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Quasi-Fermi liquid behavior in a one-dimensional system of interacting spinless fermions
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We present numerical evidence for a paradigm in one-dimensional interacting fermion systems, whose
phenomenology has traits of both Luttinger liquids and Fermi liquids. This state, dubbed a quasi-Fermi
liquid, possesses a discontinuity in its fermion occupation number at the Fermi momentum. The excitation
spectrum presents particlelike quasiparticles and absence of holelike quasiparticles, giving rise instead to edge
singularities. Such a state is realized in a one-dimensional spinless fermion lattice Hamiltonian by fine-tuning
the interactions to a regime where they become irrelevant in the renormalization group sense. We show, using
uniform infinite matrix products states and finite-entanglement scaling analysis, that the system ground state
is characterized by a Luttinger parameter K = 1 and a discontinuous jump in the fermion occupation number.
We support the characterization with calculations of the spectral function that show a particle-hole asymmetry
reflected in the existence of well-defined Landau quasiparticles above the Fermi level and edge singularities
without the associated quasiparticles below. These results indicate that the quasi-Fermi liquid paradigm can be
realized beyond the low-energy perturbative realm.
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I. INTRODUCTION

It is well understood that a fairly generic, interacting quan-
tum system in one spatial dimension (1D) can be described
at low energies by Luttinger liquid (LL) theory [1]. This
proposal overrules the standard Fermi liquid (FL) theory due
to the reduced phase-space scattering between particles, pre-
venting the formation of quasiparticles and forcing instead the
existence of collective excitations [2,3]. The conventional LL
paradigm involves linearizing the dispersion relation around
the Fermi surface, which consists of two points. This approx-
imation is justified because the band curvature is irrelevant in
the renormalization group sense for energy scales arbitrarily
close to the Fermi level. Indeed, spectral function calculations
are asymptotically exact but only in the low-energy, perturba-
tive regime [4–11]. However, capturing more realistic physics
requires accounting for irrelevant interactions at higher energy
scales where linearization is no longer appropriate [9–19].

Attempting to apply LL theory at high energies unavoid-
ably leads to modifications, giving rise to unexpected behavior
that defies common knowledge. Phenomenology beyond this
“linear” LL paradigm include considering corrections to the
theory around a stable fixed point that can be associated to
(i) the curvature of the dispersion relation, (ii) irrelevant inter-
actions, or (iii) a momentum-dependent interaction potential
[8–11,16,17,20,21].

In a FL, irrelevant terms can be accounted for perturba-
tively. They broaden the spectral function, maintaining the
quasiparticle picture. This perturbation-theory approach fails
in LL theory. For example, at finite dispersion curvature, the
Lorentz invariance and particle-hole symmetry introduced by
the linearization are both broken, leading to on-shell diver-
gences [16,17]. Together, these symmetry breaking effects

lift the degeneracy in the dispersion relation leading to qual-
itatively new behavior in the dynamic correlations [12,15].
The differences are twofold. (1) Near the Fermi momentum,
kF , the spectral functions of both the linear and nonlinear
LLs possess power-law singularities but with different scaling
exponents [16,17]. (2) Away from kF , the excitation spectrum
can develop finite lifetime quasiparticles or power-law excita-
tions [11,16,19,20].

We present a microscopic, spinless fermion model that,
contrary to the conventional paradigms, simultaneously ex-
hibits both FL and LL characteristics. This quasi-Fermi liquid
(qFL) was originally presented in Refs. [13,18] in the context
of a 1D continuum Hamiltonian that contains only irrelevant
interactions, with scaling dimension three. The model was
found to realize a discontinuity in the momentum distribution
while lacking the perturbatively defined fermionic quasiparti-
cles normally indicated by such a discontinuity. The former
hints to FL behavior while the latter indicates LL behavior.
We numerically study the ground state of the equivalent lattice
problem directly in the thermodynamic limit using uniform
matrix product states (uMPS) [22–25] and the variational
uMPS (VUMPS) algorithm [25,26]. Our VUMPS results
are further refined using finite-entanglement scaling (FES)
[27–30]. Evidence for the qFL is further strengthened by
characterizing the excitation spectrum using large-scale time-
dependent density matrix renormalization group (tDMRG)
calculations [31–34].

