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Analytic solution of the n-dimensional Su-Schrieffer-Heeger model
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The Su-Schrieffer-Heeger (SSH) model is fundamental in topological insulators and relevant to understanding
higher-order topological phases. This study explores the relationship between the n-dimensional SSH model
and its (n − 1)-dimensional counterpart, identifying a hierarchical structure in the Hamiltonian that allows us
to solve an arbitrary n-dimensional SSH model analytically. By generalizing the bulk-edge correspondence
principle to arbitrary dimensions in a higher-order fashion using the vectored Zak phase, we reveal a type
of topological insulator called hierarchical topological insulators. In this hierarchical topological insulator,
there exist intermediate-order topological interfacial states that are protected by subsymmetry and energy
band topology in a partial Brillouin zone. Furthermore, we compare the n-dimensional SSH model with the
Benalcazar-Bernevig-Hughes (BBH) model, another essential model in higher-order topological phases similar
to the two-dimensional SSH model with an extra flux of π in each plaque. We find that the BBH model is another
example of hierarchical topological insulators.
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I. INTRODUCTION

Topology has introduced a new perspective for classify-
ing crystalline systems based on the geometric properties of
their energy bands in momentum space, as opposed to their
band gap sizes [1–3]. This new theory, called band topology
theory, has revolutionized our understanding of solid-state
physics. When topological invariants contrast, it is possible
to differentiate between crystalline systems with seemingly
identical band structures through topological interfacial states.
At the core of the band topology theory lies the bulk-edge
correspondence, which establishes a link between the bulk
topological invariant of crystalline systems and the emergence
of robust interfacial states between topologically distinct finite
samples [4–8]. These topological interfacial states are not af-
fected by perturbations of amplitudes smaller than band gaps
and large-amplitude perturbations that respect specific sym-
metries, such as time-reversal symmetry. This property makes
them promising for potential transformative applications, such
as topological quantum computation and scattering-free wave
transport.

The bulk-edge correspondence has recently been extended
to a higher-order fashion, where interfacial states of (n −
d ) dimensions appear in n-dimensional (nD) systems for
d > 1 [9–55]. This means that topological corner states
emerge owing to the bulk-corner correspondence. These
corner states usually accompany filling-anomaly-induced
fractional charges and have potential applications in fields
such as laser cavity and quantum computation [56–69].
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Specifically, the emergence of topological corner states has
opened up new possibilities for designing robust and efficient
devices for these applications. For example, corner states can
be used as topological waveguides in laser cavities to achieve
lasing with higher efficiency and greater stability. Similarly,
they can be utilized in topological quantum computation to
improve scalability and fault tolerance. The discovery of topo-
logical corner states has broadened the scope of topological
materials research and opened new avenues for technological
advancement. Over the past few years, there has been signifi-
cant growth in higher-order band topology, as demonstrated
by several models, including the 2D Su-Schrieffer-Heeger
(SSH) model [70], the Benalcazar-Bernevig-Hughes (BBH)
model [9,10], and the breathing kagome lattice model [15].
These models have allowed the experimental observation of
higher-order topological states in various artificial crystalline
systems [42,71–80]. Although these three models share simi-
lar alternative hopping textures featured in the 1D SSH model,
whether their higher-order topological nature is essentially the
same remains elusive. To answer this question, we analytically
solved the nD SSH model, which helps us to check the higher-
order topological properties in detail.

This study focuses on the SSH model and extends the 1D
model to arbitrary n dimensions by identifying a hierarchical
structure in the Hamiltonian of the nD SSH model. Leveraging
this hierarchical structure, we provide an analytical solution
for the nD SSH model and generalize the bulk-edge corre-
spondence to arbitrary dimensions in a higher-order fashion.
For example, we establish the n-0 correspondence using the
vectored Zak phase, where n denotes the bulk dimension and
0 denotes the dimension of the topological interfacial states.
Furthermore, we show that the topological interfacial states
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in the nD SSH model are protected by subsymmetry related
to the hierarchical structure rather than a specific bulk sym-
metry. This hierarchical structure can also be applied to the
BBH model, and we give a preliminary comparison of the
topological nature between the 2D SSH model and the BBH
model.

Compared to the existing literature that generalizes the
BBH model to arbitrary dimensions by using the Clifford
algebra and analytical solution of corner states [81,82], our
work reveals a hierarchical structure of the nD SSH model
and nD BBH model, which enables us to obtain analytical so-
lutions including eigenenergies and wave functions of the nD
SSH model for bulk, edge, and other higher-order topological
states. Furthermore, with the aid of the hierarchical struc-
ture, we generalize the bulk-edge correspondence to n-(n − l )
correspondence, which brings us various topological phases
characterized by intermediate-order topological states that re-
veal a new type of topological insulator called the hierarchical
topological insulator. We also compare the nD SSH model and
the nD BBH model, we find that they are both hierarchical
topological insulators.

