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Effect of spin-orbit coupling in noncentrosymmetric half-Heusler alloys
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The spin-orbit coupled electronic structure of two representative nonpolar half-Heusler alloys, namely 18-
electron compound CoZrBi and 8-electron compound SiLiIn, has been studied in detail. An excursion through
the Brillouin zone of these alloys from one high-symmetry point to the other revealed rich local symmetry
of the associated wave vectors resulting in nontrivial spin splitting of the bands and consequent diverse spin
textures in the presence of spin-orbit coupling. Our first-principles calculations supplemented with the low-
energy k · p model Hamiltonian revealed the presence of the linear Dresselhaus effect at the X point having
D2d symmetry, and the Rashba effect with both linear and nonlinear terms at the L point with C3v point group
symmetry. Interestingly we have also identified nontrivial Zeeman spin splitting at the non-time-reversal invariant
W point and a pair of nondegenerate bands along the path � to L displaying vanishing spin polarization due to
the non-pseudo-polar point group symmetry of the wave vectors. Further, a comparative study of CoZrBi and
SiLiIn suggests, in addition to the local symmetry of the wave vectors, the important role of the participating
orbitals in deciding the magnitude of the spin splitting of the bands. Our calculations suggest that half-Heusler
compounds with heavy elements displaying diverse spin textures may be ideal candidates for spin valleytronics,
where spin textures can be controlled by accessing different valleys around the high-symmetry k-points.
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I. INTRODUCTION

In noncentrosymmetric systems, the nonvanishing gradient
of the electrostatic potential results in a momentum-dependent
magnetic field �(k) in the rest frame of the electron. The
coupling of this field with the spin �σ of the electron lifts the
spin-degeneracy of the bands in an otherwise nonmagnetic
system. The resulting spin-orbit coupled Hamiltonian is given
by HSOC = �(k) · σ. Depending on the symmetry, �(k) may
have both linear and higher-order k-dependent terms. The
momentum-dependent field �(k) that locks the electron’s spin
direction to its momentum not only removes the spin degener-
acy of the bands but also leads to complex spin textures in the
reciprocal space. Spin texture (ST) is the expectation value of
the spin operator 〈−→Sn (k)〉 in a given Bloch wave function un(k)
around a specific k-point, where n is the band index. Spin
textures depending on the symmetry may display Rashba [1],
Dresselhaus [2], persistent [3], radial [4], or more complex
spin configurations in the momentum space. In addition to
the well-studied Dresselhaus and Rashba effect that leads to
splitting of nondegenerate bands with characteristic ST in
noncentrosymmetric systems, there are also other possibilities
where spin degeneracy can be lifted in nonmagnetic, noncen-
trosymmetric systems due to the presence of �(k).

It is well known that in materials either with intrinsic
magnetic ordering or in the presence of a magnetic field,
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time reversal (TR) symmetry is broken, leading to splitting
of energy bands with opposite spins, referred to as Zeeman
spin splitting [5]. In nonmagnetic, noncentrosymmetric com-
pounds, a combination of non-time-reversal invariant k-point
and lack of inversion symmetry in the presence of spin-orbit
coupling (SOC) also leads to spin splitting of bands in the
momentum space similar to the Zeeman effect [6]. Further,
the possibility of spin splitting of bands in a nonmagnetic,
noncentrosymmetric crystal in the presence of SOC has re-
cently been shown, where the split bands do not show any net
spin polarization around certain high-symmetry points of the
Brillouin zone (BZ) [7]. Such systems with band splitting hav-
ing vanishing spin polarization offer the possibility of tuning
spin polarization either with the application of an electric field
or strain that may be important for spintronics application.

Earlier research on the Dresselhaus effect was primarily
focused on materials in which the bulk exhibits inversion
asymmetry. It was originally proposed for nonpolar zinc-
blende semiconductors, where the splitting of the band is
proportional to k3 [2]. On the other hand, the Rashba effect
was proposed for noncentrosymmetric polar wurtzite struc-
ture displaying linear splitting of bands [8]. The search for
the Rashba effect was initially confined to two-dimensional
(2D) surfaces, interfaces. In view of the above, Rashba split-
ting was observed on surfaces of heavy metals, such as Au
(111) [9] and Bi (111) [10], at the surface of oxides such as
SrTiO3 (001) [11] and KTaO3 (001) [12], on two-dimensional
materials [13–15], and on heterostructure interfaces such as
InGaAs/InAlAs [16] and LaAlO3/SrTiO3 [17]. However, re-
cent studies on bulk polar materials show large Rashba spin
splitting for, e.g., in BiTeX (X = Cl,Br,I) [18–20] and GeTe
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[21,22]. Recently it has been reported that both Dresselhaus
and Rashba spin splitting is also observed in bulk ferroelectric
oxide perovskites such as BiAlO3 [23], HfO2 [24], and nitride
perovskite LaWN3 [25]. Further recent studies suggest that
not only does the Rashba effect occur in bulk for polar and
ferroelectric crystal structures, but it may also occur in nonpo-
lar crystals with polar point group in the BZ [26]. The Zeeman
effect, on the other hand, was observed in the two-dimensional
WSe2 and MoS2 [27,28], and a large Zeeman splitting was
also observed in bulk OsC, WN2, SnTe [29], and in the nonpo-
lar GaAs [30]. Band splitting with vanishing spin polarization
was suggested to be realized in bulk nonsymmorphic GaAs
and symmorphic 2D-SnTe [7].

While crystallographic point group symmetry (CPGS) was
originally attributed to being responsible for the nature of spin
textures (Rashba- or Dresselhaus-type), very recently it was
observed that the point group symmetry of the wave vector
(little group) [26] and the symmetry of the orbitals involved
[31] play a crucial role in determining the spin textures. As a
consequence, in the same compound diverse spin textures can
be realized around different high-symmetry k-points of the BZ
depending on its little group. Similarly different compounds
at a particular k-point despite having the same little group,
depending on the orbital character of the bands, may display
diverse spin textures [31].

In this paper, we have considered two representative semi-
conducting half-Heusler compounds with heavy elements
having 18 and 8 valance electrons, respectively. The unique
nonpolar crystal structure of the half-Heusler compounds
where the ternary half-Heusler is a combination of two
binaries, one with centrosymmetric and the other with non-
centrosymmetric structure, will be shown to host a variety of
spin textures depending on the symmetry of the k-points in
the BZ. Our calculations clearly identify the importance of the
little group of the chosen k-point in determining the nature of
the spin textures. A comparative study of the two half-Heusler
compounds shows that the orbital character of the bands is
important in deciding the strength of the SOC induced band
splitting.

