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The interplay between different quantum phases plays an important role in strongly correlated systems such
as high-Tc cuprates, quantum spin systems, and ultracold atoms. In particular, the application of effective-field
theory and renormalization group analysis suggests that the coexistence of density wave (DW) and superfluid
(SF) orders can lead to a supersolid phase of ultracold bosons. Here we revisit the problem by considering
weakly coupled wires, where we treat the intrawire interactions exactly via bosonization and interwire couplings
using a mean-field theory which becomes asymptotically exact in the limit of high dimensionality. We obtain
and solve the mean-field equations for the system near the self-dual point, where each wire has the Luttinger
parameter K = 1 and the interwire DW and SF coupling strengths are identical. This allows us to find explicit
solutions for the possible supersolid order. An energy comparison between different possible solutions shows
that the supersolid order is energetically unfavorable at zero temperature. This suggests that the density wave
and superfluid phases are connected by a first-order transition near the self-dual point. We also discuss the
relation between our work and the intertwining of charge density wave and superconducting orders in cuprates.
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I. INTRODUCTION

Since the late 1960s, the supersolid phase has become
one of the long-sought phases in quantum materials [1]. It
was originally believed that helium-4 would be a promising
platform to observe supersolidity [2,3]. Some experimental
evidence had indeed been reported [4,5]. However, the inter-
pretation there was seriously questioned [6–18]. The idea of
supersolidity has attracted extensive studies because its real-
ization requires breaking of translational and U(1) symmetries
simultaneously. On one hand, this indicates the coexistence of
crystalline and superfluid orders [19,20]. On the other hand,
this coexistence seems to contradict the common intuition that
different orders usually compete and suppress each other.

Thanks to the discovery of high-Tc superconducting
cuprates and related studies on quantum spin systems, re-
searchers have gained a better understanding of the above
“dilemma.” It is common for those strongly correlated ma-
terials to have complex phase diagrams, so that there is an
interplay between different broken-symmetry phases [21].
Instead of always competing against and suppressing each
other, previous work pointed out that different orders can
actually coexist. This led to the concept of intertwined
orders [22]. Meanwhile, the breakthrough in cold atom ex-
perimentation has provided a more controllable platform
for studying strongly correlated systems. Different quantum
phases that were originally introduced for electronic and mag-
netic systems have been realized with cold atoms [23]. Taking
advantage of this development, various cold atom systems
for realizing supersolid have been proposed [24–28]. While
most of the existing theories have focused on supersolids that
break discrete translational symmetry, convincing evidence

for supersolidity that actually breaks continuous translational
symmetry was reported recently in ultracold bosons [29–34].
It is thus worthwhile to explore theoretically under what
conditions a supersolid that breaks continuous translation
symmetry can be realized.

Motivated by the above discussion, we revisit a particu-
lar proposal of realizing supersolid for bosons trapped in an
array of one-dimensional tubes [35]. The system may ex-
hibit a density wave (DW) or a pure superfluid (SF) order,
whereas their coexistence corresponds to a supersolid order.
This scenario resembles the interplay between charge density
wave (CDW) and superconducting (SC) orders in a high-Tc

superconducting cuprate, which was modeled as an array of
coupled one-dimensional stripes or chains [36,37]. Originally,
an interchain mean-field treatment at K = 1 led to the conclu-
sion that the CDW and SC phases are connected by first-order
transition. There is no coexistence of the two orders except
at this self-dual point [36] (the meaning of this self-duality
will be elucidated later). In the (2 + 1)-dimensional regime,
an effective nonlinear sigma model with an enlarged O(4)
symmetry was formulated at the point K = 1 [37]. Based on
renormalization group (RG) analysis, it was argued that the
coexistence of CDW and SC orders is possible. Meanwhile,
no detailed analysis was performed when the system is away
from the self-dual point, apart from claiming that the cor-
responding symmetry-breaking term in the nonlinear sigma
model is marginally irrelevant [35,37].

Here, we revisit this problem using a different yet more
quantitative approach. After a mean field treatment of in-
terwire couplings, the system reduces to a collection of
decoupled wires. Each of them is described by a double
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sine-Gordon model. This model cannot be solved analyti-
cally in general. Meanwhile, it is possible to combine the
two cosine terms into a single cosine term at K = 1 [38,39].
The resulting standard sine-Gordon model is integrable. In
particular, its soliton mass and ground-state energy density
have been determined analytically [40]. It is, however, chal-
lenging to go beyond the specific case of K = 1 with this
approach. We have found a way to achieve that by treating
K − 1 as a small expansion parameter. This enables us to
perform a perturbative calculation near K = 1 and obtain a
set of asymptotically exact mean-field equations for the two
competing order parameters there. We are able to find the
conditions under which a nontrivial solution with both orders
coexisting near this self-dual point. Such a solution, if stable,
would correspond to the coexistence of the DW and SF orders
or a supersolid phase. However, energy comparison between
the coexistence solution and the solutions of having a single
nonzero order parameter shows that the former is energetically
unfavorable. This suggests that the DW and SF phases are
connected by a first-order transition when the system is very
close to the self-dual point, and there is no supersolid phase.

The rest of the paper is organized as follows: We begin
by reviewing the coupled-wire system and its Hamiltonian in
Sec. II. The interaction between neighboring wires is treated
by the mean-field approximation. When each wire has K ≈ 1,
we demonstrate explicitly how the mean-field Hamiltonian
can be transformed into the integrable sine-Gordon model.
This allows us to derive a set of asymptotically exact mean-
field equations for the possible supersolid near the self-dual
point in Sec. III. Then, we obtain the corresponding solution,
and also the solutions for pure DW and SF orders in the same
section. Importantly, we identify the (narrow yet finite) region
in which the supersolid solution exists. To determine the phase
diagram of the system, we evaluate and compare the energies
for different possible orders in Sec. IV. When the system
is near the self-dual point, our numerical results show that
the DW and SF orders always have lower energy than the
supersolid order. The corresponding phase diagrams of the
system at different effective interwire coupling strengths are
also reported. Finally, we summarize our work and discuss
its possible implications in Sec. V. Some technical details of
calculation are given in the three Appendixes.

II. APPROXIMATION NEAR K = 1

The system that we consider is an array of one-dimensional
wires (the words “wires” and “chains” will be used inter-
changeably), with the following Hamiltonian density [36,37],

H = v

2

∑
i

[
K (∂xθi )

2 + 1

K
(∂xφi )

2

]

−
∑
〈i, j〉

JS cos [
√

2π (θi − θ j )]

−
∑
〈i, j〉

JC cos [
√

2π (φi − φ j )]. (1)

The first line of H describes an array of identical one-
dimensional wires. Each of them is described by the Luttinger
liquid model with the Luttinger parameter K . Its value is

determined by the microscopic properties of the wire. The set
of dual fields θi and φ j satisfy the commutation relation

[φi(x), ∂x′θ j (x
′)] = iδi jδ(x − x′). (2)

Physically, θi and φi stand for the phase fields of the superfluid
and density wave along each wire. Nearest-neighboring wires
i and j are coupled by the Josephson and DW terms, with
the respective coupling strengths JS and JC . When JS >

0, it favors a pinning for the term, cos [
√

2π (θi − θ j )] = 1.
Similarly, a pinning of cos [

√
2π (φi − φ j )] = 1 is favored if

JC > 0. These two terms cannot be pinned simultaneously
because φi and θi do not commute. This corresponds to a
competition between the SF and DW orders. Notice that both
JS and JC are bare coupling strengths. An ultraviolet energy
cutoff scale � will be introduced later when the vertex opera-
tors are normal ordered [41]. Notice that H is invariant under
the transformation θi ↔ φi when K = 1 and JS = JC . This
special point is known as the self-dual point in the literature
[36,37,39].

