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Excitations in the higher-lattice gauge theory model for topological phases. I. Overview
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In this series of papers, we study a Hamiltonian model for (3+1)-dimensional topological phases introduced
in [Bullivant et al., Phys. Rev. B 95, 155118 (2017)], based on a generalization of lattice gauge theory known as
“higher-lattice gauge theory.” Higher-lattice gauge theory has so-called “2-gauge fields” describing the parallel
transport of lines, in addition to ordinary 1-gauge fields which describe the parallel transport of points. In this
series we explicitly construct the creation operators for the pointlike and looplike excitations supported by the
model. We use these creation operators to examine the properties of the excitations, including their braiding
statistics. These creation operators also reveal that some of the excitations are confined, costing energy to separate
that grows linearly with the length of the creation operator used. This is discussed in the context of condensation-
confinement transitions between different cases of this model. We also discuss the topological charges of the
model and use explicit measurement operators to rederive a relationship between the number of charges measured
by a 2-torus and the ground-state degeneracy of the model on the 3-torus. From these measurement operators,
we can see that the ground-state degeneracy on the 3-torus is related to the number of types of linked looplike
excitations. This first paper provides an accessible summary of our findings, with more detailed results and
proofs to be presented in the other papers in the series.
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I. INTRODUCTION

Outside of the phases of matter described by Landau
symmetry-breaking classification [1], there exist so-called
topological phases of matter [2–4]. These topological phases,
which include the celebrated fractional quantum Hall systems
[5–9], are characterized by long-range entanglement between
their local degrees of freedom [4,10,11]. While the fact that
these phases cannot be described by symmetry breaking is
itself interesting, topological phases can also possess rather
unique properties as a result of this long-range entanglement.
For example, these long-range entangled topological phases
may have a ground-state degeneracy even in the absence of
additional symmetry [12,13] (when also considering phases
with enforced symmetry, the classification of topological
phases becomes more rich and includes so-called symmetry-
protected and symmetry-enriched topological phases [10]).
This ground-state degeneracy depends on the topology of the
manifold on which the topological phase is placed (e.g., such
a phase may have no ground-state degeneracy on the sphere,
but have a degeneracy on the torus), with this degeneracy
being resistant to local perturbations [12,13]. This feature may
allow such topological phases to serve as quantum memories
[13–16] because encoding information in the topologically
protected degenerate subspace makes the information resis-
tant to local noise [13,17].
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Further intriguing properties of the long-ranged entangled
topological phases are revealed when we consider excitations.
In 2+1 dimensions [(2+1)D], the entanglement structure al-
lows these phases to support anyonic excitations, which are
generalizations of the more familiar bosons and fermions.
Moving two anyons around each other can induce non-
trivial transformations, even at large distances [18–20] (for
the interested reader, we note that there are many works
giving pedagogical introductions to anyon physics, such as
Refs. [21,22] and Appendix E in Ref. [23]). Because these
transformations (called braiding relations) do not depend on
local details, it is believed that these excitations can be used
for fault-tolerant quantum computation [24,25], should suffi-
ciently stable phases and excitations be constructed. In three
spatial dimensions, while any pointlike excitations must be
fermionic or bosonic [22,24,26,27], topological phases can
admit loop braiding, such that pointlike or looplike excitations
transform nontrivially when passed through a looplike exci-
tation [28,29]. This can be thought of as a generalization of
the Aharanov-Bohm effect [30,31], where braiding a pointlike
electron around a looplike or stringlike magnetic flux tube
results in a phase depending on the magnetic field enclosed.