The rest of the paper is organized as follows. Section II is
devoted to a description of the structural properties of nonpo-
lar half-Heusler compounds and details of the computational
methods. In Sec. III we have discussed the results of our
first-principles electronic structure calculations. Section IV is
devoted to a description of the nature of band splitting and
consequent spin textures at various high-symmetry k-points
of the BZ. The results of our first-principles calculations have
been analyzed here in the framework of a low-energy k · p
model. Finally, conclusions are presented in Sec. V.

II. STRUCTURAL AND COMPUTATIONAL DETAILS

The half-Heusler compound XY Z crystallizes in the face-
centered-cubic structure with one formula unit per primitive
unit cell, as shown in Fig. 1(a). In normal half-Heusler al-
loys, X and Y are transition metals, with X being a higher
valence element in comparison to Y , and Z is an sp va-
lent element. The space group is F 4̄3m (no. 216). In the
conventional stable structure Y and Z atoms are located at
4a(0, 0, 0) and 4b( 1

2 , 1
2 , 1

2 ) positions forming the rocksalt
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FIG. 1. (a) Crystal structure and (b) BZ of bulk half-Heusler
compounds. The half-Heusler compound have XY Z composition,
where X (Co, Si) have higher valence compared to Y (Zr, Li), and
Y and Z (Bi, In) form a rocksalt structure.

structure arrangement and the X atom is located in the tetrahe-
drally coordinated pocket, at one of the cube center positions
4c( 1

4 , 1
4 , 1

4 ) leaving the other 4c( 3
4 , 3

4 , 3
4 ) empty, resulting in

the absence of inversion symmetry. We shall consider a rep-
resentative semiconducting 18 valence electron half-Heusler
compound CoZrBi [32]. In addition, we have also consid-
ered a representative semiconducting sp valent compound
SiLiIn [33] featuring half-Heusler structure with eight valence
electrons.

The calculations presented in this paper have been carried
out using the Vienna ab initio simulation package (VASP)
[34,35] within density-functional theory (DFT) using the sup-
plied projector augmented-wave pseudopotentials [36,37] and
the Perdew-Burke-Ernzerhof generalized gradient approxima-
tion (GGA) [38]. Here the energy cutoff has been set to 600 eV
for the calculations and a 10×10×10 k-point mesh is used
for the self-consistent calculations using the Monkhorst grid
for k-point sampling. All the calculations are done with an
experimental lattice constant. The details of the structure,
including structural parameters, are summarized in Table I.

Figure 1(b) represents the BZ of the face-centered-cubic
half-Heusler compound. The various high-symmetry points of
the BZ are � at the center of the BZ, L at the center of each
hexagonal face, X at the center of each square face, W at each
corner formed from one square and two hexagons, and K at
the middle of an edge joining two hexagonal faces. Further,
the X point has sixfold degeneracy, the L point has eightfold
degeneracy, and the W and K points have 12-fold degeneracy.

TABLE I. The lattice constant and atomic positions for bulk half-
Heusler compounds.

Bulk
Space group half-Heusler a (Å) Site x y z

Zr(4a) 0.00 0.00 0.0 0
18-electron 6.23 [32] Co(4c) 0.25 0.25 0.25

CoZrBi Bi(4b) 0.50 0.50 0.50
F 4̄3m
(216)

8-electron 6.31 [33] Li(4a) 0.00 0.00 0.00
SiLiIn Si(4c) 0.25 0.25 0.25

In(4b) 0.50 0.50 0.50
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FIG. 2. The density of states and electronic band structure of the 18-electron half-Heusler compound CoZrBi, in the absence and presence
of SOC. In (a) and (c) the total and projected DOS for the Co-3d and Zr-4d are shown without and with SOC, respectively. Parts (b) and (d) dis-
play the band structure along various high-symmetry points of the BZ in the absence and presence of SOC, respectively. The band structures
of CoZrBi are plotted along the high-symmetry points L( π
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2a , 0)-�(0, 0, 0) of
the BZ. The Fermi level is aligned to the valence-band maximum with zero value in the energy axis.

In the BZ, except for the W and K points, all are time-reversal
(TR) invariant. A time-reversal-invariant k-point [39] satisfies
the condition −k + G = k, where G is the reciprocal-lattice
vector.

III. ELECTRONIC STRUCTURE CALCULATIONS

To begin with, we have analyzed the density of states
without SOC for the 18-electron compound CoZrBi obtained
from DFT calculations. The non-spin-polarized total as well
as projected densities of states of Co-3d and Zr-4d have been
shown in Fig. 2(a). The characteristic feature of the total
DOS is a pair of bonding and antibonding states resulting
from the covalent hybridization of the higher valence Co-d
and lower valence Zr-d states separated by a 0.98 eV gap at
the Fermi level [40]. Below the bonding states are the Bi-p
states separated by a p-d gap. Below the Bi-p state lies the
Bi-s state. The semiconducting nature of the compound can
be understood from the electron filling of the system. As
the total number of valence electrons of the system is 18,
these are accommodated in the available Bi-s, Bi-p, and the
bonding partner of the Co-d–Zr-d hybridized states. The Co-d
and Zr-d projected DOS reveal that the bonding states have
the primary contribution from the 3d states of Co, while the
antibonding states are primarily composed of Zr-d states.

In Fig. 2(b) we have shown the band structure of CoZrBi
around the Fermi level. An indirect band gap of 0.98 eV
is observed between the L point of the valence band and
the X point of the conduction band, in agreement with a
previous report [41]. Further, due to the tetrahedral net-
work, at the � point, the top of the valence band consisting
of Co-Zr d-states splits into threefold-degenerate t2 and
twofold-degenerate e states, with the latter lying lower in
energy.

Figures 2(c) and 2(d) display DOS and the band structure
of CoZrBi including SOC. The gross feature of the DOS is
very similar to that obtained without SOC, except for the
presence of additional splittings, and the value of the d-d gap
is now 0.96 eV. However, the nontrivial effect of the absence
of inversion symmetry upon inclusion of SOC is revealed
in the band structure shown in Fig. 2(d). The effect of the
SOC depends on the symmetry of the paths in the reciprocal
space. The spin degeneracy of the bands along various high-
symmetry directions of the BZ is lifted. Of particular interest
is the top of the valence band at the � point, where SOC
further splits the t2 states into fourfold-degenerate J = 3

2 and
twofold-degenerate J = 1

2 states, with the latter lying lower in
energy in the tetrahedral environment. Unlike the t2 states, the
e-states retain their degeneracy at the � point.