To understand the competition between the DW and SF
orders, it is useful to discuss the scaling dimensions of the
density wave and Josephson coupling terms in H. From the
two-point correlation functions:

〈θ (x1)θ (x2)〉 ∼ − 1

4πK
ln |x2 − x1|2, (3)

〈φ(x1)φ(x2)〉 ∼ − K

4π
ln |x2 − x1|2, (4)

it is straightforward to deduce that

〈ei
√

2πθ (x1 )e−i
√

2πθ (x2 )〉 ∼ 1

|x1 − x2|1/K
, (5)

〈ei
√

2πφ(x1 )e−i
√

2πφ(x2 )〉 ∼ 1

|x1 − x2|K . (6)

Therefore, the two cosine terms (note that each term is a sum
of products between two vertex operators as θi and θ j are de-
coupled under the mean-field approximation) in the interchain
coupling terms have scaling dimensions

�S = 1

2K
× 2 = 1/K, (7)

�C = K

2
× 2 = K. (8)

Therefore the RG equations for JS and JC are

dJS

d	
= (D − �S )JS, (9)

dJC

d	
= (D − �C )JC, (10)

where D = d + 1 is the space-time dimension. When 1/2 <

K < 2 [42], �S < 2 and �C < 2. Hence, both interchain cou-
pling terms are relevant in (1 + 1) dimension. The case with
K = 1 is special because both terms have the same scaling
dimension � = 1. Thus, a maximal competition between the
two orders is realized there.

Applying the mean-field approximation to the interwire
coupling terms [36], the Hamiltonian density reduces to the
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form that describes a collection of decoupled single chains,

HMF =
∑

i

{
v

2

[
K (∂xθi )

2 + 1

K
(∂xφi )

2

]

− gS cos (
√

2πθi ) − gC cos (
√

2πφi)

}
. (11)

Here, gS and gC are the mean-field parameters for the Joseph-
son and density wave couplings, respectively. In principle, the
above mean-field approximation becomes exact in the limit
of infinite codimension or infinite coordination number. We
denote the coordination number as z. Then, gS and gC satisfy
the self-consistency equations,

gS = zJS〈cos (
√

2πθ )〉, (12)

gC = zJC〈cos (
√

2πφ)〉. (13)

For each decoupled wire, its effective Hamiltonian hi resem-
bles the double sine-Gordon model that cannot be solved
analytically in general. For the system to have a finite energy,
both vertex operators in the field theory need to be normal
ordered. The UV energy cutoff � = 1/a enters when the
expectation values of the vertex operators are considered. As
a result, the bare coupling constant is renormalized as [41]

g → g̃ = ga�β , (14)

where �β is the scaling dimension of the vertex operator :
cos (βθ ) :. This leads to the dimension of the renormalized
effective coupling constant, [g̃] = E2−�β , where E stands for
energy.

A. Rotation of order parameters at K = 1

At K = 1, both normal ordered vertex operators in Eq. (11)
have the same scaling dimension � = 1/2. Hence, the mean-
field Hamiltonian density for a single chain with the normal
ordered vertex operators is

h0 =v

2

[
(∂xθ )2 + (∂xφ)2

]
− gSa1/2 : cos (

√
2πθ ) : −gCa1/2 : cos (

√
2πφ) : .

(15)

In the following discussion, we skip the normal ordering no-
tation. All vertex operators below are normal ordered unless
otherwise specified. As already advertised in Sec. I, one can
combine the two cosine terms into a single one by performing
a rotation in the order-parameter space,(

cos
√

2πθ̃

cos
√

2πφ̃

)
=

(
cos α − sin α

sin α cos α

)(
cos

√
2πθ

cos
√

2πφ

)
. (16)

By setting

tan α = gS

gC
, (17)

the two vertex operators are combined into

gSa1/2 : cos (
√

2πθ ) : +gCa1/2 : cos (
√

2πφ) :

=
√

g2
S + g2

C a1/2 : cos (
√

2πφ̃) : . (18)

To determine h0 in terms of θ̃ and φ̃, it is necessary to de-
duce how the derivative terms (i.e., the kinetic-energy parts)
transform.

Since the Luttinger liquid model is a conformal field theory
with central charge c = 1, the short distance behaviors of
different conformal fields in the theory are dictated by the
operator product expansion (OPE) [43]. This behavior should
be independent of the transformation in Eq. (16). In terms of
the original fields θ and φ, we have the following OPE:

lim
x2→x1

cos [
√

2πθ (x1)] cos [
√

2πθ (x2)]

= 1

2
lim

x12→0

(
1

x12
+ x12{cos [

√
8πθ (x)] − π [∂xθ (x)]2}

)

+ O
(
x2

12

)
. (19)

In the above equation, we have defined x12 = |x2 − x1| and
x = x1 = x2. We can also evaluate the same OPE in terms
of the new set of fields, θ̃ and φ̃. However, this cannot be
done before determining h0 after the transformation. This
requires us to relate the current model with its corresponding
microscopic model for spins [39].

In fact, h0 can be viewed as the continuum-field theory
limit of the spin-1/2 XXZ model under staggered magnetic
fields in both the x and z directions. The spin system takes the
Hamiltonian

H = H0 − hx

∑
j

(−1) jSx
j − hz

∑
j

(−1) jSz
j, (20)

where H0 is the Hamiltonian of the XXZ model

H0 = J
∑

j

[(
Sx

j S
x
j+1 + Sy

j S
y
j+1

) + �Sz
jS

z
j+1

]
. (21)

With the convention that both bosonic fields φ(x) and θ (x)
to have the same radius of compactification, R = 1/

√
2π , the

spin operators can be bosonized as [44,45]

Sz(x) = 1√
2π

∂xφ(x) + a1 cos [
√

2πφ(x) + 2kF x], (22)

S±(x) = (−1)x/ae±i
√

2πθ (x)

× {b1 + b2 cos [
√

2πφ(x) + 2kF x]}. (23)

After bosonization, H takes the form of h0 with K being
determined by the anisotropy term � in the XXZ model [46].
In particular, the Heisenberg point with � = 1 corresponds to
K = 1 in the Luttinger liquid model. The transformation in
Eq. (16) corresponds to a change in the spin axis on the x-z
plane for H . The term S j · S j+1 in the Heisenberg model is
invariant under the rotation of the spin axis. Hence, it is also
expected that the derivative terms in h0 is also invariant under
the transformation in Eq. (16). As a result, we have in terms
of the new set of fields θ̃ and φ̃,

h0 = v

2
[(∂x θ̃ )2 + (∂xφ̃)2] −

√
g2

S + g2
C a1/2 : cos (

√
2πφ̃) : .