The main goal of this work is to show, using uMPS,
VUMPS, FES, and tDMRG, that the universality class defined
by the qFL paradigm can be detected in the nonperturbative
regime in quantum lattices. This is accomplished by analyzing
the ground and excited states of a lattice Hamiltonian at dif-
ferent fillings such that the ground state exhibits FL behavior,
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while the excitation spectrum suggests similarities with the
nonlinear LL. This physics is realized along a critical line
with Luttinger parameter K = 1 in Hamiltonian parameter
space, legitimizing the departure from the standard LL and
FL paradigms of quantum fluids.

The article below has the following structure. In Sec. II,
we introduce our model and the relevant numerical methods.
In Sec. III, the momentum distribution and the charge static
structure factor are computed and analyzed for evidence of
both FL and LL behavior. This is followed by calculations of
the spectral function in both the particle and hole sectors, as
well as a scaling analysis of various momentum cuts. We close
with a discussion of the results and their possible implications
in Sec. IV.

II. MODEL AND METHODS

In this work we focus on a 1D, extended, spinless fermion
model on the lattice with interactions to first and second
neighbors. The Hamiltonian is written as

H = −t
∑

j

(c†
j c j+1 + H.c.) + μ

∑
j

ñ j

+V
∑

j

ñ j ñ j+1 + V2

∑
j

ñ j ñ j+2, (1)

with ñ j = c†
j c j − 1/2 giving the particle-hole symmetric ver-

sion at μ = 0. Parameters V and V2 are the nearest-neighbor
and next-nearest-neighbor interactions, respectively, and μ is
the chemical potential; all energies are expressed in units of
the hopping t .

The phase diagram in the V > 0, V2 > 0 region was char-
acterized in Ref. [35] at half filling using finite-size DMRG.
Four phases were identified: two charge-density-wave insu-
lating phases, a LL phase, and a bond-order phase. The
charge-density-wave regions arise when either V or V2 (V ′
in their notation) is appreciably greater than the other. In
between these two regions, where V and V2 are comparable,
there is a LL phase that transitions into the bond-order phase
at higher values of V and V2.

According to Ref. [18], for a generic system of interacting
fermions, the qFL state can be stabilized by fine-tuning the
interaction couplings such that marginal interactions are nul-
lified. The influence of relevant interactions such as umklapp,
which occur at commensurate fillings, can be avoided by
setting μ �= 0. The remaining irrelevant interactions stabilize
this unique state. In our case, this involves tuning V and V2

with the constraint V · V2 < 0; i.e., if one is attractive, the
other is repulsive.

In order to account properly for the singular behavior of
the 1D problem, it is necessary to resort to methods that
work directly in the thermodynamic limit [36]. To this aim,
the translationally invariant ground state is represented by a
uMPS [22,23], characterized by its bond dimension, χ , which
controls the size of its matrices and defines a variational
manifold as a subspace of the exponentially large, many-body
Hilbert space. The minimum within this manifold, with re-
spect to the cost function 〈uMPS|H |uMPS〉, corresponds to
the approximate ground state. It is reached via the DMRG-
inspired VUMPS algorithm [26], which iteratively finds the

ground state and its energy, subject to an error threshold crite-
rion. Convergence to a variational minimum is characterized
by the energy density error and the norm of the tangent vector.
Our simulations achieved energy density errors and tangent
vector norms on the order of 10−12 and 10−13, respectively.
The quality of our uMPS approximation to the exact ground
state wave function is captured by the discarded weight as
a function of χ . Our simulations included bond dimensions
up to χ = 640 which yield discarded weights of the order of
10−10. For more details on the VUMPS algorithm we refer the
reader to Refs. [25,26].

