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Symmetry-enriched criticality in a coupled spin ladder

Suman Mondal ,1,* Adhip Agarwala,2,† Tapan Mishra,3,4,‡ and Abhishodh Prakash 5,§

1Institut für Theoretische Physik, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany
2Department of Physics, Indian Institute of Technology, Kanpur 208016, India

3School of Physical Sciences, National Institute of Science Education and Research, Jatni 752050, India
4Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India

5Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom

(Received 28 September 2023; accepted 28 November 2023; published 12 December 2023)

We study a one-dimensional ladder of two coupled XXZ spin chains and identify several distinct gapless
symmetry-enriched critical phases. These have the same unbroken symmetries and long-wavelength description,
but cannot be connected without encountering either a phase transition or other intermediate phases. Using
bosonizaion, we analyze the nature of their distinction by determining how microscopic symmetries are man-
ifested in the long-wavelength fields, the behavior of charged local and nonlocal operators, and identify the
universality class of all direct continuous phase transitions between them. One of these phases is a gapless
topological phase with protected edge modes. We characterize its precise nature and place it within the broader
classification. We also find the occurrence of “multiversality” in the phase diagram, wherein two fixed phases
are separated by continuous transitions with different universality classes in different parameter regimes. We
determine the phase diagram and all its aspects, as well as verify our predictions numerically using density
matrix renormalization group and a mapping onto an effective spin-1 model.

DOI: 10.1103/PhysRevB.108.245135

I. INTRODUCTION

One of the most remarkable characteristics of quantum
and classical many-body physical systems is the emergence
of distinct, stable phases that are divided by sharp phase
transitions. There is tremendous theoretical and experimental
interest in enumerating all possible phases and transitions and
characterizing their properties. Symmetries have provided a
guiding principle to facilitate this. It was realized that distinct
phases of matter occur when microscopic symmetries are
spontaneously broken at long distances [1]. The knowledge of
microscopic symmetries allows us to enumerate the different
ways it can be spontaneously broken, the properties of the
resulting long-range order, and sometimes even the nature
of the phase transition. The concept of “topological” order-
ing that falls outside the symmetry-breaking framework [2]
following the discovery of the quantum Hall effect [3] has
expanded the mechanisms by which distinct phases can arise.
This has spurred a flurry of intense research activity over
the past decades in classifying and characterizing gapped
phases of matter [4]. These new phases represent multiple
ways in which symmetries can be unbroken and yet result
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in different phases. The distinguishing features are detectable
in subtle signatures present in entanglement patterns and
boundary/topology effects.

Gapless phases, on the other hand, have been left by the
wayside in these recent developments. Despite being ubiqui-
tous in nature and making frequent appearances in the phase
diagrams of many known physical systems, the mechanisms
by which they arise and are stabilized are relatively unclear al-
though various descriptive frameworks have been successfully
devised to understand them. For example, when noninteract-
ing bands of fermions are partially filled they lead to the
formation of Fermi liquids [5], Dirac [6]/Weyl [7] semimet-
als. Using partons and emergent gauge fields to describe
systems has also been useful in accessing non-Fermi-liquid
phases [8,9]. The most systematic known mechanism is ar-
guably the spontaneous breaking of continuous symmetries,
e.g., which results in the formation of superfluids. The pro-
gram of classifying gapless states of matter with unbroken
symmetries is still in its early stages.

Examples of gapless states hosting edge modes have been
reported in various papers [10–19] and was developed into
the notion of gapless symmetry-protected topological (SPT)
phases in Refs. [15,16]. This was generalized in Ref. [18]
to the concept of “symmetry-enriched criticality” where the
authors ask the following question: Given a critical state
corresponding to a fixed universality class, how many ways
can an unbroken symmetry enrich it? In other words, can
microscopic symmetries manifest themselves in inequivalent
ways at long distances when the physics is described by
conformal field theory (CFT)? The authors demonstrate that
the answer is yes and that distinct symmetry-enriched critical
states exist that cannot be connected without encountering an
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FIG. 1. Schematic representation of the Hamiltonian in the
small-J limit shown in Eq. (1) (top) and the large-J limit shown in
Eq. (2) (bottom). The solid and broken lines represent the various
two-spin interaction terms.

abrupt change in universality class or intermediate phases.
These critical states may be topological and host edge modes,
or may not.

It is desirable to study models and phase diagrams,
which demonstrate the existence of symmetry-enriched crit-
ical phases and transitions between them. The most common
critical phases are the so-called “Luttinger liquids” [20],
which are described by the compact-boson CFT [21] and arise
as the long-wavelength description for many one-dimensional
interacting systems of bosons or fermions. Coupled Luttinger
liquids, which naturally arise in spin-ladder models, provide
a much richer playground and will be used in this paper
to investigate subtle symmetry and topological properties of
gapless phases. In this paper, we study the phase diagram
of a microscopic one-dimensional spin ladder that stabilizes
multiple symmetry-enriched Luttinger liquid phases protected
by the symmetries of the model. One of these, dubbed XY∗

2, is
topological, i.e., it has stable symmetry-protected edge modes.
Using Abelian bosonization, we give a comprehensive treat-
ment of their symmetry distinction and features, as well as
describe local and nonlocal observables that can differentiate
between them. We also study this rich variety of phases and
phase transitions numerically using density matrix renormal-
ization group (DMRG) as well as an effective low-energy
mapping to spin-1 Hamiltonians. We also discuss additional
interesting features of the phase diagram such as the pres-
ence of “multiversality” [22,23] wherein the same two phases
(Haldane and trivial) are separated by different stable univer-
sality classes in different parameter regimes.

The paper is organized as follows: In Sec. II, we intro-
duce our model, list its symmetries, and summarize the phase
diagram and its important elements. We use Abelian bosoniza-
tion in Sec. III to establish the symmetry distinction between
various gapless phases and in Sec. IV to analyze the topolog-
ical Luttinger liquid phase XY∗

2. We numerically analyze our
model in Sec. V and reproduce aspects of our phase diagram
using an effective spin-1 model in Sec. VI. Various additional
details are relegated to Appendices A to C.

II. MODEL HAMILTONIAN AND PHASE DIAGRAM

A. Two presentations of the model

We study a one-dimensional chain of qubits (spin halves).
There are two ways to view the system. The first, shown in
the top panel of Fig. 1 is to regard the system as a single chain
where the Hamiltonian can be written as an XXZ chain with
alternating bond strength and next-nearest-neighbor coupling
as follows (the SzSz coupling constants λ and � are reversed

FIG. 2. The schematic phase diagram for the small-J
Hamiltonian shown in Eq. (1) (top) and the large-J Hamiltonian
shown in Eq. (2) (bottom). Continuous lines indicate second-order
phase transitions and broken lines indicate first-order transitions.
Cartoon ground states are shown for the gapped phases.

in sign compared to the usual convention for convenience):

H =
∑

j

(1 + (−1) jt )
(
Sx

j S
x
j+1 + Sy

j S
y
j+1 − λSz

jS
z
j+1

)

+ J
∑

j

(
Sx

j S
x
j+2 + Sy

j S
y
j+2 − �Sz

jS
z
j+2

)
, (1)

�S j are spin- 1
2 operators, defined as usual in terms of Pauli ma-

trices, �S j = 1
2 �σ j . The model has four parameters, {J,�, λ} ∈

R and t ∈ [−1, 1]. We will be interested in two-dimensional
phase diagrams varying λ and t with J and � fixed. The
representation in Eq. (1) appropriate in the limit of small J
when the next-nearest-neighbor (nnn) term can be regarded
as a perturbation of the bond-dimerized XXZ spin chain.
The phase diagram in this limit is well known [23,24], and
is schematically shown in Fig. 2. We are interested in the
gapless Luttinger liquid phase labeled XY0, which can be
adiabatically connected to the one found in the phase diagram
of the XXZ model (i.e., 1/

√
2 < λ < 1 for t = J = 0).

For large J , the Hamiltonian is appropriately visualized as
a two-rung spin ladder as shown in the bottom panel of Fig. 1,
with the following presentation:

H = H1 + H2 + H⊥ + H ′
⊥, where

Hα = J
∑

j

(
Sx

α jS
x
α j+1 + Sy

α jS
y
α j+1 − �Sz

α jS
z
α j+1

)
,

H⊥ = (1 − t )
∑

j

(
Sx

1 jS
x
2 j + Sy

1 jS
y
2 j − λSz

1 jS
z
2 j

)
,

H ′
⊥ = (1 + t )

∑
j

(
Sx

2 jS
x
1 j+1 + Sy

2 jS
y
1 j+1 − λSz

2 jS
z
1 j+1

)
. (2)
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TABLE I. Symmetries of the model in both the small-J and
large-J representations of local operators of the Hamiltonian shown
in Eqs. (1) and (2).

Symmetry Small J Large J

U (1) spin rotations
S±

j �→ e±iχ S±
j

Sz
j �→ Sz

j

S±
α j �→ e±iχ S±

α j

Sz
α j �→ Sz

α j

ZR
2 spin reflection

S±
j �→ S∓

j

Sz
j �→ −Sz

j

S±
j �→ S∓

α j

Sz
j �→ −Sz

α j

ZP
2 lattice parity �Sj �→ �S− j+1 �S1, j ↔ �S2,− j

Z lattice translation �Sj �→ �Sj+2 �Sα, j �→ �Sα, j+1

α = 1, 2 labels the rungs of the ladder and contains, respec-
tively, the even and odd lattice spins of Eq. (1). Hα represents
the intrarung and H⊥, H ′

⊥ represent the interrung XXZ cou-
plings. In this limit, it is appropriate to treat H⊥, H ′

⊥ as
perturbations to Hα . The schematic phase diagram in this
limit, which we find is shown in Fig. 2. Our prime interest in
this phase diagram are the four Luttinger liquid phases labeled
XY1, XY∗

1, XY2, and XY∗
2. We will show that all five gapless

phases found in the large- and small-J phase diagrams are
distinct from each other meaning they cannot be connected
without encountering a phase transition. Furthermore, we will
also show that one of these, XY∗

2 is a topological Luttinger liq-
uid containing stable edge modes [14,18,19]. A positive finite
�, introduces intrachain ferromagnetic correlations, which is
crucial to open up various gapless phases as will be discussed
in detail.

Parts of the large-J phase diagram have appeared in pre-
vious studies [25–32]. However, the complete set of gapless
phases, their symmetry distinction and topological properties
have not been identified to the best of our knowledge. This
will be the focus of our paper. We will understand these
(a) using bosonization in Secs. III and IV, (b) numerically, us-
ing density matrix renormalization group (DMRG) in Sec. V
and (c) by mapping Eq. (2) to effective spin-1 models in
Sec. VI.

B. Symmetries

Global symmetries of the system will play an important
role. Four symmetries are sufficient to characterize all phases
and transitions: (i) on-site U (1) symmetry that corresponds to
spin rotations, (ii) on-site ZR

2 spin reflections, (iii) ZP
2 lattice

symmetry that corresponds to a bond-centred reflection in the
small-J version and site-centred reflection followed by layer-
exchange in the large-J version, and (iv) Z lattice translations.
The symmetry action on spin operators is shown in Table I.
Altogether, the full symmetry group is [33] G ∼= O(2) × ZP

2 ×
Z. Additional symmetries are present in the model (e.g., time-
reversal) but are not needed for our purposes. In other words,
they can be explicitly broken without changing the nature of
the phase diagram.

C. Phases and transitions

The main focus of our paper are the five symmetry-
enriched Luttinger liquid phases XY0, XY1,2, and XY∗

1,2
shown in Fig. 2. At long distances, all five of these

are described by a compact boson conformal field theory
with central charge c = 1. However, the presence of global
symmetries results in distinctions between them. The micro-
scopic symmetries shown in Sec. II B are imprinted on the
long-wavelength degrees of freedom in different ways in each
of the five phases, and as a consequence, they cannot be
connected without encountering a phase transition or an inter-
mediate phase. Conversely, the distinction can be eliminated
between the phases, and they can be connected by explicitly
breaking appropriate symmetries. This will be explained in
detail using bosonization analysis in Sec. III.

More operationally, we will show that the distinction be-
tween these phases can be demonstrated using appropriate
local and string operators. While XY0, XY1, and XY∗

1 can be
distinguished by local operators only, XY2 is distinguished
from XY∗

2 using string operators. This is comparable to
the situation with gapped phases, where symmetry-protected
topological (SPT) phases [34] are distinguished by string
operators. The phase diagrams shown in Fig. 2 contain a non-
trivial SPT phase, the Haldane phase, which is distinguished
from the trivial paramagnet using an appropriate string oper-
ator. We will see that the same string operator can be used
to distinguish between XY2 and XY∗

2. Furthermore, like the
Haldane phase, the XY∗

2 phase will also contain protected
edge modes but with reduced degeneracy. This will also be
explained in Sec. IV using bosonization and confirmed nu-
merically in Sec. V.

We are also interested in the phase transitions between the
gapless phases shown in Fig. 2. These are summarized below
along with the universality class:

(i) XY1 to XY∗
1: c = 2 theory of two compact bosons.

(ii) XY1 to XY2 and XY∗
1 to XY∗

2: c= 3
2 theory of a c = 1

compact boson CFT combined with a c = 1
2 Ising CFT.

The second-order transitions out of the gapless phases to
either the Haldane or trivial phase in Fig. 2 is of the BKT type,
when the value of the Luttinger parameter is such that the per-
turbation that drives the gapped phase becomes relevant. We
will also understand these using bosonization in Appendix B
and confirm them numerically in Sec. V.