The structure of the remaining parts is organized as fol-
lows. In Sec. II, we give the hierarchical structure nD SSH
Hamiltonian, its analytical solutions, and the corresponding
topological invariants. In Sec. III, we generalize the bulk-edge
correspondence in the 1D SSH model to the nD SSH model in
a fashion of higher order. In Sec. IV, we compare the 2D SSH
model with the BBH model. Finally, we give conclusions and
and our discussion in Sec. V.

II. HIERARCHICAL STRUCTURE OF nD SSH MODEL

The unit cell of the higher-dimensional SSH model can be
constructed by aggregating its lower-dimensional version, as
depicted in Fig. 1, where we label each sublattice in binary
order. For example, in the 1D SSH model, we label the two
sublattices as |0〉 and |1〉, and in the 2D SSH model, we label
the four sublattices as |00〉, |01〉, |10〉, and |11〉, and so on.
Taking the 2D SSH model as an example, the Hamiltonian
can be written in terms of the 1D SSH Hamiltonian as

H2D = I2 ⊗ H1D + H1D ⊗ I2, (1)

where I2 is a 2 × 2 unitary matrix, and ⊗ denotes the Kro-
necker product. This process can be performed recursively for
3D, 4D, and eventually for arbitrary nD SSH models. We have
the 2n × 2n matrix as

HnD = I2 ⊗ H(n−1)D + H1D ⊗ In−1
2

= I2
(
I2H(n−2)D + H1DIn−2

2

) + H1DIn−1
2

=
n−1∑
i=0

I i
2H1DIn−i−1

2 .

(2)

It is noted that robust corner states could appear if all
stacking 1D SSH models in Eq. (2) are nontrivial, which is
the parameter setting of γ ′

i > γi for all is. These corner states
are protected by chiral symmetry, as discussed in Sec. III C.
In a more transparent form, HnD holds a hierarchical structure

FIG. 1. Unit cells of the SSH models in 1D, 2D, 3D, and 4D. The
black and red atoms indicate the sublattices of the original dimension
and the extra dimension, respectively. The sublattices are labeled
following a binary order, such as the sublattices of the original
dimension starting from |0 . . . 〉 and those of the extra dimension
starting from |1 . . . 〉. The unit cell of the four-dimensional SSH
model has a hypercube structure, and a 3D projection is plotted here.

between n and n − 1 dimensional SSH models, which is

HnD =
(

H(n−1)D ρi

ρ∗
i H(n−1)D

)
, (3)

where ρi = γi + γ ′
i eiki is the hopping term between the addi-

tional dimension. Equations (2) and (3) can be diagonalized
recursively by making use of the eigensolution of the 1D SSH
model. Therefore, we can obtain the eigenenergy of the nD
SSH model as

E (nD) =
∑

i

si|ρi|, (4)

where si takes the value ±1, and i run overs all the dimen-
sions. From Eq. (3), we obtain the recursive relation of the
eigenfunction between the SSH models n and n − 1, which is

|ψ (nD), s1s2 . . . sn〉 = 1√
2

(|ψ (n−1)D, s1s2 . . . sn−1〉

+ sne−iφn |ψ (n−1)D, s1s2 . . . sn−1〉),
(5)

where si takes the value ±1 determining the order of energy
bands. Expanding Eq. (5) by the sublattice bases, we obtain

|ψ (nD)〉 = 1

(
√

2)n

n,Pn
m∑

m=0, j

S j
n,m[si]e

−iS j
n,m[

∑
φi]|S j

n,m[0 . . . 00︸ ︷︷ ︸
n

]〉,

(6)
where S1

n,m, S2
n,m, . . ., SPn

m
n,m are all the permutations of picking

(0 � m � n) numbers from n, and S j
n,m[ fi] is the correspond-

ing permutation in term of fi. For example, S1
3,2[si] is s1s2,

S1
3,2[

∑
φi] is φ1 + φ2, and |S1

3,2[000]〉 is |011〉.
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FIG. 2. (a) Bulk energy spectrum of the 1D SSH model for
|γ /γ ′| = 2.0. (b) Topological phase diagram of the 1D SSH model
depends on γ and γ ′ in terms of the Zak phase.