By virtue of the translational invariance of our system,
the uMPS ansatz works directly in the thermodynamic limit,
thus removing any finite-size effects. However, uMPS are still
approximate, though quasiexact, variational wave functions
due to the finite bond dimension χ . Physically, χ captures the
approximate amount of entanglement present in the system
and can be tuned to improve accuracy. A finite χ introduces
finite-entanglement effects analogous to finite-size effects.
This can be overcome using a FES analysis, which allows one
to extrapolate physical quantities of interest to the infinite-
bond dimension limit, by analyzing its behavior against a
suitable length scale parameter [27–30]. This FES analysis
was done for all relevant expectation values to follow.

III. RESULTS

A. Ground state

The general characteristics of the FL can be understood in
terms of the Landau conjecture, which states that the ground
state and low-energy excited states of a FL are adiabatically
connected to the free Fermi gas, exhibiting nonzero overlap
between them. On the other hand, the ground and excited
states of a LL have zero overlap with the noninteracting case,
thus constituting their own universality class. For the qFL,
because its usually dominant, marginal interactions have been
nullified, one expects its ground state to be perturbatively con-
nected to the ground state of the free Fermi gas. However, in
the infrared limit, the remaining, technically irrelevant inter-
actions now have nontrivial effects on its excited states; they
have no fermionic quasiparticles, which implies no overlap
with the noninteracting case, like a LL. (Indeed, one might
instead expect bosonic excitations; see discussion below.)

According to the above argument, it is then natural to
seek ground states that have a Luttinger parameter K = 1.
Such parameter accounts for the nature and strength of the
interaction in the LL. It follows from LL theory that K can
be extracted as a low-momentum, linear approximation of the
charge structure factor (CSF), the Fourier transform of the
density-density correlation function,

D(k) =
∑

j

〈n0n j〉e−ik j . (2)

The CSF was computed for the uMPS representing the ground
state in the thermodynamic limit [25]. For known D(k), the
parameter K can be extracted from the slope near k → 0+:
dD(k)/dk = K/π [2,3,37]. A grid search was carried out
through a wide range of the parameter space, depicted in
Fig. 1, where a narrow band is seen whose values of V and V2
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FIG. 1. Phase diagram of Luttinger parameter, K , for V < 0 and
V2 > 0 at μ/t = +1.0 (a) and μ/t = +0.5 (b). The quasi-Fermi
liquid state is stable along the black curve which is our best estimate
of the critical line, obtained as an interpolation of the data points
within the band of qFL candidates, 0.99 < K < 1.01. The band can
be made arbitrarily precise with a step size 0 < δ � 0.1 Above this
band the ground state is dominated by charge-ordered fluctuations.
Below the band, the ground state is dominated by superconducting
fluctuations [3]. For μ/t = +1.0 (a) in the lower left corner, as
V becomes much greater than V2 the particles are driven into a
very sparse, charge-ordered state. This breaks translation invariance
which prevents ground state convergence resulting in the missing
data points. Those that converge have K ≈ 0.

yield K ≈ 1. Crucially, these values of V,V2 are generally
comparable in magnitude but not perfectly equal, highlighting
the importance of a judicious grid search. The pairs (V,V2),
with fixed μ, represent a family of qFL candidates for further
investigation.

In order to thoroughly characterize the state of
matter emerging along the K = 1 line, as shown in
Fig. 1, we now present a full analysis for two sets of
representative parameter value candidates: (V,V2, μ) ∈
{(−0.6, 0.9, 0.5), (−1.0, 1.0, 1.0)} [38].