The total as well as the projected DOS and the band struc-
ture around the Fermi level without SOC for the 8-electron
half-Heusler SiLiIn is shown in Figs. 3(a) and 3(b), respec-
tively. Similar to the 18-electron compound, the characteristic
feature of the DOS is a pair of bonding and antibonding states
derived from In s + p and Si s + p separated by a semicon-
ducting gap of magnitude 0.12 eV. Below the bonding state
lies the Si-s state. As the total number of valence electrons of
the system is 8, these are accommodated in the Si-s state and
bonding partner of the p-states below the Fermi level. The plot
of the band structure reveals an indirect band gap of 0.12 eV
between the � point of the valence band and the X point of
the conduction band. The top of the valence band at the �

point is the threefold-degenerate p-band. The lowest conduc-
tion band is predominantly the sp3 hybridized In-s–Si-p band
[see Fig. 3(b), inset].

Finally, the DOS and band structure of SiLiIn including
SOC are shown in Figs. 3(c) and 3(d). The gross feature of the
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FIG. 3. The density of states and electronic band structure of the 8-electron half-Heusler compound SiLiIn, in the absence and presence of
SOC. In (a) and (c) the total and projected DOS for the Si-3s + 3p and In-5s + 5p are shown without and with SOC, respectively. Parts (b) and
(d) display the band structure along various high-symmetry points of the BZ in the absence and presence of SOC, respectively. The band struc-
tures of SiLiIn are plotted along the high-symmetry points L( π
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of the BZ. Fermi level is aligned to the valence-band maximum with zero value in the energy axis. The inset in (b) represents the Wannier
function of the lowest conduction band.

DOS is very similar to that without SOC shown in Fig. 3(a)
except for additional splittings. As expected, around the �

point of the valence band, the threefold-degenerate p-bands
split into J = 3

2 and J = 1
2 states, where the splitting is much

smaller in comparison to the 18-electron compound.

IV. NATURE OF BAND SPLITTING AND SPIN TEXTURES

Next we have analyzed the nature of the SOC-induced
splitting of the bands near various high-symmetry points of
the BZ, in order to elucidate the importance of local sym-
metry. In the following, we have discussed in detail the spin
orbital locked split bands and the novel spin textures displayed
by them in the k-space at and around the TR invariant nonpo-
lar (X ), polar (L), and non-time-reversal invariant W points,
which, based on local symmetry, are expected to display the
Dresselhaus effect, the Rashba effect, and the Zeeman effect,
respectively.

A. Dresselhaus and Rashba effect

1. X point (0, 0, 2π
a )

To begin with, we have analyzed the conduction-band
minimum (CBM) of CoZrBi around the neighborhood
of the high-symmetry nonpolar X point along the path
W ( π

a , 0, 2π
a )-X (0, 0, 2π

a )-W (0, π
a , 2π

a ) in the kz = 2π
a plane.

The DFT band structure for CoZrBi in a narrow k-range
along the above-mentioned path, without and including SOC,
are displayed in Figs. 4(a) and 4(b), respectively. The band
structure including SOC shows that the band minimum is
shifted from the X point in both directions, reminiscent of
the Rashba-Dresselhaus effect. To identify the nature of the
spin splitting, the ST of the inner and outer branches of the
CBM around the X point has been shown in Figs. 4(c) and

4(d), respectively. As shown in Figs. 4(c) and 4(d), the angle
between the k and the expectation values of spin 〈Sx〉 and 〈Sy〉
varies with the direction and the 〈Sz〉 component is absent.
Along the kx and ky axis, the spin is parallel to k, while it
is perpendicular to k along the diagonals. As expected the
direction of the spin textures is opposite for the inner and outer
branches, as shown in Figs. 4(c) and 4(d), respectively. These
are characteristic signatures of the linear Dresselhaus effect.
To understand our DFT results next we have derived a low
energy k · p model Hamiltonian.

The point-group symmetry around the X (0, 0, 2π
a ) point is

D2d having twofold C2(z) rotation around the z axis (princi-
pal axis), twofold rotation perpendicular to the principal axis
(C′

2(x),C′
2(y)), reflection in the dihedral plane (Md1, Md2),

and fourfold rotation followed by reflection through a plane
perpendicular to the principal axis S4(z). All the symme-
tries are listed in Table II. The symmetry operations listed
in Table II keep the linear Dresselhaus Hamiltonian HD(k)

TABLE II. Symmetry operations of D2d point group.

X point

Symmetry
operation {kx, ky, kz} {σx, σy, σz}
C2(z) = −iσ z {−kx, −ky, kz} {−σx, −σy, σz}
C′

2(x) = −iσ x {kx, −ky, kz} {σx, −σy, −σz}
C′

2(y) = −iσ y {−kx, ky, kz} {−σx, σy, −σz}
S4(z) = ei π

4 σ z {ky, −kx, kz} {−σy, σx, σz}
Md1 = −i

(−σ x+σ y√
2

) {ky, kx, kz} {−σy, −σx, −σz}
Md2 = −i

( σ x+σ y√
2

) {−ky, −kx, kz} {σy, σx, −σz}
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FIG. 4. The band structure and ST of CoZrBi and SiLiIn plotted in the kz = 2π

a plane in a very narrow k-range around the X
point in the presence and absence of SOC. In (a) and (b), the band structures of CoZrBi without and with SOC plotted along
2π

a (0.3, 0.0, 1.0)- 2π

a (0.0, 0.0, 1.0)- 2π

a (0.0, 0.3, 1.0) path, which is along the path W ← X → W . In (e) and (f) the band structures of SiLiIn
without and with SOC are plotted along the 2π

a (0.075, 0.0, 1.0)- 2π

a (0.0, 0.0, 1.0)- 2π

a (0.0, 0.075, 1.0) direction. The band structure obtained
from the DFT calculation as plotted with dots while the band structure obtained from the k · p model Hamiltonian is plotted with dashed lines.
In (c) and (d), the inner and outer branches of ST of CoZrBi around the X point in the conduction-band minimum (CBM) are shown. Parts (g)
and (h) display the same spin-texture for SiLiIn.

invariant. Further, Table II reveals that the out-of-plane spin
component is zero, as no linear combination of kx and ky with
σz is invariant under the symmetry operations. The effective
Hamiltonian is

HX (k) = H0(k) + αD(σxkx − σyky), (1)

where H0 is the Hamiltonian of the free electrons with the
dispersion E0(k) = h̄2

2m∗ (k2
x + k2

y + ( 2π
a )2) and αD is the Dres-

selhaus coupling constant. Diagonalization of Eq. (1) yields
E (k)± = E0 ± αD

√
(k2

x + k2
y ). The band structure obtained

from the model Hamiltonian calculation around the X point
without and including SOC is shown with dashed lines in
Figs. 4(a) and 4(b), respectively, and it agrees well with the
DFT calculations. The value of the Dresselhaus parameter
(αD) obtained from the model Hamiltonian is αD = 0.26 eV Å.
The value of αD calculated as twice the ratio between the shift
in energy and momentum from DFT calculation, αD = 2δE

δk =
0.25 eV Å, is in a good agreement with that obtained from the
k · p calculations.

