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Optimization strategies developed on NiO for Heisenberg exchange coupling calculations using
projector augmented wave based first-principles DFT+U+J
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High-performance batteries, heterogeneous catalysts, and next-generation photovoltaics often centrally in-
volve transition metal oxides (TMOs) that undergo charge or spin-state changes. Demand for accurate DFT
modeling of TMOs has increased in recent years, driving improved quantification and correction schemes for
approximate DFT’s characteristic errors, notably those pertaining to self-interaction and static correlation. Of
considerable interest, meanwhile, is the use of DFT-accessible quantities to compute parameters of coarse-
grained models such as for magnetism. To understand the interference of error corrections and model mappings,
we probe the prototypical Mott-Hubbard insulator NiO, calculating its electronic structure in its antiferromag-
netic I/II and ferromagnetic states. We examine the pronounced sensitivity of the first-principles calculated
Hubbard parameters U and J to choices concerning projector augmented wave (PAW) based population analysis,
we reevaluate spin quantification conventions for the Heisenberg model, and we seek to develop best practices
for calculating Hubbard parameters specific to energetically metastable magnetic orderings of TMOs. Within this
framework, we assess several corrective functionals using in situ calculated U and J parameters, e.g., DFT+U and
DFT+U+J. We find that while using a straightforward workflow with minimal empiricism, the NiO Heisenberg
parameter RMS error with respect to experiment was reduced to 13%, an advance upon the state-of-the-art.
Methodologically, we used a linear-response implementation for calculating the Hubbard U available in the
open-source plane-wave DFT code ABINIT. We have extended its utility to calculate the intra-atomic exchange
coupling J; however, our findings are anticipated to be applicable to any DFT+U implementation.
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I. INTRODUCTION

Antiferromagnetic transition metal oxides (TMOs) are
increasingly vital constituents of many technologies, from
high-performance battery cathodes [1–5], to water-splitting
catalysts [6,7], to efficient photovoltaic devices for sustain-
able energy storage [8–10]. Understanding the macroscopic
magnetic properties of this class of material requires a sophis-
ticated description of the competing spin-related energy scales
relevant at microscopic scales.

A variety of simulation techniques exist to calculate the
material properties of TMOs, such as DMFT [11–14], quan-
tum Monte Carlo [15–18], and coupled cluster methods
[19–21]. Each method comes with its own strengths and
weaknesses, regimes of applicability, and computational cost
and scaling. For example, among the more computationally
inexpensive of such techniques is density functional theory
(DFT), a popular electronic structure method that predicts
material properties from first principles. However, it is well
documented that approximate DFT struggles to accurately
describe the strongly correlated electron systems for which the
TMO class is prototypica [22–28]. By strongly correlated, in
this context, we refer to the poor description of the electronic
structure associated with localized subspaces within the local
(LDA) and semilocal (GGA) mean-field approximations to
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the XC energy functional [29]. This results from the challenge
of describing exchange and correlation effects with only a
local or semilocal functional dependence, and based on a
single-determinant reference system [25,26,30–32].

Chief among the characteristic errors in the available
computationally tractable local or semilocal approximate
functionals [22–24] is the self-interaction error (SIE), that is
the spurious exposure of an electron to its own Coulombic
potential, and more broadly, the many-body SIE or delocal-
ization error, a tendency to artificially diffuse the electron
density [25–28,33]. Less discussed, but no less pervasive, is
the static-correlation error (SCE) that particularly arises in
degenerate and multivalence systems and, more generally, in
systems of significant multireference character.

Computationally inexpensive techniques that may be inter-
preted as rectifying SIE, specifically, include the Hubbard-like
corrective functionals. Originally inspired by the Hubbard
model, DFT+U and related functionals [e.g., DFT+U,
DFT+(U-Jz)] append to the approximate DFT Hamiltonian
certain compensating energy terms that penalize fractional
electron charges within defined subspaces. Moreover, a
steadily increasing body of literature finds associations be-
tween SCE and the parameter Jz (simply denoted J in the
literature; renamed here only to avoid confusion with the
Heisenberg J) [28,34–36]. The efficacy of Hubbard corrective
techniques depends on the underlying exchange-correlation
functional, as well as the appropriate prescription of the
accompanying constants, the Hubbard U and intra-atomic
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FIG. 1. The magnetic orderings of monoxide antiferromagnetic TMOs crystallizing in the rock salt structure, oxygen atoms (orange) and
TMs (blue). Isomagnetic planes represented by color gradients: spin up (green) and spin down (navy).

exchange coupling Jz (collectively referred to herein as the
Hubbard parameters) [34,37–40].

Many readily-available DFT programs have an implemen-
tation of DFT+U in different guises; however, relatively few
among them have utilities for calculating the Hubbard pa-
rameters from first principles. In preparation for the present
paper, we analyzed in detail the numerical performance of a
linear-response implementation for calculating the Hubbard
U that is embedded in the projector augmented wave (PAW)
[41] functionality of the open-source plane-wave DFT pack-
age ABINIT [42,43]. Furthermore, we extended its capability
to also calculate the parameter Jz from first principles. Our
technical study here has led to the development of what is
now called theABINIT LRUJ utility [44].

Within the context of Hubbard-corrected DFT, much
scientific attention is directed towards understanding the
effect of the corrective functionals and their parameters
upon bond distances, band gap predictions [45–47], total
energy differences [48–54], and other parameterized spec-
troscopic properties. Meanwhile, comparatively few studies
have probed how DFT+U(+J) and related functionals im-
pact metrics of magnetism, such as the magnetic exchange
parameters in the Heisenberg model [54,55]. When calcu-
lated using total energy differences, these parameters become
valid ground-state DFT quantities, and they thereby become
concise indicators of the reliability of DFT+U(+J) total
energies. Magnetic exchange parameters thus constitute expe-
dient indicators of the quality of first-principle DFT+U(+J)
total energy differences, which are often supposed to be within
the method’s regime of reliable applicability, albeit without
much concrete literature evidence of that to date. It is es-
sential, and even more so due to its widespread adoption, to
work to establish the regime of reliability of first principles
for DFT+U(+J) total-energy differences, and to explore and
delineate its remaining weaknesses and ambiguities.

For these reasons, and given this context, we under-
took a multi-pronged investigation designed to systematize
the complexities of the magnetic Heisenberg model, first-
principles Hubbard corrective functionals, intra-atomic spin
parametrization schema, and the PAW method for the proto-
typical antiferromagnetic TMO, nickel oxide (NiO).

Following a working description of our methodology in
Sec. II, we examine, in Sec. III A, the sensitivity of the in situ
calculated Hubbard parameters U and Jz with respect to the
available charge population analyses of the PAW method.

With Hubbard parameters defined, we map selected points
in the energy-magnetization landscape of bulk NiO onto
the classical Heisenberg model by calculating its electronic
structure in its three main stable, metastable, or enforceable
magnetic configurations (AFI—antiferromagnetic in the [001]
direction, AFII—antiferromagnetic in the [111] direction, and
ferromagnetic, FM; see Fig. 1). We extract Heisenberg (in-
teratomic) exchange coupling parameters in terms of strict
density-functional accessible total energy differences between
these magnetic configurations.

In Secs. III B and III C, we explore the potential of in-
corporating not only total energies but also local moments
in the mapping onto the Heisenberg model, and we assess
several different ways to perform this. In doing so, we effec-
tively reevaluate Heisenberg exchange coupling calculation
conventions and scrutinize a variety of moment estimation
techniques, both classical and semiclassical. Adopting this
framework enables a direct and rigorous assessment of the
efficacy of 6+ corrective Hubbard functionals via the quality
of the Heisenberg exchange coupling parameters as compared
to both experiment (i.e., magnon frequencies or inelastic neu-
tron scattering) and ostensibly more comprehensive theory
(e.g., hybrid functionals). We relay this comparative analysis
in Secs. III D–III F, finishing with a closer look at the effect of
Hubbard treatment on the O-2p sites in Sec. III G.
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A. NiO

As a first-row transition metal harboring several accessi-
ble oxidation states, nickel is a relevant candidate for many
sustainable technologies. Its monoxide, NiO, is promising as
a p-type semiconductor with multiple technological applica-
tions, such as in photocathodes [56–58], lithium-ion battery
cathodes for vehicles [59], OH- carrier battery cathodes for
portable electronics [60], efficiency enhancers in solar cells
[61], among others. It is relatively nontoxic, has a wide and
tunable band gap (around 3.5–4.0 eV) [61–64], and is relative
stable.

NiO crystallizes above the Néel temperature (523 K) in
the rocksalt structure (space group Fm3m) with an exper-
imental lattice parameter consistently estimated at around
4.17 Å (7.88 a0) across a variety of diffraction studies
[65–73]. Other experiments indicate that Ni sites in bulk NiO
take on magnetic moments between 1.96 μB [70] and 2.2
μB [73–76]. While under certain conditions the TMO can
be observed in many magnetic orderings, its ground-state
magnetic ordering (MO) is AFII, the isomagnetic planes of
which alternate antiferromagnetically in the [111] direction
(see schematic in Fig. 1) [65–67]. NiO AFI and FM mag-
netic states yield experimental lattice parameters of 4.168 and
4.171 Å, respectively [77].

Bulk NiO is a well-studied system with a wealth of lit-
erature attesting to its total energy difference parameters. Its
status as the prototypical Mott-Hubbard insulator renders NiO
a good benchmark system through which to observe the effect
of SIE corrective techniques on total energies. To date, rela-
tively little is known of the systemic effects of the Hubbard
parameters on magnetic exchange interactions in NiO, specif-
ically of the Heisenberg model.

II. METHODOLOGY

A. The formalism of DFT+U

Inspired by the Hubbard model [78], DFT+U
[45–47,79,80] offers effective treatment of SIE in
well-localized electronic states while minimizing additional
computational expense [81]. These corrective functionals are
applied to predefined localized subspaces that are supposed
to be poorly described by the underlying XC functional [29].
The total energy in DFT+U is defined as

EDFT+U[ρ̂] = EDFT[ρ̂] + EU
[{

niσ
mm′

}]
, (1)

where ρ̂ is the Kohn-Sham density matrix, EDFT[ρ̂] is the
approximate DFT total energy, EU is the corrective term,
and {niσ

mm′ } refers to the set of projected Kohn-Sham density
matrices of the local atomic subspaces that we wish to treat for
SIE on atom i with spin σ (e.g., those spanned by atomic-like
3d orbitals on Ni atoms). Although all electronic subspaces
are afflicted with SIE to some extent, not all are treated
with Hubbard corrections, only those with some occupancy
matrix eigenvalues significantly deviating from integer values
and, correspondingly, spectral weight adjacent to the band-gap
edges. Strictly speaking, many-body SIE is uniquely defined
at present only for open quantum systems in their totality, and
partitioning by subspaces implies that pragmatic choices are
being made.