The CSF for the two candidates we highlight can be seen in
Fig. 2(a). The deviations at high momenta from the plateaulike
trend of free fermions are a signature of interacting behavior.
The overall smoothness of the curves indicates the absence
of charge order. We point out that correlation functions can
change significantly with χ (because of its approximate na-
ture), revealing spikes in the CSF at higher χ in the presence

FIG. 2. Static charge structure factor D(k) vs k (a) and the Lut-
tinger parameter K vs ξ−2 (b) for two quasi-Fermi liquid candidates.
Panel (a) contains a family of D(k) curves, plotted for different values
of χ , for each candidate. Individual curves in each family are not
discernible due to the lack of change as χ increases (see main text).
Panel (b) shows K in the infinite χ limit as the intercept of a linear
fit. Our two candidates converge to K = 1.0028 and 0.9936 with
statistical correlation 	1.

of charge order. Here, we do not observe this behavior and
instead conclude that the ground state is metallic.

We conducted a FES analysis to determine K for our
candidates in the infinite-bond dimension limit, based on
finite-bond dimension data. This is displayed in Fig. 2(b),
where K is plotted versus the correlation length of the MPS,
ξ := ξ1(χ ), defined as

ξ1(χ )−1 = −ln|λ1(χ )|, (3)

where λ1(χ ) is the second largest eigenvalue of the MPS
transfer matrix [25,27–30]. A similar analysis can be done
using the length scale δ = ξ−1

n − ξ−1
1 , in place of ξ1(χ ), where

ξ−1
n = −ln|λn(χ )| and λn(χ ) is the nth subleading eigenvalue

of the MPS transfer matrix [29]; other combinations of ξn’s
are also possible [30]. Indeed, we have found an analogous
scaling behavior to that shown in Fig. 2(b) for two equivalent
definitions: δ = ξ−1

2 − ξ−1
1 and δ = ξ−1

3 − ξ−1
1 (not shown)

[38]. The length scales ξ and δ control the finite-entanglement
scaling properties of the MPS approximation. It is expected
that, as χ → ∞, both ξ → ∞ and δ → 0. A linear fit yields
an intercept value equal to the extrapolated value of K for
ξ → ∞. Given the high statistical correlation of the fit, we
can be confident in the value of K and the legitimacy of the
K ≈ 1 band in parameter space.

Next, the momentum distribution function n(k),

n(k) =
∑

j

〈c†
0c j〉e−ik j, (4)

was calculated similarly to the CSF [25]. According to LL
theory, n(k) possesses a power-law singularity near the Fermi
momentum kF [1–3],

n(k) ∼ sgn(k − kF )|k − kF |(K+K−1 )/2−1, (5)

in sharp contrast to the discontinuity present in FL.
A finite bond dimension introduces an inherent length scale

via the MPS correlation length, ξ , that limits the resolution
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FIG. 3. Momentum distribution n(k) vs k (a) and size of the
discontinuity �n(kF ) vs ξ−1 (b) for both candidates compared to
the free Fermi gas (V,V2) = (0, 0) (blue) and a known LL state
(V,V2) = (1, 0) (yellow); clearly in panel (b) the scaling behavior
of the LL differs greatly from the rest. The quasi-Fermi liquid candi-
dates and the Fermi gas scale at most linearly, showing variations of
order 10−3 whose intercept corresponds to �n(kF ) as χ → ∞. The
Fermi gas converges to 1, as expected, while our candidates converge
to ≈0.95, thus demonstrating the presence of a true discontinuity.
The LL scales logarithmically, implying the existence of a singularity
at kF . This is the expected power-law behavior, converging to zero for
ξ → ∞.

of all correlation functions and prevents one from easily dis-
criminating between a singularity and a discontinuity in a
finite-entanglement data set. Furthermore, extrapolating the
numerical derivative at the kF (using FES) cannot differentiate
between FL and LL as the derivative of the LL power law also
diverges at the Fermi momentum [36]. To overcome this, a
FES analysis was performed on the size of the discontinuity
about kF computed as

�n(kF ) ≡ n[kF − π/ξ (χ )] − n[kF + π/ξ (χ )], (6)

with ξ (χ ) defined above. The momentum distribution func-
tions for our qFL candidates can be seen in Fig. 3(a).
Discontinuity �n(kF ) versus correlation length can be seen
in Fig. 3(b) compared against the Fermi gas and a known
prototypical LL. Clearly the extrapolated behavior greatly dif-
fers between the two; the LL possesses a logarithmic scaling
such that �n(kF ) → 0 as the correlation length increases,
while the qFL displays at most a linear scaling such that
�n(kF ) approaches a nonzero constant as ξ (χ ) → ∞. This
behavior matches that of the free Fermi gas, confirming our
analysis. Other quantities such as the entanglement entropy of
the ground state can also be readily obtained [38].