(24)

A more detailed discussion can be found in Appendix A.
Now we can recalculate the same OPE in Eq. (19) but in

terms of θ̃ and φ̃. This gives
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lim
x2→x1

[cos α cos
√

2πθ̃ (x1) + sin α cos
√

2πφ̃(x1)][cos α cos
√

2πθ̃ (x2) + sin α cos
√

2πφ̃(x2)]

=
(

1

2
cos2 α

)
lim

x12→0

(
1

x12
+ x12{cos [

√
8πθ̃ (x)] − π [∂x θ̃ (x)]2} + O

(
x2

12

))

+
(

1

2
sin2 α

)
lim

x12→0

(
1

x12
+ x12{cos [

√
8πφ̃(x)] − π [∂xφ̃(x)]2} + O

(
x2

12

))
. (25)

By comparing the terms with scaling dependence x12 in
Eqs. (19) and (25), we find

[∂xθ (x)]2 = cos2 α [∂x θ̃ (x)]2 + sin2 α [∂xφ̃(x)]2, (26)

[∂xφ(x)]2 = sin2 α
[
∂x θ̃ (x)

]2 + cos2 α
[
∂xφ̃(x)

]2
. (27)

Note that the above results preserve the SU(2) symmetry of h0

at K = 1 [cf. the corresponding O(3) symmetry in the XXZ
model at the Heisenberg point � = 1].

B. Perturbation near K = 1

Let us recall that the Hamiltonian density after the mean-
field approximation takes the form of Eq. (11). In the
following discussion, we only focus on the Hamiltonian den-
sity for a single chain, given by

h =v

2

[
K (∂xθ )2 + 1

K
(∂xφ)2

]

− gS cos (
√

2πθ ) − gC cos (
√

2πφ). (28)

To go beyond the special case with K = 1, we start by sep-
arating h = h0 + δh. Here, h0 is given by Eq. (15) which is
the Hamiltonian density for a single decoupled chain when
K = 1. After the transformation in Eq. (16), Sec. II A shows
that h0 would take the form of Eq. (24).

Now, we consider the deviation term δh. Since we only
focus on the system that is very close to the self-dual point,
we have K = 1 + ε and ε 
 1. This enables us to expand δh
in the first order of ε, which gives

δh = v

2

[
(K − 1)(∂xθ )2 +

(
1

K
− 1

)
(∂xφ)2

]

= εv

2
[(∂xθ )2 − (∂xφ)2] + O(ε2). (29)

Strictly speaking, the rotation of order parameters in Eq. (16)
can only be performed at K = 1. In Appendix A, we carry
out the corresponding transformation in the XXZ model.
The challenge in deducing the corresponding Luttinger model
from bosonizing the transformed XXZ model is also dis-
cussed there. Here, we argue that Eqs. (26) and (27) remain
asymptotically exact near K = 1. In other words, they still
provide a good approximation to the transformations of the
conformal fields when ε 
 1. Using those equations, we ex-
press δh in terms of the transformed fields θ̃ and φ̃:

δh = εv

2
(cos2 α − sin2 α)[(∂x θ̃ )2 − (∂xφ̃)2]. (30)

Let us recall that tan α = gS/gC [see Eq. (17)], in order
to combine the two cosine terms. Therefore, sin2 α = g2

S/

(g2
S + g2

C ) and cos2 α = g2
C/(g2

S + g2
C ). Using this, we finally

obtain

δh = εv

2

(
g2

C − g2
S

g2
C + g2

S

)
[(∂x θ̃ )2 − (∂xφ̃)2]

= εv

2
G[(∂x θ̃ )2 − (∂xφ̃)2]. (31)

For later convenience, we have defined the dimensionless
parameter,

G = g2
C − g2

S

g2
C + g2

S

. (32)

It must satisfy −1 � G � 1. For gS = 0 and gC = 0, they
correspond, respectively, to G = 1 and G = −1.

By combining Eqs. (24) and (31), we claim that the system
near K = 1 takes the approximate Hamiltonian density,

h0 + δh = v

2
[(1 + εG)(∂x θ̃ )2 + (1 − εG)(∂xφ̃)2]

−
√

g2
S + g2

C a�′
: cos (

√
2πφ̃) : . (33)

Note that �′ �= 1/2. It is because the scaling dimension of the
cosine term changes after the introduction of the perturbation
δh. To rewrite h0 + δh in the form of a standard sine-Gordon
model, we introduce a set of rescaled fields,

ϑ = √
1 + εG θ̃ , (34)

ϕ = √
1 − εG φ̃. (35)

As −1 � G � 1 and |ε| 
 1, one has |εG| 
 1. The commu-
tator [φ̃(x), ∂x θ̃ (x′)] = iδ(x − x′) leads to [ϕ(x), ∂xϑ (x′)] =
iδ(x − x′) + O[(εG)2]. Thus, the canonical quantization rule
holds in the first order of ε and remains a good approximation
near K = 1. In terms of the rescaled fields,

h0 + δh =v

2

[
(∂xϑ )2 + (∂xϕ)2]

−
√

g2
S + g2

C a�′
cos

(√
2π

1 − εG
ϕ

)
. (36)

In this form, it is straightforward to deduce that

�′ = 1

4π

(√
2π

1 − εG

)2

= 1

2(1 − εG)
. (37)

III. SOLUTIONS OF MEAN-FIELD EQUATIONS

Since the sine-Gordon model is an integrable model, the
form of h0 + δh in Eq. (36) allows us to study the competition
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and coexistence of different quantum phases in the coupled
wire system near the self-dual point quantitatively. Consider
the standard sine-Gordon model with the action [47]

S =
∫

d2x

[
1

2
(∂μφ)2 + μSG : cos (αφ) :

]
. (38)

Note that the renormalized coupling constant μSG has the
dimension E2−�α , where �α is the scaling dimension of the
normal-ordered vertex operator. In the present case, the latter
depends on εG [see Eq. (37)]. The spectrum of the sine-
Gordon model is controlled by the soliton mass M, which has
been determined analytically [40,41]:

M = 2�
(

ξSG

2

)
√

π�
( 1+ξSG

2

)
⎡
⎢⎣μSGπ�

(
1 − α2

8π

)
2�

(
α2

8π

)
⎤
⎥⎦

1

2− α2
4π

. (39)

Here, the symbol �(x) denotes the Gamma function. The
parameter ξSG is defined as

ξSG = α2

8π − α2
. (40)

The formula for M is physical only when 0 � α2 � 8π

[41]. The associated ground-state energy density of the sine-
Gordon model is related to its soliton mass by

E = −M2

4
tan

(
πξSG

2

)
. (41)

This energy density remains finite when 0 � ξSG < 1 (i.e.,
0 � α2 < 4π ).