The original derivations of DFT+U considered the energy
EHub associated with the Hubbard model and a single-
determinant assumption for the wavefunction, together with
a double counting term Edc for such a component of the
latter that may be already included in the underlying Hartree
and XC energy. The double-counting correction is usually
considered to be dependent solely on Niσ , the total electron
occupation of each subspaces and spin component. The exact
form of Edc is not precisely known, a consequence of the
fact that the XC constituent of the Kohn-Sham Hamiltonian
is mutually unknown. One rotationally invariant formulation
of DFT+U is known as the Dudarev functional [79,82],

EU
[{

niσ
mm′

}] = EHub
[{

niσ
mm′

}] − Edc[{Niσ }]

=
∑
i,σ

Ui
eff

2
Tr[niσ (1 − niσ )]. (2)

This formulation of DFT+U makes it obvious that the
corrective terms preceded by the Hubbard parameters penal-
ize fractional occupation of atomic orbitals, for positive Ui

eff
values. When an eigenvalue of niσ assumes an integer value,
the corresponding contribution to EU is zero. By contrast,
when that eigenvalue is maximally fractionalized at 0.5, the
contribution to EU is also maximized.

In Eq. (2), the effective parameter is Ueff = U − Jz, where
U is the Hubbard parameter and Jz is the intra-atomic ex-
change parameter, more often denoted J but renamed here
merely to avoid confusion with interatomic Heisenberg pa-
rameters. The degree of corrective power of the functional,
then, is determined by the magnitudes of U and Jz. In the
literature, Ueff and U are often referenced interchangeably
depending on the consideration given to Jz [83]. An alterna-
tive and more elaborate functional that we reference here as
DFT+U+Jz, in which Jz is not simply a mitigator of U, is
described in Liechtenstein et al. [84]. For atomic s orbitals, the
Liechtenstein functional reduces to the Dudarev functional of
Eq. (2) with Ui = Ueff.

It is worth noting that the Jz parameter computed and
employed here pertains, as defined, only to the spin popula-
tion present in collinear spin DFT. It is elsewhere sometimes
termed the Hund’s coupling strength because it is affiliated
with Hund’s coupling-related exchange splitting that man-
ifests in collinear-spin DFT. Strictly speaking, however, to
measure that mechanism’s strength, one would look instead
at the energy prefactor of the effective interaction of the form
S · S. This for vector spin S, either on a per-spatial-orbital or
per-atomic-subspace basis, depending on the preferred defini-
tion as opposed to its z axis projection Sz. It is further worth
noting that, based on recent investigations into the suitability
of DFT+U-like functionals in correcting SIE and SCE, the
two functionals used here, when applied to s orbitals including
terms proportional to a positive-valued first-principles Jz, do
not succeed in correcting for SCE and may even increase the
magnitude of SCE [36].

Which Hubbard functional, and which subspaces require
numerical attention in excess of the underlying XC functional,
are both topical inquiries that this article does not directly
address for NiO. For the purposes of brevity, we restrict
our assessment to DFT+U, DFT+Ueff and DFT+U+Jz, built
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upon the Perdew-Burke-Ernzerhof (PBE) GGA [85] XC func-
tional. We first test the effect of these functionals when in situ
treatment is administered to the Ni 3d orbitals alone (requiring
calculation and application of Ud and Jd

z ). Then, we test the
same of functionals when in situ treatment is administered to
both the Ni 3d and O 2p orbitals together (requiring calcula-
tion and application of Ud , Jd

z , Up, and Jp
z ; collectively referred

to in each functional as Ud,p and Jd,p
z ). More information is

provided in Sec. II E.

B. Calculation of the Hubbard parameters via linear response

The Hubbard parameters U and Jz are intrinsic, measurable
ground-state properties of any multi-atomic system treated
with a given approximate XC functional and thus objects
that admit first-principles calculation [80,86]. They are related
to the interaction contribution to spurious curvature of the
total energy with respect to subspace occupation and magne-
tization, respectively. When properly calculated, the Hubbard
parameters are expected to appropriately set the strength of
the corrective functionals and precisely cancel the systematic
errors characteristic of approximate DFT [80,86,87].

Many methodologies for the in situ calculation of the
Hubbard U parameter exist, such as minimum tracking linear
response [88,89], the constrained random phase approxima-
tion (cRPA) [90,91], and the more recent methodology based
on density functional perturbation theory (DFPT) [92], to
name a few. We focus here on the method from Cococcioni
and de Gironcoli [37], who, following from the work of Pick-
ett et al. [87], developed a practical protocol for calculating
U from first-principles called the self-consistent field (SCF)
linear response method. This method eliminates reliance on
external empirical data and paves the road for more accurate
simulations of obscure or yet-to-be discovered materials. We
refer the reader to these references for a more comprehensive
picture of the theory and the mathematical formalism behind
the SCF linear response [37,87,93–95].

The SCF linear response approach begins with the ap-
plication of a small, uniform perturbation to the external
potential of the subspace for which U is under assessment.
The change in electronic occupation induced by that perturba-
tion is then monitored. The occupancy response is, for small
perturbations, ordinarily expected to be a linear function of
the perturbation’s magnitude.

Formulated practicably, the SCF linear response procedure
for calculating U is as follows [35,89]. To begin, we converge
a calculation to the ground state. We then individually (in
parallel restarts) apply several weak perturbations of strength
{α} in equal magnitude to the up and down spin channels of
the external potential. In the basis of the orbitals that define
the subspace i, this contribution to the external potential V i,σ

mm′
is defined in terms of the subspace projection operator Pi

mm′ by

V i,σ
mm′ = αPi

mm′δm′m. (3)

Here, Pi
mm′ is replaced by P̃i

mm′ via Eq. (11) in the PAW case,
which may be approximated in different ways as we later dis-
cuss. Once the potential perturbation is applied, but before the
density is calculated and the Hamiltonian updated to start the
new iteration, the spin-up and spin-down charge occupations
on the perturbed atom change in response. Next, we must

distinguish between the interacting response and the response
arising from a conjectured system in which electrons do not
interact [i.e., one with Kohn-Sham (KS) energy] [80,93,96].
Within this system, we are interested only in the change in
total noninteracting occupation (n↑

0 + n↓
0 ) of subspace S with

respect to α, which we call the noninteracting response func-
tion χ0, defined as

χ0 = d (n↑
0 + n↓

0 )

dα
. (4)

We harvest n↑
0 and n↓

0 , the noninteracting spin-up and spin-
down occupations, respectively, after the first self-consistent
iteration. The system then attempts to screen the perturbation,
effectively compensating for the disturbance by reorganiz-
ing its charge once again until, after the last self-consistent
iteration, it reaches an equilibrium state. The derivative of
this equilibrium occupation with respect to the perturbation
magnitude is the interacting response function,

χ = d (n↑ + n↓)

dα
, (5)

where n↑ and n↓ are the ground-state occupations of S har-
vested after the last self-consistent iteration. Finally, we invert
the response functions and take their difference to acquire the
Hubbard U via the Dyson equation

U = χ−1
0 − χ−1. (6)

The linearity condition manifests primarily in the nature
of χ and χ0 as functions. However, the response behavior is
not always linear. Figure 2 demonstrates this for an excep-
tionally ill-behaved system. With some exceptions, linearity
is expected in the limit of small perturbations, but this region
does not always exist, particularly when the response is exces-
sively hard (e.g., close to full filling). If the perturbations are
too large, of course one can generally expect some nonlinear
behavior. Nonlinearity, and sometimes asymmetry across the
zero-perturbation axis, is also expected if the system has a
particularly shallow energy landscape, (that is, when the re-
sponse is excessively soft, e.g., close to a phase transition).
To compensate for such anomalies, we may fit a regression
function (typically polynomial) to the data and differentiate it
at α = β = 0.0 eV to find the response functions.

Ideally, U is calculated for a cell of infinite size such that
the perturbed subspace is isolated from its periodic images.
Since this is unfeasible computationally, U must be converged
with respect to an increasing number of atoms, organized into
a roughly cubic supercell to isotropically distribute the effect
of the perturbation.

The intra-atomic exchange parameter Jz can be calcu-
lated similarly [35,89], following the proposal of Ref. [98].
However, instead of monitoring the change in total subspace
occupancy as a function of the applied perturbation α, the Jz

relates to changes in magnetization, or difference between the
up and down spin occupancies (i.e., n↑ − n↓), in response to
perturbations {β} applied in positive magnitude to the spin-up
potential and in negative magnitude to the spin-down
potential, specifically (adding PAW augmentation as required)

V i,↑
mm′ = βPi

mm′δm′m, V i,↓
mm′ = −βPi

mm′δm′m. (7)
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FIG. 2. (Top) Example of the linear response (LR) procedure
with first-order polynomial regression only, conducted to find the
Hubbard U for O 2p orbitals on AFII NiO. (Bottom) Jz parameter LR
for Ni 3d orbitals on AFI NiO. Line color indicates first-, second-
or third-order polynomial fit on the data. Axes are aligned with
ground-state (unperturbed) data. Note that χ0, χM0 data points and
fits are transformed to account for technical considerations [97].

Noting the minus-sign convention, within SCF linear re-
sponse Jz is given by [35]

Jz = dβ

d (n↑ − n↓)
− dβ

d (n↑
0 − n↓

0 )

= χ−1
M − χ−1

M0
. (8)

In the Appendix we show that χ0 and χM0 are equivalent,
a particularly convenient result for verifying a correct imple-
mentation. We note in passing that Eqs. (6) and (8) have been
derived for use within approximate collinear-spin Kohn-Sham
DFT, where only the z projection of spin magnetic moments
is considered in the treatment of exchange-correlation effects.
The extension of such error quantities to approximate non-
collinear spin DFT is a worthy topic outside the scope of this
investigation.

We emphasize that we denote the intra-atomic exchange
parameter Jz as such only to avoid confusion with the in-
teratomic Heisenberg exchange parameters J , not because it
is thought to differ significantly from the familiar J in the
context of DFT+U type functionals. We note that, defined
as they are here, the U and Jz can be thought of as error
descriptors for SIE and SCE, respectively, in the approximate
exchange-correlation functional within the subspace-bath de-
coupling picture of DFT+U rather than as absolute interaction
strengths. Furthermore, on the topic of interpretation and ter-
minology, we note that Jz is an exchange parameter only

in the magnetic sense of that word, and it may comprise a
significant or even dominant contribution from correlation (as
distinct from exchange, in the sense of accessibility at the
Hartree-Fock level of theory). Indeed, as calculated here it
will, by construction, contain a “spin-flip exchange” contri-
bution, which is a contribution to correlation as it does not
appear in a Hartree-Fock treatment [99].

Based on these definitions, notwithstanding, one may
deduce that changes in the atomic magnetic moments—
quantities that are informed by the MO of the system—will
induce noticeable differences in the Hubbard parameters. That
is, the U and Jz for a particular subspace in FM NiO is
expected to be different than those calculated for AFI or AFII

NiO. However, it is not clear whether the total energies result-
ing from the application of these MO-specific parameters to
their corresponding system remain comparable to each other.
We test and discuss this point in Sec. III D.