In order to provide a setting where the unique properties
of topological phases can be studied in detail, it is convenient
to use exactly solvable toy models [13,32–34]. While these
models may not resemble those used to describe real materials
[33], or only describe the renormalization group fixed point of
their phase [35], they provide representatives for a large class
of phases of matter [33]. This means that such constructions
can be used to probe (and attempt to classify [34]) which kinds
of phases can exist. The toy models have Hamiltonians that
are constructed out of commuting projector operators, which
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allows the quasiparticle excitations to be found exactly. Of
these constructions for (2+1)D topological phases, two of
the most successful are the Levin-Wen string-net model [34]
and Kitaev’s quantum double model [13] (which is related
to discrete gauge theory that had priorly been discussed in
Refs. [36,37]). The Kitaev quantum double class of models
includes the toric code as its simplest case, which appears to
have a practical application as a robust way to store qubits
[13]. Indeed, one approach to building quantum computers
uses so-called surface codes, which take inspiration from the
toric code [38] and which have recently been experimentally
realized on a small scale [39,40]. The string-net construc-
tion is more general than Kitaev’s quantum double model,
and has been conjectured to cover all phases that can be
represented by commuting projector models in (2+1)D in
the absence of an additional symmetry [41], when general-
ized appropriately from the original construction in Ref. [34]
(see Refs. [32,33,42–44] for such generalizations). In both
of these classes of models, it is well understood how to find
the ground-state degeneracy [13,45] and the properties of the
excitations, such as braiding statistics [13,33,34].

In the (2+1)D commuting projector models, a useful way
of obtaining information on the underlying topological theory
is to find the operators, known as ribbon operators, that create
and move the quasiparticle excitations [13]. This approach
was used in Ref. [13] to study the excitations in Kitaev’s
quantum double model, and in Ref. [34] for the string-net
model. As well as classifying the quasiparticles, these ribbon
operators can be used to find the braiding relations of the
quasiparticles, by taking appropriate commutation relations of
the ribbon operators. Furthermore, in Ref. [46] a method was
developed for constructing operators to measure topological
charge, which is a conserved charge that can exist without
symmetry, by using closed ribbon operators. By applying this
method to a modified version of the quantum double model
which describes a condensation-confinement transition, the
charges which condense and the charges that confined during
the transition were identified [46]. It is clear then that these
ribbon operators provide a wealth of information about the
topological phase under study.

The models that we have discussed so far describe topo-
logical phases in two spatial dimensions. However, there are
also many toy models for topological phases in three spatial
dimensions. Existing commuting projector Hamiltonian mod-
els include the twisted gauge theory model [47–49], which is
a generalized version of the quantum double model in 3+1
dimensions [(3+1)D] and is based on the Dijkgraaf-Witten
topological field theory [50]; a class of models developed
from unitary G-crossed braided fusion categories (UGxBFCs)
[51]; the Walker-Wang models [52–55], which are (3+1)D
generalizations of the Levin-Wen string-net models [52]; and
the higher-lattice gauge theory models [56–59], based on a
generalization of lattice gauge theory (and related to the Yet-
ter quantum field theory [60]). For the twisted gauge theory
model, in particular, there has been significant study of the
properties of the ground state [47] and the excitations, includ-
ing their braiding properties [48,49]. However, the general
approach to studying these (3+1)D models has been different
from the approach used for models in two spatial dimen-
sions. While in the (2+1)D case, the use of ribbon operators

to obtain the properties of the excitations is common, in
the (3+1)D case an explicit construction of the ribbon and
membrane operators (the higher-dimensional counterparts to
ribbon operators, which produce looplike excitations) can be
difficult. There are some examples of such explicit construc-
tions for the twisted gauge theory models in three spatial
dimensions, such as in Refs. [61,62], but less so for other
models. Instead, indirect methods like dimensional reduction
[28,48] and tube algebras [49] are often used. These methods
are certainly useful, but seem to offer a less complete picture
of the excitations than a direct construction. Given the success
of ribbon operator approaches in (2+1)D, and these examples
of membrane operators in the (3+1)D twisted gauge theory
model, we would like to be able to apply similar approaches
to other (3+1)D models. In this work we will do precisely
that, with one of the models discussed above.