A. 1D SSH model

1. Bulk spectrum and wave function

The 1D SSH model Hamiltonian that describes an atomic
chain with two types of sublattices and hoppings can be
written as [83]

H1D =
∑

N

(γ a†
N bN + γ ′b†

N−1aN ) + H.c., (7)

where N represents the number of unit cells, and γ and γ ′
are intracell and intercell hopping amplitudes, respectively.
By Fourier transformation, Eq. (7) can be cast into a 2 × 2
matrix H1D(k) = Re[ρ(k)]σx − Im[ρ(k)]σy with σ the Pauli
matrices. The eigenvalues and eigenvectors of the 1D SSH
model are given as

E1D
± = ±|ρ|,

|ψ1D,±〉 = 1√
2

(
1

±e−iφ(k)

)
,

(8)

with ρ ≡ |ρ|eiφ = γ + γ ′eik and k the quasi-wave-number in
crystalline systems. We plot the bulk energy spectrum of the
1D SSH model in Fig. 2(a).

2. Winding number and Zak phase

In the 1D SSH model, there exists a chiral symmetry,
which is C = σz. Effectively, the chiral symmetry can also
be regarded as the sublattice symmetry. Under C, we have
C−1HC = −H. Constrained by this chiral symmetry, the
Hamiltonian of the 1D SSH model can always be cast in an
off-diagonal form. We can define a winding number by the
off-diagonal term of the 1D SSH Hamiltonian ρ. The wind-
ing number is written as ν = 1

2π i

∫ π

π
d ln[ρ(k)]/dk, which is

determined by the winding of φ(k) around the origin. In-
terestingly, the winding of φ(k) also coincides with the Zak
phase of the wave function |ψ〉, which is given as Zi =∫ 2π

0 dki〈ψ |i∂ki|ψ〉 = 
φi/2.
The winding number and Zak phase describe the topolog-

ical property of the 1D SSH model. Depending on the ratio
of |γ /γ ′|, the Zak phase can be π and 0. Figure 2(b) plots
the topological phase diagram in terms of γ and γ ′. For the
nontrivial Zak phase π , topological edge states appear.

FIG. 3. (a) Bulk energy spectrum of the 2D SSH model for γx =
γy = 1.0 and γ ′

x = γ ′
y = 3.0. (b) Ribbon spectrum of the 2D SSH

model obtained by Eqs. (9) and (10), where the gray lines are the
bulk states and the red dots are the edge states. (c) |ρx| dependence
of π + iκx , where |ρx| = 0 when κx ≈ 1.13. (d) Topological phase
diagram of the 2D SSH model in terms of γ ′

x/γx and γ ′
y/γy.

B. 2D SSH model

1. Bulk spectrum and wave function

Using Eqs. (5) to (8), we are ready to discuss the specific
case like n = 2. The bulk energy spectrum of the 2D SSH
model is given by

E (2D) = s1|ρx| + s2|ρy|, (9)

where s1 and s2 take values of ±1. The lowest energy band has
s1 = −1 and s2 = −1, and its corresponding wave function
is |ψ (2D),−−〉 = 1

2 (1,−e−iφx ,−e−iφy , e−i(φx+φy ) )T , which is
|1/2, 1/2, 1/2, 1/2〉, the s wave at the � (kx, ky = 0) point.
Similarly, the second and third energy bands have s1 +
s2 = 0, which are the waves py (|1/2,−1/2, 1/2,−1/2〉),
and px (|1/2, 1/2,−1/2,−1/2〉) at the � point. The
fourth energy band has s1 = 1 and s2 = 1, the d wave
(|1/2,−1/2, 1/2, 1/2〉) at the � point [84,85]. The bulk en-
ergy spectrum obtained from Eq. (9) is plotted in Fig. 3(a).

2. Spectrum and wave functions of edge states

In addition to the bulk energy spectrum, we can obtain the
ribbon energy spectrum, including the edge states as well. For
the ribbon structure, one direction is periodic and the other is
finite. The energy spectrum of the 2D SSH model ribbon can
be written as

E2D
x = s1|ρx(Kx )| + s2|ρy(ky)|, (10)

where ky is the quasicontinuous wave number, Kx is the
discrete wave number that takes values of −π/N,−π/N −
1, . . . , π/N with 2N + 1 the number of the unit cells along
the x direction, and the subscript x denotes that the ribbon is
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finite along the x direction (we set the lattice constant in all
directions as unit).

For the edge states, Kx = π + iκx with κx the decaying
length, which is determined by the ratio of γx/γ

′
x together

with the inversion symmetry as cosh κ = (γ 2
x + γ ′2

x )/2γxγ
′
x .

It is noted that the parity of the edge states is determined
by s1. We plot Eq. (10) for γ /γ ′ = 1/3 in Fig. 3(b), where
the gray lines are the bulk energy bands and the red ones
are the energy bands of the edge states. κx is determined by
|ρx(π + iκx )| = 0. Figure 3(c) shows the dependence of |ρx|
on κx. When |ρx| = 0, the edge states are doubly degenerate,
as required by the inversion symmetry.