C. PAW-based population analysis

The special ingredient in both the linear response deter-
mination of the Hubbard parameters as well as their host
corrective functionals is the subspace occupation matrix niσ

and its elements {niσ
mm′ }. The DFT+U(±Jz) occupation matrix

elements are defined as

niσ
mm′ =

∑
k,v

f σ
kv

〈
ψσ

kv

∣∣φi
m′

〉〈
φi

m

∣∣ψσ
kv

〉
, (9)

where ψσ
kv is the Kohn-Sham (KS) orbital corresponding to

k-point k and band index v, φi
m is the localized basis function

assigned to magnetic quantum number m on atom i, and f σ
kv

is the Fermi-Dirac distribution function applied to the KS
orbitals.

The machinery that isolates charged subspaces for pop-
ulation analysis are the projector functions. The occupation
matrix in Eq. (9) is a generalized projection of the KS den-
sity matrix onto a localized basis set of choice, where that
choice is typically limited by the options made available by
the developers of the DFT+U(±Jz) implementation at hand.
Reliance on projector functions that are unsuitable reflections
of the correct localization, either by excessive localization,
unphysical discontinuities, or by excessive overlap [100], will
result in erroneous population analysis and, by consequence,
inefficient or otherwise defective corrective protocol [37].

In ABINIT, the DFT+U(±Jz) formalism is built into the
program’s projector augmented wave (PAW) [41] function-
ality, so the population analysis relies heavily on the PAW
projectors. While an understanding of PAW and its pseudopo-
tential generation schemata is not imperative for the following
sections, we encourage the reader to consult, for a more global
understanding of the PAW functionality, Refs. [[41,43,101–
104]]. It suffices to know that the namesake PAW projectors
[41] are one of three predefined basis sets fed into DFT algo-
rithms via the pseudopotential apparatus. These projectors are
designed to isolate a spherically symmetric, element-specific
region—an augmentation sphere—about each atomic site, us-
ing a relatively small cutoff radius rc.

Within PAW, the DFT+U(±Jz) occupation matrix ele-
ments are obtained via the pseudo (PS) wavefunctions 
̃σ

kv by
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computing

niσ
mm′ =

∑
k,v

f σ
kv

〈

̃σ

kv

∣∣P̃i
mm′

∣∣
̃σ
kv

〉
. (10)

Assuming that the charge of the subspace under scrutiny
is localized about the atom, we may use the definition of
a local PAW PS operator (Eq. 11 in Ref. [41]) to expand
the pseudized projection operator P̃i

mm′ in terms of the KS
projection operator Pi

mm′ and the PAW basis functions: the
all-electron (AE) basis φI , the PS basis φ̃I , and the projectors
p̃I . That is

P̃i
mm′ = Pi

mm′ +
∑

IJ

| p̃I〉〈φI |Pi
mm′ |φJ〉〈p̃J |

−
∑

IJ

| p̃I〉〈φ̃I |Pi
mm′ |φ̃J〉〈p̃J |, (11)

where I is a shorthand index assigned to sets of (i, �i, m�i , ni),
which respectively refer to the site index, angular quantum
number, magnetic quantum number, and PAW partial-wave
index. Similarly, an analogous set of numbers ( j, � j, m� j , n j)
pertains to a different site J . When Eq. (11) is inserted into
Eq. (10), three terms emerge, two of which cancel because a
requisite in the formation of the PAW basis functions assumes
that

∑
I
| p̃I〉〈φ̃I | = 1 is maintained inside the augmentation

region. Acknowledging that φI = φli,mi,ni = φniYli,mi , we are
left with

niσ
mm′ =

∑
IJ

ρσ
IJ 〈φni |Pi

mm′ |φn j 〉, (12)

where φn are the radial parts of the PAW AE basis functions,
and the PAW-sphere density matrix is

ρσ
IJ =

∑
k,v

f σ
kv

〈

̃σ

kv

∣∣ p̃I

〉〈
p̃J

∣∣
̃σ
kv

〉
. (13)

The distribution of charge density about an atom is, in prac-
tice, oblivious to the sharp truncation of these PAW projectors
at the cutoff radius; even the charge of supposedly localized
orbitals often escapes beyond the confines of the augmenta-
tion sphere. Care must be taken in selecting an appropriate
projector, as the selection can have far-reaching numerical
implications [101–106].

Four PAW occupation matrix projector options are avail-
able in ABINIT. For simplicity and ease of reference, we refer
to each option by the integer value of its ABINIT input file vari-
able, dmatpuopt (Density MATrix for PAW + U OPTion),
which may take on values one through four [107]. When
dmatpuopt = 1, occupations are projections on atomic or-
bitals [43], per the definition

ni,σ
m,m′ =

∑
IJ

ρσ
IJ
〈φni |φ0〉

〈
φ0

∣∣φn j

〉
, (14)

where φ0 are normalized, bound state atomic eigenfunctions
pertaining to PAW partial-wave index ni = 1, drawn from
the list of AE wavefunctions pertaining to the subspace in
question [108] PAW datasets generated via the atompaw code
[103] will always feature a normalized, bound atomic eigen-
function as the first atomic wavefunction of a PAW dataset.
Step 4 on page 2 of Ref. [109] states clearly that atompaw

mandates the use of “atomic eigenfunctions related to va-
lence electrons (bound states)” as the partial waves included
in the PAW basis. Therefore, all PAW datasets generated by
atompaw, including the JTH sets on PseudoDojo [110], have
atomic eigenfunctions as the first atomic wavefunctions of the
correlated subspace. Their normalization, however, depends
on the pseudo partial-wave generation scheme. atompaw pro-
vides two options for this scheme: the Vanderbilt or the
Blöchl. We are able to reasonably infer that the JTH table
of PAW datasets [110] available on the PseudoDojo website,
match all criteria as a suitable dataset with which one may
use dmatpuopt = 1. Importantly, the integrals 〈φni |φ0〉 and
〈φ0|φn j 〉 are computed within the PAW augmentation sphere.

By contrast, when dmatpuopt = 2, which is the de-
fault setting, occupations are integrated in PAW augmen-
tation spheres of charge densities decomposed by angular
momenta, per

ni,σ
m,m′ =

∑
IJ

ρσ
IJ 〈φni |φn j 〉. (15)

Again, 〈φni |φn j 〉 is an integral defined only in the PAW aug-
mentation region [43]. Equation (15) may be derived from
Eq. (10) by setting [106,111]

Pi
mm′ (r, r′) = 1◦(r)δ(|r′ − Ri| − |r − Ri|)

× Y�m(r̂)Y ∗
�m′ (r̂′), (16)

where δ is the Dirac-Delta function that effectively counts
spatial overlap, 1◦(r) is a step function equal to unity when
r is inside the augmentation region and zero elsewhere, and
Y�m are the spherical harmonics.

When dmatpuopt � 3, occupations take the same form
as Eq. (14) scaled by normalization constants. When
dmatpuopt = 3 or dmatpuopt = 4,

ni,σ
m,m′ = 1

N (dmatpuopt−2)
0

∑
IJ

ρσ
IJ 〈φni |φ0〉〈φ0|φn j 〉, (17)

where N0 is a normalization constant representing the overlap
between atomic wavefunctions of the bounded AE basis func-
tion inside the PAW augmentation sphere, delimited by cutoff
radius rc, per

N0 =
∫ rc

0
φ2

0 (r) dr. (18)

The use of dmatpuopt = 3 is equivalent to Scheme oB in
Eq. (C2) in Geneste et al. [105], wherein the PAW-truncated
atomic orbitals φ0 are effectively renormalized according to
the percentage of the total orbital charge inhabiting the aug-
mentation region. When dmatpuopt = 4, both the φ0 and
the part of the KS orbital falling inside the augmentation
sphere are supposedly renormalized (only if the KS orbital
matches the atomic orbital in shape), so that N0 is squared in
the denominator.

Based on the description in Timrov et al. [112], the plane-
wave DFT code QUANTUM ESPRESSO [113,114] uses none
of these options [see Eqs. (9), (10) and (A4) in Timrov et al.].
Instead, this schema takes the full PS atomic orbitals and
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TABLE I. Exchange coupling parameters J∗
i j across various con-

ventions of the Heisenberg Hamiltonian in terms of the exchange
coupling parameters Ji j used here, where J∗

i j are the parameters and
γ the real constant pertaining to that particular convention. The
Heisenberg convention used here (orange) assumes that there is no
interaction between one magnetic site and itself. Sometimes this
assumption is made explicit by replacing the sum over i j with that
over i 	= j. The use of angle brackets denotes a set of all pairs {i, j}
excluding { j, i}. A similar table may be found in He et al. [115].

augments them with an overlap operator defined in terms
of the overlap of the PAW basis functions. In this way, the
population analysis avoids relying on orbitals truncated at
the PAW cutoff radius and is conducted without significant
approximation. For this reason, we calculate the Hubbard U
via linear response first in QUANTUM ESPRESSO for use
as a benchmark to determine which PAW-based population
analysis involving truncated orbitals is most effective. The
results of this investigation are itemized in Table III.

D. The Heisenberg model

The prevalence of DFT calculations in predicting proper-
ties of quantum materials has impelled the development of
several effective spin Hamiltonian methods that are compat-
ible with electronic structure theory. Many of these classical
methods rely on the justifiable assumption that electron spin,
and thus electron magnetic moments, can be treated as dis-
crete vectors, which maintain rigidity in their magnitudes
despite rotation.

The simplest effective spin Hamiltonian is the classical
Heisenberg model, which long predates DFT and assumes that
the magnetic moments of electrons are localized, thus defining
the Hamiltonian

H = −
∑

i j

Ji jSi · S j, (19)

where i and j represent all magnetic centers of the system
under consideration, and Si and S j are their corresponding
total atomic spin vectors. In the literature there is no unique
formulation of Eq. (19), and variation exists based on the
definition of the exchange coupling parameters Ji j and the
constants (i.e.,–1, 2, 1/2) that they absorb. Table I outlines
these variations in convention and how they relate to that used
here.

We dissect Eq. (19) in the following sections to further
deduce how it may best operate in a DFT context.

1. Exchange coupling parameters

The Heisenberg model quantifies the phenomenon of in-
teratomic exchange, an effective long-range manifestation of
the Pauli exclusion principle, which forbids doubly occupied
quantum states. Exchange in the intra-atomic short range,
by contrast, leads to Hund’s rules and is several orders of
magnitude stronger than its interatomic counterpart [116].
The exchange coupling parameters between magnetic atom
centers Ji j can be considered spin-based measures of repulsion
between electrons on neighboring atoms. When Ji j > 0, a
ferromagnetic interaction is preferred, meaning the atoms will
adopt the same spin orientation, while Ji j < 0 indicates the
atomic spins would rather oppose each other in an antiferro-
magnetic ordering.