The jump in n(k) together with K = 1, as ξ → ∞, corrob-
orates the FL behavior of our qFL ground state. However, the
discontinuity in the momentum distribution cannot be inter-
preted in the usual way as evidence of perturbatively defined
quasiparticles. The existence of quasiparticles is equivalent
to the statement that the single-particle Green’s function has
poles with nontrivial residues (i.e., it possesses a quasiparticle
weight Z < 1). According to Migdal’s theorem, this form of
the single-particle Green’s function implies a discontinuity in
the momentum distribution of the bare particles. However, the
reverse is not necessarily correct: having a discontinuity in
the momentum distribution does not imply the presence of a
nontrivial residue in the single-particle Green’s function and,
therefore, the existence of quasiparticles. This is a necessary
but not a sufficient condition for the presence of quasipar-
ticles in the excitation spectrum of the system. Indeed, the
discussion in Ref. [18] and its Supplemental Material indi-
cates that, for qFL, the quasiparticle weight Z vanishes for
holelike single-particle excitations at any finite momentum.
This implies the lack of fermionic holelike quasiparticles in
the low-lying excited states and thus the state with K = 1 is
not merely a 1D FL.

B. Spectral function

An important quantity that can provide crucial information
about the nature of the excitations in our 1D system is the
single-particle spectral function:

A(k, ω) = Ap(k, ω) + Ah(k, ω), (7)

Ap(k, ω) =
∑

α

|〈α|c†
k |0〉|2δ(ω − Eα + E0), (8)

Ah(k, ω) =
∑

α

|〈α|ck|0〉|2δ(ω + Eα − E0), (9)

which contains contributions from both the particle Ap(k, ω)
and the hole Ah(k, ω) spectral functions. In these expressions
|0〉 is the ground state of the system with N particles and
ground state energy E0 and the states |α〉 are excited states
with one extra particle or hole, N ± 1, and energy Eα . In a
free theory, the spectral function is given by a Dirac delta
Ap(k, ω) ∼ δ(ω − εk ), where εk is the dispersion relation.
In the presence of interactions, FL theory dictates that the
band curvature will be renormalized and peaks will now be
broadened into Lorentzians, with a width determined by the
quasiparticle lifetime. However, in 1D this picture breaks
down due to the pervasive nesting and, instead, the low-energy
physics is described by LL theory. In the particular soluble
case of a linear dispersion, there is a particle-hole symmetry
that is preserved and the excitation spectrum is a continuum
with a power-law “edge singularity” given by

A(k, ω) ∼ γ 2
0

(ω − εk )1−γ 2
0

θ [(ω − εk )sgn εk], (10)

where γ0 is a constant that depends on the interaction potential
[4–7,14]. Notice that, while the particle (hole) spectrum di-
verges as one approaches the mass shell ω = ε(k) from above
(below), it also displays a sharp threshold or discontinuity
on the opposite side. As previously pointed out, the presence
of curvature in the dispersion εk or irrelevant interactions
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FIG. 4. Momentum resolved spectral function at density n =
0.3 in a logarithmic color scale for (a) a quasi-Fermi liquid
with (V,V2) = (−1, 1) and (b) a Luttinger liquid with (V,V2) =
(−1.5, 0). Dashed lines indicate the Fermi level, where kF /π = 0.3.
Notice the renormalization of the bandwidth for the quasi-Fermi
liquid candidate, the particle-hole asymmetry, the faint continuum
in the hole spectrum (ω < μ), and the high energy bound state on
the particle side (ω > μ).

produce some quite dramatic effects [9–11,14,16,20]: due to
the broken particle-hole symmetry, the spectral function in
the particle sector, near kF , now displays a Lorentzian peak
near the mass shell ω = εk , a feature of a FL; away from εk ,
it displays an asymmetric two-sided power law. Notably, the
spectral function in the hole sector still preserves the character
of a LL.

