund’s coupling J/Uc > 0.2,
where we find the leading instability to be at the stripe-AF
wave vector [see Fig. 6(a)]. We generally observe that FM
and stripe-AF instabilities lie close to each other in the hole-
doped region for all values of J , even when FM is the leading
instability. When we quantify the degree of frustration us-
ing �F in Eq. (15), we find the slightly hole-doped region
(−0.2 < x < 0) to be substantially frustrated even at smaller
values of J , where FM is the leading instability [see Fig. 6(f)].
We note that tuning U to larger values has a similar effect as
lowering temperature and both move the system closer to an
instability. We choose to increase U in our calculations as it
requires significantly less computational effort than lowering
T and it is known (at least in the single-band case) to be
qualitatively equivalent.

We also find good qualitative agreement between experi-
ment and theory at finite frequencies [8,13,20]. Theoretically
extracting the frustration parameter η from the anisotropy
of the finite-frequency peak of χ (q, ω) at q = X and ω =
50 meV yields η(x = 0, J/Uc = 0.25) = −0.20 and η(x =
−0.2, J/Uc = 0.25) = −0.66. This shows that the model at
x = 0 is slightly less frustrated than the experimental one,
for which one finds ηINS ≈ −0.5 at low T = 5 K and ηINS ≈
−0.7 at higher T = 100 K. One can thus reproduce the de-
gree of experimental frustration by moving to the slightly
hole-doped system x ≈ −0.2. Again, this suggests that the
experimental system SrCo2As2 behaves like a slightly hole-
doped model and is consistent with conclusions drawn from
our static susceptibility results.

VI. CONCLUSIONS

In this work, we investigate the magnetic properties of
doped SrCo2As2 in a realistic 16-orbital Hubbard-Hund
model. By calculating the RPA magnetic susceptibility, we
determine the leading magnetic instability as a function of
doping x and Hund’s coupling J . We find FM to be the leading
instability in a wide region around x = 0 and for all values
of J . Various AF phases that are characterized by the wave

vectors M, X , and P appear under hole doping x � −0.1
and for sufficiently large Hund’s coupling J/Uc > 0.1. With
Uc ≈ 2–3 eV, this corresponds to a Hund’s coupling strength
J ≈ 200–300 meV, which is realistic [34]. We find that the
distance of the chemical potential to partially flat bands (with
dxy orbital character) and to a resulting DOS peak at E =
30 meV determines the value of the critical Hubbard U , where
magnetic order develops. We observe that Uc(x) experiences a
shallow minimum at x ≈ 0.1 and steeply increases for x < 0.
This explains the experimental observation that SrCo2As2

develops magnetic order only under electron doping but not
under hole doping.

We observe that a larger Hund’s coupling J tends to reduce
Uc and to distribute electrons among different orbitals, which
we find to favor AF phases. We relate this to the orbitally
resolved magnetic susceptibility χabba, which shows signifi-
cant mixing between the dominant dxy orbital and the other
d orbitals only at the AF instabilities. In contrast, χabba at
the FM instability is dominated by contributions from the dxy

orbitals only. This suggests that hole-doped systems with a
larger J/U could stabilize the sought-after stripe-AF phase.
We note that the exact value of J/U in the experimental
systems is unknown. Furthermore, recent ab initio studies
have found that J/U can be tuned over some limited range
by applying pressure or strain [31,32]. We leave a detailed
theoretical study of possible experimental tuning parameters
such as pressure or strain for future work. Note that relatively
small pressures trigger a structural transition to a collapsed
tetragonal phase, where the DFT electronic band structure is
quite different [33].