We consider two exchange parameters (refer to the inset
in Fig. 3 for visualization) following Refs. [117–119]. The
first is exchange between nearest-neighbor (NN) Ni atoms
(J1), wherein the overlap of the t2g states of the 3d orbitals
on NN Ni atoms gives rise to a strongly AF direct exchange.
This antiferromagnetic disposition is mitigated, however, by a
primarily FM 90◦-oriented indirect exchange, also known as
superexchange. This round-the-corner exchange mechanism
is strongly mediated by the intra-atomic Coulomb exchange
between orthogonal 2p orbitals on the pivotal oxygen atom.
The schematic in Fig. 3 illustrates why we expect this superex-
change to favor ferromagnetic alignment. Overall, we expect
the FM superexchange to overpower the AF direct exchange,
meaning that J1 will adopt a positive value overall.

The schematic in Fig. 3 also illustrates why we expect J2, a
quantifier of next-nearest-neighbor (NNN) exchange interac-
tions separated by 180◦, to adopt a profoundly negative value,
indicating strong preference for AF alignment.

With these phenomena in mind, we map the electronic
Hamiltonian onto the Heisenberg model and look at J1 and
J2 of NiO. We opt to compute the exchange coupling param-
eters using total energy differences per Ni-O pair resulting
from relaxing different magnetic configurations of the same
NiO solid in the rocksalt structure. The parameters may be
computed as

J1 = 1
16

(
EAFI − EFM

)
, and (20)

J2 = 1
48

(
4EAFII − EFM − 3EAFI

)
, (21)

where the EMO are the total energies per Ni-O pair achieved
by relaxing NiO in each of its three main stable or metastable
magnetic configurations. These orderings are depicted in
Fig. 1. A similar figure can be found in Ref. [120].

2. Spin parametrization and magnetic moment

An electron with quantum numbers (n, �, m�, ms) will have
spin magnetic moment μs = −geμBs, where ge ≈ 2.002318
is the g factor for a free electron and μB = eh̄

2m = 1
2 [a.u.] is

the Bohr magneton [121,122]. The total spin magnetic mo-
ment is the sum of spin magnetic moments of all electrons
on that atom μS = −geμBS (where S is the summation over
electrons) [122,123]. Referencing atomic magnetic moments
in units of μB, then, S [μB] = −μS/ge. In atomic units, S
[a.u.] = −2μS/ge.
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FIG. 3. Schematic of xy plane (z = 0) of an AFII NiO in the rocksalt structure, demonstrating how the crystal field splitting influences the
preferred orientation of the Heisenberg interatomic exchange interactions J1 (black) and J2 (teal) corresponding, respectively, to the interactions
between nearest neighbor transition metal sites and next-nearest-neighbor TM sites. More information is provided in Sec. II D.

Conventionally, the Si of Eq. (19) are considered (a) projec-
tions (Sz )i of the quantum spin vector Si on the quantization
axis, and (b) of unit magnitude in accordance with nickel’s
expected oxidation state of +2, corresponding to an atomic
magnetic moment of +2 μB (= 1 in atomic units, hence
μS

2 ≈ 1). We seek to reevaluate these conventions given the
multitude of DFT-accessible population analyses that can in-
fluence, to a large degree, the predicted magnetic moment on
Ni atoms.

For example, in Sec. II C, we found that the PAW popula-
tion analysis extends naturally to a definition of the magnetic
moment that is both atom centered and restricted to the aug-
mentation sphere. That is, for magnetic centers, we take(

SAS
z

)
i
=

∫ rc

|r|=0
(ρ↑(Ri + r) − ρ↓(Ri + r)) dr. (22)

However, because the PAW augmentation spheres do not
envelop all the charge in the system, leaving some interstitial
charge uncounted, this option is expected to produce moments
smaller than expected. We may address this by normalizing
the subspace occupations via the projector, as in Sec. II C, and
calculating (

SPAW
z

)
i =

∑
m

ni,↑
m,m − ni,↓

m,m, (23)

which, by consequence, encodes the choice of PAW projectors
described in Sec. II C. Alternatively, we may obtain magnetic
moments via the extraction of Sz from the entire spin density
(SD), by using(

SSD
z

)
i = 1

NNi

∫
|ρ↑(r) − ρ↓(r)| dr, (24)

where NNi is the number of Ni atoms in the system. While
it produces larger magnetic moments, this method is ac-
companied by the particular limitation that the atom-specific
magnetic moments are no longer resolved, and any moments
formed near the oxygen atoms are absorbed into those of the
magnetic centers. It is conventional in the relevant literature to
consider oxygen atoms as mere extensions or mediators of the
magnetic character of the TM magnetic centers, thereby re-
stricting assessment of exchange interactions to those between
Ni atoms. A similar study conducted by Logemann et al. [118]
investigates the appropriateness of this convention. In using
Eq. (24), we follow this study.

It should be noted, however, that the Heisenberg Hamilto-
nian in Eq. (19) calls for the use of the quantum spin vectors
Si, as opposed to their scalar and DFT-accessible counter-
parts, the expectation values of the z axis projection of the
spin angular momentum Sz. Suppose we instead consider an
approximate quantum model in which |S| =

√
〈S2〉. Coupling
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the spins on each magnetic site such that s = 1 for the two
unpaired spins on Ni together, the expectation value of the
spin angular momentum of an atomic system is

|S| =
√

〈S2〉 = h̄
√

s(s + 1)Sz

=
√

2 Sz [a.u.]. (25)

That is, in a sort of crude quantum approximation, we scale
the DFT-accessible magnetic moments, which may be thought
of as time averages of precessing, canted spins, by a factor of√

2. To our knowledge, this approximation has been made to
magnetic properties in other contexts—such as in the works of
Harrison [124], Kotani et al. [125], and Wan et al. [126]—but
not tested systematically against other DFT-accessible spin
objects for NiO.

Once we settle on an appropriate treatment of the spin
vector, we can examine how it factors into the numerical cal-
culation of the exchange coupling parameters. Equations (20)
and (21) can be considered simplifications of a more gen-
eralized set of total energy difference equations under the
Heisenberg model, derived by considering all NN and NNN

of one Ni atom (or Ni-O pair) in the cell. They are solutions to
a system of linear equations mapping the total energy of each
MO onto the Heisenberg model, solutions that simplify when
we impose assumptions that the spin magnetic moments of all
atoms are (a) integers and (b) the same regardless of the cell’s
magnetic environment. That is, the magnitudes of the atomic
magnetic moments are |SFM| = |SAFI | = |SAFII | = 1 in

EFM = E0 − 12J1S2
FM − 6J2S2

FM,

EAFI = E0 + 4J1S2
AFI

− 6J2S2
AFI

,

EAFII = E0 + 6J2S2
AFII

. (26)

Suppose we assume instead that |SFM| 	= |SAFI | 	=
|SAFII | 	= 1. Since DFT uses the noninteger spin degree
of freedom to deepen the total energy well of each MO,
and since that relaxed magnetization is accessible, we can
perhaps explicitly use the final magnetization to better weigh
the energetic contributions of each MO to the exchange
coefficients. Then the system of linear equations in Eqs. (26),
solved for J1 and J2, becomes [127]

J1 = EAFII

(
S2

AFI
− S2

FM

) + EAFI

(
S2

AFII
+ S2

FM

) − EFM
(
S2

AFI
+ S2

AFII

)
4
[
3S2

AFII
S2

FM + S2
AFI

(
S2

AFII
+ 4S2

FM

)] and (27)

J2 = EAFII

(
S2

AFI
+ 3S2

FM

) − 3EAFI S
2
FM − EFMS2

AFI

6
[
3S2

AFII
S2

FM + S2
AFI

(
S2

AFII
+ 4S2

FM

)] . (28)

Note that if we set |SFM| = |SAFI | = |SAFII | = 1 then
Eqs. (27) and (28) reduce to Eqs. (20) and (21).

Exchange coupling parameters that incorporate differences
in magnetization across MOs are not immediately comparable
to those reported in previous studies. We find this is not
so much an artefact of the assumption that |SFM| = |SAFI | =
|SAFII | = σ (where σ is a constant) so much as it reflects
the assumption that σ = 1. As a comparative intermediary,
therefore, we look at the exchange interaction parameters
when the sum of electrons in a Ni atom corresponds directly to
the magnitude of the Ni magnetic moment in the ground-state
magnetic configuration of NiO (i.e., when σ 2 = S2

AFII
[a.u.]).

Under this approach, Eqs. (27) and (28) reduce to

J1 = 1

16 S2
AFII

(
EAFI − EFM

)
and (29)

J2 = 1

48 S2
AFII

(
4EAFII − 3EAFI − EFM

)
. (30)

For the purposes of clarity, we will refer to the first method
of calculating exchange interaction parameters, those embod-
ied by Eqs. (20) and (21), as Method A. Similarly, Eqs. (29)
and (30) are henceforth referenced as Method B, and Eqs. (27)
and (28) as Method C.

E. Computational details

We use different runtime parameters for computing the
Hubbard parameters and applying them due to the different

simulation cell and attendant Brillouin zone sizes needed for
each task. This information, for all parameters that varied
across tasks and MO (FM, AFI, and AFII), are laid out in
Table II.

Otherwise, consistent across all calculations, we use the
Perdew-Burke-Ernzerhof (PBE) GGA [85] XC functional
and the Jollet-Torrent-Holzwarth PBE PAW pseudopotentials
(Version 1.1) [110] generated via atompaw [103]. Derived
from those pseudopotentials, the PAW augmentation sphere
cutoff radius rc used in, for example, Eqs. (16) and (22),
is 1.81 a0 for Ni and 1.41 a0 for O. We use the exper-
imental lattice parameters pertaining to each MO of NiO
specified in Table II, and for those that have metallic char-
acter, we use the Marzari-Vanderbilt smearing scheme [128]
with 0.005 Ha broadening. Furthermore, we enforce a cutoff
energy of 33.1 Ha (44.1 Ha on the PAW atom augmentation
sphere). In terms of the magnetic moment, we extract Sz in
accordance with Eq. (24) using C2x [129].

For brevity, we test six Hubbard functionals: DFT+Ud ,
DFT+Ud,p, DFT+Ud

eff, DFT+Ud,p
eff , DFT+Ud + Jd

z ,
DFT+Ud,p + Jd,p

z . Furthermore, we seek to understand if
total energy differences between MOs are most comparable
when calculated using Hubbard parameters that are (a)
specific to each MO or (b) the same across MOs. To test (a),
we apply each of the aforementioned Hubbard functionals
with MO-specific Hubbard parameters (HPs) to its respective
magnetically ordered version of NiO (that is, FM HPs applied
to FM NiO via each functional, AFI HPs to AFI NiO, and so
on). To test (b), we apply the U and Jz from the ground-state
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TABLE II. Calculation parameters specific to each magnetic ordering of NiO for both the calculation and application of the Hubbard
parameters, respectively. We include here number of atoms, experimental lattice parameter a0, lattice vectors, converged energy tolerance,
k-point sampling, insulating character, and Hubbard U and Hund’s Jz parameters calculated for the Ni 3d and 2p subspaces respectively,
calculated with the population analysis schema of Eq. (17) (see Sec. II C for a discussion of population analysis schemes).