The wave function of a finite sample of the 2D SSH model
can be constructed using the linear combination of the bulk
eigenstates with opposite wave number as formula as

|v, s1s2, k〉 = Ck|u, s1s2, k〉 + C−k|u, s1s2,−k〉, (11)

where C±k has four components for each sublattice and the
bulk eigenfunction |u, s1s2, k〉 is

|u, s1s2, k〉 =
Nx,Ny∑

1,1

ei(kxmx+kymy )

⎛
⎜⎜⎝

1
s1e−iφx

s2e−iφy

s1s2e−i(φx+φy )

⎞
⎟⎟⎠

× (|(mx, my), 00〉, |(mx, my), 01〉,
× |(mx, my), 10〉, |(mx, my), 11〉), (12)

where (mx, my) denotes the index of the unit cell. For the edge
states that decay along the x direction, the wave function is
given as

|uedge, s1s2, ky〉 ∼
Nx,Ny∑
mx,my

(−1)mx e−κmx

⎛
⎜⎜⎝

1
s1

s2e−iφy

s1s2e−iφy

⎞
⎟⎟⎠, (13)

where a Bloch phase eikymy is omitted.

3. Corner states

The 2D SSH model can have topological corner states. For
the corner states, they decay along both the x and y directions,
whose wave number has the form k = (π + iκx, π + iκy),
where κi is the decaying length of the corner state along the
i direction. The extra phase π is due to the open boundary
condition, as discussed later. The energy of the corner states
is given as

E2D
x,y = s1

√
γ 2

x + γ ′2
x − 2γxγ ′

x cosh κx

+ s2

√
γ 2

y + γ ′2
y − 2γyγ ′

y cosh κy. (14)

When the 2D SSH model has the C4 point group symmetry,
the four corner states differed by the values of s1 and s2 should
be degenerate. In this case, ρx(π + iκx ) = ρy(π + iκy) = 0,
and the corner states are fixed at zero energy. It is noted
that for the 2D SSH model, we can define a chiral symmetry
operator C = σz ⊗ σz that C†H2DC = −H2D, which can also
be considered as the sublattice symmetry.

The wave function of the corner state is given as

|ucorner, s1s2〉 ∼ (1, s1, s2, s1s2)T , (15)

where we see that the four corner states should appear as two
pairs of opposite energies. Constrained by the chiral symmetry
C, these four corner states are degenerate at zero energy.

4. Wilson loop and vectored Zak phase

The Wilson loop, in general, can characterize the topo-
logical properties of quantum systems in terms of parallel
transport. The 2D SSH model is not an exception either. In
terms of quasimomentum k, the Wilson loop can be written as


[C] = P exp

[
−i

∮
C

dk · A(k)

]
, (16)

where P is the path-ordering operator and Aα,β =
〈α, k|i∇k|β, k〉 is the Berry connection matrix. Taking
the kx direction as an example and substituting the bulk wave
function into Eq. (16), we have

ln(
x ) =
∫ �=(2π/a,0)

�

Axdkx

=

⎛
⎜⎜⎝


φx/2 0 −
φx/2 0
0 
φx/2 0 −
φx/2

−
φx/2 0 
φx/2 0
0 −
φx/2 0 
φx/2

⎞
⎟⎟⎠,

(17)

where 
φx = φx(2π/a) − φ(0). There are two eigenvalues of
the Wilson loop matrix, which are 
φx and 0. The different
eigenvalues of the Wilson loop matrix can be considered as
gauge choices. For the trivial eigenvalue 0, the corresponding
eigenvectors are linear combinations of the s and p bands,
which cannot distinguish the topology between the |γ /γ ′| > 1
and |γ /γ ′| < 1 regions, since the total winding of the two
bands is always trivial. For the eigenvalue of 
φx, the eigen-
vectors are each single band, respectively, and thus can be
used to distinguish the topology between the two regions.

By choosing the single-band representation, the Wilson
loop can be reduced to the Zak (Berry) phase. As there are
two primary directions of the reciprocal space, the Zak phase
in the 1D SSH model should be vectorized to distinguish
the topology in all cases. The vectored Zak phase can be
written as Z = (Zx,Zy). The emergence of topological edge
and corner states in the 2D SSH model can be characterized by
the vectored Zak phase, as (Zx,Zy). Figure 3(d) depicted the
topological phase diagram of the 2D SSH model in terms of
the vectored Zak phase depending on |γ ′

i /γ |. For the vectored
Zak phase (π, π ), there exist imaginary solutions of the wave
number for both x and y directions, as discussed in Sec. III.