For our present case, the corresponding parameters take
values

α =
√

2π

1 − εG
, (42)

μSG =
√(

g2
S + g2

C

)
a1/(1−εG), (43)

ξSG = 1

3 − 4εG
. (44)

Since |εG| 
 1, α2 ≈ 2π . Hence, both Eqs. (39) and (41) are
well defined in the present discussion. A direct substitution
leads to the ground-state energy density for general values of
gS and gC as

E (Z ) = −�2

[
tan

(
π

6 − 8Z

)]( π

161−Z

) 1
3−4Z

[
�

(
1

6−8Z

)
�

(
2−2Z
3−4Z

)
]2[

�
(

3−4Z
4−4Z

)
�

(
1

4−4Z

)
] 4−4Z

3−4Z (
g2

S + g2
C

�4

) 2(1−Z )
3−4Z

= −�2F (Z )

(
g2

S + g2
C

�4

) 2(1−Z )
3−4Z

.

(45)

Here, the dimensionless parameter Z = εG. Also notice that
both gS/�

2 and gC/�2 are dimensionless quantities. Thus,
E (Z ) has the correct dimension E2, which is consistent with
being the energy density of a single effective one-dimensional
wire.

A. Solutions for pure density wave and superfluid orders

In principle, the analytical form of E (Z ) allows one to
formulate a set of self-consistency equations to describe the
competition and possible coexistence of DW and SF orders in
the coupled wire system at |ε| 
 1. This will be discussed in
Sec. III B. Here, we first revisit the two simpler cases in which
either one of gS or gC is zero [36]. They describe the scenarios
that the system has a pure density wave or superfluid order,
respectively. In both cases, it is not necessary to perform any
rotation in the mean-field Hamiltonian as it already has the
form of standard sine-Gordon model.

First, we consider the case with gS = 0 but gC �= 0. In
this case, the self-consistency equation in Eq. (12) is satisfied
automatically by having both sides equal to zero. The mean-
field Hamiltonian density reduces to the standard sine-Gordon
model. By defining θ ′ = √

Kθ and φ′ = φ/
√

K , one has

hDW =v

2
[(∂xθ

′)2 + (∂xφ
′)2]

− gC

��C
: cos (

√
2πKφ′) :, (46)

where �C = K/2 is the scaling dimension of the vertex oper-
ator at a generic value of K . Following the above discussion
of sine-Gordon model, the corresponding mean-field energy
density is

EDW = −�2F

(
K − 1

K

)(
g2

C

�4

)2/(4−K )

. (47)

Applying the Hellmann-Feynman theorem, one obtains

〈cos (
√

2πφ)〉 = −∂EDW

∂gC

=
(

4

4 − K

)
F

(
K − 1

K

)( gC

�2

) K
4−K

. (48)

Thus, the corresponding solution to Eq. (13) is given by

g2
C

�4
=

[(
4z

4 − K

)
F

(
K − 1

K

)(JC

�2

)] 4−K
2−K

. (49)

Since Z = ε(g2
C − g2

S )/(g2
C + g2

S ) = ε when gS = 0, one
may wonder whether is it possible to substitute Z = ε in
Eq. (45) and obtain the corresponding mean-field solution of
the density wave order. This will lead to the solution

g2
C

�4
≈

[
4z

(
1 − ε

3 − 4ε

)
F (ε)

(JC

�2

)] 3−4ε
1−2ε

. (50)

It is straightforward to check that the result is consistent with
Eq. (49) up to the first order of ε. This is because the pertur-
bation term δh in Eq. (29) has already been truncated in the

245138-5



MA, TÜRKER, SEIDEL, AND YANG PHYSICAL REVIEW B 108, 245138 (2023)

first order in ε, so does the energy density derived from it. In
the later part of the work, we only focus on the solution in
Eq. (49).

When gC = 0, the mean-field Hamiltonian density also
reduces to the standard sine-Gordon model,

hSF = v

2
[(∂xθ

′)2 + (∂xφ
′)2] − gS

��S
: cos

(√
2π

K
θ ′

)
: .

(51)

Here, �S = 1/(2K ). The corresponding mean-field energy
density is

ESF = −�2F (1 − K )

(
g2

S

�4

)2K/(4K−1)

. (52)

It leads to the solution of Eq. (12),

g2
S

�4
=

[(
4zK

4K − 1

)
F (1 − K )

(JS

�2

)] 4K−1
2K−1

. (53)

The solutions in Eq. (49) and (53) obey the duality relation:
K → 1/K , JS ↔ JC , and gS ↔ gC [36].

B. Solutions for coexisting density wave and superfluid orders

An important feature of intertwined orders is that they
may actually coexist instead of suppressing each other. To
study this possibility, one can in principle formulate a set of

self-consistency equations by directly applying the Hellmann-
Feynman theorem on E (Z ) in Eq. (45) to obtain 〈cos (

√
2πθ )〉

and 〈cos (
√

2πφ)〉 in Eqs. (12) and (13), respectively. How-
ever, this is a very challenging task because E (Z ) is a
complicated function of gS and gC when neither of them is
zero. Instead, we first make an approximation for E (Z ) by
expanding it up to the first order in ε. This leads to

E (ε) = E0 ×
{

1 + 2ε

9

(
g2

C − g2
S

g2
C + g2

S

)
ln

[
ς

(
g2

S + g2
C

�4

)]}

+ O[(εG)2]. (54)

Here, E0 is the corresponding energy density at ε = 0,

E0 = −η�2

(
g2

S + g2
C

�4

)2/3

. (55)

In Eqs. (54) and (55), we have defined the constants,

ς = 8π2e3γ [�(3/4)]2

[�(1/4)]2 , (56)

η = 1√
3

( π

16

)1/3
[

�(1/6)

�(2/3)

]2[
�(3/4)

�(1/4)

]4/3

, (57)

where γ ≈ 0.577 is the Euler constant.
Now, we apply the Hellmann-Feynman theorem on

Eq. (54) to derive a set of approximate self-consistency equa-
tions that are valid for |ε| 
 1:

gS = 4zη jS
3

[
gS(

κ2
S + κ2

C

)1/3

]{
1 + ε

3

(
κ2

C − κ2
S

κ2
C + κ2

S

)
− 2ε

9

(
2κ2

C + κ2
S

κ2
C + κ2

S

)
ln

[
ς
(
κ2

S + κ2
C

)]}
, (58)

gC = 4zη jC
3

[
gC(

κ2
S + κ2

C

)1/3

]{
1 + ε

3

(
κ2

C − κ2
S

κ2
C + κ2

S

)
+ 2ε

9

(
κ2

C + 2κ2
S

κ2
C + κ2

S

)
ln

[
ς
(
κ2

S + κ2
C

)]}
. (59)

The set of dimensionless parameters are defined,

κS = gS

�2
, κC = gC

�2
, ȷS = JS

�2
, ȷC = JC

�2
. (60)

In order for the superfluid and density wave orders to
coexist, both gS and gC need to be nonzero. At ε = 0 (or
K = 1), this is possible only when JS = JC = J . This agrees
with the previous result from interchain mean-field approxi-
mation [36]. In this case, there is only one self-consistency
equation for gS and gC . Its solution is

g2
S + g2

C

�4
=

(
4zηJ
3�2

)3

. (61)

The solution suggest that gS and gC cannot be determined
uniquely. This agrees with the high symmetry of the self-dual
point at which the order parameter can point in any direction,
but the overall norm is fixed by J . Note that J > 0 according
to our definition in Eq. (1).