In this series of papers we study a model [56] based on
higher-lattice gauge theory [63,64], which can be defined
in arbitrary dimension but which we will study in two and
three spatial dimensions. Higher-lattice gauge theory is a gen-
eralization of lattice gauge theory, where there is a second
gauge field which describes the parallel transport of the ordi-
nary 1-gauge field across surfaces. This type of higher gauge
theory (both on the continuum and in the lattice) has seen
significant prior study in the context of topological phases.
In Refs. [65,66], related topological quantum field theory
(TQFT) constructions were used to describe confinement in
regular gauge theories, while in Ref. [67] the corresponding
TQFT was treated as a theory in its own right. In Ref. [56],
a Hamiltonian model was constructed which realizes higher-
lattice gauge theory, in the same way that Kitaev’s quantum
double model [13] realizes lattice gauge theory. Reference
[56] also explored several of the properties of these Hamil-
tonian models. For example, the ground-state degeneracy was
given in terms of the partition function of a TQFT, the Yetter
TQFT, and also explicitly computed for some examples. Then
in Ref. [58], the excitations were studied using a tube algebra
approach, through which the looplike excitations in the model
were classified and the simple types were counted. Further-
more, it was shown in Ref. [58] that there is a relationship
between the number of types of elementary excitation and
the ground-state degeneracy of the model on a 3-torus. In
addition, it was shown in Ref. [68] that higher gauge theory
could lead to looplike excitations with nontrivial loop braiding
statistics, and the associated representations of the loop braid
group were found (the loop braid group describes the motions
of loops [69,70]), although this was not done in the Hamilto-
nian model but instead from more geometric reasoning about
the fluxes and gauge transforms involved.

However, until now there was no explicit construction of
these excitations in the Hamiltonian model using ribbon and
membrane operators, and the braiding statistics of the exci-
tations in the Hamiltonian model have not been found. We
aim to address this, and describe some of the other features
of the excitations, in this work. To do so, we will explicitly
construct the membrane and ribbon operators for the Hamil-
tonian model [56] and use them to find the other properties
of the excitations. We note that these models are particularly
interesting to study in this way because they share a similar
structure to lattice gauge theory models, which helps with the
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difficult task of directly constructing ribbon and membrane
operators, and yet still exhibit features not seen in ordinary
(1-gauge) gauge theory models, as we elaborate on shortly.

Our main results in the (3+1)D case are as follows. We
construct the membrane and ribbon operators which produce
the excitations for this model, in a broad subset of the higher-
lattice gauge theory models. We find that the basic excitations
are either looplike or pointlike and that some of the point-
like excitations are confined, with an energy cost to separate
a particle from its antiparticle that grows linearly with the
length of ribbon used to do so. This is described in terms
of a condensation-confinement transition between different
higher-lattice gauge theory models, during which some of
the looplike excitations condense out, becoming topologically
trivial. Then, using our direct construction of the ribbon and
membrane operators, we find the (loop-) braiding relations
of our excitations in terms of simple group-theoretic quanti-
ties. We find that the braiding is generally non-Abelian, so
that our relations involve more than a simple accumulation
of phase. Instead, the excitations generally have an internal
space, which can transform nontrivially under braiding, in ad-
dition to a conserved topological charge, which is not changed
by the braiding. This topological charge is of significant in-
terest, and so we also consider the charges present in the
higher-lattice gauge theory model. Extending the methods of
Ref. [46] to (3+1)D, we construct operators that can measure
the topological charge present in a region. These measurement
operators are made from closed membrane and ribbon opera-
tors applied on the boundary of the region in question, and the
topology of this boundary determines what types of charge we
can resolve. For example, the charge associated to pointlike
objects is measured by putting a sphere around that charge,
similar to Gauss’s law for electric charge. On the other hand,
looplike excitations require a surface with handles in order to
detect their looplike character. This is similar in concept to
the tube algebra methods used in Ref. [58], which classify the
boundary conditions of unexcited regions of space. Indeed,
just like Ref. [58] we find that the number of different charges
that can be measured by a torus is equal to the ground-state
degeneracy of the model when placed on a 3-torus.