DFT LR Calculations DFT+U(±Jz) Exchange Calculations

FM AFI AFII FM AFI AFII

# Atoms 64 4

Experimental a (Å) 4.171a 4.168b 4.170b 4.171a 4.168b 4.17b

Lattice Vectors
[2, 0, 0]
[0, 2, 0]
[0, 0, 2]

[1/2, 1/2, 0]
[0 , 0 , 1]

[1/2,−1/2, 0]

[1/2, 1/2, 0]
[0 , 0 , 1]

[1/2,−1/2, 0]

[1/2, 1/2, 1]
[1, 1/2, 1/2]
[1/2, 1, 1/2]

Energy Tolerance (Ha) 1 × 10−7 1 × 10−12

k-Point Sampling 3 × 3 × 3 3 × 3 × 3 5 × 5 × 5 40 × 20 × 40 40 × 20 × 40 30 × 30 × 30

Insulating Character metal metal insulator insulator insulator insulator

Ud | Jd
z (eV) 0.0 | 0.0 0.0 | 0.0 0.0 | 0.0 6.91 | 0.18 6.74 | 0.55 5.58 | 0.47

Up | Jp
z (eV) 0.0 | 0.0 0.0 | 0.0 0.0 | 0.0 11.64 | 1.55 11.30 | 1.87 11.37 | 1.82

a Refs. [65–73]
b Ref. [77]

AFII MO to every MO of NiO via each of the aforementioned
Hubbard functionals (that is, AFII HPs applied to FM NiO via
each functional, AFII HPs to AFI NiO, and so on).

1. Linear response calculations

We conduct ABINIT linear response calculations via what
is now its intrinsic LRUJ algorithm [44] to determine the
Hubbard parameters U and Jz for both the 3d Ni and 2p O
orbitals (procedure described in Sec. II B). For each U (Jz)
parameter, at least five perturbations between α = ±0.2 eV
(β = ±0.1 eV) are applied to one of the 64 atoms in the
supercells of each MO of NiO. Depending on how well these
calculations converged, additional perturbations were applied.

As described at the end of Sec. II C, QUANTUM ESPRESSO
augments the pseudo wavefunctions with core contributions
without truncating at the PAW cutoff radius. Therefore, we
further undertook QUANTUM ESPRESSO linear response cal-
culations for the Hubbard U on Ni and O across all magnetic
orderings.

For each U parameter calculated with QUANTUM

ESPRESSO, five equally spaced perturbations between
α = ±0.2 eV are applied to one of the 64 atoms in the
supercells of each MO of NiO. Runtime parameters remain
the same as those for ABINIT except the following: The energy
is relaxed self-consistently to within a threshold tolerance of
10−9 Ha, and a kinetic energy of 25 Ha for wavefunctions
is administered alongside an energy cutoff of 250 Ha for
the density. For all MOs, we use Monkhorst-Pack [130] grid
k-point sampling of 2 × 2 × 2.

III. RESULTS AND DISCUSSION

A. PAW projectors and the Hubbard parameters

Switching between PAW population analysis schemes
induces noticeable numerical differences in the resulting Hub-
bard parameters for both Ni 3d orbitals and O 2p orbitals

(see Table III). It is encouraging that the unscreened response
functions χ0 and χM0 , pertaining to each projector choice,
are reasonably alike. This is expected in accordance with the
Corollary in the Appendix.

The Hubbard parameters U and Jz resulting from
dmatpuopt = 2 and dmatpuopt = 3 are consistently sim-
ilar, whereas dmatpuopt = 1 yields the largest in magnitude
of these parameters and dmatpuopt = 4 yields the smallest.
These phenomena are concordant with our understanding of
the make-up of the response matrices. That is, extrapolations
of occupancies beyond the PAW radius increase the overall
occupancy (magnetization), thereby decreasing the inverse of
the response matrices and reducing U (Jz).

For Ni, which has well-localized valence electrons, the
range of Hubbard parameters is not very wide; by our calcu-
lations, 90.47% of the 3d atomic wavefunctions lie inside the
PAW augmentation sphere. For O 2p orbitals, however, this
overlap is significantly smaller, around 66.87%, and thus the
range of achievable Hubbard parameters by various popula-
tion analysis schemes is significantly larger for O than for Ni.
It is important, therefore, in treating O 2p orbitals, to select
an occupancy matrix calculation scheme that is normalized
inside the PAW augmentation sphere.

In terms of numerical similarity with the QUAN-
TUM ESPRESSO-derived U, only dmatpuopt = 2 and
dmatpuopt = 3 remain viable candidates, with dmatpuopt
= 2 barely outperforming dmatpuopt = 3 based on numer-
ical nuances. Not only does dmatpuopt = 4 systematically
underestimate U, from a theoretical standpoint (described in
Sec. II C), using the integral of φ0 to renormalize the AE
basis function is an approximation that is not entirely justified.
While the first AE partial wave listed in a PAW dataset for
a particular treated subspace, which ABINIT selects as φ0, is
required to be a normalized atomic eigenfunction, the second
(or third or fourth, etc.) AE basis functions have no such
constraints. There is no guarantee that these functions are
localized in the PAW augmentation region to the same extent
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TABLE III. PAW-based occupation determination methods [variations itemized by dmatpuopt integer for brevity: 1 refers to Eq. (14), 2
refers to Eq. (15), and 3 and 4 refer to Eq. (17)] compared with that of Quantum ESPRESSO (QE) in terms of the effect induced on Hubbard
parameters, U and Jz, as well as their bare (χ0) and screened (χ ) response function components. Numbers gathered via linear response
procedures implemented on both Ni and O across all magnetic orderings MO of the 64-atom NiO supercell.

sretemaraPesnopseRraeniLOsretemaraPesnopseRraeniLiN

U Jz U Jz

MO nt,σ
m,m′ χ0 χ Ud χM0 χJ Jd

z χ0 χ Up χM0 χJ Jp
z

1 -0.8064 -0.1024 8.53 -0.8054 -0.9829 0.22 -0.0856 -0.0264 26.16 -0.0856 -0.1216 3.46

2 -0.9856 -0.1359 6.34 -0.9854 -1.1746 0.16 -0.1901 -0.0595 11.55 -0.1901 -0.2697 1.55

FM 3 -0.9858 -0.1262 6.91 -0.9826 -1.1892 0.18 -0.1914 -0.0593 11.64 -0.1914 -0.2719 1.55A
b
in

it

4 -1.2010 -0.1610 5.38 -1.2010 -1.3887 0.11 -0.4281 -0.1314 5.28 -0.4280 -0.6075 0.69

QE -0.5008 -0.1178 6.49 -0.1176 -0.0530 10.36

1 -0.9219 -0.1064 8.31 -0.9449 -2.5779 0.67 -0.0923 -0.0277 25.27 -0.0927 -0.1545 4.31

2 -1.1289 -0.1347 6.54 -1.1577 -3.3259 0.56 -0.2054 -0.0601 11.52 -0.2060 -0.3363 1.88

AFI 3 -1.1259 -0.1311 6.74 -1.1547 -3.2044 0.55 -0.2068 -0.0620 11.30 -0.2073 -0.3390 1.87A
b
in

it

4 -1.3750 -0.1583 5.59 -1.4107 -3.1137 0.39 -0.4634 -0.1417 4.90 -0.4643 -0.7652 0.85

QE -0.6299 -0.1244 6.45 -0.1144 -0.0516 10.64

1 -0.3104 -0.0998 6.80 -0.3104 -0.3870 0.64 -0.0803 -0.0264 25.49 -0.0799 -0.1181 4.04

2 -0.3791 -0.1248 5.37 -0.3790 -0.4737 0.53 -0.1784 -0.0593 11.27 -0.1779 -0.2640 1.83

AFII 3 -0.3793 -0.1218 5.58 -0.3795 -0.4621 0.47 -0.1798 -0.0590 11.37 -0.1793 -0.2661 1.82A
b
in

it

4 -0.4644 -0.1428 4.85 -0.4634 -0.5206 0.24 -0.4024 -0.1320 5.09 -0.4017 -0.5953 0.81

QE -0.2607 -0.0998 6.18 -0.1247 -0.0537 10.59

as φ0. By contrast, based on dmatpuopt = 1’s systematic
overestimation of U, it is clear that at least some normalization
is necessary, especially for the oxygen 2p states.

For these reasons, we focus our attention on the subtle
differences between dmatpuopt = 2 and 3. It is worth men-
tioning that, outside of convergence difficulties arising from
the Jz calculations for the FM and AFI MOs, dmatpuopt
= 3 marginally outperforms dmatpuopt = 2 in terms of
quality of linear response and ease of numerical convergence.
The metrics used to evaluate this quality were (a) similarity
of unscreened response functions χ0 and χM0 ; (b) average
number of SCF cycles needed to converge perturbative cal-
culations; (c) average regression order (i.e., how often did
the response functions demonstrate linearity over higher-order
polynomial regressions); and (d) the error on the Hubbard
parameter, calculated as follows:

σU =
√(

σχ0

χ0
2

)2

+
(

σχ

χ2

)2

(31)

where σχ0 and σχ are the unbiased root mean squared errors
on the regression fit. The same error assessment is true for
Jz. For dmatpuopt = 3, the average σU(σJz ) across all HPs
is σ̄U = 1.28% (σ̄Jz = 4.36%), which is slightly better than
dmatpuopt = 2’s σ̄U = 1.41% (σ̄Jz = 5.20%). All in all,
dmatpuopt = 3 outperforms its competitor in three of the
four aforementioned metrics [(b), (c), and (d), to be precise].

There is a case to be made in opposition to dmatpuopt
= 2 from a theoretical standpoint. Its projection operator,

Eq. (16), is defined using a Heaviside step function, which
operationally “counts,” so to speak, the overlap between two
PAW radial basis functions by brute force. The ground-state
eigenfunction basis for dmatpuopt = 3 is underpinned by
the same assumptions and approximations that are used in the
definition of the bound PAW AE partial waves. The renormal-
ization of projections of all partial waves with a bounded,
truncated AE wavefunction reintroduces a crucial, physics-
based safeguard into the definition of the occupancy matrix.
For this reason, we select dmatpuopt = 3 as our preferred
PAW population analysis. We report the Hubbard parameters
pertaining to this population analysis scheme as well as their
associated errors in Table IV.