Going away from the self-dual point, we now solve
Eqs. (58) and (59) for ε �= 0. By introducing two new

variables R = κ2
C + κ2

S and r = κ2
C − κ2

S , we can rewrite
Eqs. (58) and (59) in the following form:

4zη jS
3R1/3

[
1 + ε

3

( r

R

)
− ε

9

(
3R + r

R

)
ln (ςR)

]
= 1, (62)

4zη jC
3R1/3

[
1 + ε

3

( r

R

)
+ ε

9

(
3R − r

R

)
ln (ςR)

]
= 1. (63)

From the first equation, we obtain an equation for r in terms
of R:

r = 3R

4zη jSε

[
9R1/3 − 12zη jS + 4zη jSε ln (ςR)

3 − ln (ςR)

]
. (64)

Substituting the above relation into the second equation, we
obtain an equation for R:

(ςR)−1/3 ln [(ςR)−1/3] = 3

8zης1/3ε

(
1

jS
− 1

jC

)
. (65)

Let y = ln [(ςR)−1/3]. Then, the above equation can be rewrit-
ten in the form:

yey = 3

8zης1/3ε

(
1

jS
− 1

jC

)
. (66)
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This can be solved analytically,

y = W0

[
3

8zης1/3ε

(
1

jS
− 1

jC

)]
= W0(X ). (67)

Here, we have assumed ( jC − jS )/ε > 0, so that the equa-
tion for y can be completely solved by the principal branch
of the Lambert W function denoted as W0(x) [48]. Notice
that the left-hand side of Eq. (65) involves ln(ςR). Since 0 <

R = κ2
S + κ2

C = (g2
S + g2

C )/�4 
 1 in the field-theory limit,
so ln (ςR) is believed to be negative. Thus, ε and jC − jS
should have the same sign. This justifies our assumption. Fur-
thermore, the symbol X is introduced for later convenience,

X = X ( jS, jC, ε) = 3

8zης1/3ε

(
1

jS
− 1

jC

)
. (68)

From the solution of y, we can obtain the solution of R:

R = 1

ς
exp

[
−3W0

(
3

8zης1/3ε

(
1

jS
− 1

jC

))]

=
(

8zη jS
3

)3(
ε

1 − J

)3

[W0(X )]3. (69)

Note that we have used the property enW (x) = [x/W (x)]n to
obtain the second equality. We have also defined the dimen-
sionless ratio J = JS/JC . The value of R at ε = 0 and J = 1
cannot be determined from the expression.

Using the result of R, we can solve for r,

r = 3 j3
S

[
8zηW0(X )

3(J − 1)

]3
[

1 + ε J+1
J−1W0(X )

1 + W0(X )

]
ε2. (70)

Finally, we can solve for κ2
S and κ2

C :

κ2
S = j3

S

2

[
8zηW0(X )

3

]3( 1

1 − J

)4

×
[

(3 + ε)(1 − J ) − 2ε(1 + 2J )W0(X )

1 + W0(X )

]
ε2, (71)

κ2
C = j3

S

2

[
8zηW0(X )

3

]3( 1

1 − J

)4

×
[

(−3 + ε)(1 − J ) + 2ε(2 + J )W0(X )

1 + W0(X )

]
ε2. (72)

The above solution obeys the duality relation: ε → −ε, jS ↔
jC , and κ2

S ↔ κ2
C . In the original Hamiltonian, the duality

relation is K → 1/K , JS ↔ JC , and θ ↔ φ. The coexistence
solution is physical if and only if both κ2

S and κ2
C are positive.

This requires

(1 − J )(3 − ε)

2(2 + J )
< εW0

[
3(1 − J )

8zης1/3ε jS

]
<

(1 − J )(3 + ε)

2(1 + 2J )
.

(73)

The region in which the inequality is satisfied can be deter-
mined numerically. Since our focus is the region with ε ≈ 0
and J ≈ 1, it is possible to make further approximations to
Eq. (73). This is done in Appendix B. The end result is
given by Eq. (B3), which indicates that the supersolid solution
can only exist in a narrow region around the self-dual point.
Furthermore, it is necessary to compare the energies between

FIG. 1. Possible scenarios for the energy landscape of the
system. Here, tan α = ϒS/ϒC measures the ratio between the am-
plitudes of the superfluid and density wave order parameters, which
are denoted as ϒS and ϒC , respectively. The existence of a mean-
field solution with coexisting order parameters (marked by the blue
dashed lines) corresponds to having a local extremum or a highly
unlikely point of inflection for 〈E (α)〉 at an intermediate value of
αc ∈ (0, π/2).

different possible solutions, so that the phase diagram of the
system near the self-dual point can be determined.

IV. ENERGY ANALYSIS OF DIFFERENT
POSSIBLE SOLUTIONS

The self-dual point is so special that the order parameters
can be rotated into each other while the energy of the sys-
tem remains unchanged. There, only the overall amplitude
R = κ2

S + κ2
C is fixed by the coupling strength J = JS = JC

as shown in Eq. (61). Suppose we define an angle α such that
tan α = ϒS/ϒC measures the ratio between the amplitudes of
the two order parameters. Then, the energy landscape of the
system at the self-dual point with different values of α looks
flat. This is illustrated schematically in Fig. 1(a).

Going away from the self-dual point, the mean-field equa-
tions may or may not have a solution that describes the
coexistence of the density wave and superfluid parameters.
When such a coexistence is absent, our energy analysis below
shows that the system will always develop an ordered state,
either having a pure density wave order (α = 0) or a pure
superfluid order (α = π/2). Which one has a lower energy
depends on the values of K = 1 + ε, JS , and JC . Thus, the
energy landscape of the system resembles either Fig. 1(b) or
1(c). Meanwhile, we did find solutions for coexisting orders
in a certain region of the system parameters. This solution can
correspond to a local minimum, local maximum, or a very
unlikely point of inflection for the energy of the system. These
three different scenarios are illustrated in Figs. 1(d)–1(f).

To determine whether the coexistence of orders is ener-
getically favorable, we evaluate the expectation value of the
original Hamiltonian in Eq. (1),

〈H〉 = 1

2

∑
i

[
K〈(∂xθi )

2〉 + 1

K
〈(∂xφi )

2〉
]
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− z

2

∑
i

{JS〈cos (
√

2πθi )〉〈cos (
√

2πθ )〉.