Finally, the gapped phases present in Fig. 2 (Hal-
dane SPT, trivial paramagnet, and symmetry-breaking Néel
and ferromagnet) as well as transitions between them are
well understood. We mention them for completeness—The
Haldane and trivial phases are separated by a compact boson
CFT for small J and by a first-order transition for large J .
The Néel phase is separated from the trivial and Haldane
phases by an Ising CFT and its symmetry-enriched variant,
respectively [18] for both small and large J . Finally, the FM
is separated from the Haldane and trivial phases through a
first-order transition for small J .

III. BOSONIZATION ANALYSIS I: CHARACTERIZING
THE GAPLESS PHASES

In this section, we will study the properties of various
gapless phases and transitions between them using Abelian
bosonization. We begin by reviewing the framework applica-
ble to the parameter regimes for small and large J and then
proceed to understand the various gapless phases in two ways:
(i) by using the effective action of microscopic symmetries
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on the CFT and (ii) the behavior of local and nonlocal op-
erators carrying appropriate symmetry charges. We delay a
thorough analysis of the topological aspects of the XY∗

2 phase
to Sec. IV.

A. Bosonization formulas for small and large J and
conventional description of phases

For small J , the Hamiltonian shown in Eq. (1), can be
treated as a single XXZ spin chain with perturbations. In the
regime of our interest, it can be bosonized using standard ar-
guments [20,35] as follows (see Appendix A for more details):

H ≈ v

2π

∫
dx

[
1

4K
(∂xφ)2 + K (∂xθ )2

]

+ 2ACt
∫

dx cos φ − B2λ

2

∫
dx cos 2φ + . . . (3)

φ ∼= φ + 2π and θ ∼= θ + 2π are canonically conjugate com-
pact boson fields with unit radii satisfying the algebra [21]

[∂xφ(x), θ (x′)] = 2π iδ(x − x′), (4)

and A,B, C etc are bosonization prefactors whose precise
values are not important. The Luttinger parameter K and the
velocity v are related to the Hamiltonian parameters [36] (see
Appendix A).The bosonized forms of the spin operators are

S±
j ≈ exp (±iθ (x))((−1) jA + C cos φ(x) + . . .),

Sz
j ≈ 1

2π
∂xφ(x) + (−1) jB sin φ(x) + . . . (5)

Equation 3 is a compact boson conformal field theory (CFT)
with central charge c = 1 perturbed by vertex operators Up ≡
cos pφ with scaling dimensions [21,37]

[Up] = [cos pφ] = p2K. (6)

Note that we have only shown the most relevant operators,
with the smallest scaling dimensions in Eq. (3). The ellipses
. . . represent other operators that are not important for our
purposes. The the small-J phase diagram shown in Fig. 2 can
be qualitatively reproduced from Eq. (5) by tracking the rele-
vance [38] of Up (see Appendix B for a detailed discussion).
Bond dimerization t introduces the vertex operator U1 and the
interaction SzSz while λ introduces U2. For now, we note that
in the regime when K > 2, all perturbations are irrelevant and
correspond to the XY0 gapless phase.

A different starting point is useful in the large-J limit.
We now interpret the Hamiltonian in Eq. (2) as two XXZ
spin chains with intra- and interrung perturbations. Each leg
can be bosonized appropriately to obtain the following two-
component compact-boson theory [35]:

H ≈ v

2π

∑
α=1,2

∫
dx

(
1

4K
(∂xφα )2 + K (∂xθα )2

)

− λ

2π2

∫
dx∂xφ1∂xφ2 − 4A2t

∫
dx cos (θ1 − θ2)

− B2t
∫

dxλ(cos (φ1 + φ2) − cos (φ1 − φ2))

+ 2C2
∫

dx cos (θ1 − θ2) cos (φ1 + φ2) + . . . (7)

where φα
∼= φα + 2π and θα

∼= θα + 2π are compact boson
fields satisfying

[∂xφα (x), θβ (x′)] = 2π iδαβδ(x − x′), (8)

A and B are again unimportant bosonization prefactors and
we have only shown the most important operators. The
bosonized forms of the spin operators are

S±
α j ≈ exp (±iθα (x))((−1) jA + C cos φα (x) + . . .),

Sz
α j ≈ 1

2π
∂xφα + (−1) jB sin φα + . . . (9)

The above theory represents a c = 2 CFT with perturba-
tions. We have only retained primary [21,37] scaling operators
in Eq. (9). This is sufficient to determine the structure of
the phases and transitions, which is our focus. However,
it is known [39] that descendant operators must be con-
sidered to understand certain incommensurability aspects of
correlations. The large-J phase diagram can be qualitatively
reproduced using Eq. (9) by carefully tracking the relevance
of the operators V± ≡ cos(φ1 ± φ2), W− ≡ cos(θ1 − θ2), and
W−V+ ≡ cos(θ1 − θ2)(φ1 + φ2) (details of this can be found
in Appendix B). Here, we again focus only on how the four
gapless phases can emerge. An important fact is that the scal-
ing dimensions of the various operators listed above are not all
independent. In particular, we have [V−] = ([W−])−1. There-
fore, it is impossible for both V− and W− to be irrelevant at
the same time, and for any t �= 0, the c = 2 theory is unstable
and flows to a Luttinger liquid phase with c = 1 or a gapped
phase [26,27,35] as seen in Fig. 2. The first, which is of
our main interest, occurs when all other operators, especially
V+ are irrelevant. The nature of the resulting gapless phase
depends on (i) which among [V−] and [W−] has the smaller
scaling dimensions at t = 0. This dominates long-distance
physics for t �= 0 resulting in the pinning of either 〈φ1 − φ2〉
or 〈θ1 − θ2〉 and (ii) the value to which 〈φ1 − φ2〉 = 0/π or
〈θ1 − θ2〉 = 0/π is pinned, depending on the sign of t and λ.
The four possibilities result in the four gapless phases shown
in the large-J phase diagram of Fig. 2 as follows:

(1) XY1: [V−] > [W−], 〈θ1 − θ2〉 = π

(2) XY∗
1: [V−] > [W−], 〈θ1 − θ2〉 = 0

(3) XY2: [V−] < [W−], 〈φ1 − φ2〉 = 0
(4) XY∗

2: [V−] < [W−], 〈φ1 − φ2〉 = π .
There are two critical scenarios, which we now discuss:

when [V−] = [W−], the theory flows to a c = 3
2 theory corre-

sponding to a compact boson with Ising CFT [40]. For [V−] �=
[W−] t = 0 corresponds to a phase transition described by
the parent c = 2 two-component compact boson theory when
the pinned value of the appropriate fields changes. At this
stage, let us point out elements of the discussion above
that already exist in the literature. The competition between
[V−] and [W−] leading to different phases was discussed
in Refs. [27,35,40]. The importance of the precise values
to which the fields are pinned was appreciated relatively
recently [14,18,19] where it was shown that 〈φ1 − φ2〉 = π

produces a gapless phase with edge modes.
However, we must be careful in using these pieces of infor-

mation to conclude that we have distinct phases of matter. It
was recently pointed out that this kind of distinction can dis-
appear suddenly [22,23,41]. A more robust characterization

245135-4



SYMMETRY-ENRICHED CRITICALITY IN A COUPLED … PHYSICAL REVIEW B 108, 245135 (2023)

TABLE II. Representation of symmetries (see Table I) on the
boson fields applicable in the small-J and large-J limits of the
Hamiltonian shown in Eqs. (1) and (2). τ x is the Pauli-X matrix.

Small-J Large-J

U (1)
θ (x) �→ θ (x) + χ

φ(x) �→ φ(x)
θα (x) �→ θα (x) + χ

φα (x) �→ φα (x)

ZR
2

θ (x) �→ −θ (x)
φ(x) �→ −φ(x)

θα (x) �→ −θα (x)
φα (x) �→ −φα (x)

ZP
2

θ (x) �→ θ (−x) + π

φ(x) �→ −φ(−x)

θα (x) �→ τ x
αβθβ (−x)

φα (x) �→ π − τ x
αβφβ (−x)

Z
θ (x) �→ θ (x)
φ(x) �→ φ(x)

θα (x) �→ θα (x) + π

φα (x) �→ φα (x) + π

arises out of symmetry considerations, which we now turn to.
We do this in two complementary ways. First, we establish the
fate of the microscopic symmetries shown in Tables I and II in
the deep IR for each of the gapless phases. The effective the-
ory for all of them is that of a single compact boson. We show
that in each of the five phases, the microscopic symmetries
act in inequivalent ways that cannot be deformed into each
other. Second, we study how appropriately charged local and
nonlocal operators behave in the different phases and show a
complete list of operators with distinct charges that can serve
as order parameters to distinguish the different gapless phases.
Our paper therefore characterizes a rather subtle interplay of
symmetries and topology leading to the emergence of gapless
phases.

B. Multiversality along the t = 0 surface

An interesting feature of the phase diagrams shown in
Fig. 2 is the nature of transition separating the Haldane and
trivial phases along parts of the t = 0 surface. In the small-J
limit, we see from Eq. (3) that the critical theory corre-
sponds to a compact boson CFT with central charge c = 1.
In the large-J diagram, the situation is different. Consider
the effective theory in Eq. (7) and set t = 0. This is a c = 2
CFT with perturbations and describes various transitions and
phases along the t = 0 surface. In particular, the transition
between XY1 and XY∗

1 corresponds to the c = 2 theory when
all perturbations are irrelevant or tuned away. As we move
along this surface, the operator W−V+ becomes relevant and
gives us a gapped theory with two ground states, which pre-
cisely correspond to those of the Haldane and trivial phases
and therefore represent a first-order transition between them
(see Appendix B for a detailed discussion). Now consider the
transition between XY1 and the trivial phase. This is driven
by the operator V+ becoming relevant. Since V+ has a smaller
scaling dimension than W−V+, the XX1 -to- trivial c = 1
critical line strikes the t = 0 line well before the first-order
transition sets in. The same is true for the XY∗

1 -to- Hal-
dane transition. Consequently, we expect that a segment of
the transition (close to the gapless phases) between the Hal-
dane and the trivial phase will also be described by the c = 2
CFT before becoming first order as shown in Fig. 2. This
situation is unusual because it is a different universality class
(with a different central charge) compared to the small-J tran-

sition between the same phases. Furthermore, in both cases,
the transitions are reached by tuning only a single parameter,
without additional fine tuning.

The presence of multiple stable universality classes
that separate the same two phases has been termed
“multiversality” [22,23]. Although there are no physical rea-
sons forbidding multiversality, models that exhibit it are
surprisingly rare. We see that the spin-ladder model consid-
ered in this paper exhibits the phenomenon under relatively
generic conditions and symmetries (compare this to the ex-
ample in Ref. [23] where multiversality was observed under
more restrictive symmetries and destroyed when symmetries
were reduced).

C. Distinguishing gapless phases through effective symmetries

We begin this subsection by listing the action of symme-
tries listed in Table I on the compact boson fields in both the
small and large-J versions [35,42]. This is shown in Table II
and is obtained by comparing the action on the lattice oper-
ators shown in Table I with the dictionary shown in Eqs. (5)
and (9) (see Appendix A for more details). We want to under-
stand the fate of these symmetries in various gapless phases.
The long-wavelength physics of each of these gapless phases
is identical and corresponds to that of a single compact boson
with a Hamiltonian of the form

H = veff

2π

∫
dx

[
1

4Keff
(∂xφ)2 + Keff(∂xθ )2

]
. (10)

How do the microscopic symmetries act on the long wave-
length effective fields? Observe that the compact boson theory
itself has various symmetries such as

U (1)θ : θ �→ θ + χ, Zθ
2 : θ �→ −θ,

U (1)φ : φ �→ φ + ξ, Zφ

2 : φ �→ −φ, (11)

which form the group GIR
∼= O(2)θ × O(2)φ [43].

The action of symmetries can also be studied in the spec-
trum of local scaling operators Xm,n ≡ exp(i(mθ + nφ)) with
scaling dimensions [Xm,n] = m2Keff + n2

4Keff
where m and n are

integers. These read as follows:

U (1)θ : Xm,n �→ eimχXm,n, Zθ
2 : Xm,n �→ X−m,n,

U (1)φ : Xm,n �→ einξXm,n, Zφ

2 : Xm,n �→ Xm,−n. (12)

The question we are interested in is how the microscopic
symmetries of spins GUV listed in Table I attach them-
selves to those of compact boson degrees of freedom GIR.
In other words, we we are interested in the homomorphisms
GUV → GIR. Distinct homomorphisms will lead to inequiv-
alent symmetry-enriched Luttinger liquids that cannot be
adiabatically connected. We will determine this for each phase
one-by-one to confirm this.

1. Effective symmetries of XY0

Let us begin with the gapless phase seen in the small-J
limit XY0. The effective action of symmetries were already
obtained using the bosonization formulas as listed in Table II.
This can also be used to determine the action on various
scaling operators as shown in Table III. We see that the
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TABLE III. Effective action of symmetries in the XY0 phase.