A. Structure of this series

Due to the large amount of algebra needed to fully describe
and prove our results, we have divided the discussion into
three parts. This work is the first of the series, so we feel
that it would be valuable to provide a brief guide to the set
of papers. In this work, we will provide a more informal
and descriptive overview of our main results for the (3+1)D
model. We suggest that a general reader consider this work,
before looking through the other papers in the series if they
are interested in more detail, or are specifically interested in
the (2+1)D model.

In the second paper [71], we consider the (2+1)D version
of the higher-lattice gauge theory model. Perhaps the most in-
teresting feature of this model is that, despite being in (2+1)D,
this model still hosts looplike excitations. In addition to study-
ing the topological content of the model, we demonstrate
that in certain cases the looplike excitations can be described
as domain walls between different symmetry sectors. This

idea that the (2+1)D models can describe symmetry-enriched
topological phases is further expanded on when we map a sub-
set of these models to another construction for such phases,
the symmetry-enriched string-net model from Ref. [41].

In the final paper [72], we return to the (3+1)D model
to provide more detailed results. This includes an explicit
presentation of the commutation relations of the ribbon and
membrane operators that give us the braiding relations. We
also directly construct the measurement operators for topolog-
ical charge within a torus and a sphere, and find the pointlike
charge of the simple excitations of the model (including the
looplike ones).

B. Structure of this paper

In the rest of the Introduction, we describe the model in-
troduced in Ref. [56] and introduce other important concepts
from existing work. To introduce the model, we first discuss
lattice gauge theory in Sec. I C, then higher-lattice gauge
theory in Sec. I D. In Sec. I E we use these ideas to motivate
the Hamiltonian model from Ref. [56], and explicitly define
the model. Throughout the paper, we will be placing different
conditions on the model to examine special cases, which we
describe in Sec. I F. In the last section of the Introduction,
Sec. I G, we describe what we mean by braiding statistics in
(3+1)D.

After discussing the background for our work, we then
move on to a description of our results. We start in Sec. II
by using ideas from gauge theory to motivate the excitations
and some of their properties. Then in the rest of the paper
we will look at how these properties (and additional features)
arise in the lattice model. In Sec. III we construct the operators
that create and move the various excitations. Then in Sec. IV
we describe how some of the excitations are confined, with a
cost to separate two of these particles that grow linearly with
separation. We explain how, at least in certain cases, this can
arise from a “condensation-confinement” transition between
different higher-lattice gauge theory models. After this, in
Sec. V we present the braiding relations of the excitations,
describing the result of exchanging our excitations in various
ways. Finally in Sec. VI we discuss topological charge, a type
of conserved charge realized by topological phases, and point
out a relation between the allowed values of this charge and
the ground-state degeneracy of our model.

C. Lattice gauge theory

In this section, we review lattice gauge theory and Kitaev’s
quantum double model. This material may be familiar to
some readers, who may still wish to read it to familiarize
themselves with the notation we use throughout. To describe a
continuum gauge theory, the key ingredients are matter fields,
gauge fields (which describe parallel transport of the matter
fields), and gauge symmetry. As an example, we can consider
conventional electrodynamics. In this case the matter fields
describe charges, such as electrons, which couple to the usual
gauge field. This gauge field describes parallel transport of
the charged matter via the Aharanov-Bohm effect [30,31].
Finally, there is a gauge symmetry, which gives us gauge
transforms that appear to change the values of the gauge
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FIG. 1. Composition of paths is described by group multiplication.

and matter fields. However, states that are related by gauge
transforms represent the same physical state and are simply
different descriptions of the same physical system.