+ JC〈cos (
√

2πφi )〉〈cos (
√

2πφ)〉}, (74)

under different solutions of the self-consistency equations.
Here, we have set v = 1 and made use of the fact that the
mean-field state is a product state of decoupled wires. This
allows us to factorize the expectation value for the coupling
terms cos

√
2π (θi − θ j ). In the following discussion, we only

focus on a single effective chain i. For the coupling terms (or
the potential-energy term), the energy density is

〈Ui〉 = − z

2

[
JS

(
− ∂E

∂gS

)2

+ JC

(
− ∂E

∂gC

)2
]
. (75)

For the expectation value of the derivative terms (or the
kinetic-energy term), we obtain it in the following way: We
know that the Hamiltonian density of the system after the
mean-field approximation can be eventually written as a sine-
Gordon model in Eq. (38). The ground-state energy density of
the model is given by Eq. (41), which we denote it as 〈hSG〉.
Since 〈hSG〉 = 〈Ki〉 − μSG〈cos(αϕ)〉, it leads to

〈Ki〉 = 〈hSG〉 + μSG〈cos (αϕ)〉
= E + μSG

(
− ∂E

∂μSG

)

=
[

1 − 2

2 − α2/(4π )

]
E . (76)

Recall again that � = α2/(4π ) is the scaling dimension of the
vertex operator defined in Eq. (37). Therefore, one gets

〈Hi〉
�2

=
(

�

� − 2

) E
�2

− z

2

[
JS

�2

(
∂E
∂gS

)2

+ JC

�2

(
∂E
∂gC

)2
]
. (77)

In the following discussion, we consider the dimensionless
energy density 〈Hi〉/�2 instead of 〈Hi〉. This enables us to
ignore the UV cutoff dependence of the energy and focus on
its scaling behavior of the dimensionless interchain coupling
strengths. From the above expression, one can verify that
the solution in Eq. (61) minimizes 〈Hi〉/�2 at ε = 0 when
JS = JC . In addition, the corresponding expectation value
can be evaluated,

〈Hi〉
�2

∣∣∣∣
ε=0

= −
(η

3

)3
(

4zJ
�2

)2

,

where η was defined in Eq. (57).

A. Pure density wave or superfluid order

Now, we analyze 〈Hi〉/�2 when the mean-field parameters
gS and gC take values from the possible solutions that describe
different orders in the system. From Eqs. (12) and (13), one
has

〈Hi〉
�2

∣∣∣∣
sol

=
(

�

� − 2

) E
�2

− 1

2z

(
g2

S/�
4

JS/�2
+ g2

C/�4

JC/�2

)
.

(78)

Note that the subscript “sol” emphasizes that Eq. (78) is valid
only when gS and gC satisfy the self-consistency equations,
Eqs. (12) and (13). When the system does not develop any
order, i.e., gS = gC = 0, then 〈Hi〉/�2|sol = 0. As we show
below, the system will always develop an order near the self-
dual point.

For the mean-field solution with a pure density wave order,
one has

〈Hi〉
�2

∣∣∣∣
DW

=
(

�

� − 2

) E
�2

− 1

2z

(
g2

C/�4

JC/�2

)

= K − 2

8

[(
8

4 − K

)
F

(
K − 1

K

)] 4−K
2−K

(
zJC

2�2

) 2
2−K

.

(79)

Therefore, the energy density is always negative when K ≈ 1.
This indicates that a formation of ordered state is energetically
favorable in that region. At K = 1, the density wave ordered
state has

〈Hi〉
�2

∣∣∣∣
DW,ε=0

= −
(η

3

)3
(

4zJC

�2

)2

. (80)

Similarly, one can calculate the corresponding expected en-
ergy density for a pure superfluid order,

〈Hi〉
�2

∣∣∣∣
SF

= 1 − 2K

8K

[(
8K

4K − 1

)
F (1 − K )

] 4K−1
2K−1

(
zJS

2�2

) 2K
2K−1

.

(81)

At K = 1, the superfluid ordered state has

〈Hi〉
�2

∣∣∣∣
SF,ε=0

= −
(η

3

)3
(

4zJS

�2

)2

. (82)

From the above results, one can conclude that the density
wave order (superfluid order) is energetically favorable when
JC > JS (JS > JC) at K = 1. This result agrees with the
renormalization group analysis. At K = 1, the interchain
DW and SF coupling terms have the same scaling dimen-
sion. Hence, the one with larger bare coupling strength will
dominate.

B. Stability of the supersolid order near K = 1

For the possible coexistence of DW and SF orders, the
corresponding mean-field solutions for κS = gS/�

2 and κC =
gC/�2 are given by Eqs. (71) and (72). Since both κS and
κC are nonzero, the corresponding expectation value of the
energy density is Eq. (78). In Appendix C, we find that the
following relationship holds:

− g2
S

zJS
− g2

C

zJC
= 4(1 − Z )

3 − 4Z
E . (83)

Hence, one has

〈Hi〉
�2

∣∣∣∣
sol

=
[

�

� − 2
+ 2(1 − Z )

3 − 4Z

] E
�2

. (84)

Due to the complicated forms of E , we are unable to obtain
an analytic expression for 〈Hi〉/�2|sol in the present case.

245138-8



COMPETING PHASES AND INTERTWINED ORDERS IN … PHYSICAL REVIEW B 108, 245138 (2023)

FIG. 2. Numerically predicted phase diagrams for the system
near the self-dual point (ε = 0 and J = JS/JC = 1), marked by
the red dots. Here, the dimensionless effective interchain coupling
strength z jS = zJS/�

2 takes value 1/10 (top panel), 1/50 (middle
panel), and 1/500 (bottom panel). The region bounded by the red
dashed lines is the region where the supersolid solution in Eqs. (71)
and (72) is well defined.

Instead, we compare the energy density for supersolid solution
with Eqs. (79) and (81) numerically.

In Fig. 2, we plot numerically the phase diagram of the
system in the vicinity of the self-dual point for jSz = 1/10,
jSz = 1/50, and jSz = 1/500 separately. To be specific, the
ordered state that has the minimum value of 〈Hi〉/�2|sol is
shown at each point in the phase diagram. It is observed

that either the density wave or the superfluid phase has the
minimum energy density. At the self-dual point, the DW, SF,
and the supersolid states have the same energy. In addition,
the phase boundary between the DW and SF phases is located
inside the region in which the supersolid order solution exists
(bounded by the red dashed lines in the figure). A further
numerical analysis (not shown here) verifies that 〈Hi〉/�2|sol

for the supersolid order solution is always larger than those
for pure DW and SF order, when the system is sufficiently
close to the self-dual point. From these features, we conclude
that the solution for coexisting orders in Eqs. (71) and (72)
corresponds to the scenario in Fig. 1(d), namely, being a local
maximum in the energy landscape. The absence of a region in
which the coexisting phase is energetically favorable, and the
position of the phase boundary suggest that the DW and SF
phases are likely to be separated by a first-order phase transi-
tion. Finally, we should emphasize that our analysis considers
the system at zero temperature only.

V. CONCLUSION AND DISCUSSION

To summarize, we have revisited the possibility of re-
alizing supersolidity for bosons trapped in an array of
one-dimensional tubes, with coexistence of the density wave
(DW) and superfluid (SF) orders. Following previous work
[35], we employ the mean-field approximation to the inter-
action terms between neighboring tubes, and obtain a mean
field Hamiltonian that takes the form of double sine-Gordon
model. While this model is nonintegrable in general, it can be
transformed into the integrable sine-Gordon model when the
system has Luttinger parameter K = 1. We took this special
feature as our point of departure, and derived an approximate
but integrable Hamiltonian that describes the system when it
is near K = 1. From this result, we have successfully obtained
a set of approximate self-consistency equations for the DW
and SF order parameters. This allowed us to study different
ordered phases, and their competition or coexistence by com-
paring their corresponding energies quantitatively. Our results
are asymptotically exact in the limits of K − 1 → 0 and large
dimensionality or coordination number.