B. Intra-atomic spin moment

Having fossilized the in situ Hubbard parameters, we
must give due consideration to the most appropriate Hubbard

TABLE IV. In situ Hubbard parameters calculated via linear re-
sponse for FM, AFI, and AFII NiO and associated errors, calculated
via Eq. (31), reported in eV.
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TABLE V. Percent RMS errors (%RMSE). AS spin moments
refer to those calculated in atom-centered augmentation spheres
[Eq. (22)]; PAW refers to cumulative differences in PAW occupation
matrix elements [Eq. (23)]; SD refers to use of the global spin density
difference [Eq. (24)]. Cell hue represents error magnitude; the darker
the blue, the smaller the error.

functional (among the six tested using the AFII HPs), intra-
atomic spin moment calculation (AS, PAW or SD, permutated
across Sz and |S|), and MO-based spin parametrization
method (Methods A, B, or C). Table I within the Supplemental
Material(SM) [131] provides all of this raw data. To make
the process of elimination simpler, however, we will focus on
identifying the most effective combination of spin treatments
by averaging across all six Hubbard functionals the percent
RMS deviation (% RMSE) of our results for J1 and J2 from

those of one particular experiment (exp), specifically

% RMSE =
√√√√1

2

((
J1

Jexp
1

)2

+
(

J2

Jexp
2

)2
)

. (32)

We select the inelastic neutron scattering experiment of
Hutchings et al. [132] as our benchmark for this analysis.
After averaging Eq. (32) across the six Hubbard functionals,
Table I within the SM [131] reduces to Table V, where the
darker shades of blue coincide with the degree to which error
is minimized.

We notice immediately that the % RMS error is smaller
when approximately treating intra-atomic spin as a quantum
vector. Compared with its z-axis projection, |S| diminishes
differences across population analysis schemes, such that
|SAS| is only subtly favored over other candidates. The
preferable MO-based spin parametrization method depends
crucially on the use of the quantum vector over the z-axis
projection; under the latter treatment, Method A obtains ex-
change parameters more in line with experiment by a clear
margin, indicating a preference for total energy differences
with idealized spin-moment values. By contrast, if the mag-
netic moments are amplified by a factor of

√
2 as with the

quantum vector approximation, Methods B and C, which
weight the total energies from each MO according to various
combinations of their atomic magnetic moments, win out.

FIG. 4. The effect of treating Ni 3d orbitals in the DFT+Ud functional with varying magnitude of the AFII Ud
eff = Ud − Jd

z (same HPs
across all MOs). Plot (a) and (b) show average nickel and oxygen site magnetic moments μz, projected on the z axis and resolved via magnetic
ordering (FM for ferromagnetic, AFI for antiferromagnetic I, and AFII for antiferromagnetic II), for each population analysis described in
Sec. II D 2; AS = augmented sphere [Eq. (22)], PAW = PAW occupations [Eq. (23)], and SD = total spin density [Eq. (24)]. Plots (c) and
(d) show, respectively, nearest-neighbor and next-nearest-neighbor Heisenberg exchange interaction parameters, calculated via different spin-
parametrization methods, where intra-atomic spin is calculated as |SAS| = √

2 SAS
z .
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To understand this behavior, we recall that DFT-derived Ni
magnetic moments on AF NiO do not typically exceed 2 μB

[see Fig. 4(a)], meaning that the coefficients by which the AF
total energies are weighted exceed unity, thereby amplifying
the total energy differences to which the exchange interaction
parameters are proportional. Most underlying Hubbard func-
tionals, in and of themselves, generate total energy differences
that are too large anyway, so the modifications provided by
these magnetic moments are almost always counterproductive
in obtaining results that more closely resemble experiment.
The only exceptions to this trend occurred when we applied
Hubbard functionals using parameters exceeding those cal-
culated via linear response by several eV. Overestimation of
the exchange parameters continues as long as DFT underesti-
mates the magnetic moment of Ni on NiO.

According to Fig. 4(a), experimentally consistent AF
moments are out of the reach of all population analysis tech-
niques. The additional

√
2 factor accompanying |S| serves

to approximately compensate where DFT falls short, lending
itself to overcompensation when coupled with the population
analysis techniques that typically predict higher Ni magnetic
moments by default (like PAW and SD). For this reason,
we see that a relatively underestimated population analysis,
like that coming from AS, coupled with the overestimation
attributed to the

√
2 factor from |S| can balance out to yield

minimized errors.
This explanation, of course, is not a glowing testimonial for

either technique, especially since SAS
z performs rather poorly

compared to its PAW and SD counterparts. However, the re-
sults in and of themselves, independent of their justification,
offer concrete, actionable insights to the reader in terms of
which spin treatment is best for NiO exchange. Certainly,
Table V offers more organized navigation of a few available
DFT-tractable, spin-based objects and their influence on the
Heisenberg exchange constants, and the numerical forgive-
ness awarded by these techniques should not be overlooked.
For the purposes of further analysis, therefore, we take Ta-
ble V at its face value and both select and recommend |SAS| =√

2 SAS
z as the preferred intra-atomic spin moment calculation

method. Data pertaining to the Sz calculations across all pop-
ulation analysis methods is provided in the SM [132].

C. Comparison of spin parametrization methods for the
Heisenberg model mapping

In Table VI, we resolve our |SAS| results to the level of
the individual Hubbard functional and spin parametrization
method. Principally, we report obtained values for J1 and J2.
Secondarily, for visual comparison, the final column shows
the range of RMS errors obtained by comparing the best
pair of coefficients from that functional to each of the four
experiments listed at the bottom of the table. To clarify, for
each functional, we take the best J1, J2 pair of the three spin
parametrization methods and calculate their percent RMS er-
ror with respect to each of the four experiments via Eq. (32).
We then report the minimum (leftmost bar), range (stacked
bar), and maximum (digit) of all those errors to compare
across other functionals. The color of the bar corresponds
to the spin parametrization method used to obtain that best

(J1, J2) pair (i.e., tan for Method A, blue for Method B, and
orange for Method C)

We prepare an identical error analysis scheme in Table VII,
where we compare the exchange interaction parameters J1 and
J2 reported in the literature [12,54,117–119,125,136–140],
and experimental [131,133–135] to our own results, obtained
from the various spin parametrization methods proposed in
Sec. II D. For values reported in the literature, we reverse en-
gineered the exchange interaction parameters for Methods B
and C based on those reported for Method A (the conventional
method) in addition to the reported values for the Ni magnetic
moment for each configuration.

It should be clarified that we use RMS error in Tables V,
VI, and VII as a measure of proximity to the reported values
of the four different experiments cited. The RMS error is not
asserting the proximity of our computed parameters to the
true, physical values of these parameters (e.g., a % RMS error
of 20% on J1 = 0.7 meV does not mean we claim to know the
value of J1 to within ±0.14 meV on the basis of calculations.

All Hubbard functionals we tested produced exchange cou-
pling parameters that are highly competitive with those from
other investigations. Generally, however, the literature reports
a wide range of values for this particular magnetic property,
in part due to large variation in calculation of the magnetic
moments (approximately half use some form of the total spin
density difference integrals, others use atom-centered sphere
integration up to inconsistent maximum radii; all use Sz).
Only a few computations use PAW, and many calculate the
exchange coefficients with methods other than that involving
total energy differences. It is crucial to recognize that the
variation in spin moment integrations severely limits the re-
liability of any comparison across works of literature, and it is
these incongruities in procedure that reinforce our inclination
to benchmark with experiment.

Now for the analysis, referencing Tables V and VI, for
converged total energies and their corresponding magnetic
moments, we find that spin parametrization Methods B and
C generally predict exchange interaction values smaller in
magnitude, and closer to experiment, than the method that
uses idealized values for Ni magnetization. This much is
also demonstrated by the curves (the exchange parameters
as functions of AFII Ud variation) in Figs. 4(c) and 4(d) as
Ud approaches its in situ values of Ud = 5.58 eV and Ud

eff =
5.11 eV.

Table VI shows that Method C routinely predicts exchange
parameters smaller in magnitude than those from Methods B
and A. This may be attributed to the presence of and a heavy
reliance on a strong magnetic moment on FM NiO—that, or
the AFII moment is comparatively too weak. Whatever the
explanation, the message is clear; if the spin moments are
large enough, then it is well worth the effort to weight the
total energies with them, as spin parametrization Methods B
and C predict exchange parameters more closely in line with
experiment. That much is also evident in the % RMSE in row
1 of Table V. The same AS data demonstrate a slight prefer-
ence for Method B over Method C; however, the difference is
minute.

The same conclusions cannot be drawn from Table VII.
While J2 is consistently smallest in magnitude under Method
C, J1 actually performs best under Method A. This is
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TABLE VI. Comparison of exchange coupling parameters from various Hubbard functionals, where Ueff = U − Jz. The “AFII NiO
Parameters” header refers to functionals tested using the Hubbard parameters arising from linear response on the ground-state AFII magnetic
ordering of NiO (i.e., column 4 in Table IV). “MO-Specific Parameters” refers to the use of the Hubbard parameters pertaining specifically to
each magnetic ordering (i.e., FM HPs applied to FM ordering via Hubbard functional, AFI parameters applied to AFI ordering, etc.). Histogram
shows minimum (leftmost bar), range (stacked bar) and maximum (digit) of all % RMS errors with respect to J1, J2 pairs from each of the four
experiments listed above. Color of bar corresponds to spin parametrization method used to obtain that best J1, J2 pair (i.e., tan for Method A,
blue for Method B, and orange for Method C).

[132]
[133]

[134]

[135]

Reference [133]

consistent with our own data, recalling that the literature
analyzed here exclusively calculates the magnetic moment
as a projection on the z axis, whereas values from our own
Hubbard functionals reported in Table VI use SAS as per the
conclusions of Sec. III B. If we better align our calculations
with the literature by using SAS

z , we can see from Table V
that indeed, Method A minimizes the error compared to the
other spin parametrization methods. This demonstrates the
sensitivity of the interplay between the magnetic moments
and total energies of each MO of NiO. Under our preferred
spin treatment procedure, our results indicate that Methods
B and C are, somewhat interchangeably, the most reliable in
obtaining realistic exchange interaction parameters for NiO.

D. Effect of MO-specific Hubbard parameter calculation

Going back to Table VI, we see the uncorrected PBE XC
functional predicts, at best, J1 = 1.37 meV under Method C
and J2 = −29.32 meV under Method A, values which are far
from corroborated by our experimental benchmarks of J1 =
0.69 meV and J2 = −9.50 meV [132]. The error arising from
parametrization schemes B and C can be attributed in part to
PBE’s incorrect prediction of the Ni magnetic moments under

the AS population analysis (μFM = 1.09 μB, μAFI = 1.56 μB,
μAFII = 1.30 μB).