C. 3D SSH model

1. Bulk spectrum and wave function

For the 3D SSH model, its energy spectrum can be
written as

E3D = E2D + s3|ρz|, (18)

where s3 = ±1. The energy spectrum of the 3D SSH model
is plotted in Fig. 4(a), where we have eight energy bands. The
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FIG. 4. (a) Bulk energy spectrum of the 3D SSH model along
the high-symmetric lines of the 1st Brillouin zone, which is ob-
tained from Eq. (16) for γi = −1.0 and γ ′

i = −5.0 with i = x, y, z.
(b) Topological phase diagram of the 3D SSH model in terms of
the ratio |γi/γ

′
i | and the vectored Zak phase Zi. (c) Eigenener-

gies for a finite sample of the 3D SSH model with (γx, γy, γz ) =
(−1.0, −1.0, −5.0) and (γ ′

x, γ
′
y , γ

′
z ) = (−5.0,−5.0, −1.0). (d) In-

verse participation ratio of the charge densities in (b), where the
corner states are missing. (e) Charge density distribution of the
intermediate-order topological hinge state as indicated by the arrow
in (c).

bulk wave function of the 3D SSH model is given as

|ψ3D, s1s2s3〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
s1e−iφx

s2e−iφy

s1s2e−i(φx+φy )

s3e−iφx

s1s3e−i(φx+φz )

s2s3e−i(φy+φz )

s1s2s3e−i(φx+φy+φz )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

At the � point, we have φi = π , and the different values of si

correspond to the eight distinct eigenstates of the cubic point
group.

2. Intermediate-order topological phases

Unlike the 2D SSH model, there is an intermediate-order
topological phase in the 3D SSH model, which is neither
lowest order nor highest order. In the 2D SSH model, its topo-
logical phases can be characterized by the vectored Zak phase,

where (π, π ) indicates a topological phase of the highest
order accompanied by the corner states, (π, 0) is a topological
phase of the lowest order accompanied by edge states along
the y direction, and (0,0) is a trivial topological phase. For
the 3D SSH model, except for the highest-order topological
phase of the vectored Zak phase (π, π, π ) and the lowest-
order topological phase of the vectored Zak phases (π, 0, 0),
(0, π, 0), and (0, 0, π ), there are topological phases that are
neither lowest order nor highest order like (π, π, 0). We may
call these topological phases intermediate-order topological
phases, which are characterized by hinge states without cor-
ner states in 3D cases. As shown in Fig. 4(b), eight distinct
topological phases are determined by |γi/γ

′
i | for i = x, y, z,

and characterized by the vectored Zak phase (Zx,Zy,Zz )
represented by different colors.

Taking the intermediate-order topological phase that has
a vectored Zak phase (π, π, 0) as an example, we expect
that the second-order topological states, like the hinge states,
appear, but the corner states are absent. This can be verified
by the numerical calculation of a finite sample of the 3D
SSH model of γx/γ

′
x = 1/3, γy/γ

′
y = 1/3, and γz/γ

′
z = 3. As

shown in the eigenenergy spectrum of the finite 3D SSH
model in Fig. 4(c), no zero-energy corner state appears for
this parameter setting. Furthermore, by checking the inverse
participation ratio of eigenstates as shown in Fig. 4(d), there
are localized eigenstates. Graphing one of these localized
eigenstates in Fig. 4(e), we find they are the expected hinge
states. It is noted that these hinge states do not appear at zero
energy due to the finite energy |ρz|.

Here, we discuss the topological protection of these
intermediate-order states. Unlike the highest-order topo-
logical states like corner states, these lowest-order and
intermediate-order states only reflect the band topology in the
partial Brillouin zone. For example, the hinge states in the 3D
SSH model are determined by the band inversions at the X
and Y points of the Brillouin only. In other words, no global
gaps are required for the lowest-order and intermediate-order
topological states. This fact adds extra robustness to these
topological states, which we dub hierarchical topological
phases, as discussed in detail later. These intermediate-order
topological states are determined only by the band topology in
the partial Brillouin zone; we call them fractional topological
states.

For the cases of n > 3 that go beyond the physical
dimensions, a possible realization is to use the synthetic
dimensions—for example, using photonic modes of different
frequencies in a photonic crystal [86].