In order to characterize the spectrum of our model we
carry out large-scale tDMRG simulations on 1D chains. We
consider systems with up to L = 240 sites using m = 400
DMRG states and a time step δt = 0.05. This guarantees a
truncation error smaller than 10−7 for times up to tmax = 80
(this implies that the main source of error stems from the
Suzuki-Trotter decomposition). We follow the prescription
detailed in Ref. [11] with minor modifications: to account for
the open boundary conditions, we use a Hann window in real
space that damps the effects of the edges and an exponential
Hann window in time w(t ) = exp (−εt ), such that a Dirac
delta peak would now have a Lorentzian line shape with an
artificial broadening ε,

A(ω) ∼ 1

π

ε

ω2 + ε2
. (11)

As long as the interlevel spacing is much smaller than ε we
should not expect noticeable finite-size effects [39,40]. If we
assume that the bandwidth is W ∼ 4t , the level spacing is of
the order of 2W/L ∼ 8t/L.

We focus our study on the regime with density n =
0.3 with (V,V2) = (−1, 1), such that the band curvature
d2εk/dk2 > 0 at the Fermi level is more noticeable. To aid
intuition, we first show the full momentum-resolved spectral
function in Fig. 4, compared to that of a LL with the same
density and (V,V2) = (−1.5, 0). The logarithmic scale allows
us to clearly resolve the asymmetry between the particle

FIG. 5. Momentum cuts for the particle (a),(b) and hole (c)–(f)
sectors of the spectral function at density n = 0.3, for several val-
ues of momentum near and away from the Fermi points, located
at kF = 0.3π . Left columns correspond to a quasi-Fermi liquid
with (V,V2) = (−1, 1) and right columns to a Luttinger liquid with
(V,V2) = (−1.5, 0). Results are obtained with an artificial broaden-
ing ε = 0.05.

(ω >μ) and hole (ω < μ) sectors, with an obvious broadening
that increases with the distance from kF and a high-energy
branch near k = π that can be associated to bound states
[11]. Besides the obvious change in the effective mass and
the bandwidth, the qFL may seem to possess a more coherent
dispersion near kF , as predicted using field-theory methods
[13,18]. Regardless, for the hole spectrum we can observe a
faint continuum that spreads to high energies in both cases
shown.

We carry our study of the line shape near, and away from,
the Fermi points as a function of the broadening ε. In Fig. 5
we show several cuts at fixed values of momenta for ε = 0.05
(we point out that we avoid sitting exactly at k = kF because
this is the “edge” of the particle/hole band and, due to the
open boundary conditions and the Hann window used in the
Fourier transform, results may be more affected). For the LL
we observe a clear asymmetry resembling an edge singularity,
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FIG. 6. (a) Scaling of the maximum in the spectral function for
fixed values of k near kF , for the particle (k > kF = 0.3π ) and hole
(k < kF = 0.3π ) sectors, both for the quasi-Fermi liquid and the
Luttinger liquid having density n = 0.3. (b) Power-law exponent
obtained from the slopes in (a) for different values of momentum
k.