Our results demonstrate that the phenomenon of itinerant
magnetic frustration can be captured within a multiorbital
Hubbard-Hund model. In particular, by quantifying frustra-
tion as the difference of Hubbard-U values where FM and
stripe-AF instabilities occur, �F ∝ |Uc,FM − Uc,stripe-AF|, we
show that the parent compound experiences a significant de-
gree of frustration. This is signaled by a small value of �F

due to a near degeneracy between FM and stripe-AF orders.
Interestingly, we find that the region of small �F is smoothly
connected to the region in the phase diagram at larger hole-
doping levels, where stripe AF is the leading instability [see
Fig. 6(f)]. This explains the intriguing experimental fact that
the parent compound experiences dominant AF fluctuations
at low T , but orders FM at minute electron doping. Our study
reveals that the first phenomenon is associated with the close-
ness of the AF instability (i.e., a small value of �F ), whereas
the second one is due to a reduction of Uc with electron
doping. The itinerant magnetic frustration in SrCo2As2 is thus
directly tied to the predicted emergence of stripe-AF order at
finite hole doping and sufficiently large Hund’s coupling J .
Its paramagnetic behavior is related to the fact that U < Uc,
i.e., that correlations are slightly too weak to trigger magnetic
ordering at x � 0.

Finally, we calculate the RPA susceptibility χ (q, ω) at
finite frequencies and directly relate our findings to inelas-
tic neutron scattering results. We extract the anisotropy η of
the peaks close to the X point in the Brillouin zone, which
was previously related to the degree of frustration of the
system. We find that one needs to consider a small amount
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of hole doping to reproduce the experimental value since the
x = 0 model is less frustrated than the experimental parent
compound SrCo2As2. We generally find that the hole-doped
model with x ≈ −0.15 and intermediate values of J best
captures the experimental observations on SrCo2As2. Our re-
sults offer an alternative and fully itinerant description of the
tantalizing phenomenon of itinerant magnetic frustration in
doped SrCo2As2, which we find to arise from the interplay
of flat band physics and finite Hund’s coupling in a correlated
multiorbital model. Future work could further explore these
observations, e.g., by including further range interactions in
the model or by considering the presence of disorder. It would
also be worthwhile to apply such an analysis to other com-
pounds in the family of cobalt arsenides.

We provide all required programs as open-source soft-
ware, and we make the raw data of our results openly
accessible [47].
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APPENDIX A: DETAILS OF THE
FIRST-PRINCIPLE CALCULATIONS

DFT calculations were carried out using the projected
augmented-wave method as implemented in the Vienna ab
initio simulation package (VASP) [48,49]. For the exchange-
correlation functional, we employed the Perdew, Burke, and
Ernzerhof (PBE) [50] parametrization in the generalized gra-
dient approximation (GGA). Experimental lattice parameters
(a = b = 3.9471 Å, c = 11.801 Å, and zAs = 0.3588) [6] are
used in the calculations, and the plane-wave cutoff is set at
300 eV.

We constructed the TB Hamiltonian via the maximally
localized Wannier functions (MLWFs) method [51] as im-
plemented in WANNIER90 [35] through a postprocessing
procedure [51–53] using the output of the self-consistent DFT
calculations. The basis set consists of 16 MLWFs, corre-
sponding to five Co-3d orbitals and three As-p orbitals on
each Co site and As site, respectively. The selectively lo-
calized Wannnier function method was used to ensure the
Co-3d orbitals centered on the Co sites. As shown in Fig. 11,
the resulting 16×16 real-space Hamiltonian H (R) accurately
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FIG. 11. Comparison of the band structure calculated using DFT
(dotted line) and the tight-binding model (green lines) along the high-
symmetry paths as denoted in Fig. 1.

reproduces the band structures in the energy window of inter-
est near the Fermi level, validating its use for susceptibility
modeling. The shift in chemical potential as a function of the
electronic density per unit cell at T = 0 and 30 meV is shown
in Fig. 12.

Figure 13 shows two-dimensional cuts of the orbitally re-
solved Fermi surfaces for the parent compound x = 0 and
under hole doping x = −0.2 and −0.3. The Fermi surfaces
illustrate a quasi-2D character of the system, without signs of
a clear nesting. The orbital character of the Fermi surfaces is
dominantly dxy like at x = 0. At finite hole doping, the weight
of the dxz and dyz orbitals increases. Hole doping also pro-
motes the formation of two small electron pockets around the
� and the M points. The dominant orbital character of these
pockets is dxz, dyz for the pocket around � and is dominantly
dx2−y2 for the pocket around M. Notice also the smoothening
of the ellipticlike electron pocket around the X and Y points
with hole doping resulting in a reduction of the dxy orbital
weight in favor or weight from dxz (at X ) and /dyz orbitals (at
Y ), respectively.