U (1) ZR
2 Z ZP

2(
θ (x) + χ

φ(x)

) (−θ (x)
−φ(x)

) (
θ (x)
φ(x)

) (
π + θ (−x)
−φ(−x)

)
eimχ Xm,n(x) X−m,−n(x) Xm,n(x) eiπm Xm,−n(−x)

microscopic U (1) attaches itself to U (1)θ , ZR
2 to a simulta-

neous action of Zθ
2 and Zφ

2 , and ZP
2 to a composite action of

simultaneous π rotation of U (1)θ and Zφ

2 action while UV
lattice translations Z have no effect in the IR.

2. Effective symmetries of XY1 and XY∗
1

We now consider the gapless phases in the large-J limit ob-
tained when W− ≡ cos(θ1 − θ2) dominates at long distances
pinning ϑ ≡ θ1 − θ2. To determine the nature of the resulting
compact boson CFT the system flows to, we perform the
following SL(2,Z) transformation, which preserves the unit
compactification radius of the fields as well as the canonical
commutation relation Eq. (8),(

ϑ

θ

)
≡
(

θ1 − θ2

θ2

)
,

(
ϕ

φ

)
≡
(

φ1

φ1 + φ2

)
. (13)

When ϑ ≡ θ1 − θ2 is pinned, its conjugate ϕ is disordered and
we obtain physics at long distances by setting

eimϑ ≈ 〈eimϑ 〉 ≈ eim〈ϑ〉 and einϕ ≈ 〈einϕ〉 ≈ 0. (14)

The effective theory is simply that of the unpinned canonically
conjugate pair of fields, θ = θ2 and φ = φ1 + φ2 with a
Hamiltonian of the form shown in Eq. (10).

Using Eq. (14) and the action of the symmetries on the
compact bosons obtained from bosonization at large J shown
in Table II, we can read off the effective symmetry action on
the θ and φ as well as on the spectrum of scaling operators
as shown in Table IV. First, compare these with Table III.
We see that the actions of U (1) and ZR

2 are identical in all
three phases. However, the action of Z distinguishes XY0

from the other two. Finally, the symmetry action of ZP
2 de-

pends on the value of 〈ϑ〉 and distinguishes between XY1

(〈ϑ〉 = π ) and XY∗
1 (〈ϑ〉 = 0). Observe that both electric

scaling operators [i.e., those carrying U (1) charge] with the

TABLE IV. Effective action of symmetries in the XY1 (〈ϑ〉 =
π ), and XY∗

1 (〈ϑ〉 = 0) phases.

U (1) ZR
2 Z ZP

2

XY1(
θ (x) + χ

φ(x)

) (−θ (x)
−φ(x)

) (
θ (x) + π

φ(x)

) (
θ (−x) + π

−φ(−x)

)
eimχ Xm,n(x) X−m,−n(x) eiπm Xm,n(x) eiπm Xm,−n(−x)

XY∗
1(

θ (x) + χ

φ(x)

) (−θ (x)
−φ(x)

) (
θ (x) + π

φ(x)

) (
θ (−x)

−φ(−x)

)
eimχ Xm,n(x) X−m,−n(x) eiπm Xm,n(x) Xm,−n(−x)

TABLE V. Effective action of symmetries in the XY2 (〈ϑ〉 = 0),
and XY∗

2 (〈ϑ〉 = π ) phases.

U (1) ZR
2 Z ZP

2

XY2(
θ (x) + 2χ

φ(x)

) (−θ (x)
−φ(x)

) (
θ (x)

φ(x) + π

) (
θ (−x)

π − φ(−x)

)
e2imχ Xm,n(x) X−m,−n(x) eiπn Xm,n(x) eiπn Xm,−n(−x)

XY∗
2(

θ (x) + 2χ

φ(x)

) (−θ (x)
−φ(x)

) (
θ (x)

φ(x) + π

) (
θ (−x)

−φ(−x)

)
e2imχ Xm,n(x) X−m,−n(x) eiπn Xm,n(x) Xm,−n(−x)

smallest scaling dimensions, cos θ and sin θ are pseudoscalars
for XY1 and scalars in XY∗

1 respectively. Thus, we have suc-
ceeded in establishing that XY0, XY1, and XY∗

1 are distinct
from each other.

3. Effective symmetries of XY2 and XY∗
2

Finally, we turn to the large-J gapless phases obtained
when V− dominates at long distances and pins φ1 − φ2. To
get the effective symmetries of the resulting compact boson
CFT the system flows to, we perform a different SL(2,Z)
transformation from Eq. (13),

(
ϑ

θ

)
≡
(

θ1

θ1 + θ2

)
,

(
ϕ

φ

)
≡
(

φ1 − φ2

φ2

)
. (15)

When ϕ ≡ φ1 − φ2 is pinned, its conjugate ϑ is disordered
and we obtain the long distance physics by setting

eimϑ ≈ 〈eimϑ 〉 ≈ 0, and einϕ ≈ 〈einϕ〉 ≈ ein〈ϕ〉. (16)

The effective theory is simply that of the unpinned fields θ and
φ with an effective Hamiltonian of the form shown in Eq. (10).

Using Eq. (16) the symmetry action on the effective low-
energy fields and on the spectrum of operators can be read off
from Table II and is summarized in Table V. The most striking
feature is that the θ field is a charge 2 operator for the U (1)
symmetry. Consequently, the smallest U (1) charge carried
by the spectrum of scaling operators is 2. This immediately
shows that XY2 and XY∗

2 are distinct from XY0, XY1, and
XY∗

1. Let us now focus on the effective action of ZP
2 , which

seemingly depends on the value of 〈ϕ〉 and distinguishes XY2

from XY∗
2. This is not true—the symmetry actions are merely

related by a change of basis. However, keeping track of other
symmetry charges exposes the distinction. Consider magnetic
scaling operators [those without any U (1) charge] with the
smallest scaling dimensions, cos φ and sin φ. We see that
in XY2, the operator with ZR

2 charge (sin φ) transforms as
a scalar under ZP

2 whereas the operator without ZR
2 charge

(cos φ) transforms as a pseudoscalar. This situation is pre-
cisely reversed for XY∗

2 where the ZR
2 charged operator is

a ZP
2 pseudoscalar, whereas the ZR

2 neutral operator is a ZP
2

scalar. This completes the proof that the five gapless phases
are distinct.
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TABLE VI. Local and nonlocal order observables for large |x −
y|. We denote algebraic and exponential decay by “alg” and “exp”.

XY0 XY1 XY∗
1 XY2 XY∗

2

〈O+
s (x) O−

s (y)〉 alg exp alg exp exp
〈O+

a (x) O−
a (y)〉 alg alg exp exp exp

〈C(x, y)〉 0 0 0 0 �= 0

4. Explicit symmetry breaking

Observe that all four microscopic symmetries were im-
portant in establishing these distinctions. Explicitly breaking
certain symmetries eliminates the distinction between certain
phases and opens a potential path to connect them without
phase transitions or intermediate phases. Let us look at a few
instances.

(1) If we break ZR
2 , the distinction between XY2 and XY∗

2
is eliminated and reduces five phases to four, XY0, XY1, XY∗

1,
and (XY2 = XY∗

2).
(2) If we break ZP

2 , the distinction between XY1 and XY∗
1

is eliminated, as well as between XY2 and XY∗
2 and reduces the

five phases to three, XY0, (XY1 = XY∗
1), and (XY2 = XY∗

2).
(3) If we only preserve U (1) and break all other symme-

tries, the five phases reduce to two, (XY0 = XY1 = XY∗
1)

and (XY2 = XY∗
2).

D. Local and nonlocal observables

We now turn to how we can physically characterize vari-
ous gapless phases using local and nonlocal observables. We
will use the previously determined effective symmetry action
listed in Tables III to V to guide us in this. We will focus on
two local operators Os±

x , Oa±
x and a nonlocal string operator

Cx,y defined as follows [in both the small-J (J<) and large-J
(J>) representations]:

O±
s ( j) ≡

{
S±

2 j−1 + S±
2 j J<

S±
1, j + S±

2, j J>

, (17)

O±
a ( j) ≡

{
S±

2 j−1 − S±
2 j J<

S±
1, j − S±

2, j J>

, (18)

C( j, k) ≡
⎧⎨
⎩

σ z
2 j−1

(∏2k
l=2 j σ

z
l

)
σ z

2k+1 J<

σ z
2, j

(∏k−1
l= j+1 σ z

1, jσ
z
2, j

)
σ z

1,k J>

. (19)

The nature of two-point correlation functions of the local
operators and the expectation value of the string operator
are summarized in Table VI and completely characterize the
phases. We see in Table VI that local operators uniquely
identify the XY0, XY1, and XY2 phases but cannot distinguish
between the XY2 and XY∗

2 phases, which the nonlocal opera-
tor can. In this section, we will see how this behavior can be
determined using the bosonization formulas as well as using
the effective symmetry action shown in Tables III to V. These
predictions will also be confirmed numerically in Sec. V.

1. Local operator behavior from bosonization

Let us begin with XY0 where, using Eq. (5) the local
operators can be bosonized as

O±
s (x) ∼ e±iθ (x) cos φ(x), O±

a (x) ∼ e±iθ (x). (20)

In Eq. (20), we have suppressed the bosonization prefactors
and retained only the most relevant scaling operators the lat-
tice operators have an overlap with. Clearly, the two-point
functions of O±

s and O±
a are expected to have algebraic decay

governed by the parameters of the effective compact-boson
CFT that describe the phase at long distances. Recall that for
a CFT, the correlation functions of the scaling operators X (x)
with scaling dimensions �X scale as

〈X (x)X †(y)〉 ∼ |x − y|2�X . (21)

Thus, at long distances |x − y|, we expect

|〈O+
s (x)O−

s (y)〉| ∼ |x − y|−(2K+ 1
2K ),

|〈O+
a (x)O−

a (y)〉| ∼ |x − y|− 1
2K . (22)

Let us now consider the large-J phases where, using Eq. (9),
we get

O±
s (x) ∼ (

e±iθ1(x) + e±iθ2(x)
)
,

O±
a (x) ∼ (

e±iθ1(x) − e±iθ2(x)). (23)

We have again suppressed bosonization prefactors and re-
tained only the most relevant scaling operators. When we have
the full c = 2 theory along the t = 0 line shown in Fig. 15
(see below) we see that both local operators have algebraic
correlations. However, for t �= 0, when V− or W− are relevant
resulting in the different gapless phases, this changes. Con-
sider the case where W− is the most relevant operator and pins
ϑ ≡ θ1 − θ2. We can use the SL(2,Z) transformation shown
in Eq. (13) and Eq. (14) to obtain the following:

O±
s (x) ∼ (e±iθ1 + e±iθ2 ) ≈ e±iθ (1 + e±i〈ϑ〉)

≈
{

0 for 〈ϑ〉 = π (XY1)
e±iθ for 〈ϑ〉 = 0 (XY∗

1 )
,

O±
a (x) ∼ (e±iθ1 − e±iθ2 ) ≈ e±iθ (1 − e±i〈ϑ〉)

≈
{

e±iθ for 〈ϑ〉 = π (XY1)
0 for 〈ϑ〉 = 0 (XY∗

1 )
. (24)

We see that for each case 〈ϑ〉 = π/0, only one of the two
operators O±

s (x)/O±
s (x) has vanishing overlap with scaling

operators and has algebraic correlations whereas the other has
exponential correlations,

|〈O+
s (x)O−

s (y)〉| ∼
{

e− |x−y|
ξ (XY1)

|x − y|− 1
2Keff (XY∗

1 )
,

|〈O+
a (x)O−

a (y)〉| ∼
{

|x − y|− 1
2Keff (XY1)

e− |x−y|
ξ (XY∗

1 )
. (25)

Keff is the effective Luttinger parameter shown in Eq. (10) that
characterizes the effective compact boson CFT at long dis-
tances. We may wonder if the calculations above are modified
if we include the corrections to the bosonization formulas rep-
resented by ellipses in Eq. (9). It turns out that the answer is no
and can be verified by including all higher terms explicitly. A
more powerful way is using symmetries, as will be discussed
in the next subsection.

We now turn to the phases obtained when V− is domi-
nant and pins ϕ ≡ φ1 − φ2. Using the SL(2,Z) transformation
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TABLE VII. Symmetries transformations of local and nonlocal
operators defined in Eqs. (17) to (19).

O±
s (x) �→ O±

a (x) �→ C(x, y) �→
U (1) e±iχ O±

s (x) e±iχ O±
a (x) C(x, y)

ZR
2 O∓

s (x) O∓
a (x) C(x, y)

ZP
2 O±

s (−x) −O±
a (−x) C(−y, −x)

shown in Eq. (15) as well as Eq. (16), we get

O±
s ∼ e±iθ1 + e±iθ2 ≈ (〈e±iϑ 〉 + e±iθ 〈e∓iϑ 〉) ≈ 0,

O±
a ∼ e±iθ1 − e±iθ2 ≈ (〈e±iϑ 〉 − e±iθ 〈e∓iϑ 〉) ≈ 0. (26)

We see that both O±
s (x) and O±

a (x) have no overlap with
any scaling functions and therefore their correlation functions
decay exponentially

|〈O+
s (x)O−

s (y)〉| ∼ |〈O+
a (x)O−

a (y)〉| ∼ e− |x−y|
ξ . (27)

We can check that this behavior does not change even when
corrections represented by ellipses in Eq. (9) are included.
This can also be justified using symmetry arguments as we
will now see.