While gauge theories are typically constructed in the con-
tinuum, the same ideas can be applied to a lattice gauge theory
[73]. The first thing to consider is the physical space on which
we consider the model, that is the lattice. Throughout this
paper, we will use lattice in the more informal sense, referring
to a collection of vertices and edges (and later plaquettes),
without requiring a repeating structure (i.e., we consider a
graph). Then we have to place the other ingredients of gauge
theory into this discrete setting. The matter field is placed
on the vertices of the lattice [73], while the gauge field is
placed on the (directed) edges of the lattice and determines the
result of transport of matter along the edges [73]. However,
for the purposes of this paper, we will not include matter
as a dynamical field, and charges are instead represented by
violations of the gauge symmetry. This leaves us only with
the gauge field, which is valued in some discrete group G.
The group structure means that two paths that lie end to end
can be composed, with the field label of the resulting path
given by group multiplication of the labels of the constituent
paths [73], as shown in Fig. 1. If we wish to combine two
paths that point in opposite directions, we must first reverse
the orientation of one of them, so that they align. The group
element associated to the reversed path is then the inverse
of original group element. For example, if in Fig. 1 the path
labeled g2 pointed in the opposite direction, the combined path
would instead have label g1g−1

2 .

1. Gauge transforms

Having considered the fields present in the model, we now
look at the gauge symmetry. The gauge symmetry is included
through a set of local operators that each act on the degrees of
freedom near a vertex. Each operator is labeled by the vertex
it acts on and an element of G, so that the gauge transform
for a vertex v and element x ∈ G is denoted by Ax

v [13]. This
transform affects the edges surrounding it by premultiplying
the group element on each adjacent edge by x if the edge is
outgoing, and postmultiplying the element by x−1 if the edge
is incoming [13,73–75]. We give an example of the action of
the vertex transform in Fig. 2, from which we can see that this
action is equivalent to adding an imaginary edge, labeled by
x, to the vertex v and parallel transporting the entire vertex
along it.

This geometric picture reveals two important properties of
the vertex transform. First, the vertex transform only affects
paths that start or end at that vertex because a path passing
through the vertex will travel both ways along the added edge.
For example, in the top-left image in Fig. 2 the path entering
the vertex v from the lower left and exiting v through the
lower right is labeled by the product g1g2. In the bottom-left
image of Fig. 2, which represents the state after the gauge
transform, the same path is labeled by g1x−1xg2 = g1g2. That

v v

v′

v′

v

g1 g2

g3g4

g1 g2

g3g4

x

g1x
−1 xg2

g3x
−1xg4

g1x
−1 xg2

g3x
−1xg4

→

↓

←

add imaginary edge

combine

deform

Ax
v

FIG. 2. The gauge transform on a vertex is equivalent to adding
an imaginary edge at that vertex and then combining this edge into
the diagram, or equivalently transporting the vertex along that edge.

is, the path label is unchanged by the gauge transform because
the path does not start or terminate at the vertex v. Second,
note that applying two gauge transforms to the same vertex is
the same as parallel transporting along two edges in sequence.
This is equivalent to parallel transport of the vertex across a
single path composed of the two edges, and so is the same
as applying a single vertex transform with a label obtained
by combining the labels of the two edges (and so combining
the labels of the two original transforms). If we first apply a
vertex transform Ag

v and then another transform Ah
v , the label

of the combined path introduced by the transforms is hg (it
is hg rather than gh, due to the fact that the vertex is parallel
transported against the direction of the edge, as seen in Fig. 2).
Therefore, we must have that Ah

vAg
v = Ahg

v [13].

2. Gauge invariants

Because states related by gauge transforms are equivalent,
any physical quantity should be gauge invariant. We can con-
struct these gauge-invariant quantities from the closed loops
of our lattice [74,75]. Under a gauge transform, the group
element assigned to a closed loop is at most conjugated by
the vertex transforms [75]. Therefore, the conjugacy class of
that label is a gauge-invariant quantity. For example, consider
Fig. 3, which shows the action of a vertex transform Ax

v on a
closed loop starting at v. Initially the group element associated
to the closed loop is g1g2. After applying the vertex transform
it becomes xg1g2x−1. This indicates that the group element
is not generally a gauge-invariant quantity, but its conjugacy
class is.