III. n-(n − l ) CORRESPONDENCE

A. nD vectored Zak phase

After discussing the 2D and 3D SSH models, we can ex-
tend the vectored Zak phase to arbitrary dimensions and apply
it to the nD SSH model. Thus, each dimension can define its
own winding number νi separately. The topological invariant
of the nD SSH model can be a vector Z consisting of a series
of winding numbers such as (νx, νy, νz, . . .). Recalling that the
Zak phase is nothing more than the Wannier center, it is clear
that the topological invariant of the nD SSH is its Wannier
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FIG. 5. (a) A finite sample of 2D SSH model with open boundary
condition. There are four types of sublattices, labeled |00〉, |01〉, |10〉,
and |11〉. The total number of unit cells is Mx × My. (b) Graphing
solving of the quantization condition Eq. (19) for Mi = 10. Depend-
ing on |γ ′/γ | > 1 + 1/(M + 1) or not, there are M − 1 and M real
solutions of the quasi-wave-number ki.

center. Compared to the strong topological phase, such as
the Haldane model, the topology of the nD SSH model is an
atomic-obstructed phase. There is no obstruction in defining
its Wannier center, and its topological edge states are due
to the filling anomaly induced by the mismatch between the
atomic and Wannier centers [87]. The fractional topological
phase has similar topological indices as weak topological
insulators, and thus can be considered as a type of weak
topology.

B. Generalization of the bulk-edge correspondence

Here, using the open boundary condition, we build the
n-(n − l ) correspondence in the nD SSH model in terms of
Z. Z is a bulk topological invariant, which describes the topo-
logical in each direction by Zi. Taking the 2D SSH model as
an example, we can connect the nontrivial Zi and a purely
imaginary solution of quasi-wave-number κi along the i direc-
tion. Figure 5(a) illustrates a finite 2D SSH model with open
boundary conditions, where a central index labels each unit
cell and has four types of sublattices: |00〉, |01〉, |10〉, and
|11〉. By imposing the open boundary condition along the x
direction [88], we obtain the following:

〈(0, my), 11|ν, ky = 0〉 = 0,

〈(0, my), 01|ν, ky = 0〉 = 0,

〈(Mx + 1, my), 10|ν, ky = 0〉 = 0,

〈(Mx + 1, my), 00|ν, ky = 0〉 = 0,

(20)

where |ν〉 = Ck|uk〉 + C−k|u−k〉, the same as in Eq. (11).
Taking Eqs. (11) and (12) into Eq. (18) and supposing the
coefficients are the same for the sublattices in the same row,
we obtain a quantization condition of kx, which is

kx(Mx + 1) − φx(kx ) = τxπ. (21)

Equation (21) is critical because it has Mx or Mx − 1 real
roots, depending on the winding of φx(kx ). As shown in
Fig. 5(b), the lines set f (k) = (Mx + 1)k − τxπ with τx =
1, 2, . . . , Mx coincide with φx(kx ) by (Mx − 1) times if
|γ ′

x/γx| > 1 + 1/(Mx + 1) with the extra term 1/(Mx + 1)
accounting for the finite-size effect. According to the fun-

damental theorem of algebra, the missing solution around π

must be located in a complex regime, which is kx = π + iκx.
Thus, the nontrivial winding of φx directly leads to an imagi-
nary solution of kx, corresponding to a topological interfacial
state.

The above discussion can also be generalized to any direc-
tion: a complex solution ki = π + iκi appears if |γ ′

i /γi| > 1
for a large system size. We can define an lth higher-order
topological invariant Q given by the product of Zi as

Q(l ) =
l∏
i

Zi, (22)

which builds the n-(n − l ) correspondence. Specifically, when
all directions’ Zis are nontrivial, it results in n-0 correspon-
dence, i.e., the appearance of 0D corner states. It is noted that
this definition of the higher-order topological invariant by the
product of Zak phases along distinct directions is applied to
the nD SSH model only, and the generalization of Q(l ) to other
systems is not trivial [6,89].

C. Subsymmetry and hierarchy

Let us first define the chiral operator C for the nD SSH
model, which is written as

C =
n∏

i=1

σz, (23)

with the product the direct product. The topological states
in the nD SSH model can always be paired with opposite
eigenenergies according to Eq. (4). Constrained by C, all
those topological 0D states are degenerate and thus are bound
to zero energy. It is noted that the chiral symmetry can be
further released to the subsymmetry, where not all 0D states
are bound to zero energy, but a partial of them as C can be
decomposed into a series of sublattice symmetries [90,91].