while a similar asymmetry is evident for the qFL only at high
energies, near the bottom of the band. The sharp peaklike
structures displayed by the qFL at momenta k ∼ kF may sug-
gest the possibility of well-defined fermionic quasiparticles
near the Fermi level. To extract more conclusive evidence,
we first look at the scaling of the peak maximum Amax as a
function of 1/ε, as shown in Fig. 6(a) in a logarithmic scale.
Following Ref. [41], a fit to a power law Amax ∼ ε−η yields
exponents η = 1.001 and η = 1.004 for k = 0.325π and k =
0.285π , respectively, a strong indication that the peaks may
be Lorentzians that evolve toward a Dirac delta in the limit
ε → 0. These values give an interpolated η ≈ 1.002 at kF ,
suggesting an accuracy of at least 0.2%, taking into account
that the values of V and V2 had to be fine-tuned and there is
an error stemming from this estimate as well. Notice that we
avoid values of k too close to kF to avoid artifacts created
by the open boundary conditions and the Hann window [11].
This is in agreement with the fact that K ≈ 1. In contrast, the
results for the LL show that η differs noticeably from unity,
and from each other, as expected from a power-law singularity
edge. To validate this approach, we also fit the exponent for
a LL at half filling with (V,V2) = (−1.5, 0): the Bethe-ansatz
prediction is η = 0.8416 [11], while we obtain η = 0.8262 for
k = 0.475π . In Fig. 6(b) we show the power-law exponent η

as a function of momentum k obtained from the fits. Remark-
ably, for the qFL we see a clear change of behavior near the
Fermi momentum, with the exponent approaching values very
close to η = 1, suggesting that the FL-like behavior occurs
only near the Fermi level.
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FIG. 7. Scaling of the maximum Amax and the value of the
spectral function at ωmax ± ε for both the quasi-Fermi liquid and
Luttinger liquid at density n = 0.3. We show results on the particle
(k > 0.3π ) and hole (k < 0.3π ) sectors of the spectrum for some
representative momenta k. Lines connecting the data points are a
guide to the eye. The same scaling and symmetry in panel (a) are
a strong indication of quasiparticle behavior.

To further characterize the singularities in the spectra, we
plot the weight of the line shape at ωmax ± ε, where ωmax is the
position of the maximum, Amax. If the scaling is the same as
that of Amax, and there is no left/right asymmetry, the evidence
in favor of a Dirac delta pole is strengthened. As seen in Fig. 7,
where we show representative data, this occurs on the particle
sector of the spectrum, although the evidence weakens on
the hole side due to an apparent asymmetry that grows with
distance from kF . This asymmetry, more dramatic for small k,
is already present in the LL for all values of k, a hallmark of
an edge singularity. To corroborate this behavior we also show
in Fig. 8 the half width of the peak, measured to the left and to
the right of the maximum σ± = |ω± − ωmax|, where ω± is the
value of frequency at half maximum, A(k, ω±) = Amax/2 from
above and below. For an ideal Lorentzian, the points should lie
on a straight line with slope 1, as it occurs in panel (a) for the
qFL for k � kF . Once again, this points to the presence of a
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FIG. 8. Distance of the half maximum Amax/2 from the position
of the peak at ωmax, for both the quasi-Fermi liquid and Luttinger liq-
uid, at density n = 0.3. Lines connecting the data points are a guide
to the eye. The linear scaling with slope one and the left/right sym-
metry in panel (a) are strong indications of quasiparticle behavior.

Dirac delta peak in the particle spectral function, but an edge
singularity in the hole sector that broadens with an exponent
η that decreases as one moves away from kF .

If indeed the system realizes full fledged Landau quasi-
particles, one should be able to associate the magnitude of
the discontinuity in n(k) with the quasiparticle weight Z =
|〈N + 1|c†

k |0〉|2. Due to the open boundary conditions, we use
“particle-in-a-box” states [41]

c†
k =

√
2

L + 1

∑
�

sin (k�)c†
�, (12)

with k = π�/(L + 1), for integers 1 � � � L. An extrapo-
lated value of this quantity to the thermodynamic limit yields
a value Z = 0.945 (not shown), which can be compared to the
value of the pole in the spectral function at k = 0.325π , Z =
0.940. Conversely, the value of the discontinuity in Fig. 3(a)
is 0.953, sufficiently close to support our conclusion.