As an example of the importance of such closed loops, we
can consider the case of electromagnetism. Here we have a
U gauge symmetry, so that the edges in our lattice would be
labeled by phases. There is a physical process where we take
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FIG. 3. We consider the effect of a vertex transform Ax
v on a

closed loop starting at the vertex v. The path label in this case goes
from g1g2 to xg1g2x−1. That is, the path label of the closed loop is
conjugated by x under the action of the transform.

a charge q around a closed loop in the presence of a magnetic
field described by a vector potential �A. In the continuum
theory this leads to the Aharanov-Bohm effect [30,31], where
the wave function accumulates a phase of θ = q

∮ �A · �dl . This
phase is the label we would give our closed loop in the lattice
model. Using Stoke’s theorem, the Aharanov-Bohm phase can
be related to the magnetic flux through the surface enclosed by
the loop. The phase is a gauge-invariant quantity, as is required
by the fact that this phase can be measured in interference
experiments and thus is a physical quantity.

These gauge-invariant quantities allow us to differentiate
between physically distinct states. For instance, many gauge
configurations can be reduced to the trivial configuration,
where every edge is labeled by 1G (the identity in the group
G), by applying gauge transforms. The state where the edges
are all labeled by the identity describes trivial parallel trans-
port, and so the states related to this trivial state by gauge
transforms must also be trivial. This indicates that in these
equivalent states the apparently nontrivial edge labels only
describe a change of basis, rather than a physical change under
parallel transport. On the other hand, if a state has any closed
loops with nontrivial path label, then (because the conjugacy
classes of closed path labels are gauge invariant) the state
cannot correspond to this trivial state. Therefore, in such a
state the parallel transport across the edges must describe
both a change of basis and some physical “flux,” analogous
to the magnetic flux in electromagnetism, which differentiates
it from the trivial case.

3. The quantum double model

Lattice gauge theory can be used to build a model for
topological phases, known as Kitaev’s quantum double model
[13]. The lattice represents the spatial dimensions of the mod-
els, while a Hamiltonian controls the time evolution. In order
to construct the Hamiltonian, we first demote gauge invari-
ance to an energetic constraint by adding an energy term to
the Hamiltonian for each vertex that enforces the symmetry.
We also add an energy term at each plaquette that penalizes
plaquettes with nontrivial boundary paths. The Hamiltonian is
[13]

H = −
∑

vertices, v

Av −
∑

plaquettes, p

Bp.

Here we have

Av = 1

|G|
∑
g∈G

Ag
v,

FIG. 4. The plaquette term Bp gives 1 if the closed path forming
the boundary of the plaquette p is 1G (i.e., if it is flat) and 0 otherwise.
For the example plaquette shown in this figure, where the edges are in
states labeled by g1 and g2, that means that acting with the plaquette
term gives a nonzero result only if g1g−1

2 = 1G.

where the Ag
v are the gauge transforms from earlier and |G| is

the number of elements in the discrete group G. Av is therefore
an average over all gauge transforms at vertex v. The operator
Av is a projector [13] because

AvAv = 1

|G|2
∑
g∈G

∑
h∈G

Ag
vAh

v = 1

|G|2
∑
g∈G

∑
h∈G

Agh
v

= 1

|G|2
∑
g∈G

∑
gh∈G

Agh
v = 1

|G|
∑
g∈G

Av = Av. (1)

As a projector, Av has eigenvalues of zero and one, with the
eigenvalue of one corresponding to states which are gauge
symmetric at that vertex (because the gauge transforms leave
such states unchanged). Av enters the Hamiltonian with a
minus sign, so the gauge-invariant states are lower in energy.