2. Local operator behavior from effective symmetry action

The correlations of local operators shown in Table VI can
also be understood directly by using symmetries. Let us begin
by noting down the transformations of the local operators
under the U (1), ZR

2 and ZP
2 symmetries. This is shown in

Table VII. At this point, let us remark that all local operators
are charged under various internal symmetries. The nonlocal
operator, on the other hand, although is neutral overall, has
end points that carry ZR

2 charge. This is important to establish
the topological nature of phases and will be discussed in
Sec. IV. Now, we can ask if the transformations shown in
Table VII can be obtained in each of the five gapless phases
using combinations of the scaling operators Xmn(x) whose
transformations are shown in Tables III to V. If the answer
is yes, it will mean that the local operator will have algebraic
correlations at long distances with the exponent determined
by the scaling dimensions of the said operators with smallest
scaling dimensions. If not, then the operators will have expo-
nentially decaying correlations

XY0 : Comparing the U (1) transformations shown in
Table VII and Table III tells us that O±

s and O±
a can have

overlap with X±1,n. Comparing the ZP
2 action tells us that the

smallest operators that transform correctly are

O±
s (x) ∼ X±1,1 + X±1,−1 ∼ e±iθ cos φ, (28)

O±
a (x) ∼ X±1,0 ∼ e±iθ , (29)

which is precisely what was obtained from the bosonization
formulas in Eq. (20) and Eq. (22). This combination also
transforms correctly under ZR

2 .
XY1 and XY∗

1: Comparing the U (1) transformations shown
in Table VII and Table IV again tells us that O±

s and O±
a can

overlap with X±1,n. It is easy to check that no combination
of scaling operators X±1,n can simultaneously reproduce the
ZP

2 and ZR
2 transformations of O±

s (x) (for 〈ϑ〉 = π , that is,

XY1) and O±
a (x) (for 〈ϑ〉 = 0, that is, XY∗

1) and therefore
have correlations that decay exponentially. On the other hand,
X±1,0 ∼ e±iθ has the right transformation properties as O±

a (x)
(for 〈ϑ〉 = π , i.e., XY1) and O±

s (x) (for 〈ϑ〉 = 0, i.e., XY∗
1).

This reproduces Eqs. (24) and (25).
XY2 and XY∗

2: The effective U (1) transformations in
Table V tell us that all scaling operators have a minimum U (1)
charge of 2 and therefore there are no combinations of scaling
operators that have the transformation properties of O±

s and
O±

a and that have a unit U (1) charge as seen in Table VII.
Consequently, the correlations of O±

s and O±
a have exponential

decay in both XY2 and XY∗
2 phases [44]. This reproduces

Eqs. (26) and (27).

3. Behavior of the nonlocal operator

We now turn to the nonlocal string operator C(x, y) defined
in Eq. (19), which can be bosonized in both the small-J (J<)
and large-J (J>) limits as follows (see Appendix C for details):

C(x, y) ∼ CL(x)CR(y), (30)

CL/R ≈
{

γ sin
(

φ

2

)
(J<)

α sin
(

φ1+φ2

2

) + β sin
(

φ1−φ2

2

)
(J>),

(31)

where we have only shown operators with the smallest scaling
dimensions and α, β, γ are nonzero coefficients whose values
we do not fix. It is now easy to verify how 〈C(x, y)〉 behaves
at large |x − y|. From Eq. (30), we have

〈C(x, y)〉 ∼ 〈CL(x)〉 〈CR(y)〉. (32)

Therefore, when 〈CL/R〉 �= 0, we have 〈C(x, y)〉 �= 0. Among
the phases without spontaneous symmetry breaking, this hap-
pens when 〈φ〉 = π for small J and 〈φ1 ± φ2〉 = π for large
J . From Figs. 14 and 15 (see below), we see that 〈C(x, y)〉 �=
0 in the Haldane and XY∗

2 phases whereas in the trivial
gapped phase and other gapless phases XY0, XY1, and XY∗

1,
C(x, y) → 0 for sufficiently large |x − y|. This confirms the
remaining entries of Table VI.

IV. BOSONIZATION ANALYSIS II: THE TOPOLOGICAL
NATURE OF XY∗

2

We now focus on the XY∗
2 gapless phase and study its

topological nature. First, we show that it has protected edge
modes and then discuss the nature of the topological phase.
In particular, we show that the gapless topological phase is
not “intrinsically gapless” and briefly discuss a related model
where it is.

A. Edge modes

A hallmark of gapped symmetry-protected topological
phases such as topological insulators and superconductors is
the presence of protected edge modes degenerate with the
ground state, which have exponentially small splitting at fi-
nite system sizes. Gapless topological phases are defined as
those that have edge modes protected by symmetries and
can be sharply identified at finite volumes by exponential
or algebraic splitting with coefficients different from bulk
states [14–17,19]. Recall that XY∗

2 was characterized by a
nonzero expectation value of the string operator C(x, y) whose
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endpoints were charged under ZR
2 . The following argument

presented in [18,19] shows that this automatically implies the
presence of edge modes. Let us first present the argument
using lattice operators and then using bosonization.

1. Argument using lattice operators

Let |ψ〉 be the ground state of the XY∗
2 Luttinger liquid,

which has string order

〈ψ |C(x, y)|ψ〉 �= 0. (33)

We also know that |ψ〉 is invariant under the symmetries
shown in Table I. Let us consider U (1) rotation by angle
χ = π generated by the following operator (we only consider
the large-J notation for convenience):

U (π ) ∝
L∏

j=1

(
σ z

j,1σ
z
j,2

)
, U (π )|ψ〉 ∝ |ψ〉. (34)

This operator acts on a finite chain of length L with unit cells
labeled j = 0, . . . , L. Let us now consider the action of the
string operator defined on the full length of the chain, i.e.,

C(0, L) ≡ σ z
0,2

⎛
⎝L−1∏

j=2

σ z
j,1σ

z
j,2

⎞
⎠σ z

L,1. (35)

We use this along with U (π ) to get the following result:

〈ψ |C(x, y)|ψ〉 �= 0 ⇒ 〈ψ |C(x, y)U (π )|ψ〉 �= 0

⇒ 〈ψ |σ z
1,1σ

z
L,2|ψ〉 �= 0. (36)

By cluster decomposition, we have

〈ψ |σ z
1,1|ψ〉 �= 0 and 〈ψ |σ z

L,2|ψ〉 �= 0. (37)

This proves that when we have string order, we also have edge
magnetization. Since σ z

1,1 and σ z
L,2 are charged under symme-

try ZR
2 , we can interpret this result as spontaneously breaking

the symmetry at the edges and resulting in degenerate edge
modes.

2. Argument using bosonization

It is nice to obtain the same result using bosonization.
Let us first write down the bosonized version of U (π ) (see
Appendix C),

U (π ) ∼ UL(π )UR(π ), (38)

UL/R ≈
{

cos
(

φ

2

)
(J<)

γ cos
(

φ1+φ2

2

) + δ cos
(

φ1−φ2

2

)
(J>).

(39)

In the phases with 〈C(x, y)〉 �= 0, letting the string operator
span the length of the system setting x = 0, y = L we have

〈C(0, L)U (π )〉 = 〈CLUL )〉x=0〈CRUR〉x=L �= 0. (40)

By cluster-decomposition, we get

〈CL/R UL/R(π )〉 �= 0. (41)

Using Eqs. (31) and (39), this reduces to

CL/RUL/R(π ) ∼ sin φ + . . . for small J,

CL/RUL/R(π ) ∼ α̃ sin φ1 + β̃ sin φ2 + γ̃ sin (φ1 + φ2)

+ δ̃ sin (φ1 − φ2) + . . . for large J.

α̃, . . . , δ̃ are some constants whose precise values are irrel-
evant. We see that CL/RUL/R(π ) are proper local operators
(without fractional coefficients) carrying ZR

2 charge. There-
fore, we have spontaneous symmetry breaking at the edges
and associated boundary degeneracy whenever we have
〈C(x, y)〉 �= 0 and unbroken U (π ) symmetry, such as the
Haldane and XY∗

2 phases.

B. Why XY∗
2 is not an intrinsically gapless topological phase?

In the taxonomy of gapless topological phases [14–17,19],
a special role is played by so-called intrinsically gapless
topological phases [19,45,46]. These are gapless phases with
stable edge modes protected by symmetries that do not al-
low gapped topological phases. In this sense, the topological
nature is intrinsically gapless. Phase diagrams in which in-
trinsically gapless topological phases can be found cannot,
by definition, contain gapped topological phases. Therefore,
the phase diagrams shown in Fig. 2 that contain the Haldane
phase, which is a gapped topological phase, make it clear that
the XY∗

2 phase is not intrinsically gapless. This is because the
symmetries of the model G ∼= O(2) × ZP

2 × Z protect both
gapless and gapped topological phases. We can ask whether
we can break certain symmetries to preserve only the gapless
topological phase but eliminate the gapped one. We now show
using bosonization that this too is not possible.

Let us focus on the large-J limit where XY∗
2 is present.

From Fig. 15 (see below), we see that the gapped Haldane
phase is obtained when 〈φ1 + φ2〉 = π whereas the XY∗

2 ob-
tains when 〈φ1 − φ2〉 = π . Let us consider the possibility of
eliminating the Haldane phase that has a gap while preserving
XY∗

2 by adding an operator that ensures that 〈φ1 + φ2〉 can be
tuned smoothly to zero, while 〈φ1 − φ2〉 can only be pinned
to 0 or π . The operator that achieves this is

δH ∼
∫

dx sin (φ1 + φ2). (42)

However, note that the addition of Eq. (42) simultaneously
breaks both ZR

2 and ZP
2 symmetries. Therefore, any lattice

operator that produces Eq. (42) also generically produces an
operator of the form

δH ′ ∼
∫

dx sin (φ1 − φ2), (43)

which smoothly tunes the pinned value of 〈φ1 + φ2〉 to zero
and therefore eliminates XY∗

2 [47].

C. A related model where XY∗
2 is an intrinsically gapless

topological phase

We now present a model where XY∗
2 is an intrinsically

gapless topological phase. We work in the large-J limit and
modify the Hamiltonian in Eq. (2) as shown in Fig. 3 by
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1

2

FIG. 3. Schematic representation of the Hamiltonian in Eq. (44),
which can host an intrinsically gapless SPT.

adding an extra term as follows:

H = H1 + H2 + H⊥ + H ′
⊥ + H ′′

⊥, where,

Hα = J
∑

j

(
Sx

α jS
x
α j+1 + Sy

α jS
y
α j+1 − �Sz

α jS
z
α j+1

)
,

H⊥ = (1 − t )
∑

j

(
Sx

1 jS
x
2 j + Sy

1 jS
y
2 j − λSz

1 jS
z
2 j

)
,

H ′
⊥ = (1 + t )

2

∑
j

(
Sx

2 jS
x
1 j+1 + Sy

2 jS
y
1 j+1 − λSz

2 jS
z
1 j+1

)
,

H ′′
⊥ = (1 + t )

2

∑
j

(
Sx

1 jS
x
2 j+1 + Sy

1 jS
y
2 j+1 − λSz

1 jS
z
2 j+1

)
. (44)

The presence of the new term H ′′
⊥ preserves all original sym-

metries shown in Table I but importantly introduces a new
on-site symmetry, which exchanges the two legs. The ac-
tion on spin operators and large-J bosonized variables is as
follows:

ZL
2 : �S1, j ↔ �S2, j, φ1 ↔ φ2, θ1 ↔ θ2. (45)

Remarkably, the bosonized version of Eq. (44) is identical
to Eq. (9) and therefore should contain the same phases al-
though in different parameter regimes. Let us now consider
including lattice operators that explicitly break the ZR

2 and
ZP

2 symmetries but preserve the new ZL
2 symmetry shown

in Eq. (45). In the continuum limit, this introduces only the
perturbation shown in Eq. (42) but not Eq. (43) since the latter
breaks ZL

2 . As explained above, this eliminates the Haldane
phase. The equivalent of XY∗

2 phase in this model is an
intrinsically gapless topological phase. Indeed, the residual
on-site unitary symmetry U (1) × ZL

2 is known to not host
any gapped symmetry-protected topological phases in one
dimension [48]. We leave the numerical study of the model
in Eq. (44) to future work.

V. NUMERICAL ANALYSIS

In this section, we numerically analyze the system at hand
and validate the analytical results predicted above. We map the
spin system to hardcore bosons, where the on-site occupancy
is restricted to n = 0/1. The Hamiltonian in terms of hardcore
bosons [see Eq. (2)] becomes

Hα = J

[∑
j

1

2

(
b†

α, jbα, j+1 + H.c.
)

− �
(
ñα, j ñα, j+1

)]
, α = 1, 2,

H⊥ = (1 − t )

[∑
j

1

2

(
b†

1, jb2, j + H.c.
) − λ

(
ñ1, j ñ2, j

)]
,

H ′
⊥ = (1 + t )

[∑
j

1

2

(
b†

2, jb1, j+1 + H.c.
) − λ

(
ñ2, j ñ1, j+1

)]
,

(46)

where b j (b†
j) annihilation (creation) operators and ñ j = (n j −

1
2 ) with n j being the number operator for site j. The ground
state of the model Hamiltonian is computed using the density
matrix renormalization group (DMRG) method [49–51]. The
bond dimension is taken to be ∼500, which is sufficient for
convergence for typical system sizes L = 200 where L is the
total number of sites in the system. Unless otherwise stated,
sites are labeled using a single-site label convention of Eq. (1).