IV. SUMMARY AND CONCLUSION

We have presented numerical evidence for the existence
of the qFL state in 1D, which departs from both the stan-
dard LL and FL phenomenologies, and yet combines features
from each. We achieved this in a spinless fermion lattice
Hamiltonian system, by effectively nullifying the marginal
interactions such that the remaining irrelevant interactions
manifest in the state. We observed this for Hamiltonian
parameters well beyond the perturbative regime, demonstrat-
ing the stability and legitimacy of the quasi-Fermi liquid
state as a distinct metallic state of matter in one spatial
dimension.

The continuum limit of our lattice model with generic V
and V2 interactions corresponds to an effective low-energy
theory with marginal density-density interactions and addi-
tional irrelevant terms. From there, one may elect to drop
these irrelevant terms leading to the typical linear LL model.
Notably, what we have effectively done is nullify the marginal
interaction while keeping the irrelevant terms. In our lattice
Hamiltonian we have accomplished this by judiciously select-
ing values of (V,V2, μ), such that K = 1. This should account
for retaining the irrelevant terms but “dropping” the marginal
interactions. According to Ref. [18], the qFL paradigm states
that irrelevant modifications to the noninteracting theory qual-
itatively change the nature of the ground state and excitations
in the system.

Specifically, the qFL ground state is perturbatively con-
nected to the free-fermion ground state as for the FL. This is
evident from n(k), shown in Fig. 3, due to the finite disconti-
nuity in n(k = kF ) and the renormalization of the occupations:
n(k � kF ) < 1 and n(k � kF ) > 0. As for excited states, cer-
tainly, the divergent quasiparticle residue Z in the hole sector
implies that the excited states of a qFL are qualitatively differ-
ent compared to those of free fermions.

As for excited states, the evidence presented here suggests
that the spectral characteristics of the qFL should partly mimic
those of the LL, but with well-defined fermionic quasiparticles
for the addition spectrum Ap near the Fermi momentum kF . In
this regime the particlelike excitations resemble FL quasipar-
ticles. On the other hand, the removal spectrum Ah displays
edge singularities, which are asymptotically close to a Dirac
delta as k approaches kF , signaling the absence of holelike
quasiparticles. These collective excitations are characteristic
of LL. See Figs. 5–8.

The role of the particle and hole sectors for A(k, ω) can
be swapped via a particle-hole transformation. Therefore, it is
possible to realize quasiparticles for |k| < kF and edge singu-
larities for |k| > kF . In this work, we have studied the case
when kF < π/2 (μ > 0). Conversely, we can understand the
kF > π/2 (μ < 0) case by exchanging particles and holes.

The need for fine-tuning the marginal interactions origi-
nates from the fact that, without such a dominating term, the
system stabilizes (flows to) a different phase: the qFL. This
is how we understand the results of Fig. 1: above or below
the K = 1 line in the phase diagram, marginal interactions
dominate yielding either a repulsive, charge-ordered phase
(K < 1) where V2 dominates or an attractive, superconduct-
inglike phase (K > 1) where V dominates. For the K = 1
line, marginal interactions are functionally not present and
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the irrelevant terms secure the qFL phase, away from the
low-energy perturbative regime.

There are other contexts where the qFL can be realized,
apart from the competition between nearest- and next-nearest-
neighbor interactions (V ≈ −V2), discussed in this work, for
example, in Hamiltonian models that include next-nearest-
neighbor and correlated hopping terms. Note, also, that the
constraint V ≈ −V2 is not necessary for the stabilization of
the state [38]. Hence we hypothesize that lattice Hamiltonians
with general quartic interactions, beyond the nullification of
marginal terms, are candidates to exhibit a qFL phase [42].
These conclusions might be extended to spinful fermions [19].

Lastly, we would like to note that a strict fine-tuning of
the interactions is not necessary. As discussed in Sec. III,
satisfying |K − 1| < δ, where δ  1, is enough to detect the
qFL signatures in the momentum distribution and the spectral

function. Thus an experimental realization could potentially
not be as demanding. For instance, the qFL may be realized
in optical lattice setups of fully polarized fermions, where
fine control of interactions can systematically be engineered
[43,44].
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