We did find a mean-field solution for coexisting density
wave and superfluid order parameters [see Eqs. (71) and (72)]
in a narrow region near the self-dual point. The region is
determined by Eq. (73). As the interchain coupling or inter-
tube coupling strengths become smaller relative to the UV
energy cutoff, the region becomes narrower. We further per-
formed a quantitative energy comparison between different
solutions to the mean-field equations. We found that the super-
solid solution corresponds to a local maximum in the energy
landscape of the system near the self-dual point. The analysis
also shows that the critical line that separates the density
wave and superfluid phases is well-located in the region in
which the supersolid solution can be found. These obser-
vations lead us to the conclusion that the two phases are
separated by a first-order phase transition near the self-dual
point. We emphasize that our work only focuses on the case
with zero temperature. Without a suitable formulation of the
Landau-Ginzburg free energy, we are unable to draw any firm
conclusion for the phase diagram at nonzero temperature. It
is possible that supersolidity becomes energetically favorable
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there. If that happens, it may serve as an example of the
so-called “order by disorder” [49]. We cannot rule out its
presence far from the self-dual point at zero temperature,
either.

Our results extend that of Ref. [36], which studied the
competition between charge density wave and superconduct-
ing orders in high-Tc superconducting cuprates, and include it
as a special case. There, the interchain coupling terms were
also treated by the mean-field approximation. At K = 1, this
work concluded that coexisting CDW and SC orders can be
achieved only when the two interchain coupling parameters
have identical magnitudes, i.e., JS = JC . In other words, the
solution only exists at the self-dual point. This feature has
been reproduced in our present work. Importantly, our anal-
ysis and results go beyond the self-dual point. This is possible
because we have successfully mapped the double sine-Gordon
model (obtained after the interchain mean-field approxima-
tion) to a standard sine-Gordon model for K ≈ 1, by treating
K − 1 as an expansion parameter. A crucial step was to deduce
how the spatial derivatives of the dual fields transform under
a rotation in the order-parameter space. We determined the
transformation by comparing the operator product expansion
between the fields before and after the rotation. This is some-
how different from non-Abelian bosonization [50]. There, the
vertex operators and the spatial derivative of the field must
have scaling dimensions one, so that they can be treated in a
unified manner due to the su(2)1 algebra they form.

On the other hand, Refs. [35,37] pointed out that the inter-
chain mean-field approximation may break down when the
system goes beyond the quasi-one-dimensional regime and
actually being two dimensional. There, a nonlinear sigma
model with an enhanced O(4) symmetry was formulated at the
self-dual point. A further RG analysis of the model suggested
that a coexistence between superfluid and density wave (or
superconducting and charge density wave) orders can actually
exist. Being argued as a marginally irrelevant term, no quanti-
tative analysis for the symmetry-breaking term that describes
the departure from K = 1 was performed. Since our approach
(which is asymptotically exact in the high-dimension limit) is
different, we are unable to comment on the validity of that
treatment, which appears to be specific to 2D. Furthermore,
we should clarify again that our approach only applies to
the vicinity of the self-dual point. Therefore, our work does
not eliminate any possible coexistence of density wave and
superfluid orders when the system is sufficiently far from the
self-dual point.

We close by emphasizing our work has provided a quan-
titatively reliable treatment of the problem of competition
between superfluid and density wave orders in the appropriate
limits, and shed light on the broad issue of competing orders
in strongly interacting systems.
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APPENDIX A: BOSONIZATION OF THE ROTATED
XXZ MODEL

In the main text, we related the Luttinger liquid model that
describes the coupled interchain systems to the XXZ model
for quantum spins under a staggered magnetic field. Here, we
elaborate on this connection, perform the rotation in Eq. (16)
for the XXZ model, and present our argument on relating the
resulting XXZ model to the Luttinger model.

We begin by restating the XXZ model with a staggered
magnetic field in both x and z directions,

HXXZ = J
∑

j

[(
Sx

j S
x
j+1 + Sy

j S
y
j+1

) + �Sz
jS

z
j+1

]

− hx

∑
j

(−1) jSx
j − hz

∑
j

(−1) jSz
j . (A1)

Recall the bosonization rules in Eqs. (22) and (23) in the main
text [44,45],

Sz(x) = 1√
2π

∂xφ(x) + (−1) ja1 cos [
√

2πφ(x)], (A2)

S±(x) = e±i
√

2πθ (x){(−1) jb1 + b2 cos [
√

2πφ(x)]}. (A3)

In writing the above equations, we have used the fact that
the Fermi wavelength kF = π/2a when the spin system is
half filled. Here, the position of the spins are x = ja, where
a denotes the lattice spacing in the lattice. The constants a1,
b1, b2 are unimportant in our discussion. After bosonizing the
XXZ model, one obtains

HL =
∫

dx

{
v

2

[
K (∂xθ )2 + 1

K
(∂xφ)2

]
− gS cos (

√
2πθ )

− gC cos (
√

2πφ)

}
. (A4)

Note that the Umklapp scattering term is neglected here since
it is an “artifact” of the half filled spin system. It does not
appear in the mean-field Hamiltonian for our original problem
of the coupled chain system. Equation (A4) is precisely the
Hamiltonian that describes a single decoupled chain under the
mean-field approximation in the main text. When we bosonize
the two terms for staggering field, only nonoscillatory terms
are kept. Furthermore, we should recall that the Luttinger
parameter K cannot be deduced from the above bosonization
procedures (unless � ≈ 0 so that the result from perturbation
theory holds). In general, the value of K depends on �, which
can only be determined from the exact Bethe ansatz solution
[44],

K = π

π − cos−1 �
. (A5)

In the main text, a rotation was performed for the Luttinger
model at K = 1 to transform the double sine-Gordon model
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into the standard sine-Gordon model. The corresponding
transformation in HXXZ is a rotation of the spin quantization
axis along the y axis,

(
S̃x

j

S̃z
j

)
=

(
cos α − sin α

sin α cos α

)(
Sx

j

Sz
j

)
. (A6)

We should emphasize that the rotation in HXXZ can be per-
formed at any value of �. On the other hand, the rotation in
the Luttinger model can be performed only at K = 1. Carrying
out the rotation for HXXZ explicitly, we get

H ′ =
∑

j

[
(J ′

1 + J ′
2)S̃x

j S̃
x
j+1 + (

J ′
1 − J ′

2

)
S̃y

j S̃
y
j+1

+ J (sin2 α + � cos2 α)S̃z
j S̃

z
j+1

]
−

√
h2

x + h2
z

∑
j

(−1) j S̃z
j − J (� − 1) sin α cos α

×
∑

j

(
S̃x

j S̃
z
j+1 + S̃z

j S̃
x
j+1

)
. (A7)

Here, the parameters tan α, J ′
1, and J ′

2 are given by

tan α = hx/hz, (A8)

J ′
1 = J

2
(cos2 α + � sin2 α + 1), (A9)

J ′
2 = J

2
(cos2 α + � sin2 α − 1). (A10)

When � = 1 (i.e., the Heisenberg model or K = 1 in the
Luttinger model), it is obvious that H ′ preserves the original
SO(3) symmetry. Hence, we can immediately conclude that its
bosonized form must take the same form as Eq. (A4) at K = 1
with the two cosine terms being combined. This explains
Eq. (24) in the main text.