In addition to the highest-order 0D topological states, the
first- and intermediate-order topological states do not require
complete chiral symmetry C to maintain their robustness. This
is due to the unique hierarchical structure of the nD SSH
model as indicated by Eq. (3). We can define a subchiral
symmetry operator as

C ′ =
l∏
i

σz, (24)

where l corresponds to the lth-order topological states, and σz

is picked up within the 2n sublattice space.
Taking the edge states along the x direction of the 2D

SSH model as an example, they are impervious to hopping
perturbations in the x direction even if they break the complete
chiral symmetry C. As displayed in Fig. 6, the edge states
are resilient to hopping perturbations along the x direction,
even for the next-nearest-neighbor hopping connecting the
same sublattices, which breaks the chiral symmetry. This fact
implies the importance of the hierarchical structure in the nD
SSH model protecting the topological states. It is noted that
even for the 1D SSH model, it can be considered as the piling
up of two 0D SSH models (that is, two single sites connect-
ing by ρ), and the chiral symmetry can be decomposed into
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FIG. 6. Comparison of edge states along the x direction under
perturbations along different directions. The amplitudes of pertur-
bations are |γ ′| − |γ |. The upper two panels are the perturbations
along the x direction, and the left one is the random perturbation
on the nearest-neighbor hopping that keeps the chiral symmetry,
while the right one is the perturbation that breaks the chiral symmetry
like the next-nearest-neighbor hopping between the same type sub-
lattices. The lower two panels are perturbations similar to the upper
ones but along the y direction.

two sublattice symmetries. Thus, we can dub the SSH-like
topological insulators as hierarchical topological insulators,
where a hierarchical relation exists between its nD and (n −
1)D versions, and their topological interfacial states are pro-
tected by a subsymmetry related to the hierarchical structure.
In particular, hierarchical topological insulators are character-
ized by intermediate-order topological interfacial states, like
the hinge states in the 3D SSH model, which only reflect the
band topology in the partial Brillouin zone.

IV. COMPARISON WITH THE BBH MODEL

A. Spectrum and wave function of bulk

Compared to the 2D SSH model, the 2D BBH model has a
flux of π in each unit cell. By choosing one of the y-direction

hoppings as the carrier of the π flux phase, we can write the
BBH model as

HBBH
2D =

⎛
⎜⎜⎝

0 ρx −ρy 0
ρ∗

x 0 0 ρy

−ρ∗
y 0 0 ρx

0 ρy ρ∗
x 0

⎞
⎟⎟⎠, (25)

where the bases are the sublattice bases of the 2D SSH model
such as |00〉, |01〉, |10〉, and |11〉. Written in a similar form to
Eq. (5), we have

HBBH
2D =

(
HBBH

1D ρyσz

ρ∗
y σz HBBH

1D

)
, (26)

where HBBH
1D is the Hamiltonian of the 1D BBH model that

is same as the 1D SSH model. By rearranging the sublattice
bases that ensure the diagonal block is zero, Eq. (25) can be
rewritten as

HBBH
2D =

⎛
⎜⎜⎝

0 0 −ρy ρx

0 0 ρ∗
x ρ∗

y
−ρ∗

y ρx 0 0
ρ∗

x ρy 0 0

⎞
⎟⎟⎠. (27)

Using the determinant of the block matrix det (A B
C D) =

det(AB − CD) if C and D commute, we have the eigenvalue
(E2 − |ρx|2 − |ρy|2)2 = 0. The doubly degenerate energy
spectrum of the 2D BBH model is

E± = ±
√

|ρx|2 + |ρy|2, (28)

and the corresponding eigenfunctions are

∣∣ψBBH
2D ,±〉 =

⎛
⎜⎜⎜⎝

− ρy

E±
1
0
ρ∗

x
E±

⎞
⎟⎟⎟⎠,

∣∣ψ ′BBH
2D ,±〉 =

⎛
⎜⎜⎜⎝

ρx

E±
0
1
ρ∗

y

E±

⎞
⎟⎟⎟⎠, (29)

where the bases are (|00〉, |01〉, |10〉, |11〉), and the normal-
ization factor 1/

√
2 is omitted. Unlike the 2D SSH model, the

eigenstates in the 2D BBH model are doubly degenerate.
Similarly, we can obtain the Hamiltonian of the 3D BBH

model, which is written as

HBBH
3D =

(
HBBH

2D ρzσz

ρ∗
z σz HBBH

2D

)
, (30)

where the sublattice bases are |000〉, |011〉, |010〉, |001〉, and
|100〉, |111〉, |110〉, |101〉. After rearranging the sublattices,
the 3D BBH Hamiltonian can be cast into an off-diagonal
form as

HBBH
3D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −ρy ρx −ρz 0
0 0 0 0 ρ∗

x ρ∗
y 0 −ρz

0 0 0 0 0 ρ∗
z ρ∗

x ρy

0 0 0 0 ρ∗
z 0 −ρ∗

y ρx

−ρ∗
y ρx 0 ρz 0 0 0 0

ρ∗
x ρy ρz 0 0 0 0 0

−ρ∗
z 0 ρx −ρy 0 0 0 0

0 −ρ∗
z ρ∗

y ρ∗
x 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(31)
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FIG. 7. (a) Eigenenergy spectrum of the 2D BBH model for γx =
γ ′

y = 1.0 and γy = γ ′
x = 3.0. (b) IPR of the 2D BBH model in (a).