Similarly, for the 8-electron system SiLiIn, the band struc-
ture of the CBM around the X point, in the absence and
presence of SOC is displayed in Figs. 4(e) and 4(f), re-
spectively. The band splitting seen in Fig. 4(f) suggests the
Rashba-Dresselhaus effect. A comparison of ST shown in
Figs. 4(c) and 4(d) with Figs. 4(g) and 4(h) reveals that the
ST for 18 and 8 electrons are identical. As expected from
the nature of band splitting, the Dresselhaus parameter αD

is small and estimated to be 0.08 eV Å. This small splitting
is attributed to the participation of the sp3 hybridized states
for SiLiIn in contrast to the d states for CoZrBi, where the
strength of SOC is expected to be higher for the latter.

Using the model Hamiltonian Eq. (1), we have calculated
the band structure without and with SOC and is shown with
dotted line in Figs. 4(e) and 4(f), which agrees well with the
band structure obtained from the DFT calculations. The cal-
culated Dresselhaus parameter from the model Hamiltonian,
αD = 0.08 eV Å, is in excellent agreement with the DFT
estimate.

2. L point ( π
a , π

a , π
a )

Next we have focused around the polar L point of the
conduction band of the 18-electron half-Heusler compound
CoZrBi that features a local maximum. The DFT band struc-
ture without and with SOC is plotted in a narrow k-range
around the neighborhood of the high-symmetry L( π

a , π
a , π

a )
point along W ( 2π

a , 0, π
a ) and K ( 3π

2a , 3π
2a , 0) directions as shown

in Figs. 5(a) and 5(b), respectively. The nature of the SOC-
induced band splitting into two branches [see Fig. 5(b)]
indicates the presence of either the Rashba or Dresselhaus
effect. We shall confirm the nature of the band splitting by
calculating the spin textures in the framework of DFT sup-
plemented with symmetry analysis within the k · p model.
To facilitate the plot of ST, we have considered a plane ⊥
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FIG. 5. (a), (b) Band structure without and with SOC for the conduction band for CoZrBi is plotted along 2π

a (0.538, 0.538, 0.425)-
2π

a (0.5, 0.5, 0.5)- 2π

a (0.573, 0.427, 0.5), which lies along the path K ← L → W . The band structure obtained form DFT is plotted with
dots, and the band structure obtained from the k · p model Hamiltonian is plotted with dashed lines. (c), (d) ST of inner and outer
branches around the L′ point for CoZrBi for the conduction band obtained from DFT calculation. (e), (f) Out-of-plane spin component
of CoZrBi in the plane defined by kx + ky + kz = 3π

a , obtained from DFT and the model Hamiltonian, respectively. (g),(h) Band structure
without and with SOC for the conduction band for SiLiIn is plotted along 2π

a (0.508, 0.508, 0.483)- 2π

a (0.5, 0.5, 0.5)- 2π

a (0.516, 0.484, 0.5),
which lies along the path K ← L → W . (i), (j) ST of inner and outer branches around L′ point for SiLiIn in the conduction band.
(k), (l) Out-of-plane spin component of SiLiIn in the plane defined by kx + ky + kz = 3π

a , obtained from DFT and the model Hamiltonian,
respectively.

to the (111) direction in such a way so that L point is at the
origin of this plane given by kx + ky + kz = 3π

a . We define a
coordinate system such that k′

x and k′
y are lying in the plane

while k′
z is along (111) direction. The new coordinate system

k′
x, k′

y, and k′
z is related to kx, ky, and kz by a shift of origin

and rotation preserving the local point group symmetry. The

resulting unit vectors are k̂′
x = k̂x√

2
− k̂y√

2
, k̂′

y = k̂x√
6

+ k̂y√
6

− 2k̂z√
6
,

and k̂′
z = 1√

3
k̂x + 1√

3
k̂y + 1√

3
k̂z. As a consequence, the coordi-

nate of the high-symmetry points in this plane are L′(0, 0, 0),
W ′(

√
2π
a , 0, 0), and K ′(0,

√
6π

2a , 0). The corresponding spin tex-
tures calculated for the two branches in the above-mentioned
plane around the L′ point are shown in Figs. 5(c) and 5(d),
respectively. The in-plane spin components exhibit distinct
chiral configuration as expected for the Rashba ST, while the
presence of the out-of-plane spin components with a distinct
pattern [Figs. 5(e) and 5(f)] suggests that higher-order k terms
may be involved. Moving from the inner to the outer branch
direction, the chirality changes from clockwise to counter-
clockwise. In both the inner and outer branches, the spin is
orthogonal to the wave vector �k, which is typical of Rashba-
type SOC. The Rashba parameter estimated from the DFT
calculation is found to be αR = 0.37 eV Å.

The k · p model Hamiltonian is constructed by preserving
C3v symmetry at the L point. The k · p Hamiltonian is defined
in the reciprocal space (k′

x, k′
y, k′

z) as mentioned above, where
the threefold rotation (C3) occurs around the trigonal axis k′

z
(parallel to the [111] direction) in both clockwise (C+

3 ) and
anticlockwise (C−

3 ) directions. The point group symmetry also
includes three mirror planes. One mirror plane lies in the k′

y-k′
z

plane and is defined as σ ′′, while the other two mirror planes
can be obtained by applying C3 and C2

3 operations to the initial
mirror plane, and they are defined as σ and σ ′, respectively.
Under these symmetry operations, the momentum and spin
operators undergo transformation as listed in Table III. Thus,
the symmetry-adapted model Hamiltonian for the conduction
band at the L point is

HC
L (k) = H0(k) + HSOC(k)

= − h̄2

2m∗
(
k′2

x + k′2
y

) + αR(σ ′
yk′

x − σ ′
xk′

y)

+ γ
(
k′3

x − 3k′
xk′2

y

)
σ ′

z . (2)

The cubic term in the effective Hamiltonian is included to
explain the out-of-plane component σ ′

z in the spin texture. The
band structure without and with SOC obtained from the model
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TABLE III. Symmetry operations of C3v point group.