PBE nonetheless correctly predicts the preference for fer-
romagnetic alignment in J1 and antiferromagnetic alignment
in J2, unlike all functionals incorporating MO-specific param-
eters (center of Table VI). These performed poorly, not only
quantitatively—note the inflated % RMS error scale, dilated
by two orders of magnitude—but qualitatively, as they failed
to predict the correct magnetic alignment for J1. This deci-
sively answers the query posed earlier; while the U and Jz for
a particular subspace in FM NiO differ from those calculated
for other MOs (see Tables III and IV), the total energies result-
ing from the application of these magnetic ordering-specific
parameters to their corresponding system are not necessarily
comparable to one another. We must emphasize, however, that
this will not necessarily be the case for any and all Hubbard
functionals; there remain quite a few functionals untested
in this article, and further testing is needed to determine if
this ineptitude is an intrinsic property of Hubbard corrective
protocol.

This conclusion is somewhat unexpected. The MO of a par-
ticular material system influences the magnitude of its atomic

245137-14



OPTIMIZATION STRATEGIES DEVELOPED ON NiO FOR … PHYSICAL REVIEW B 108, 245137 (2023)

TABLE VII. Comparison of exchange interaction parameters from different XC functionals (or experiment) across literature works for
each spin-parametrization method. Parameters for Methods B and C are reverse engineered from past works based on reported values for
MO-dependent magnetization on Ni atoms and J1 and J2 values, translated according to Hamiltonian conventions outlined in Table I. Reported
values from each work are in bold. Histogram shows minimum (leftmost bar), range (stacked bar) and maximum (digit) of all % RMS errors
with respect to J1, J2 pairs from each of the four experiments listed. Color of bar corresponds to spin parametrization method used to obtain
that best J1, J2 pair (i.e., tan for Method A, blue for Method B, and orange for Method C). Asterisk (*) indicates that these exchange parameters
were calculated via a method other than that using total energy (i.e., Green’s functions).

XC [Ref]

HSE

[118]

[117]

[117]

[117]

[136]

[137]

[137]

[137]

[137]

[137]

[138]

[138]

[125]

[139]

[140]

[132]

[133]

[134]

[135]

[54]

[54]

[12]

[12]

[12]

[119]

magnetic moments, as is demonstrated in Figs. 4(a) and 4(b).
These moments are direct functions of valence subspace oc-
cupations, and so changing the magnetic moments in turn
alters the amount of self-interaction intrinsic to each subspace
and, therefore, the Hubbard parameters and the efficacy of
their host Hubbard functionals. If the total energies of each
system are individually more accurate by application of a

Hubbard corrective functional, then is it not expected that the
total energy differences between these systems become more
accurate, as well?

The linearity condition of linear response is based heav-
ily on the quadratic nature of SIE (i.e., the deviation from
piece-wise linearity of the total energy with respect to
fractional charge). It is worth noting, however, that the
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response behavior in the first-principles calculation of the
Hubbard parameters for certain Ni 3d subspaces—notably
upon application of the beta perturbation to the FM and AFI

MOs—noticeably deviated from linearity. This nonlinear re-
sponse suggests that the SIE in these systems may require a
correction of order higher than quadratic, possibly as a result
of the added complexity in enforcing the system’s nonground-
state MOs.

We might be tempted to conclude then that applying dif-
ferent sets of Hubbard parameters to these systems is akin to
changing its functional entirely, to the degree that the resulting
total energies are no longer comparable (i.e., asserting that
a DFT+Ud = 5.58 eV functional is inherently different to a
DFT+Ud = 6.91 eV functional). However, this justification
is not compatible with our understanding of the Hubbard
parameters as intrinsic, ground-state properties of the degree
to which SIE and SCE infect the system. In maintaining the in-
tegrity of this understanding, then, it is more plausible that we
have simply not found/tested a Hubbard-like functional ade-
quately equipped to deal with long-range magnetic ordering of
this nature. In applying the same Hubbard parameters inside
this particular set of functionals to all structures, it is possible
that the results benefit from a black-box cancellation of errors
that manifests in the total energy difference domain. Whatever
the case, it is clear that calculating and applying MO-ordering
specific Hubbard parameters is a disadvantageous complexity
for deriving the exchange coupling parameters for mag-
netic NiO, at least for the six Hubbard functionals tested
here.

E. Effect of Hubbard functional choice

Whatever ails the MO-specific functionals does not affect
the Hubbard functionals employing only the AFII NiO param-
eters, in which the same Hubbard functionals are applied to all
structures regardless of MO. Like PBE, these functionals cor-
rectly predict the preference for ferromagnetic alignment in
J1 and antiferromagnetic alignment in J2. This remains true as
long as the Hubbard parameters are reasonable in magnitude,
as demonstrated in Figs. 4(c) and 4(d); under the standard
DFT+Ud functional, both the NN and the NNN exchange
interactions gradually weaken with increasing Ud , coinciding
with experimental values around the first-principles value of
Ud .

In particular, the DFT+Ud
eff yields J1 and J2 coeffi-

cients strikingly in line with experimental values under
the Method B spin parametrization, contributing to shared
RMS errors ranging from 7.4% to 12.9%. It is closely fol-
lowed in performance by the same functional under Method
C spin parametrization (8.6–14.5% error), and then by
the Liechtenstein DFT+Ud + Jd

z functional—in which we
apply both HPs to the Ni 3d subspace only—under Method
B (11.0–16.9% error). This ranking remains stable even as
the intra-atomic spin population analysis technique varies,
although only when considering |S|. When using instead Sz,
the Liechtenstein DFT+Ud + Jd

z under Method A performs
best.

The J1, J2 pairs from these Hubbard functionals are highly
competitive with those from other semilocal or hybrid func-
tionals reported in the literature. Looking back at Table VII,

the best DFT prediction for J1 on NiO remains that from
Fock-35 results of Ref. [137], with an individual parameter
RMS error of 8.7%. For J2, the best predictions are held
by the GGA + Ueff = 5.3 eV calculation of Ref. [119] (J2

RMS errors ranging from 0.4% to 10.2%) and the LDA +
Ud

eff = 7.1 eV conducted in Ref. [140] (J2 errors 1.1–8.6%). In
terms of pair-wise performance, however, the in situ Hubbard
functionals monopolize the best error minimization rank-
ings, reflecting positively on the error compensation and spin
parametrization techniques. At minimum, this demonstrates
that the Hubbard functionals are competitive with the more
costly hybrid functionals in achieving total energy difference
results that reflect experiment.

F. Mechanisms of Hubbard functional choice

It is possible to rationalize the dependence of J1 and J2 on
the choice of Hubbard functional and parameter strength in
a relatively simple way. To see this, we start with the energy
expressions for Method B, Eqs. (29) and (30). Taking the for-
mer, J1, we first note that a sufficient Ud will change the FM
and AFI systems from metallic to insulating. This will tend
to reduce the relevant total energy difference; the total energy
of the metallic state depends significantly, through the kinetic
energy, on the Fermi densities of the two systems, whereas
in the insulating systems, it will primarily depend on weaker
differences of exchange and correlation effects. As we can see
from Fig. 4(a), the local moments become more similar in the
two states at larger U values, which moderates the tendency
for the different Hubbard energy contributions to increase. As
these local moments increase with Ud , furthermore, so too the
denominator in Eq. (29) increases quadratically, which further
brings down the J1. Thus, we can visualize how increasing Ud

tends to bring down the predicted J1. Of course, that effect is
moderated in the Dudarev scheme when Ud is reduced to Ud

eff
by an increasing Jd

z .
Meanwhile, it is interesting that the exchange parameters

arising from DFT+Ud and the Liechtenstein DFT+Ud + Jd
z

are so similar. In fact, the similarity between the exchange
parameters arising from either functional is tenacious, remain-
ing even as we vary Ud and Jd

z (keeping the first-principles
ratio between Ud and Jd

z constant). The relative agnosticism
of the interatomic, Heisenberg exchange parameters to the
addition of a nonzero Jz parameter suggests that the spin
localization facilitated by the Ud term is already quite robust.
The addition of Up

eff largely mitigates the effect of Ud
eff on J1,

and not in a beneficial way when using the first-principles
parameters. We return to discuss this effect further in the next
section.

As for the substantial moderation of J2 by the addition of
Ud , the same arguments and trends largely hold. The total
energy differences in Eq. (30) are reduced when all three
systems are insulating. Once again, as the moments are in-
creased with increasing Ud

eff, so the J2 decreases due to the
quadratic expression in the denominator. This effect is weak-
ened by Jd

z in the Dudarev functional, by definition, and
beneficially so when J2 is compared against experiment. The
effects of Jd

z and Jp
z are much more weak in the Liechtenstein

functional, where it is also more difficult to interpret. The
main difference in the trends observed between J1 and J2
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is a different sign in the change with the addition of finite
Up

eff, so that increasing Up
eff reduces the magnitude of J2, as

we go on to discuss further. Once again, however, the addi-
tion of the first-principles Up

eff is detrimental to the quality
of J2.

G. Effect of Hubbard parameters on oxygen

Introduction of HPs on the oxygen 2p orbitals, across all
Hubbard functionals, seems to have the effect of strengthening
the NN ferromagnetic exchange while simultaneously weak-
ening the antiferromagnetic coupling between layers, similar
to how HSE and PSIC perform compared to raw PBE [117].
For example, relative to DFT+Ud + Jd

z , the additional Up

and Jp
z in DFT+Ud,p + Jd,p

z increase J1 to 1 meV, but bring
J2 down in magnitude to −7.35 meV. These are typically
unwelcome modifications under Methods B and C, for both J1

and J2, since the latter is chronically underestimated by a large
margin and the former hovers tightly around the experimental
value of 0.69 eV.

Nonetheless, the regularity of the phenomenon is intriguing
and worth some discussion. In the much simplified picture
of Eq. (26), the spin dependence of the AFII total energy
is informed exclusively by J2 interactions, and the FM to-
tal energy is informed heavily, although not exclusively, by
J1 interactions. Moreover, as discussed in Sec. II D 1, the
crystal field splitting of orbitals is heavily implicated in the
direct and superexchange mechanisms that collectively give
rise to interatomic exchange. We can perhaps look for clues
in the FM and AFII NiO density of states (DOS) plots,
shown in Fig. 5 as functions of Up, keeping Ud = 5.58 eV
constant.

In FM NiO, the occupied minority spin states on oxygen
and the unoccupied minority spin states on Ni are shifted
higher in energy with increasing Up, although the former at
a faster rate than the latter. By itself, this means we should
expect the exchange energy, and thus J1, to gradually reduce
in magnitude. However, simultaneous to this feature, we no-
tice two pivotal details about the shifting occupations: (1)
the t2g states are decreasing in occupation, so the Coulombic
repulsion that contributes to a strong AF exchange inter-
action is weakening; and (2) the oxygen 2p orbitals are
increasing in occupation, as demonstrated by the gradually
inflating area underneath the pDOS curve as well as the
inset graphs in Fig. 5. Thus, the intra-atomic Coulomb repul-
sion grows, thereby strengthening the FM preference of the
superexchange mechanism. Because intra-atomic exchange
overwhelms its interatomic counterpart by several orders of
magnitude, we expect these local oxygen dynamics to eclipse
the gradual reduction in exchange energy coming from the
evolution of the minority spin pDOS. Collectively, these
justifications point to an overall increasing FM preference
for J1.