A. Diagnostics, phases, and phase transitions

We explore the parameter space in the λ − t plane with
fixed J and identify the phases and their transitions. The most
illustrative limit is to first investigate when J = 0 [52] where
the system, in the absence of any dimerization (t = 0), un-
dergoes a first-order phase transition at λ = 1 [see Fig. 4(a)].
t engineers gapped phases between 0 < λ < 1√

2
; however

t < 0 is trivial and t > 0 is topological (Haldane phase) in
nature. A gapless phase (XY0) opens between 1√

2
< λ < 1

where both perturbations λ and t are irrelevant. Introducing a
small finite J , not unexpectedly, only renormalizes the phase
boundaries [see J = 0.1 λ − t phase diagram in Fig. 4(b)]
reducing the size of the gapless XY0 phase. A further increase
in J2 leads to the emergence of two new gapless phases (XY1)
and XY∗

1 as XY0 disappears [see Fig. 4(c)] and we get the
large-J picture.

To explore the large−J phase diagram schematically
shown in Fig. 2, a particularly illustrative parameter choice
is to explore the phase diagram for fixed J = 2.5 as shown
in Fig. 5 (� = 0.1). Four distinct symmetry-enriched critical
phases are clearly obtained. To conclusively characterize the
phase boundaries and the nature of their transitions, we use a
host of diagnostics, which we now discuss.

1. BKT transitions

Transitions from the trivial gapped phase to XY1 and the
Haldane phase to XY∗

1 belong to the BKT universality class.
To characterize these transitions, it is useful to note that in the
(hardcore) bosonic language, the XY1 and XY∗

1 phases are
π/2-superfluids [SF(π/2)] phases [53,54]. In such systems,
the momentum distribution is given by

N (k) = 1

L

∑
i, j

eik|i− j|�i, j, (47)

(where �i, j = 〈b†
i b j〉) and is expected to show a sharp peak

at k = π/2. At the transition itself, the finite-size scaling of
N (π/2) carries the signature of an underlying BKT transition.
For example, at the critical point, the BKT ansatz predicts
N (k) ∝ L1− 1

2K , which can be used to extract the value of
K [55,56]. The perfect crossing of the N (k = π/2) data for
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FIG. 4. Phase diagram for small J evaluated using DMRG corre-
sponding to Hamiltonian [see Eq. (46)] for (a) J = 0.0, (b) J = 0.1,
and (c) J = 0.5 � = λ in (a)–(c). Phase boundaries represent the
second- and first-order transitions calculated using various diagnos-
tics as mentioned in the text. The transition between the gapped,
i.e., trivial, Haldane, and gapless, i.e., XY0, XY1, and XY∗

1, when
they exist are BKT transitions and correspond to a single-component
compact boson theory with central charge c = 1 and Luttinger pa-
rameter K = 2 whereas the transition between the Haldane and trivial
phase is a single-component compact boson theory with central
charge c = 1 and varying K . All transitions to the FM are first order.
Symbols are the only calculated points, and lines connect the points
for clarity.

different lengths at t = −0.8 as shown in Fig. 6(a) indicates
a BKT transition, which has the Luttinger parameter of value
K = 2 as expected from Sec. III (see also Appendix A). This
is found to be true for all values of t using which the phase
boundaries to the SF(π/2) (XY1) phase of Fig. 5 have been
obtained.

FIG. 5. Phase diagram for large J in λ − t plane with fixed
J = 2.5 and � = 0.1. Bold circles mark the Ising transition with
central charge c = 1

2 between Néel to trivial and Néel to Haldane
phase. The transition between trivial to XY1 and Haldane to XY∗

1

(up triangles) are BKT transitions, described by a single-component
compact boson theory with c = 1 and Luttinger parameter K = 2.
The transition from XY1 to XY∗

1 is a two-component compact boson
theory with c = 2 with varying Luttinger parameters. The trivial-to-
Haldane phase transition through the MG points is first order, which
changes to c = 2 for larger λ at λc (pentagonal point). The transition
from XY1 to XY2 and from XY∗

1 to XY∗
2 (down triangles) belong

to the Ising universality class stacked on top of a compact boson
with c = 3

2 . Finally, the transition from any phase to the FM phase
is a first-order transition (squares). Note that symbols are the only
calculated points, and lines connect the points for clarity.

2. Ising transitions

The transitions from the Néel to trivial and Haldane
(circles), from XY1 to XY2, and from XY∗

1 to XY∗
2 phase are

found to be of Ising type (see Fig. 5). Such Ising transitions
can be characterized by analyzing the finite-size scaling of the
structure factor S(k) defined by

S(k) = 1

L2

∑
l,m

eik(l−m)(〈nlnm〉 − 〈nl〉〈nm〉). (48)

In the Néel state, S(k) shows a peak at k = π signaling antifer-
romagnetic correlations. At the Ising transitions, it is known
that S(k = π ) follows a scaling ansatz ∝ L− 2β

ν such that at
the critical point S(k)L

2β

ν is invariant for different L with
exponents ν = 1 and β = 1/8 [57,58]. The perfect crossing
of S(k)L

1
4 as shown in Fig. 6(b), and eventual collapse of all

the data points, shown in Fig. 6(c), for different L in S(π )L
2β

ν

vs (λ − λc)Lν plane near the transition point implies an Ising
phase transition at t = −0.4 with a critical point λc ∼ −5.41.
We use the same approach to calculate the Ising phase bound-
aries in the phase diagram (Fig. 5).

3. c = 3
2 transition between gapless phases

Unlike the previous Ising transitions where one transits
from a gapless to a gapped phase, the Ising transitions that
appear between XY1 to XY2 and XY∗

1 to XY∗
2 are gapless-

to-gapless transitions. Since this CFT appears in addition to
the existing compact boson, the total central charge of the
transition is expected to be c = 3

2 . Phase transition points are

245135-11



MONDAL, AGARWALA, MISHRA, AND PRAKASH PHYSICAL REVIEW B 108, 245135 (2023)

0 1 2

 λ

0.15

0.2

0.25

N
(k

=
π/

2
)L

-0
.7

5

L = 120
L = 160
L = 200

-6 -5

 λ

0

0.3

0.6

-150 0 150

( λ - λ
c
)L

L = 80
L = 120
L = 160
L = 200

S
(k

=
π)

L
0

.2
5

t = -0.8

t = -0.4

(b)(a) (c)

3 3.5 4
 λ

0

0.05

0.1

0.15

 χ
/L

L = 80
L = 120
L = 160
L = 200

120 180
L

0.05

0.1

(d)

3 4 5
λ

-1.2

-1

-0.8

E
L/2

/L

E
L
/L

-0.3 0 0.3
t

0

0.5

1
ΔE

L

t = -0.7
λ = -2.0

(f)(e)

FIG. 6. The top row demonstrates the finite-size calling to determine (a) the BKT transition between the trivial and XY1 phase and [(b),(c)]
the Ising transition between the Néel and trivial phase. The perfect crossing of different N (π/2)L

1
2K −1 curves in (a) with t = −0.8 for different

L implies the transition point with the Luttinger parameter K = 2 for the BKT transition. The crossing of different S(π )L
2β
ν curves with

t = −0.4 for different L in (b) reveals the transition point with exponents ν = 1 and β = 1/8. The collapse of all the data points for different
L in S(π )L

2β
ν vs (λ − λc )Lν shown in (c) further confirms the Ising transition point at λc ∼ −5.34. The Ising transition between two gapless

phases, from XY1 to XY2 phase, at t = −1 using the finite-size scaling of fidelity susceptibility (χ ) shown in (d). The χ peaks at the transition
point, and for the Ising transition, the peak height diverges linearly with L (inset). The transition point at the thermodynamic limit (dotted line)
is calculated by extrapolating the peak positions for different L. The eigenvalues are plotted to determine the first-order transitions. (e) The
level crossing in the ground-state energies EN at t = −0.7 with N = L/2 and N = L implies the first-order transition between the XY2 and
FM phase. (f) The sharp jump in single-particle excitation gap (�EL with �n = 1) at t = 0 for λ = −2.0 signifies the first-order transition
between the trivial and Haldane phases. See the phase diagram in Fig. 5. In (e) and (f), we consider L = 200.

quantified by analyzing fidelity susceptibility (χ ),

χ = lim
(λ−λ′ )→0

−2ln|〈ψ (λ)|ψ (λ′)〉
(λ − λ′)2

(49)

where |ψ (λ)〉 is the ground state at λ. At the phase transi-
tion point, χ/L develops a peak, and the height of the peak
diverges linearly with L for the Ising transition [59–61]. In
Fig. 6(d), we plot χ/L for different system sizes, which shows
an increase in the peak height with L. The inset of Fig. 6(d)
shows the linear divergence of the peak height, implying
the Ising transition. The critical point of the transition is
determined by extrapolating the position of the peak to the
thermodynamic limit, which is marked by the dashed line in
Fig. 6(d).

4. Multiversality along the t = 0 line

On t = 0 line, the gapless phase with c = 2 starts at λc ∼
−0.01, which is a BKT transition point that can be calculated
using finite-size scaling of single particle excitation gap [57].
The excitation gap at half-filling can be defined as

�EL = (EN−�n + EN+�n − 2EN )/�n, (50)

where N = L/2 and �n is the number of particles in an
excitation. The invariance of L�E ′

L with �n = 1 at the critical
point and the collapse of all the data in L�E ′

L vs xλ,L plane,
where

�E ′
L = �EL[1 + 1/(2lnL + C)],

xλ,L = lnL − a/
√

λ − λc, (51)

at and near the critical point with a suitable choice of constants
C and a predicts the BKT transition point λc ∼ −0.01 (see
Fig. 7 below).

From Fig. 5, we see that the c = 2 line separates the
gapless phases XY1 and XY∗

1 as well as the trivial and
Haldane gapped phases. The latter phases are separated by a
different universality class with c = 1 for small J . This is a
numerical confirmation of the “multiversality” [22,23] phe-
nomenon discussed in Sec. III and Appendix A.

5. First-order transitions

Finally, the transition between the trivial and the Haldane
gapped phase for negative values of λ at large J , or that
between any of the phases to FM is first order in nature. These
can be characterized by analyzing the level crossings between
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FIG. 7. Finite-size scaling of �EL is shown to find the BKT tran-
sition point along t = 0 line for large J where the universality class
changes from first order to second order with c = 2. The crossing
of all curves captures the critical point, marked by the arrow. (Inset)
The collapse of all the data for different L complements the BKT
transition with λc = −0.01.

eigenstate energies. For instance, in the case of transitions
to the FM phase, we plot the ground-state energy at boson
half-filling (EL/2), which corresponds to zero magnetization
sector, and completely filled (EL), which is equivalent to fully
magnetized case (FM phase) across the boundary in Fig. 6(e).
The crossing between EL/2 and EL determines the first-order
transition points, which are marked by squares in the phase
diagram (Fig. 5). On the other hand, the sharp jump in sin-
gle particle excitation gap �EL [Eq. (50) with �n = 1] at
t = 0 for the transition between the trivial gapped to Haldane
gapped phase, as shown in Fig. 6(f), signifies a first-order
transition (also see Fig. 5).

6. Central charge

Now we want to give numerical evidence for the central
charge predicted by the bosonization analysis. We find the
central charge (c) by fitting the bipartite von Neumann en-
tanglement entropy (SvN ) to its conformal expression [62]

SvN = c

6
ln

[
L

π
sin

π l

L

]
+ g. (52)

Figure 8(a) show how c changes at the transition between XY1

and XY2 phases according to Fig. 5. In Fig. 8(b), we represent
c along the t = 0 line that cuts through the interface between
the XY1 and XY2 phases. As discussed above in the analytical
analysis, we find from the numerical analysis, although not
exactly, that the c is close to 2 in the XY1 − XY∗

1 transition
and at the Ising transition point between the phases XY1 and
XY2, the c is close to 1.5 (up to finite-size effects).

B. Characterising gapless phases

Since the gapped phases and particularly ordered phases
are well understood and can be easily characterized by con-
ventional order parameters, here we will focus our discussion
on the gapless phases and their characterization.

1

1.5

2

1 1.5 2 2.5 3

(a)

t = −1.0c

λ

L = 80
L = 120
L = 160
L = 200

0

1

2

−3 −2 −1 0 1 2 3 4

(b)

t = 0.0

λc

c

λ

L = 200

FIG. 8. The central charge (c) is plotted for cuts along (a) t =
−1.0 that goes through the XY1 and XY2 phases for different L
corresponding to Fig. 5 where J = 2.5 and � = 0.1. In (b), we plot
c for a system of L = 200 along a cut that goes through the interface
between the phases XY1 and XY∗

1 (t = 0) (see Fig. 5).

1. String-order parameter

A particularly useful tool, which also helps in distillation
of the topological features of the gapless phases, is the string-
order parameter Ci, j [see equivalently Eq. (19) up to a phase]
where

Ci, j = −〈
zie

i π
2

∑ j−1
k=i+1 zk z j

〉
, (53)

and zi = 1 − 2b†
i bi. The string order parameter |C2,L−1|, not

unexpectedly, shows a finite value in the Haldane (gapped)
phases in the system (not shown) [58,63]. Interestingly, the
same order parameter also takes nontrivial values in XY∗

2,
proving that it is a gapless topological phase. In Fig. 9(a) the
behavior of |Ci, j | is shown for both XY2 (circles) and XY∗

2
(squares)—one finds that, unlike XY2, in XY∗

2, |Ci, j | takes
a finite value that does not decay with |i − j|. Similarly in
Fig. 9(b) we plot |Ci, j | within the phase XY1 (circles) and XY∗

1
(squares), and in Fig. 9(c), we plot it in the XY0 phase. In both
plots, the string order parameter vanishes, showing that these
phases are trivial in nature.