FIG. 12. Chemical potential μ as a function of the electronic
density per unit cell x = n − 13 at T = 0 (purple) and T = 30 meV
(red).
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FIG. 13. Two-dimensional cuts of the Fermi surface at fixed qz =
{0, 1

2 , 1} π

c (columns from left to right). Different rows correspond
to different dopings: x = 0 (first row), x = −0.2 (second row), and
x = −0.3 (third row). Color denotes the dominant d-orbital weight of
the band. Note that some bands have a dominant p-orbital character,
but we here focus on the d-orbital content which is more important
for the magnetic instability. We plot bands within an energy window
of ±5 meV around ω = 0 with a discretization of 200×200 k points
in the 2D cut of the BZ. The figures also include the locations of
high-symmetry points.

APPENDIX B: SYMMETRY TRANSFORMATIONS FOR
DIFFERENT CONVENTIONS

From the basis of tight-binding orbitals given in Eq. (1), the
basis of Bloch-type wave functions can be constructed using
one of the conventions [36]

ψa(k) = 1√
N

∑
R

eik(R+τa )φRa(r),

ψ̃a(k) = 1√
N

∑
R

eikRφRa(r) (B1)

differing up to a phase factor eikτa of the fractional positions
of atoms within a unit cell. Both conventions give the same
band structure, as shown in Fig. 2(a), while the phase-factor
difference shows up in the eigenvectors. The two conven-
tions are identical when working with the orbitals of one
atom only, e.g., in usual five-band models for the Fe-based
superconductors.

Using the convention ψ , the periodicity in momentum
space is not preserved anymore, so one has to work with the
Wigner-Seitz cell. With this convention, the eigenvectors at
symmetry-related points are related just by a unitary matrix of
a point-group transformation Û , and nondegenerate eigenvec-
tors differ only up to a global phase φ:

un
a(k) =

∑
b

Uabun
b(U−1k)eiφ. (B2)

While more commonly used convention ψ̃ has the ad-
vantage of 2π periodicity of Bloch functions, it has a
disadvantage when working with systems with more than one
atom per unit cell. When the symmetry operation acting on
orbitals centered at one unit cell maps them to different unit
cells, the transformation matrix between the eigenvectors at
the symmetry-related points is a momentum-dependent trans-

formation in orbital space ˆ̃U (k):

ũn
a(k) =

∑
b

Ũab(k )̃un
b(U−1k)eiφ. (B3)

As an example, the C4 rotation maps orbitals As1 → As1,
As2 → As2, Co1 → Co2, Co2 → Co′

1, where As1, As2, Co1,
Co2 all belong to the same unit cell, and Co′

1 is positioned
in the neighboring unit cell R′. Using the convention ψ̃ , the
transformation matrix acquires a shift eikR′

for the transfor-
mation that includes orbitals outside of the unit cell. As a
consequence, the physical susceptibility calculated in Eq. (13)
has momentum-dependent transformation under C4 rotation
when convention ψ̃ is used and transforms like a scalar under
the symmetries of the system when convention ψ is used.

In what follows, we use convention ψ and prove that the
physical susceptibility is invariant under C4 rotations in this
convention.

From Eqs. (10) and (13), the bare physical susceptibility is

χ (0)(q) = 1

2N

∑
ab
k

mn

Mmn
abba(k, q)

nF
(
εm

k

) − nF
(
εn

k+q

)
εn

k+q − εm
k

. (B4)

The eigenvalues for C4-symmetry-related points q and C4q are
identical, and summing over the BZ (

∑
C4k = ∑

k), we find

χ (0)(C4q) = 1

2N

∑
ab
k

mn

Mmn
abba(C4k,C4q)

nF
(
εm

k

) − nF
(
εn

k+q

)
εn

k+q − εm
k

,

(B5)

where the tensor M̂, introduced in Eq. (11), contains the in-
formation about the transformation of eigenvectors given in
Eq. (B2) where Û = Û (C4),

Mmn
abba(C4k,C4q) =

∑
a′b′c′d ′

U T
aa′U T

bb′Ubc′Uad ′Mmn
a′b′c′d ′ (k, q).