L point

Symmetry operation {k′
x, k′

y, k′
z} {σ ′

x, σ
′
y, σ

′
z}

C+
3 ([111]) = e−i π

3 σ ′
z

{(− 1
2 k′

x +
√

3
2 k′

y

)
,
(−√

3
2 k′

x − 1
2 k′

y

)
, k′

z

} {(− 1
2 σ ′

x +
√

3
2 σ ′

y

)
,
(−√

3
2 σ ′

x − 1
2 σ ′

y

)
, σ ′

z

}
C−

3 ([111]) = ei π
3 σ ′

z
{(− 1

2 k′
x −

√
3

2 k′
y

)
,
(√

3
2 k′

x − 1
2 k′

y

)
, k′

z

} {(− 1
2 σ ′

x −
√

3
2 σ ′

y

)
,
(√

3
2 σ ′

x − 1
2 σ ′

y

)
, σ ′

z

}
σ = −i

(− 1
2 σ ′

x +
√

3
2 σ ′

y

) {(
1
2 k′

x +
√

3
2 k′

y

)
,
(√

3
2 k′

x − 1
2 k′

y

)
, k′

z

} {(− 1
2 σ ′

x −
√

3
2 σ ′

y

)
,
(−√

3
2 σ ′

x + 1
2 σ ′

y

)
, −σ ′

z

}
σ ′ = −i

(− 1
2 σ ′

x −
√

3
2 σy′

) {(
1
2 k′

x −
√

3
2 k′

y

)
,
(−√

3
2 k′

x − 1
2 k′

y

)
, k′

z

} {(− 1
2 σ ′

x +
√

3
2 σ ′

y

)
,
(√

3
2 σ ′

x + 1
2 σ ′

y

)
, −σ ′

z

}
σ ′′ = −iσ ′

x {−k′
x, k′

y, k′
z} {σ ′

x, −σ ′
y, −σ ′

z}

Hamiltonian is shown with a dotted line in Figs. 5(a) and 5(b),
respectively, and is in good agreement with the DFT band
structure. The fitted Rashba parameter αR = 0.38 eV Å and

γ = −0.32eV Å3 agrees well with the DFT estimate. Further,
the out-of-plane component of ST obtained from DFT cal-
culations is in reasonable agreement with that obtained from
the model Hamiltonian [see Figs. 4(e) and 4(f)] suggesting
the robustness of the low-energy k · p model Hamiltonian
[Eq. (2)].

The band structure around the neighborhood of the L point
without and with SOC for the s-p half-Heusler SiLiIn is pre-
sented in Figs. 5(g) and 5(h), respectively. The band structure
of the 8-electron compound has a minimum at the L-point in
contrast to a local maximum for the 18-electron compound
due to the involvement of sp3 hybridized state and the cal-
culated Rashba parameter, αR = 0.14 eV Å, which is much
smaller compared to the 18-electron compound. The spin
textures of the inner and outer branches around the L′ point
of the lowest conduction band are shown in Figs. 5(i) and
5(j). In-plane spin components have a pronounced chiral spin
configuration, whereas the presence of the out-of-plane spin
component indicates the presence of higher-order k terms as
discussed before for the 18-electron compound [see Figs. 5(k)
and 5(l)].

Since the point-group symmetry of SiLiIn is identical to
the 18-electron half-Heusler compound CoZrBi, we can eas-
ily obtain the model Hamiltonian for the 8-electron system
around the L′ point, where H0(k) = h̄2

2m∗ (k′2
x + k′2

y ) and the
HSOC is identical to Eq. (2). The band structure obtained
from the model Hamiltonian agree well with the DFT band
dispersion shown with dotted lines in Figs. 5(g) and 5(h). The

fitted parameters are αR = 0.15 eVÅ and γ = −0.51 eVÅ3.
The obtained Rashba parameter αR agrees well with the DFT
estimate.

While the model Hamiltonian captures the band dispersion
for both compounds accurately, the out-of-plane component
of the ST obtained from DFT calculation has additional fea-
tures that are not reproduced by HC

L , suggesting the presence
of symmetry-allowed additional terms.

Next we have analyzed the topmost valence bands around
the L point for CoZrBi and SiLiIn that displays a maximum. In
the absence of SOC, the threefold-degenerate t2 bands at the �

point split into a twofold-degenerate and a singly degenerate
band at the L point, consistent with the C3v symmetry of the L
point [see Figs. 2(b) and 3(b)]. Inclusion of SOC further splits

the fourfold-degenerate J = 3
2 bands at the � point into a pair

of spin-orbit entangled doubly degenerate mJ = ± 3
2 and ± 1

2
bands at the L-point with the latter pair of bands lying lower in
energy [see Figs. 2(d) and 3(d)]. From Figs. 2(b) and 3(b) we
find that the top of the valence band at the L point for CoZrBi
is at the Fermi level, while for SiLiIn it lies about 1.7 eV below
the VBM at the � point. So in the following we have discussed
the SOC-induced band structure and consequent spin texture
only for the 18-electron compound CoZrBi.

To obtain further insights, the DFT band dispersion of the
topmost valence bands is plotted in a narrow k-range around
the neighborhood of the high-symmetry L( π

a , π
a , π

a ) point
along the W ( 2π

a , 0, π
a ) and K ( 3π

2a , 3π
2a , 0) directions without

and including SOC as shown in Figs. 6(a) and 6(b), respec-
tively. Figure 6(a) reveals a pair of doubly degenerate bands
at the L point and the degeneracy is lifted upon inclusion of
SOC [see Fig. 6(b)]. It is interesting to note from Fig. 6(b) that
the maxima of the topmost valence bands (mJ = ± 3

2 ) do not
bifurcate away from the L point and remain at the L point,
while for the lower two bands (mJ = ± 1

2 ) the maxima are
bifurcated away from the L point displaying band crossing as
expected for the linear Rashba effect. This clearly establishes
the absence of the linear Rashba effect for the topmost valence
bands, and therefore the leading term of the SOC Hamiltonian
for the topmost bands is expected to be cubic [25,42]. Such
pure cubic Rashba splitting for mJ = ± 3

2 bands has also been
observed experimentally in strained Ge [43].