2. Local order parameters

The nature of long-range correlations can also distinguish
between the different phases, as shown in Table VI. To this
end, we calculate |〈Os+

i Os−
j 〉| and |〈Oa+

i Oa−
j 〉| where Os+

i =
b†

1,i + b†
2,i and Oa+

i = b†
1,i − b†

2,i to distinguish between the
trivial, XY1, XY∗

1, and XY0 phases. The results are shown in
Figs. 9(d)–9(g) for all the gapless phases. We see a contrast in
the nature of these correlations in two phases. The |〈Os+

i Os−
j 〉|

(|〈Oa+
i Oa−

j 〉|) falls exponentially (algebraically) with distance
|i − j| in the XY1 phase. Whereas, in the XY∗

1 phase, the
behavior flips. However, in XY0 and XY2, both correlation
functions are algebraic or exponential, as shown in Figs. 9(f)
and 9(g), respectively.

3. Edge states

The topological XY∗
2 phase exhibits edge states, a hallmark

property of such topological phases. In Figs. 10(a) and 10(b),
we plot the number of particles nr,i = 〈n1,i + n2,i〉 in strong
rungs, where the hopping and interaction coupling are large
(even or odd rungs) according to the construction of the
system, for the phases XY2 and XY∗

2, respectively. For XY∗
2,
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FIG. 9. String order parameter |Ci, j | is shown in (a)–(c) for different gapless phases to distinguish the trivial and nontrivial topological
phases. (a) The parameter (λ, t) = (5, −1.0) belongs to the XY2 phase and (5,1.0) belongs to the XY∗

2 phase (see Fig. 5). The presence
(absence) of long-range |Ci, j | signifies the nontrivial (trivial) topological nature of the XY∗

2 (XY2) phase. (b) The parameter (2.5, −0.5)
belongs to the XY1 phase and (2.5,0.5) belongs to the XY∗

1 phase (see Fig. 5). The absence of long-range |Ci, j | signifies the trivial nature of
the phases XY1 and XY∗

1. (c) |Ci, j | for the XY0 phase (J = 0) [see Fig. 4(a)]. For all cases, we calculate Ci j with i = L/4 + 1, and j goes from
L
4 + 2 to L where j − i ∈ odd for a system of L = 200. [(d)–(g)] The correlation functions |〈Os+

i Os−
j 〉| (circles) and |〈Oa+

i Oa−
j 〉| (squares) as

a function of distance |i − j| for four different gapless phases XY1, XY∗
1, XY0, and XY2, respectively. (g) Also applicable to XY∗

2. We see
different behaviors of these correlations in different gapless phases (see the main text). Note that in (d), (e), and (g), the parameters correspond
to the phases in Fig. 5, and the parameters in (f) correspond to the phase in Fig. 4(a). Here, we also use a system of L = 200 and calculate the
correlations at the center of the system where i = L/8.

two edge sites do not belong to the strong bond where we plot
〈ni〉. We can see that, only for the XY∗

2 phase [Fig. 10(b)],
the system exhibits exponentially localized occupied edge
states.

The edge states manifest gapless excitations at the edges
of the system. To confirm this property, we plot the energy
gap for the excitation [Eq. (50)] at half-filling. In Fig. 11
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FIG. 10. The presence of edge state in the topological gapless
phase (XY∗

2), which is present in phase diagram Fig. 5, is portrayed.
Here, J = 2.5 and � = 0.1. (a) The density of particles nr,i/2 on
the rung i with stronger coupling is plotted corresponding to XY2

phase and (b) the same except the edge sites where 〈ni〉 is plotted
corresponding to XY∗

2 phase.

we plot �EL for �n = 1 (circles) and �n = 2 (triangles) in
the phases XY2 (solid symbols) and XY∗

2 (empty symbols).
In both phases, the elementary excitation in bulk is �n = 2
(a pair of particles on the strong rungs), which is gapless. This
can be confirmed from the algebraic decay of �EL. In the
XY∗

2 phase, due to the presence of edge states, which can be
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2

FIG. 11. The energy gaps �EL is plotted for XY2 (solid symbols)
and XY∗

2 (empty symbols) phases, emerged in Fig. 5, as a function
of L. Circles and triangles represent single (�n = 1) and two-particle
(�n = 2) excitation gaps, respectively. Here, J = 2.5 and � = 0.1.
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occupied by a single particle, we see algebraic decay of �EL

even with �n = 1. In the XY2 phase, however, single particle
excitation is gapped where �EL saturates to a finite value.

VI. MAPPING TO EFFECTIVE SPIN–1 MODELS

The connection between phase diagrams of spin- 1
2 ladders

and higher-spin chains is rather well known [40]. Certain parts
of the phase diagram shown in Fig. 2 too can be determined
using a mapping to an effective spin-1 model. This provides
both consistency checks and physical insights into the phases.
To do this, let us begin with the Hamiltonian in Eq. (2) and
perform a change of basis⎛

⎜⎝
Sx

1 j

Sy
1 j

Sz
1 j

⎞
⎟⎠ �→

⎛
⎜⎝

−Sx
1 j

−Sy
1 j

Sz
1 j

⎞
⎟⎠,

⎛
⎜⎝

Sx
2 j

Sy
2 j

Sz
2 j

⎞
⎟⎠ �→

⎛
⎜⎝

Sx
2 j

Sy
2 j

Sz
2 j

⎞
⎟⎠, (54)

which results in the following change in H⊥ and H ′
⊥:

H ′
⊥ �→ −(1 + t )

∑
j

(
Sx

2 jS
x
1 j+1 + Sy

2 jS
y
1 j+1 + λSz

2 jS
z
1 j+1

)
,

H⊥ �→ −(1 − t )
∑

j

(
Sx

1 jS
x
2 j + Sy

1 jS
y
2 j + λSz

1 jS
z
2 j

)
. (55)

Let us first consider the parameter regime when H⊥ is dom-
inant, i.e., t ≈ −1. Since H⊥ decouples into disjoint pieces
each of which has support on two spins living on vertical
bonds as shown in Fig. 12 and takes the form

h⊥ = −(1 − t )
(
Sx

1 jS
x
2 j + Sy

1 jS
y
2 j + λSz

1 jS
z
2 j

)
. (56)

It can be easily diagonalized as follows (suppressing site
labels for clarity):

h⊥ = (1 − t )[(λ + 2)|s〉〈s| + (λ − 2)|0〉〈0|
− λ(| + 1〉〈+1| + | − 1〉〈−1|)] where

| + 1〉 ≡ |↑1↑2〉, | − 1〉 ≡ |↓1↓2〉,

|0〉 ≡ |↑1↓2〉 + |↓1↑2〉√
2

, |s〉 ≡ | ↑1↓2〉 − |↓1↑2〉√
2

, (57)

where |↑〉, |↓〉 represent eigenstates of Sz with eigenvalues ± 1
2

respectively. We see that for all values of λ > −1, | ± 1〉, |0〉
have the lowest energies. We can project the two-spin Hilbert
space on the vertical bonds of every site onto this three-
dimensional subspace using the following projection operator:

P =
∏

j

(|0〉〈0| + | + 1〉〈+1| + | − 1〉〈−1|) (58)

as schematically shown in the top panel of Fig. 12 to get an
effective spin-1 chain with Hamiltonian

He f f = PHP† = Jxy

∑
j

(
Lx

j L
x
j+1 + Ly

jL
y
j+1

)

+ Jz

∑
j

Lz
jL

z
j+1 + D

∑
j

(
Lz

j

)2
(59)

FIG. 12. Mapping to an effective spin-1 chain in the regime
t ≈ −1 (top) and t ≈ +1 (bottom). Circles represent the qubits from
the original Hilbert space and the boxes enclosing circles represent
which pair of qubits are mapped to effective spin-1 entities (squares).
Boundary effects are seen in the latter case where the mapping leaves
behind a qubit on each end.

where

Jxy =
(

J

2
− (1 + t )

4

)
, Jz = −

(
J�

2
+ λ(1 + t )

4

)
,

and D = 2(1 − t )(1 − λ). (60)

Lx, Ly, Lz are the spin-1 representations of the angular mo-
mentum algebra with representations

1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠,

1√
2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠,

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠.

The Hamiltonian in Eq. (59) is the familiar spin-1 XXZ model
with uniaxial single-ion-type anisotropy whose phase diagram
is known [64] and is schematically reproduced in Fig. 13.
For the parameter regime close to t ≈ −1, the phases and
transitions of the Hamiltonian in Eq. (2) are qualitatively
reproduced by that of Eq. (59). For example, consider the limit
t → −1 when Eq. (59) reduces to

He f f → J

2

∑
j

(
Lx

j L
x
j+1 + Ly

jL
y
j+1 − �Lz

jL
z
j+1

)

+ 4(1 − λ)
∑

j

(
Lz

j

)2
. (61)

If � is fixed to a small value, as λ is tuned, we see from Fig. 13
that Eq. (61) passes through the large-D (trivial), XY1, XY2

and the Ferromagnetic phases—the same as what is seen in
Fig. 2. It is worth emphasizing the crucial role of �, which
builds residual ferromagnetic correlations between effective
spin-1’s, thus leading to the realization of interesting gapless
phases. Through the spin-1 mapping we are able to see that in
order to access the XY2 phase, we need to fix � to be small
as was done in our numerical investigations.

Let us now consider the limit when the Hamiltonian Eq. (2)
is dominated by H ′

⊥. First, let us observe that with periodic
boundary conditions, t �→ −t is induced by a unitary transfor-
mation generated by a single-site translation on one of the legs
of the ladder �S1 j �→ �S1 j+1. As a result, the phase diagram for
Eq. (2) is perfectly symmetric under t �→ −t . The identity of
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FIG. 13. Schematic phase diagrams of the spin-1 XXZ chain
Hamiltonians shown in Eqs. (59) and (65) applicable to the limits
t ∼ −1 (top) and t ∼ +1 (bottom) of Eq. (2) whose phase diagram
is shown in Fig. 2.

the phases, however, can change under this map. In particular,
the unitary transformation is ill defined with open boundary
conditions and therefore it is conceivable that the distinction
between the regions related by t �→ −t , is topological in na-
ture. We will now map the H ′

⊥ dominant Hamiltonian to a
spin-1 chain. To do this, we repeat the steps above and observe
that with periodic boundary conditions, H ′

⊥ decouples into
disjoint pieces, each of which has support on two spins, this
time living on the diagonal bonds as schematically shown in
the bottom panel of Fig. 12. We again perform a convenient
change of basis similar to Eq. (55) to get the following local
term:

h′
⊥ = −(1 + t )

(
Sx

2 jS
x
1 j+1 + Sy

2 jS
y
1 j+1 + λSz

2 jS
z
1 j+1

)
.

This is easily diagonalized as

h′
⊥ = (1 + t )[(λ + 2)|s〉〈s| + (λ − 2)|0〉〈0|

− λ(| + 1〉〈+1| + | − 1〉〈−1|)] (62)

where | ± 1〉, |0〉 and |s〉 are as defined as in Eq. (57). Project-
ing onto the low-energy Hilbert space spanned by | ± 1〉, |0〉
on each diagonal bond, we again get an effective spin-1 chain
with the following Hamiltonian:

H ′
e f f = J ′

xy

∑
j̃

(
Lx

j̃ L
x
j̃+1 + Ly

j̃
Ly

j̃+1

)

+ J ′
z

∑
j̃

Lz
j̃
Lz

j̃+1
+ D′ ∑

j̃

(
Lz

j̃

)2
(63)

with

J ′
xy =

(
J

2
− (1 − t )

4

)
, J ′

z = −
(

J�

2
+ λ(1 − t )

4

)
,

D′ = 2(1 + t )(1 − λ). (64)

We have denoted the bond between spins (2, j) and (1, j + 1)
by j̃. So far, Eq. (63) looks identical to Eq. (59) with the
replacement t �→ −t . However, a change occurs with open
boundary conditions. There is no natural association of the
boundary qubits with any diagonal bond. As a result, it sur-
vives the the projection and remains as a qubit on the ends
of the chain. The effective Hamiltonian with open boundary
conditions is thus

H ′
e f f = J ′

xy

L−1∑
j̃=1

(
Lx

j̃ L
x
j̃+1 + Ly

j̃
Ly

j̃+1

)

+ J ′
z

L−1∑
j̃=1

Lz
j̃
Lz

j̃+1
+ D′

L∑
j̃=1

(
Lz

j̃

)2
+ H ∂ , (65)

where J ′
xy, J ′

z and D′ are the same as in Eq. (64). H ∂ is the
effective boundary Hamiltonian,

H ∂ = J∂
xy

(
Sx

11Lx
1̃ + Sy

11Ly
1̃
+ Lx

L̃Sx
2L+1 + Ly

L̃
Sy

2L+1

)
+ J∂

z

(
Sz

11Lz
1̃
+ Lz

L̃
Sz

2L+1

)
(66)

where the coupling constants to the boundary qubits �S11 and
�S2L+1 are

J∂
xy ≡

(
J

2
− (1 − t )

2

)
, J∂

z = −
(

J�

2
+ λ(1 − t )

2

)
.