Going away from � = 1 (i.e., K �= 1 in the corresponding
Luttinger model), H ′ no longer takes the form of an XXZ
model. As we only focus on the Luttinger model at K ≈ 1,
the corresponding J ′

1 ≈ J and J ′
2 ≈ 0 in H ′ as � ≈ 1. In other

words, the first line of Eq. (A7) takes the form of an XY Z
model with a small anisotropy J ′

2 between the XY terms. This
can be bosonized [45]:

H1 =
∫

dx

{
ṽ

2

[
K̃

(
∂x θ̃

)2 + 1

K̃
(∂xφ̃)2

]

−
√

g2
S + g2

C cos (
√

2πφ̃) + λ cos (2
√

2πθ̃ )

}
.

(A11)

Here, λ ∝ J ′
2 
 1. Notice that the Luttinger parameter K̃ �= K

in HL. Meanwhile, we know that K̃ ≈ 1, so the term propor-
tional to λ is less relevant than the term which is proportional
to (g2

S + g2
C )1/2. Now, we move to the bosonization for the

second line of H ′ and only keep the most relevant terms:

H2 =−J

2
(� − 1) sin 2α

∫
dx {u1 cos (

√
2πθ̃ ) cos (

√
2πφ̃)

+ u2 cos (
√

2πθ̃ ) sin (
√

2πφ̃)}. (A12)

The bosonized model H1 + H2 cannot be recast in the form
of HL in Eq. (A4). This is expected because the original
U(1) symmetry for the total magnetization in the XXZ model
(here, we mean the model without the staggering field) has
been hidden by the rotation in Eq. (A6). When � ≈ 1, H2

corresponds to a small nonlinear perturbation to H1. Before
the rotation, HXXZ should describe a gapless phase as the cor-
responding HL we considered in the main text does describe
a gapless phase. This gaplessness cannot be altered by the
rotation in the spin-quantization axis. Hence, H2 will need
to flow to zero in the low-energy limit. This in turn renor-
malizes K̃ → K̃ ′ in H1. Although we cannot determine the
value of K̃ ′ by analyzing the XXZ model, the eventual fixed
point of the continuum model must remain a Luttinger liquid,
with the Luttinger parameter being determined in the main
text.

APPENDIX B: APPROXIMATION TO THE REGION
OF SUPERSOLID SOLUTIONS IN EQ. (73)

The region in which the supersolid solution exists (i.e.,
g2

S > 0 and g2
C > 0) are given in Eq. (73). Here, we derive

an analytic approximation to the region. This provides a bet-
ter understanding of the asymptotic behavior of the system
near the self-dual point. Since x = W0(y) is the solution to
the equation y = xex and W0(y) is a monotonic increasing
function for y > 0, it is possible to invert Eq. (73) for ε > 0
as follows:

3 − ε

2 + J
exp

[
(1 − J )(3 − ε)

2(2 + J )ε

]
<

3

4zης1/3 jS
<

3 + ε

1 + 2J

× exp

[
(1 − J )(3 + ε)

2(1 + 2J )ε

]
. (B1)

It is reminded that our work focuses on the region with ε ≈ 0
and J = 1. Hence, we expand the inequality in the first order
of ε and J − 1. This gives

(
1 − J − 1

3
− ε

3

)
exp

(
−J − 1

2ε

)
� 3

4zης1/3 jS

�
[

1 − 2(J − 1)

3
+ ε

3

]
exp

(
−J − 1

2ε

)
. (B2)

At the first glance, there is an essential singularity in the ex-
ponential function. Nevertheless, we know that J = 1 must be
satisfied at ε = 0 [36]. Hence, the exponential function does
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not diverge there but being indeterminate. After a straight-
forward manipulation and only keeping the most significant
terms, one can obtain

2ε

(
1 − 2ε

3

)
ln

(
4zης1/3 jS

3

)
− 2ε2

3
� J − 1

� 2ε

(
1 − 4ε

3

)
ln

(
4zης1/3 jS

3

)
+ 2ε2

3
. (B3)

Using similar procedure, one can also obtain an approximate
inequality for Eq. (73) for ε < 0. It turns out that the result
is the same as Eq. (B3). Recall that jS = JS/�

2 
 1, so
the logarithmic function is negative. Hence, the inequality is
consistent with our assumption that ε and J − 1 have opposite
signs. Although jS 
 1, the logarithmic dependence of it
strongly suppresses its contribution relative to the quadratic
dependence of ε2. Therefore, the region in which the coexist-
ing orders may exist becomes very narrow as ε → 0.

APPENDIX C: DERIVATION OF EQ. (83)

In this Appendix, we examine the self-consistency equa-
tions and derive a simple form for the energy of the mean-field
ground state in the supersolid state. First, we write Eq. (45) in
the following form:

E (Z ) = −�2F (Z )

(
g2

S + g2
C

�4

)2(1−Z )/(3−4Z )

, (C1)

Z = ε

(
g2

C − g2
S

g2
C + g2

S

)
= ε

(
1 − μ2

1 + μ2

)
. (C2)

Without expanding E (Z ) in a power series of ε, the self-
consistency equations are

− gS

zJS
= E

gC

{
∂ ln F

∂μ
+ ∂

∂Z

(
2 − 2Z

3 − 4Z

)
∂Z

∂μ
ln

(
g2

S + g2
C

�4

)

+ 4(1 − Z )

3 − 4Z

(
gC

gS

)(
g2

S

g2
S + g2

C

)}
, (C3)

− gC

zJC
= − gSE

g2
C

{
∂ ln F

∂μ
+ ∂

∂Z

(
2 − 2Z

3 − 4Z

)
∂Z

∂μ
ln

(
g2

S + g2
C

�4

)

− 4(1 − Z )

3 − 4Z

(
gC

gS

)(
g2

C

g2
S + g2

C

)}
. (C4)

By a simple rearrangement of terms, one has

−gC

gS

(
g2

S

zJSE

)
= ∂ ln F

∂μ
+ ∂

∂Z

(
2 − 2Z

3 − 4Z

)
∂Z

∂μ
ln

(
g2

S + g2
C

�4

)

+ 4(1 − Z )

3 − 4Z

gC

gS

g2
S

g2
S + g2

C

, (C5)

gC

gS

(
g2

C

zJCE

)
= ∂ ln F

∂μ
+ ∂

∂Z

(
2 − 2Z

3 − 4Z

)
∂Z

∂μ
ln

(
g2

S + g2
C

�4

)

− 4(1 − Z )

3 − 4Z

gC

gS

g2
C

g2
S + g2

C

. (C6)

From the above two equations, we immediately obtain

− g2
S

zJS
− g2

C

zJC
= 4(1 − Z )

3 − 4Z
E . (C7)

This is exactly Eq. (83) in the main text.
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