The plot of the DFT spin textures for the two bands around
the L′ point is illustrated in Figs. 6(c) and 6(d). Our cal-
culations reveal that the in-plane spin-component exhibits a
characteristic chiral configuration with the presence of a sub-
stantial out-of-plane spin component as illustrated in Fig. 6(e).
In fact, the out-of-plane component dominates over the in-
plane component of 〈�S〉.

To corroborate our DFT results, a k · p model Hamil-
tonian is constructed with cubic Rashba as the leading
term respecting the C3v symmetry at the L point [25]. The
symmetry-adapted low-energy k · p model Hamiltonian is

Hv
L(k) = H0(k) + γ

(
k′3

x − 3k′
xk′2

y

)
σ ′

z

+ δ
((

k′3
x + k′

xk′2
y

)
σ ′

y − (
k′3

y + k′
yk′2

x

)
σ ′

x

)
. (3)

The band structure without and with SOC obtained from the
model Hamiltonian for the topmost two bands is shown with
a dotted line in Figs. 6(a) and 6(b), respectively, and is in
good agreement with DFT results. The calculated parame-
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FIG. 6. (a), (b) Band structure without and with SOC
for the valence-band maxima for CoZrBi is plotted along
2π

a (0.563, 0.563, 0.374)- 2π

a (0.5, 0.5, 0.5)- 2π

a (0.623, 0.377, 0.5)
which lies along the path K ← L → W . The band structure
obtained form DFT is plotted with dots, and the band structure
obtained from the k · p model Hamiltonian is plotted with dashed
lines. (c), (d) ST of inner and outer branches around the L′ point for
CoZrBi for the conduction band obtain from DFT calculation. (e), (f)
Out-of-plane spin component of CoZrBi in the plane defined by
kx + ky + kz = 3π

a , obtained from DFT and the model Hamiltonian,
respectively.

ters of the model Hamiltonian are γ = 5.5 eVÅ
3

and δ =
0.9 eVÅ

3
emphasizing the importance of the out-of-plane spin

component. The out-of-plane component of the spin texture
obtained from the model Hamiltonian shown in Fig. 6(f) is
in reasonable agreement with the DFT spin texture shown
in Fig. 6(e). The discovery of pure cubic Rashba splitting in
nonpolar half-Heusler alloys is rather unique and expected to
find application in spintronics.

Similar results are obtained for the 8-electron compound
SiLiIn where the splitting of the bands as expected is small.

B. Zeeman spin splitting

Up to now we have discussed spin splitting and consequent
spin textures around the time reversal invariant k-points. Here
we shall consider spin textures around the non-time-reversal
invariant W point. The band structure of the top of the va-
lence band of CoZrBi around the W ( π

a , 2π
a , 0) point along

the path X (0, 2π
a , 0) and K ( 3π

2a , 3π
2a , 0) all lying in the kx-ky

plane without and including spin orbit coupling is displayed

in Figs. 7(a) and 7(b), respectively. We find that the spin
degeneracy of the bands is lifted upon inclusion of SOC. In
contrast to the Rashba and Dresselhaus effect, the spin split-
ting around the non-time-reversal invariant W point does not
have band crossing, rather the splitting is identical to that real-
ized in magnetic systems (i.e., in the absence of time-reversal
symmetry). Interestingly, such a splitting is now realized in
a nonmagnetic system in the absence of inversion symme-
try around a non-time-reversal invariant high-symmetry W
point and will be designated as Zeeman splitting. It may be
noted that while the band structure around the W point in
the kx-ky plane along the path X -W -K is identical to that
plotted along X (0, 2π

a , 0)-W (0, 2π
a , π

a )-K (0, 3π
2a , 3π

2a ) lying in
the ky-kz plane, the ST of the bands, however, are dominated
by different spin components depending on the chosen plane.
This is illustrated in Figs. 7(c)–7(e) for the kx-ky plane and
Figs. 7(f)–7(h) for the ky-kz plane where the primary contribu-
tion to the ST is from Sx and Sz components, respectively.

To explain the above observation, we have calculated the
effective SOC term allowed by symmetry around the W point.
The point group symmetry around the W point is S4, which
contains a twofold rotation (C2) around the principal axis.
Additionally, there are two fourfold rotations (C4) around
the principal axis, one in the clockwise direction (C+

4 ) and
the other in the anticlockwise direction (C−

4 ), followed by a
reflection. The SOC term and the resulting SOC Hamiltonian
[29] under the symmetry is

�Z (k) = λZ
[
kx

(
k2

y − k2
z

)
, ky

(
k2

z − k2
x

)
, kz

(
k2

x − k2
y

)]
HW = �Z(k) · σ, (4)

where λZ is the Zeeman parameter. At the W point the splitting
of the top two bands of CoZrBi is 186 meV as revealed from
our DFT calculations. As the W point lies at the boundary of
the BZ, from the above Hamiltonian we can easily understand
that the effective magnetic field is more at the boundary,
causing a large splitting. To understand the origin of SOC-
induced different spin textures in different planes, we need
to understand the symmetry associated with the chosen paths
in the reciprocal space. The symmetry operations around the
W point in the kx-ky plane along X (0, 2π

a , 0)-W ( π
a , 2π

a , 0) are
C2x. The spin components under the symmetry operation C2x

transform like, C2x : (σx, σy, σz ) → (σx,−σy,−σz ), ensuring
primarily the σx component survives in the Hamiltonian. Us-
ing the model Hamiltonian in the kx-ky plane with kz = 0, we
focus on the X (0, 2π

a , 0) → W ( π
a , 2π

a , 0) direction, where ky

is fixed and only kx changes. This leads to an effective Hamil-
tonian around the W point and along the path XW , given
by HW = λZkxk2

y σx, assuming (kx << ky = 2π
a ). This suggest

that the spin expectation value will be mostly contributed
by the Sx component having a positive value for the upper
valence band around the W point, and negative for the lower
valence band in agreement with DFT calculations shown in
Figs. 7(c)–7(e). Similarly for the ky-kz plane, the Hamiltonian
with (kz << ky = 2π

a ) will be given by HW = −λZkzk2
y σz,

as we move along the X (0, 2π
a , 0) → W (0, 2π

a , π
a ) direction

where the valence band primarily has σ z character. Here the
expectation value of 〈Sz〉 is negative for the top of the valence
band, while it is positive for the lower valence band, in agree-
ment with our DFT results.