The picture above suggests an interesting alternative method
of analysis to the Abelian bosonization of Sec. III by treating
the boundary spin-1/2 as a quantum impurity [65]; however,
we will not pursue this route in this paper and leave it for
future work.

Let us make a few comments on the limitations and utility
of the mapping to a spin-1 chain before we proceed to a
discussion of the phases in the effective Hamiltonian for the
t ∼ 1 limit. Recall that for the t ∼ 1 limit, the phase diagram
for the spin-1 XXZ chain accurately reproduces the phases
of the spin ladder. To identify the phases of the spin-1 XXZ
with that of Eq. (2) in the t ∼ −1 limit, we need additional
tools, although plausible arguments can be made, especially
for the gapped phases. For instance, it is clear that the identity
of the Ferromagnet obtained for large λ remains the same
in Eqs. (65) and (59) as can be easily seen by taking λ to
a large value in Eq. (2). The identities of the large-D and
Haldane phase in Eq. (59) are reversed in Eq. (65) and can be
understood from the effect of additional end qubits appearing
with open boundary conditions. On the one hand, the qubit
hybridizes with the edge mode of the Haldane phase and gaps
out the edge degeneracy, rendering it a trivial phase. On the
other hand, the same qubits contribute to the edge degeneracy
to the large-D phase where the gapped bulk protects the hy-
bridization between qubits on opposite ends of the chain, thus
converting it to a topological phase. The effect of the qubits
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on the gapless phases is not straightforward to determine. One
could extend the previous argument to justify the mapping of
the XY2 phase to the topological XY∗

2 phase, which has edge
modes, but the absence of a bulk gap makes it heuristic at
best. Indeed, the mapping of XY1 to a different gapless phase
XY∗

1, which does not have edge modes, is not easily explained
within the spin-1 mapping. We need more sophisticated tools,
such as bosonization and numerical analysis, to nail down
the precise identity and nature of gapless phases, as has been
achieved in the previous sections.

In summary, spin-1 mapping presents an independent con-
firmation of distinct phases in the limits t ∼ 1. It also guides
us to fix the parameters to open up various gapless phases,
especially XY2. It also confirms that the topology of the
t ∼ −1 phase diagram is identical to that of t ∼ +1. How-
ever, additional analysis, as has been shown in the previous
sections, is needed to determine the identity of phases in the
latter limit although heuristic arguments are consistent with
detailed analysis.

VII. SUMMARY AND OUTLOOK

In this paper we have studied a coupled spin model
hosting several symmetry-enriched gapless phases that ex-
hibit an intricate interplay of symmetries, strong correlations,
and topological features. Our multipronged approach, which
includes bosonization (Secs. III and IV), DMRG studies
(Sec. V), and effective low-energy modeling (Sec. VI) pro-
vides a comprehensive understanding of all aspects of the
phase diagram. Our study points out that even the well-known
Luttinger liquid state can appear in the form of distinct phases
based on how the microscopic UV symmetries inherited from
the underlying spin model get reflected in the low-energy IR
(see Sec. III C). Among these phases is an interesting gapless
topological phase XY∗

2 that hosts symmetry-protected edge
modes. Finally, our mapping to a Spin 1 XXZ chain (Sec. VI)
provides an alternative view point to understand the nature of
the gapless phases and their transitions. We also find the pres-
ence of multiple stable universality classes—“multiversality”
along the critical surface separating the gapped trivial and
Haldane phases.

There are many generalizations that can follow from our
paper. First, it would be useful to use more sophisticated
tools of boundary CFT [16,66] to gain insight into the gapless
phases seen in this paper. Second, although in this paper
we have focused on a two-chain ladder, we believe that
as the number of chains increases, a much wider variety
of symmetry-enriched criticality may be realizable in such
systems, leading to a host of unique gapless phases and
transitions [67,68]. Another interesting direction is to cou-
ple such one-dimensional chains to realize possibly novel
two-dimensional gapless states [69–72] mimicking the suc-
cess of gapped topological phases [73–76]. Finally, it would
be interesting to see if the symmetry-enriched gapless phe-
nomena investigated in this paper can be observed in Rydberg
simulators [77] where other gapless phenomena have been
postulated to exist [78–81]. We leave these and other ques-
tions to future work.
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APPENDIX A: ADDITIONAL BOSONIZATION DETAILS

The subject of bosonization has been extensively discussed
in several excellent books and reviews. In this Appendix,
we review a few details that are subtle and are easy to
miss. The CFT term in Eqs. (3) and (7) is determined using
standard techniques [35] from the XXZ Hamiltonian. The
various perturbations can be determined from the bosonized
form of the spin operators shown in Eqs. (5) and (9) in a
straightforward manner for the most part. Cases involving
coincident field operators should be treated with care employ-
ing a “point-splitting” device to determine how coincident
vertex operators are multiplied. Let us review this in the single
component/small-J limit,

eimφ(x)einθ (x) = lim
ε→0

eimφ(x+ε)einθ (x−ε)

= lim
ε→0

ei(mφ(x+ε)+nθ (x−ε))e− mn
2 [φ(x+ε),θ (x−ε)]

= lim
ε→0

einθ (x−ε)eimφ(x+ε)e−mn[φ(x+ε),θ (x−ε)].

(A1)

This is determined using an integrated version of Eqs. (4)
and (8),

[φα (x), θβ (x′)] = iπδαβsgn(x − x′),

[φ(x), θ (x′)] = iπsgn(x − x′). (A2)

using which we get

eimφ(x)einθ (x) = (−1)mneinθ (x)eimφ(x). (A3)

Equation (A3) is needed to obtain the correct bosonized form
for operators involving products of S± such as the bond-
dimerization term ∝ ∑

j ((−1) jS+
j S−

j+1 + H.c.) in Eq. (1).
Another important place where point splitting is needed is in
determining the correct symmetry action. The U (1),ZR

2 , and
Z actions are easy to read off by directly comparing the action
on the lattice operators shown in Table I with Eqs. (5) and (9).
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The action of lattice parity ZR
2 on the bosonized variables, on

the other hand, needs some care. Let us review this again in the
small-J , single-component version. Recall that the action of
ZP

2 is bond inversion, which can be thought of as a composite
of site inversion and single-site translation. Since translation
is straightforward by direct comparison, let us focus on site
inversion �S j �→ �S− j . On the continuum operators and simple
vertex operators, this naively acts as

φ(x) �→ φ(−x), θ (x) �→ θ (−x). (A4)

Let us look at how this naive action is reflected on products of
noncommuting operators,

eimθ (x)einφ(x) = lim
ε→0

ei mnπ
2 sgn(ε)ei(mθ (x−ε)+nφ(x+ε))

�→ lim
ε→0

ei mnπ
2 sgn(ε)ei(mθ (−x+ε)+nφ(−x−ε))

= lim
ε→0

eimnπsgn(ε)eimθ (−x+ε)einφ(−x−ε)

= (−1)mneimθ (−x)einφ(−x). (A5)

Using Eqs. (A4) and (A5) we get

S±
− j ≈ exp (±iθ (−x))((−1) jA − C cos φ(x) + . . .),

Sz
− j ≈ 1

2π
∂xφ(−x) + (−1) jB sin φ(−x) + . . . (A6)

We can now read off the symmetry action corresponding to
site reflection from Eq. (A6) as

φ(x) �→ π − φ(x), θ (x) �→ θ (−x). (A7)

Combining Eq. (A7) with the action of translation shown in
Table II, we get the final effective action of ZR

2 shown in
Table II.

APPENDIX B: PHASE DIAGRAMS FROM BOSONIZATION

In this Appendix, we use bosonization to obtain the quali-
tative details of the phase diagrams shown in the main text in
both the small- and large-J limits.

1. The small-J phase diagram

Let us write down the form of the Hamiltonian at small J
shown in Eq. (1)

H =
∑

j

(
1 + (−1) jt

)(
Sx

j S
x
j+1 + Sy

j S
y
j+1 − λSz

jS
z
j+1

)

+ J
∑

j

(
Sx

j S
x
j+2 + Sy

j S
y
j+2 − �Sz

jS
z
j+2

)
, (B1)

and its bosonized version shown in Eq. (3),

H ≈ v

2π

∫
dx

[
1

4K
(∂xφ)2 + K (∂xθ )2

]

+ 2ACt
∫

dx cos φ − B2λ

2

∫
dx cos 2φ + . . . (B2)

The Luttinger parameter K and velocity v depend on
Hamiltonian parameters and can be determined from the
Bethe ansatz solution of the XXZ spin chain [36]

K = π

2 arccos λ
, v = K

(2K − 1)
sin

( π

2K

)
. (B3)

Let us comment on a few limits of Eq. (B1). If we switch
off both the nnn coupling J and dimerization t , we have the
XXZ model, which can be solved by Bethe ansatz [82–84]
with the phases shown in the t = 0 line of the figure in Fig. 2.
The phase diagram with t �= 0 and J �= 0 can be easily un-
derstood as a perturbation of the XXZ spin chain [24] using
the bosonized Hamiltonian shown in Eq. (B2). This is done
by tracking the relevance (in the RG sense) of the two vertex
operators cos φ and cos 2φ, which have scaling dimensions K
and 4K , respectively, as follows.

The XY0 phase. In the regime when K > 2, which cor-
responds to 1√

2
< λ < 1 from the formula in Eq. (B3),

both cos φ and cos 2φ are irrelevant, and we get a gapless
phase XY0.

The Haldane and trivial phases. When 1
2 < K < 2, which

corresponds to −1 < λ < 1√
2
, cos φ is relevant while cos 2φ

is irrelevant. Therefore, we get gapped phases for t �= 0 where
〈φ〉 → π for t > 0 corresponds to the Haldane phase and
〈φ〉 → 0 for t < 0 corresponds to the trivial phase.

The Néel phase. When K < 1
2 , which corresponds to λ <

−1, both cos φ and cos 2φ are relevant. When cos 2φ is domi-
nant (e.g., when t = 0), we get a Néel phase with 〈φ〉 → ±π

2 .
The transition between the Haldane/trivial phase and Néel
phase is second-order and corresponds to the Ising universal-
ity class. See [85] for an explanation of this.

The ferromagnet. As λ → 1, we get K → ∞ and v →
0 and the Luttinger liquid description becomes invalid as
the system transitions to a ferromagnet through a first-order
transition.

Putting these various pieces together, we reproduce the
topology of the small-J phase diagram seen for small t . This
is shown in Fig. 14.

2. The large-J phase diagram

Let us now write down the Hamiltonian form appropriate
for large J ,

H = H1 + H2 + H⊥ + H ′
⊥, where,

Hα = J
∑

j

(
Sx

α jS
x
α j+1 + Sy

α jS
y
α j+1 − �Sz

α jS
z
α j+1

)
,

H⊥ = (1 − t )
∑

j

(
Sx

1 jS
x
2 j + Sy

1 jS
y
2 j − λSz

1 jS
z
2 j

)
,

H ′
⊥ = (1 + t )

∑
j

(
Sx

2 jS
x
1 j+1 + Sy

2 jS
y
1 j+1 − λSz

2 jS
z
1 j+1

)
, (B4)
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FIG. 14. The small-J phase diagram as determined from
bosonization.

and its bosonized form

H ≈ v

2π

∑
α=1,2

∫
dx

(
1

4K
(∂xφα )2 + K (∂xθα )2

)

− λ

2π2

∫
dx∂xφ1∂xφ2 − 4A2t

∫
dx cos (θ1 − θ2)

− B2t
∫

dxλ(cos (φ1 + φ2) − cos (φ1 − φ2))

+ 2C2
∫

dx cos (θ1 − θ2) cos (φ1 + φ2) + . . . (B5)

We now reproduce qualitative features of its diagram shown
in Fig. 2. We will focus on the phases surrounding the c = 2
line over which we have good analytical control. The leading
term in Eq. (B5) is a c = 2 CFT of two identical compact
bosons. The operator ∂xφ1∂xφ2 has scaling dimensions 2 and is
therefore exactly marginal. It generates motion in the space of
c = 2 CFTs where the compact bosons are no longer identical
and have different compactification radii. We also have oper-
ators V± ≡ cos(φ1 ± φ2), W− ≡ cos(θ1 − θ2), and W−V+ ≡
cos(θ1 − θ2)(φ1 + φ2) whose scaling dimensions can be ob-
tained perturbatively to the leading order in λ as [35]

[V±] = K± ≈ 2K

(
1 ± λK

πv

)
,

[W−] = 1

K−
≈ 1

2K

(
1 + λK

πv

)
, and

[W−V+] = 1

K−
+ K+ ≈

(
1

2K
+ 2K

)(
1 + λK

πv

)
, (B6)

where, again, relationship of the Luttinger parameter K and
velocity v with the parameters in the Hamiltonian is de-
termined from the Bethe ansatz solution of the XXZ spin
chain [36] as

K = π

2 arccos �
, v = JK

(2K − 1)
sin

( π

2K

)
. (B7)

Note that we have [V−][W−] = 1. As a result, it is impossible
for both V− and W− to be irrelevant at the same time. Conse-
quently, for any t �= 0, the c = 2 theory is unstable and flows
a gapless phase with c < 2 or a gapped phase [26,27,35] as
seen in Fig. 2.