For the AFII NiO case, the Ni and O subspace occupancies
both become more integer-like upon application of HPs on O
in addition to those already applied on Ni—more integer-like
and, thus, more localized spatially. As the orbitals cling more
closely to their respective nuclei, there is less overlap between
neighboring atomic orbitals. In the NNN case, less orbital
overlap translates to a decrease in virtual hopping and there-

fore a weaker exchange bridge; by consequence, J2 decreases
in magnitude. Yet, unlike in 180◦ superexchange, the 90◦ su-
perexchange is mediated by the Coulombic exchange between
orthogonal orbitals on the same oxygen atom (see Fig. 3). As
orthogonal orbitals on the same atom become more localized,
the exchange increases in magnitude, thereby intensifying the
ferromagnetic preference embodied by J1. So, J1 increases
in magnitude and J2 decreases in magnitude, precisely as
observed. In this way, it is possible that the application of the
oxygen HPs on top of those applied on Ni serves to partially
relocalize the atomic orbitals.

In Fig. 5, it is interesting that the AFII pDOS character
varies almost imperceptibly with changes in oxygen’s Up,
which changes only EF in a manner rigidly linear with the
magnitude of the Hubbard parameter. We mention this to
preemptively assuage concerns that it belies a plotting error
and tentatively propose that the phenomenon is related to the
fact that the oxygen atoms in AFII NiO have absolutely no net
magnetic moment. When we set Up to a large, finite number,
the DOS undergoes significant changes.

We emphasize here that the pDOS shown in Fig. 5, in
addition to SM Figs. 2 and 3, are truncated within the
PAW augmentation spheres, with no interstitial contribution,
based on the PAW population analysis. It therefore exhibits
sharper, more atomic-like features than would be observed
experimentally. An increased smearing would be needed for
comparison to experiment. Furthermore, only the conduction
band edge should be interpreted, and features no higher in en-
ergy thereof, due to insufficient basis resolution. Our principle
objective here is to understand the mechanisms of interatomic
exchange interactions.

Despite these limitations, our AFII NiO pDOS does not de-
viate significantly in its features from those of prior DFT+U
calculations [141–146]. The upper band is clearly of primarily
Ni eg character, whereas the lower band edge is characterized
by the O 2p, followed by non-negligible contributions of
Ni t2g and eg character. The failure of DFT+U-like meth-
ods to replicate other features of the experimental pDOS
is well documented across the literature. For example, our
oxygen 2p spectrum exhibits a two-peaked structure (with
edges at–5.1 eV and 0.6 eV) instead of the broad peak fea-
ture attributed to oxygen from angle-resolved photoemission
spectra [147,148]. This result is also at odds with the re-
sults of DFT + DMFT calculations [13,14]. The width of
the valence band Ni 3d spectrum is also narrower overall
than might be expected, as well as appearing sharper for
the aforementioned reasons. However, the same experiments
also indicate that the NiO valence-band spectrum has two
distinct peaks, one around–2 eV and the other around–5 eV,
a behavior reflected in our own plots, where the peak-to-peak
splitting across the Fermi energy is approximately 4.6 eV, a
value comparable to that derived from experiment (4.3 eV)
[149,150] and DMFT [13,14]. We refer the reader to the SM
[132] for an analogous figure to Fig. 3, where instead the
U d is varied (Fig. 2 within the SM [132]), as well as for
an indicative plot of the total DOS (Fig. 3 within the SM
[132]) with no PAW sphere truncation, for the best perform-
ing functional that used Ud

eff = 5.11 eV. Figure 3 within the
SM [132], in particular, displays more clearly the low-energy
peak at–5.1 eV of primarily Ni eg character, which has the
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FIG. 5. Overlaid atomic (AE) orbital projected density of states (pDOS) on two particular atoms of the four-atom unit cell, resolved by crys-
tal field splitting characterization on Ni (eg blue, top row; t2g light green, middle row) and O (2p orbital orange, bottom row) for each magnetic
ordering (FM left column; AFI middle column; AFII right column) of NiO. Positive values indicate majority spin DOS, negative values indicate
minority spin. Only the component within the PAW augmentation sphere cutoff rc for each species is included, with no interstitial contributions,
hence the relatively sharp (atomic-like) features of the pDOS. Moreover, only the conduction band edge position should be interpreted
here, as the Kohn-Sham basis is not thought to be complete for the conduction band for all MOs in the energy range shown. Insets show
corresponding relative changes in majority spin (σ =↑) and minority spin (σ =↓) occupancies 
nσ = 100(nσ |Up − nσ |Up=0.45)/nσ |Up=0.45 as
a function of Up [eV] for that particular MO and crystal field characterization. Opacity of plot is a function of Up (eV) in the Dudarev et
al . DFT+Ud,p functional, where Ud = 5.58 eV is kept constant and applied to all MOs. Variations in the AFII case are present but barely
discernible.

distinct sharpness as the spectral feature attributed to Ni in
experiment.

IV. SUMMARY AND CONCLUSIONS

In this paper, we analyzed the NN and NNN Heisenberg
exchange coupling coefficients of the prototypical Mott-
Hubbard insulator NiO, calculating its electronic structure
in its three main enforceable magnetic configurations (FM,
AFI, and AFII) in a Hubbard corrected DFT context, for
comparison with experiment. First, we examined the sensitiv-
ity of the first-principles-derived Hubbard parameters U and

Jz to the PAW projectors. Here, we found that dmatpuopt
= 3, the population analysis corresponding to the once-
normalized projection of the PAW basis functions on bound
AE atomic eigenfunctions and truncated at the PAW aug-
mentation radius, renders a numerically well-behaved linear
response procedure that yields robust Hubbard parameters.
These go on to provide experimentally relevant J1 and J2 ex-
change pairs once applied to NiO via a range of host Hubbard
functionals.

Our results highlight just how valuable to the simulation of
NiO and its total energetic properties are its in situ-derived U
and Jz. We report rigorously defined PBE Hubbard parameters
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U and Jz for the Ni 3d and O 2p subspaces of NiO. The
technical platform on which we build these investigations,
the open-source plane-wave DFT suite ABINIT [42,43], al-
lowed us to at once assess the numerical performance of
the code’s linear-response implementation for calculating the
Hubbard U and to extend its utility to also calculate the intra-
atomic exchange coupling corrective parameter Jz from first
principles.

We continued to probe the minutiae of population anal-
ysis procedures to reevaluate spin-moment parametrization
conventions, both inter- and intra-atomic, in the Heisenberg
model. In doing so, we systematically charted a particu-
lar region of DFT-accessible spin-moment parameter space
to make navigation of these techniques more manageable.
Our optimization of this parameter space corresponds to
the particular combination of (i) a rudimentary-quantum,
atomic-sphere-restricted intra-atomic spin moment (|SAS| =√

2 SAS
z ), and (ii) a spin-parametrization scheme that assumes

|SFM| = |SAFI | = |SAFII |. We recommend this particular spin
treatment for magnetic properties and total energy differences
pertaining to NiO, given that the resulting J1, J2 exchange
pairs give % RMS errors (with respect to experiment) as low
as 13%, a considerable improvement on state-of-the-art DFT
simulations conducted thus far. Regardless of the Hubbard
functional used, this spin treatment produced exchange cou-
pling constants that are satisfactorily in line with experiment
and highly competitive with other, more computationally tax-
ing hybrid functionals, which were methodically categorized
in a comprehensive literature review.

Throughout these investigations are implicit suggestions
towards best practices in calculating Hubbard parameters and
use of Hubbard functionals for nonground-state magnetic or-
derings of TMOs. Notably, we highlight the fact that the
Hubbard functionals tested here, despite the bespoke nature of
these parameters to their respective magnetic environments,
did not result in comparable total energies, so we generally
disadvise their use for such comparisons in NiO. Alterna-
tively, these results highlight the need for more advanced
Hubbard functionals designed to accommodate differences
in magnetic environment. Notwithstanding, it is clear from
Table VI that use of the Jz parameter on both the Ni and the O
is critical for reducing % RMSE of the Heisenberg exchange
coupling parameters in NiO with standard functionals.

Lastly, through extensive testing of a suite of 6+ different
corrective Hubbard functionals, we draw attention to the effect
of the O 2p Hubbard parameter pairs on the NiO exchange
coupling coefficients and provide a justification for the phe-
nomenon thereabouts based on the crystal-field resolved DOS
and occupation analyses.
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APPENDIX: EQUIVALENCY OF UNSCREENED
RESPONSE FUNCTIONS FOR α AND β PERTURBATIONS

It is important to note, for verification purposes, that the
unscreened response matrices χ0 and χM0 are equivalent. The
proof of this is as follows.

Suppose we apply, to separate spin channels, an iden-
tical potential perturbation dV ↑

ext = dV ↓
ext = dVext = dα to a

subspace on an atom. The unscreened change in spin-up oc-
cupancy n↑

0 as a result of this perturbation is

dn↑
0

dVext
= dn↑

0

dV ↑
ext

dV ↑
ext

dVext
+ dn↑

0

dV ↓
ext

dV ↓
ext

dVext
. (A1)

The second term of Eq. (A1) disappears because the oc-
cupancy of a spin channel does not change as a result of
a potential perturbation on the opposing spin channel (i.e.,
dn↑

0 /dV ↓
ext = 0). Then dV ↑

ext/dVext = 1, leaving

dn↑
0

dVext
= dn↑

0

dV ↑
ext

= dn↑
0

dα
. (A2)

Similarly, via the same procedure, we find that

dn↓
0

dVext
= dn↓

0

dα
(A3)

and thus the unscreened change in total occupancy of the
subspace, where N0 = n↑

0 + n↓
0 , is

χ0 = dN0

dVext
= d (n↑

0 + n↓
0 )

dα
. (A4)

Now consider that on a completely identical subspace
on an identical atom, we apply a potential perturbation of
dV ↑

ext = β to the spin-up channel and dV ↓
ext = −β to the spin-

down channel. Here, we observe the unscreened change in
magnetization μ0 = n↑

0 − n↓
0 as a result of this perturbation,

which is

χM0 = dμ0

dVext
= d (n↑

0 − n↓
0 )

dβ

= dn↑
0

dβ
− dn↓

0

dβ
. (A5)
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The change in spin-up occupancy with respect to β

is found to be identical to Eq. (A1). But because a
−β perturbation is applied to the spin-down channel
potential,

dn↓
0

dVext
= −dn↓

0

dβ
. (A6)

Thus,

χM0 = dμ0

dVext
= dn↑

0

dβ
−

(
−dn↓

0

dβ

)
∴ χM0 = d (n↑

0 + n↓
0 )

dβ
. (A7)

In the event that α = β, therefore, χ0 = χM0 , a conclusion
following Eqs. (A4) and (A7).
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