245146-8



EFFECT OF SPIN-ORBIT COUPLING IN … PHYSICAL REVIEW B 108, 245146 (2023)

FIG. 7. Figure shows the band structure along with projected spin textures at non-time-reversal invariant k-point W of CoZrBi. Panels
(a) and (b) show the band structure of CoZrBi without and with SOC along the path X (0, 2π

a , 0)- W ( π

a , 2π

a , 0)- K ( 3π

2a , 3π

2a , 0). Panels [(c)-(e)]
show the band structure with projected spin textures in the presence of SOC for CoZrBi along the path X (0, 2π

a , 0)- W ( π

a , 2π

a , 0)- K ( 3π

2a , 3π

2a , 0)
in the kx − ky plane. Panels [(f)-(h)] show the band structure and spin textures in presence of SOC for CoZrBi along the path X (0, 2π

a , 0)-
W (0, 2π

a , π

a )- K (0, 3π

2a , 3π

2a ) in the ky − kz plane. The color code represents the orientation of the spin component.

The results of our calculation for the 8-electron half-
Heusler compound are shown in Fig. 8. A pair of valence
bands around the W point exhibit Zeeman splitting upon
application of SOC, where the splitting is more for the
lower pair of bands. It should be noted that splitting is
weak in comparison to the 18-electron compound. Fur-
ther, the nature of the spin textures is quite different
from the 18-electron compound. In contrast to the 18-
electron compound in the kx-ky plane, in addition to the
〈Sx〉 component there is appreciable 〈Sy〉 character [see
Figs. 8(c)–8(e)]. Similarly in the ky-kz plane in addition
to the 〈Sz〉 character, the 〈Sy〉 character is also present
[see Figs. 8(f)–8(h)].

C. Band splitting with vanishing spin polarization (BSVSP)

The two half-Heusler systems considered here also ex-
hibit another intriguing phenomenon, namely band splitting
with vanishing spin polarization, where SOC splits the energy
bands, however neither of the split bands exhibits net spin
polarization along certain high-symmetry directions of the BZ
due to the presence of additional symmetries. In Fig. 9(a)
the top of the valence band without SOC for CoZrBi along
the path A( π

a , π
2a , 0)-�(0, 0, 0)-L( π

a , π
a , π

a ) is displayed. In the
absence of SOC, the Td symmetry at the � point splits the d
bands into twofold-degenerate e and threefold-degenerate t2
states. In Fig. 9(b) the same band structure including SOC
is displayed. Inclusion of SOC further splits the t2 states
into twofold-degenerate J = 1

2 and fourfold-degenerate J = 3
2

states, with the J = 1
2 states lying lower in energy. Along the

symmetry line �-L the J = 3
2 states further split into three

bands, where the lowest of the three is doubly degenerate. In
Fig. 9(c) we have shown the band structure projecting the 〈Sx〉
component of the spin. The expectation value of 〈Sx〉 vanishes

for the top two spin split bands along �-L and the same is
true for the other spin components. The vanishing expectation
value of the spin 〈�S〉 for the two nondegenerate bands along
�-L over each Bloch wave function leads to BSVSP.

To understand the origin of the vanishing spin polarization,
we have constructed a k · p model Hamiltonian following
Refs. [7,44]. The k · p Hamiltonian for the J = 3

2 manifold
of the top of the valence band for the 18-electron compound
CoZrBi in the vicinity of the � point may be written as
H = H+ + H−, where H+ is invariant with respect to the
spatial inversion,

H+ = h2

m

[(
γ1 + 5

2
γ2

)
1

2
k2 − γ2

(
k2

x J2
x + k2

y J2
y + k2

z J2
z

)]
− 2γ3({kx, ky}{Jx, Jy} + {ky, kz}{Jy, Jz}
+ {kz, kx}{Jz, Jx}) (5)

and H− breaks the spatial inversion symmetry,

H− = − 2C√
3

[kx{Jx,Vx} + ky{Jy,Vy} + kz{Jz,Vz}]. (6)

Here, γ1, γ2, γ3, and c are constants. Jx, Jy, and Jz are 4×4
angular momentum matrices for a state of spin 3

2 , and kx, ky,
and kz are the kinetic momentum terms. The symbol {a, b}
means the symmetrized product 1

2 (ab + ba). The quantities
Vx, Vy, and Vz are given by Vx = J2

y − J2
z , Vy = J2

z − J2
x , Vz =

J2
x − J2

y . Here, we focus on the band degeneracy and spin
polarization instead of the exact band dispersion. The DFT
band structure in a narrow range around the � point along
the path A-�-L can be reasonably reproduced, with the fitted
parameter values γ1 = −9.0, γ2 = 2.0, γ3 = −1.9, h̄2

m = 1,
and C = −0.05 [see Fig. 9(c) inset]. The qualitative results
do not depend on the exact parameters. To investigate the
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FIG. 8. Band structure along with projected spin texture at non-time-reversal invariant k-point W of SiLiIn. Panels (a) and (b) show the
band structure of SiLiIn without and with SOC along the path X (0, 2π

a , 0)-W ( 2π

a , π

a , 0)-K ( 3π

2a , 3π

2a , 0). Panels [(c)–(e)] show the band structure
with projected spin textures in the presence of SOC for SiLiIn along the path X (0, 2π

a , 0)-W ( π

a , 2π

a , 0)-K ( 3π

2a , 3π

2a , 0) in the kx-ky plane. Panels
[(f)–(h)] show the band structure and spin textures in presence of SOC for SiLiIn along the path X (0, 2π

a , 0)-W (0, 2π

a , π

a )-K (0, 3π

2a , 3π

2a ) in the
ky-kz plane. The color code represents the orientation of the spin component.

microscopic origin of the vanishing spin polarization along
the symmetry line �-L, we have calculated the on-site energy
differences between the orbitals of two nondegenerate t2 states
with opposite spin orientations, which can be regarded as the
magnetic field acting locally on the chosen orbitals. From the
calculations we find that the magnetic field on a given orbital
vanishes. The local magnetic moments associated with these
orbitals cancel with each other, resulting in a vanishing net
spin polarization for the eigenstate and vanishing local spin
polarization for the magnetic Co atom. In agreement with the
DFT results, the projection of the 〈Sx〉 component on the band
structure obtained from the model Hamiltonian also vanishes
supporting the validity of the low-energy model Hamiltonian.

Similar results around the � point and along the path
�-L are displayed by the 8-electron compound SiLiIn. In
Fig. 9(d) the band structure without SOC is threefold-
degenerate around the � point. Inclusion of SOC splits the
threefold-degenerate t2 bands into a J = 3

2 quartet and a J = 1
2

doublet as shown in Fig. 9(e). The splitting induced by SOC is
0.10 eV. Along the path �-L, the top J = 3

2 bands further split
into a pair of nondegenerate bands and a doubly degenerate
band, and the former exhibit the BSVSP effect along �-L.
The splitting is, however, much smaller in comparison to the
18-electron compound [see the inset of Fig. 9(f)].