(B6)

Note that for physical susceptibility, the acquired global
phases cancel exactly.

Finally, using∑
a

U T
aa′Uad ′ =

∑
a

Ua′aUad ′ = δa′d ′ (B7)

leads to bare physical susceptibilities at q and C4q being
equivalent, while the individual components contributing to
χ (0)(C4q) and χ

(0)
phys(q) will be shuffled.

With Hubbard-type interactions that preserve the symme-
try of the original Hamiltonian introduced in Eq. (8), it follows
that

χ (q) = χ (C4q). (B8)
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TABLE III. Onsite interaction on As atom in folded orbital space.

APPENDIX C: SYMMETRIZATION
OF THE HAMILTONIAN

The Wannier Hamiltonian obtained from the first-principle
calculations is known to slightly break crystal symmetries
of the system due to band disentanglement. This symmetry
breaking can be controlled for the band structure, enforcing
the symmetry conservation within the desired precision at
the cost of the agreement between first-principle and fitted
band structures. We found this enforcement does not improve
the precision of the eigenvectors, which generally differ on
the third or fourth, but sometimes already on the second
digit. Furthermore, using a software package WANNIERTOOLS

to restore the crystal symmetries of the Hamiltonian in real
space by generating all rotation matrices and applying them
on orbitals on each atom [39] does not work perfectly on
restoring the properties of the eigenvectors. We proceed with
restoring the C4 symmetry of our Hamiltonian explicitly, aver-
aging over the symmetry-related points in momentum space.

When sampling the k-point mesh in the more compli-
cated Brillouin zones with edges and points shared between

more than two neighboring unit cells, it is not trivial to
treat boundaries correctly. One often-used approach is the
Monkhorst-Pack grid with an even number of points along
each direction spanned by primitive lattice vectors that avoid
sampling high-symmetry points that usually lie on some
boundaries. We deal with this differently by introducing a
small constant shift to all points, much smaller than the step
size in a sampled grid. The results do not depend on the
introduced small shift to the desired precision.

We start by sampling the k-point mesh in the reciprocal
unit cell, introduce a small constant shift to all points, and
translate them to the Wigner-Seitz cell. We symmetrize the
Hamiltonian in momentum space explicitly to preserve the C4

symmetry of the system, using the convention ψ , where Û =
Û (C4). The symmetrized Hamiltonian

hsym
ab (k) = 1

4

(
hab(k) +

∑
cd

Uachcd
(
C−1

4 k
)
U −1

db

+
∑
cd

U 2
achcd

(
C−2

4 k
)
U −2

db

+
∑
cd

U 3
achcd

(
C−3

4 k
)
U −3

db

)
(C1)

conserves the symmetries of the system down to machine
precision.

APPENDIX D: INTERACTION MATRIX

Here we explicitly write the matrix elements of the in-
teraction of the Hubbard-Hund Hamiltonian introduced in
Eq. (8) in folded orbital space. The interactions we consider

TABLE IV. Onsite interactions on Co atom in folded orbital space.
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are intraorbital Coulomb interaction U ll
ll = U , interorbital

Coulomb interaction U ll
mm = U ′, Hund’s coupling U lm

lm = J ,
and the pair hopping U lm

ml = J ′. We distinguish onsite inter-
actions for Co and As atoms. In order to work with matrix
equations, we fold indices in the orbital tensor introduced in
Eq. (8) using A = (ad ) and B = (bc), such that U ab

dc = U AB.
The interaction matrix for the As (Co) orbitals positioned
on a single atom in folded orbital space is a 9×9 (25×25)
matrix, given for the As and Co atoms in Tables III and IV,

respectively. Rotational invariance in orbital space for each
atom separately is satisfied when J = J ′ and U ′ = U − 2J on
each atom.

The full interaction matrix for 16 orbitals is a block-
diagonal 256×256 matrix in folded orbital space consisting
of two Co blocks of size 80×80 and two As blocks of size
48×48. Each of these blocks are sparse matrices with nonzero
elements on the positions of the onsite interactions for Co and
As atoms.
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