FIG. 15. The large-J phase diagram as determined from
bosonization.

a. The phases and transitions

Let us begin in the limit t → 0 in Eq. (B5) when V+W−
is irrelevant, giving us a c = 2 theory. Recall that one of
the two operators W− ≡ cos(θ1 − θ2) or V− ≡ cos(φ1 − φ2)
is always relevant and, therefore, for t �= 0, the theory flows
to either a gapless state with c < 2 or gaps out completely.
We are interested in the case where the system does not
gap out completely, which occurs when V+ ≡ cos(φ1 + φ2) is
irrelevant and the theory flows to effective single-component
Luttinger liquid gapless phases. The nature of the phase de-
pends on (i) which among W− and V− dominates at large
distances, pinning θ1 − θ2 or φ1 − φ2 and (ii) the sign of t ,
which determines the value to which the fields are pinned
〈θ1 − θ2〉 = 0/π or 〈φ1 − φ2〉 = 0/π . We label these four
cases XY1,2 and XY∗

1,2 as shown in Fig. 15. All four are
distinct phases. The universality class of a direct continuous
transition between XY1/2 and XY∗

1/2 is the parent c = 2 theory
obtained by tuning t → 0. The transition between XY1 and
XY2 or between XY∗

1 and XY∗
2 corresponds to a compact

boson plus Ising CFT with central charge c = 3
2 [23,40,86].

In the parameter regime we study the model numerically, a
direct transition between XY2 and XY∗

2 is not observed.
When we are in the XY1 or XY∗

1 phases where W− pins
the value of θ1 − θ2, a transition to a gapped phase can occur
when V+ also becomes relevant. The gapped phases result-
ing when θ1 − θ2 and φ1 + φ2 are pinned correspond to the
Haldane or trivial phase [27] as shown in Fig. 15. A different
transition can occur when we are in any of the four gapless
phases, XY1,2 and XY∗

1,2 and the Luttinger velocity vanishes,
resulting in a first-order transition to a FM similar to the
single-component small-J case.

b. The t = 0 line and its proximate phases

We now analyze the t = 0 line and its proximity in detail.
First, let us analyze which gapless phase results when t �= 0
is switched on. This is determined by which operator W− or
V− has the smaller scaling dimension. In the parameter regime
we studied numerically, we only find the former situation as
shown in Fig. 15. When V+ becomes relevant along with W−,
we see that t �= 0 results in gapped phases. Let us denote λc

2
as the location along the t = 0 line when V+ is marginal, i.e.,
[V+] = 2 where the XY1 to the trivial phase boundary and
the XY∗

1 -to- Haldane phase boundary meets the c = 2 line at
t = 0.
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Now, as seen in Eq. (B5), the c = 2 theory is destroyed
by either (i) the composite operator W−V+ becomes rele-
vant leading to a gapped state with two degenerate vaccua
〈φ1 + φ2〉 = π − 〈θ1 − θ2〉 = 0/π or (ii) the Luttinger veloc-
ity for one of the sectors vanishes rendering the continuum
description invalid and we get a first-order transition to a FM.
Let us denote the critical values of λ that result in each of
these as λc

1 and λc
3 respectively. From the perturbative result

shown in Eq. (B6), we can get rough estimates for λc
1 − λc

3
although these estimates are not very reliable when they result
in large values of |λc

k| where the validity of perturbation theory
no longer holds.

The nature of the phase transition between the trivial and
Haldane phases that occurs at t = 0 depends on whether we
are at λ < λc

1 or λc
1 < λ < λc

2. As shown in Fig. 15, the latter
results in a first-order phase transition in which the vacua of
the Haldane and the trivial phase are degenerate whereas the
former results in a second-order transition with c = 2. Putting
all this together, we get the form shown in Fig. 15.

c. Multiversality

A curious observation is that although the small-J and
large-J gapped Haldane and trivial phases are adiabatically
connected, the nature of the second-order transitions between
them is different at small J and large J . For small J , it is
a c = 1 critical theory whereas for large J it is c = 2. Both
are obtained by tuning a single parameter and are therefore
generic. This phenomenon, called multiversality, has received
attention in recent studies [22,23] although microscopic mod-
els that exhibit them are rare.

d. A nice possible proximate phase diagram

In the parameter regime when V+ is irrelevant, we previ-
ously argued that close to the t = 0 line t �= 0 resulted in a
gapless XY1 or (t <0) XY∗

1 (t >0) phases if [W−] < [V−]
and XY2 (t <0) or XY∗

2 (t >0) phases if [W−] > [V−]. If the
c = 2 theory survived as [W−] = [V−] (at some putative value
λc

4, say) then it would open a direct transition between the
phases XY2 and XY∗

2. The c = 3
2 lines discussed previously

that separated the phases XY1 and XY2 (t <0) and XY∗
1

and XY∗
2 (t >0) would meet the line t = 0 at this point λc

4.
Alternatively, the gapless theory becomes unstable before this
can happen, giving us the situation shown in Fig. 15, which
we observe in our numerical investigation. We postulate that
there is some proximate parameter regime of our microscopic
Hamiltonian where λc

3 > λc
4 can be realized. In this case,

we should see a phase diagram as shown in Fig. 16, which
contains all the same phases as in Fig. 15 but also a direct
transition between XY2 and XY∗

2.

APPENDIX C: BOSONIZING STRING OPERATORS

1. Bosonizing C(x, y) for small J

Bosonizing string order parameters is known to be tricky
and rife with ambiguities [87,88]. Let us try to naively apply
Eq. (5) to bosonize the string operator in Eq. (19) in the small-
J limit,

C(x, y) ∝ e±iπ
∑y

l=x Sz
l ∼ e± i

2

∫ y
x ds∂sφ(s) ∼ e± i

2 (φ(x)−φ(y)). (C1)

FIG. 16. A nice proximate phase diagram at large J suggested by
bosonization.

Equation (C1) leads to the conclusion that 〈C(x, y)〉 �= 0 any-
time 〈φ〉 �= 0, in particular both in the Haldane and in the
trivial phases. This is incorrect. We now use symmetries to
identify the correct bosonized form of C(x, y). We begin by
postulating the following general bosonized form for C(x, y):

C(x, y) ∼ CL(x)CR(y) where , (C2)

CL/R(x) ∼
∑
m∈Z

AL/R
m e

i
2 mφ(x). (C3)

While the form in Eq. (C9) appears as though the string oper-
ator C(x, y) has been written in terms of local operators with
support at x and y, this is not so. The half-integer prefactor
to the fields φα

2 ensures that the operators in CL/R are not part
of the spectrum of local operators Xm,n ≡ exp(i(mθ + nφ))
and are therefore nonlocal. Furthermore, we have used the
fact that C(x, y)2 = 1 to restrict the coefficients to multiples
of 1

2 . We now impose constraints on AL/R
m using symmetry.

First, observe that the endpoints of C(x, y) defined in terms
of spin operators as shown in Eq. (19) are charged under ZR

2
(Sz

j �→ −Sz
j). Using the action of ZR

2 on the boson fields shown
in Table II, we obtain a constraint on AL/R

m as

ZR
2 : CL/R

φ �→−φ−−−→ −CL/R ⇒ AL/R
m = −AL/R

−m . (C4)

We now impose the action of ZP
2 shown in Table VII on

the bosonized form of C(x, y) using Table II, which gives a
relationship between AL

m and AR
m as

ZP
2 : CL(x)

φ(x)�→−φ(−x)−−−−−−−→ CR(−x) ⇒ AR
m = AL

−m = −AL
m.

(C5)

Using Eqs. (C4) and (C5) in Eq. (C3), we get the fi-
nal bosonized form for C(x, y) ∼ CL(x)CR(y) with CL(x) =
−CR(x) and

CL ∼
∑

m∈Z+
αm sin

(
mφ

2

)
≈ α1 sin

(
φ

2

)
, (C6)

where the coefficients αm are linear combinations of AL/R
m .

This correctly reproduces the numerically observed behavior
of 〈C(x, y)〉, which is nonzero when 〈φ〉 = π such as in the
Haldane phase but not when 〈φ〉 = 0 such as in the trivial
phase.
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2. Bosonizing C(x, y) for large J

We now bosonize the string operator in the large-J version.
We follow the same line of reasoning as shown previously for
the small-J version. Let us begin by attempting to bosonize
C(x, y) using the formulas shown in Eq. (9),

C(x, y) ∝ eiπ(
∑y−1

l=x Sz
1,l +

∑y
l=x+1 Sz

1,l ) ∼ e
i
2

∫ y
x ds∂s (φ1+φ2 )

∼ e
i
2 (φ1(x)+φ2(x))e− i

2 (φ1(y)+φ2(y)). (C7)

We may just as well have gone a different route to get

C(x, y) ∝ eiπ(
∑y−1

l=x Sz
1,l −

∑y
l=x+1 Sz

1,l ) ∼ e
i
2

∫ y
x ds∂s (φ1−φ2 )

∼ e
i
2 (φ1(x)−φ2(x))e− i

2 (φ1(y)−φ2(y)). (C8)

The bosonized expressions in Eqs. (C7) and (C8) lead to very
different physics. We have 〈C(x, y)〉 �= 0 when 〈φ1 + φ2〉 �= 0
according to Eq. (C7) and when 〈φ1 − φ2〉 �= 0 according to
Eq. (C8), which corresponds to very different phases as seen
in Fig. 15. Now we use symmetries to write down the correct
bosonized form of C(x, y). We again begin by postulating the
following form for C(x, y):

C(x, y) ∼ CL(x)CR(y) where , (C9)

CL/R(x) ∼
∑

m,n∈Z

AL/R
m,n e

i
2 (mφ1(x)+nφ2(x)). (C10)

We now impose constraints on AL/R
m,n using symmetry. First,

we use the fact that the endpoints of C(x, y) are charged under
ZR

2 (Sz
α j �→ −Sz

α j). Using the action of ZR
2 on the boson fields

shown in Table II, we get

ZR
2 : CL/R(x)

φα �→−φα−−−−−→ −CL/R(x) ⇒ AL/R
m,n = −AL/R

−m,−n.

(C11)

We now impose the action of ZP
2 shown in Table VII on

the bosonized form of C(x, y) using Table II, which gives a
relationship between AL

mn and AR
mn as

ZP
2 : CL(x)

φ1(x)�→±π−φ2(−x)−−−−−−−−−−→
φ2(x)�→π−φ1(−x)

CR(−x) ⇒

AR
m,n = ±(i)m+nAL

−n,−m = ∓(i)m+nAL
n,m. (C12)

Equations (C11) and (C12) are mutually compatible for
nonzero A iff (m + n) is even. Note that we have allowed a
sign ambiguity in the action of ZP

2 , φ1 �→ ±π − φ2, which
results in a harmless overall multiplicative sign factor in the
final answer. Using these in Eq. (C10), we obtain the fi-
nal bosonized form of C(x, y) ∼ CL(x)CR(y) with CL(x) =
±CR(y) and

CL ≈ α sin

(
φ1 + φ2

2

)
+ β sin

(
φ1 − φ2

2

)
, (C13)

where we have only shown operators with the smallest scaling
dimensions and the coefficients α, β are linear combinations

of AL/R
m,n . This reproduces the observations in Sec. V that

〈C(x, y)〉 �= 0 when 〈φ1 ± φ2〉 = π , i.e., in the Haldane and
XY∗

2 phases.
3. Bosonizing U (π)

We can obtain the bosonized form of the symmetry oper-
ator U (π ) defined on a finite interval x ∈ [0, L], used in the
main text using arguments similar to the above by treating it
as a string operator defined for any interval. In the small-J
limit, we can postulate the following form:

U (π ) ∼ UL UR, (C14)

UL/R ∼
∑

m

BL/R
m e

i
2 mφ. (C15)

Unlike C(x, y), which has ZR
2 charged endpoints, UL/R do not

carry any charge. Thus, we have

ZR
2 : UL/R

φ �→−φ−−−→ UL/R ⇒ BL/R
m = BL/R

−m . (C16)

Imposing the action under ZP
2 , we get

ZP
2 : UL(x)

φ(x)�→−φ(−x)−−−−−−−→ UR(−x) ⇒ BR
m = BL

−m = BL
m.

(C17)

Using Eqs. (C16) and (C17), we get

UL/R ∼ β cos
φ

2
+ . . . (C18)

where we have shown only the operator with the smallest
scaling dimensions, and β is some combination of BL/R

m . In
the large-J limit, we can postulate the form

U (π ) ∼ UL UR, (C19)

UL/R ∼
∑
m,n

BL/R
m,n e

i
2 (mφ1(x)+nφ2(x)). (C20)

Again, imposing ZR
2 invariance of the endpoints, we get

ZR
2 : UL/R(x)

φα �→−φα−−−−−→ UL/R(x) ⇒ BL/R
m,n = BL/R

−m,−n. (C21)

The action of ZP
2 further gives us

ZP
2 : BL(x)

φ1(x)�→±π−φ2(−x)−−−−−−−−−−→
φ2(x)�→π−φ1(−x)

BR(−x) ⇒

BR
m,n = ±(i)m+nBL

−n,−m = ±(i)m+nBL
n,m. (C22)

Again, Eqs. (C21) and (C22) are mutually compatible for
nonzero B iff (m + n) is even and we have retained the sign
ambiguity in the action of ZP

2 as before when we bosonized
C(x, y). Using these in Eq. (C14), we get the final form
U (π ) ∼ ULUR with UL = ±UR and

UL ≈ γ cos

(
φ1 + φ2

2

)
+ δ cos

(
φ1 − φ2

2

)
, (C23)

where we have only shown operators with the smallest scaling
dimensions, and the coefficients γ , δ are linear combinations
of BL/R

m,n .
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