Using the same model Hamiltonian as described for the
18-electron half-Heusler, we can understand the origin of
the BSVSP for SiLiIn. We find the SOC-induced effective
magnetic field acting on two different p orbitals of the same
atom is equal and opposite in strength along the �L path,
resulting in a BSVSP [7]. The splitting of the bands de-
pends on the strength of SOC. As a consequence, the BSVSP
effect is much stronger (30 meV) for the 18-electron com-
pound while it is 3 meV for the 8-electron compound SiLiIn
and only 0.05 meV for GaAs, suggesting 18-electron com-

pounds will be ideal candidates for experimental detection of
BSVSP.

V. CONCLUSION

In the present paper, we have analyzed the electronic
structure of two representative half-Heusler systems with 18
electrons and 8 electrons, respectively, in the presence of
spin-orbit interaction. Our calculations reveal rich features
in the electronic structure due to spin-momentum locking
induced by SOC. Although both compounds have identical
crystal structure, the orbital composition of the valence and
conduction bands is different for the 18-electron and the
8-electron system. This brings in subtle changes in the SOC-
induced band structures, emphasizing the important role of
orbitals. In addition, the BZ of the half-Heusler system admits
diverse local symmetries (little group) leading to nontriv-
ial splitting of the band structure due to SOC, resulting in
novel spin textures around the valleys of the high-symmetry
k-points.

Around the X point we have observed the Dresselhaus
effect as expected for a noncentrosymmetric and nonpo-
lar material [45] (see Table IV). Using a symmetry-adapted
k · p model Hamiltonian around the high-symmetry X point,
we have calculated the band dispersion and the consequent
ST. The model Hamiltonian only required linear terms to
reproduce the DFT results, and the Dresselhaus parameter αD

for the 18-electron and the 8-electron system is calculated to
be 0.26 and 0.08 eVÅ respectively, in good agreement with
DFT results.

Similar to the Dresselhaus effect, we have observed the
Rashba effect in both half-Heusler systems around the polar
L( π

a , π
a , π

a ) point in the [111] plane. The Rashba effect fea-
tures both linear and higher-order terms for the conduction
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FIG. 9. Band splitting with vanishing spin polarization for 18- and 8-electron half-Heusler compounds. Panels (a) and (b) show the band
structure of CoZrBi without and with SOC along the path A( 2π

a 0.5, 2π

a 0.25, 0.0)-�(0, 0, 0)-L( 2π

a 0.5, 2π

a 0.5, 2π

a 0.5). Panels (d) and (e) show
the band structure of SiLiIn without and with SOC along the path A( 2π

a 0.5, 2π

a 0.25, 0.0)-�(0, 0, 0)-L( 2π

a 0.5, 2π

a 0.5, 2π

a 0.5). Panels (c) and (f)
show the band structure and the x component of spin polarization for 18-electron and 8-electron compounds obtained from DFT. The inset of
(c) represents the band structure and the x component of spin polarization obtained from k · p model Hamiltonian.

band, but the strength of the higher-order term is found to be
much weaker compared to the linear term. However, for the
topmost valence band at the L point we have identified cubic
Rashba to be the leading term of the SOC Hamiltonian with
novel spin texture. The identification of pure cubic Rashba
splitting in half-Heusler alloys is rather unique and is expected

TABLE IV. Our result and available Rashba and Dresselhaus
parameters in the literature.

αR(eVÅ) αD(eVÅ) Nonpolar
System k-point k-point or polar Reference

CoZrBi
0.38

L
(

π

a , π

a , π

a

) 0.26
X

(
0, 0, 2π

a

) Nonpolar This work

SiLiIn
0.15

L
(

π

a , π

a , π

a

) 0.08
X

(
0, 0, 2π

a

) Nonpolar This work

BiTeI
3.8

�(0, 0, 0)
0.00

�(0, 0, 0)
Polar [18]

GeTe
4.8

Z
(

π

a , π

a , π

a

) 0.00
Z
(

π

a , π

a , π

a

) Polar [21]

HfO2
0.028

T
(
0, π

b , π

c

) 0.578
T

(
0, π

b , π

c

) Polar [24]

LaWN3
0.31

�(0, 0, 0)
0.01

�(0, 0, 0)
Polar [25]

AlAs
0.00

X
(
0, 0, 2π

a

) 0.01
X

(
0, 0, 2π

a

) Nonpolar [45]

GaP
0.00

X
(
0, 0, 2π

a

) 0.07
X

(
0, 0, 2π

a

) Nonpolar [45]

to play an important role in spin transport. Further, both Dres-
selhaus and Rashba splitting are found to be much weaker
for the 8-electron sp-based compound in comparison to the
18-electron system.

At the non-TR invariant high-symmetry point W , we
observe Zeeman spin splitting. From the k · p model Hamil-
tonian, we have established that only the cubic terms are
invariant under symmetry operations, and the component of
spin orientation depends on the chosen plane.

Finally, we have observed the BSVSP along the high-
symmetry path �-L in both 18-electron and 8-electron
half-Heusler systems. Around the � point, the tetrahedral
environment causes the d orbitals of the 18 electron half-
Heusler to split into t2 and e states while leaving the p
states degenerate for the 8-electron half-Heusler compound.
The SOC further splits the t2 and p states into fourfold-
degenerate J = 3

2 and twofold-degenerate J = 1
2 states. Along

the path �-L the fourfold-degenerate J = 3
2 states further

split into two nondegenerate bands and a twofold-degenerate
band. The presence of a pair of nondegenerate bands in the
presence of SOC with the little group of the relevant k-
point belonging to the non-pseudo-polar point group leads to
BSVSP [7].

Our calculations reveal that the valence band and the
conduction band of half-Heusler alloys at the various
high-symmetry points feature extrema (valleys) characterized
by spin texture, which are dependent on the location of the
valleys in the k-space designated by a valley index. In the
presence of SOC, the spin splitting is tied to the valley index,
requiring the scattering of charge carriers between valleys
to have simultaneous spin flip and momentum transfer. This
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favors the long valley lifetime required for valleytronics ap-
plication. These valleys can be accessible by doping.

Our detailed first-principles calculations complemented
with the k · p model Hamiltonian method for the two
representative half-Heusler systems identify in a fam-
ily of ternary half-Heusler system with heavy elements
another novel functionality for potential application in
spin-valleytronics [46].
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