The inset shows the charge density distribution of the topological
edge state. Corner states are missing. (c) Eigenenergy spectrum of the
3D BBH model for (γx, γy, γz ) = (1.0, 1.0, 5.0) and (γ ′

x , γ
′
y , γ

′
z ) =

(5.0, 5.0, 1.0). (d) Inverse participation ratio of the 3D BBH model
in (c). Inset is the charge density distribution of the eigenstate with
the largest IPR.

with eigenvalues (E2 − |ρx|2 − |ρy|2 − |ρz|2)4 = 0. The
eigenstates can then be solved accordingly, and only half of
the sublattices are independent.

B. Edge and hinge states without corner states

Imposing the same open boundary condition as the 2D SSH
model to the 2D BBH model, we obtain a similar quantization
condition of kx, which is

kx(Mx + 1) − φx(kx ) = τxπ. (32)

This fact suggests that in the 2D BBH model, the topological
edge state can exist alone, similarly to the 2D SSH model.
Figures 7(a) and 7(c) show the energy spectrum and the charge
density distribution of the topological edge states for a finite
sample of the 2D BBH model with |γx| < |γ ′

x | and γy| > |γ ′
y |.

As expected, there is no zero-energy corner state for this
parameter setting.

Furthermore, the BBH model can host intermediate-order
states as well. As displayed in Figs. 7(c) and 7(d), for param-
eter setting (γx, γy, γz ) = (1.0, 1.0, 5.0) and (γ ′

x, γ
′
y, γ

′
z ) =

(5.0, 5.0, 1.0), there are topological hinge states, but no corner
states. The emergence of intermediate-order topological states
in the BBH model suggests that the BBH model is another
example of the hierarchical topological insulator, similar to
the nD SSH model.

C. Topological invariant

The Wilson loop can also characterize the topological
property of the BBH model. Taking the 2D case as an example
and setting γi = 0 for simplicity, the Wilson loop matrix of the
BBH model along the ky direction is given as

ln(
y) =

⎛
⎜⎜⎜⎜⎜⎝

cos2 θ
φy

2 − cos2 θ
φy

2 0 0

− cos2 θ
φy

2
cos2 θ
φy

2 0 0

0 0 − cos2 θ
φ

2
cos2 θ
φ

2

0 0 cos2 θ
φy

2 − cos2 θ
φy

2

⎞
⎟⎟⎟⎟⎟⎠,

(33)

where cos θ = |ρy|/E+ and sin θ = |ρx|/E+. Solving the
above Wilson loop matrix, we obtain the eigenvalues 0 and
± cos2 θ
φy. For the nontrivial ± cos2 θ
φy, it is also deter-
mined by the winding of φi, similarly to the nD SSH model.
For finite γi, it shares the same topology as the γi = 0 case
due to continuous change through adiabatic evolution. The
modulation function of 
φy for finite γi can be written ap-
proximately as (cos2 θ − θ2 cos 2θ/2).

D. nD BBH model

The 2D and 3D BBH models can be generalized to the nD
case following a hierarchical structure similar to that of the nD
SSH model. By choosing a proper ordering of the sublattice
bases that ensures every dimension carries a π flux, the nD
Hamiltonian of the BBH model can be written as

HBBH
nD =

(
HBBH

(n−1)D ρiσz

ρ∗
i σz HBBH

(n−1)D

)
, (34)

where σz is the Pauli matrix, and HBBH
(n−1)D is the Hamiltonian

of the (n − 1)D BBH model. The eigenvalues of the nD BBH
model are E = ±√∑

i |ρi|2 [81,82]. The bulk-wave function
can then be solved similarly to the 2D and 3D BBH models.

V. SUMMARY

In summary, we have observed a hierarchical structure
in the nD SSH model and obtained analytical solutions for
the nD SSH model. These solutions include a quantization
condition for the quasi-wave-number, leading to interfacial
states for nontrivial winding numbers. We have generalized
the bulk-edge correspondence from the 1D SSH model to an
n-(n − l ) correspondence for arbitrary dimensions, revealing
a new type of topological insulator known as a hierarchical
topological insulator. This hierarchical topological insulator
can host intermediate-order topological states that reflect band
topology only in a partial Brillouin zone. Furthermore, we
compared the BBH and nD SSH models and discovered that
they share a similar hierarchical structure, and the BBH model
is another example of a hierarchical topological insulator.
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