The other term in the Hamiltonian, Bp, acts on the edges
around a plaquette p. It leaves states where the boundary of
the plaquette is labeled by the identity unchanged and returns
zero for other states. As an example, consider Fig. 4, which
illustrates the action of the plaquette term Bp on a simple
plaquette made from two edges (a bigon). In this case the
boundary path label is given by g1g−1

2 , and so the plaquette
term returns the state if g1g−1

2 = 1G. Bp is clearly a projector
just like the vertex term, with the eigenvalue of one corre-
sponding to states with trivial flux around the plaquette (we
say the plaquette satisfies flatness in these states). Again, Bp

enters the Hamiltonian with a minus sign, so that these trivial
flux states are lower in energy. The trivial flux label 1G is in
a conjugacy class on its own, meaning that it is unchanged
by gauge transforms. This means that the operator Bp is built
out of gauge-invariant quantities and therefore commutes with
the gauge transforms. All of the terms in the Hamiltonian are
projectors and they all commute, so this is an example of a
commuting projector model. This structure to the Hamiltonian
enables the model to be solved exactly. The excitations are
chargelike (excitations of the vertex term), fluxlike (primarily
excitations of the plaquette term, though they may also excite
a vertex term), or some combination of the two [13]. These
excitations are called electric if they are chargelike, magnetic
if they are fluxlike, and dyonic if they are a combination. As
we will see later, some of these properties will carry over to
the higher-lattice gauge theory Hamiltonian model.

D. Higher-lattice gauge theory

In lattice gauge theory we consider parallel transport along
paths, and label paths by group elements to allow composition
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FIG. 5. Just as a path is associated to parallel transport of points,
so is a surface associated to parallel transport of a path. The initial
position of the path is called the source and the final position is called
the target. The parallel transport of a path over a surface labeled by
e ∈ E results in the path element g gaining a factor of ∂ (e), where ∂

is a group homomorphism from E to G.

of paths. That is, we label geometric objects, the paths, with
algebraic objects, the group elements. A natural generaliza-
tion is to label more types of geometric objects. We still label
the paths with elements of a group G (this is the 1-gauge field,
or the 1-holonomy of that path [56]). However, we now also
label the surfaces with elements in a second group, E . We
refer to this field as the 2-gauge field. As we will see shortly,
parallel transport will involve various mappings between the
groups E and G. If paths describe the parallel transport of
points, then surfaces describe the parallel transport of paths,
that is of the 1-gauge fields [64]. We can view this pictorially
as shown in Fig. 5. The blue double arrow on the surface
enclosed by the paths represents the transport of one path
(the source) into another (the target) [56]. Both of these paths
must be specified in order to give the surface a label, which
is called the 2-holonomy [56] for that surface. The two paths
(source and target) both start at a common vertex, called the
start point of the surface, and end at a common vertex, called
the end point. As indicated in Fig. 5, the parallel transport over
a surface labeled by e causes the source to gain a factor of
∂ (e), where ∂ is a group homomorphism from E to G (i.e.,
a map that preserves the group multiplication), so that for
e ∈ E , ∂ (e) ∈ G [64]. Normally, the labels of the two paths
on either side of the surface are independent variables, but if
the label of the source is related to that of the target by this par-
allel transport rule, then the surface is called fake flat. These
fake-flat surfaces play an important role in the theory. Fake
flatness replaces the trivial flux condition for the quantum
double model and will determine the low-energy space in the
topological model. In the rest of this section, we will therefore
discuss such fake-flat surfaces unless otherwise mentioned.

In the same way that we can compose paths that lie end to
end, so may we combine adjacent surfaces. In fact, surfaces
can be composed in two ways. First, they may be combined
vertically [63,64], as shown in Fig. 6. Vertical composition
corresponds to the case where we perform two parallel trans-
portations of a path (the top path in Fig. 6) in sequence (first
moving it to the middle position in the figure and then to the
bottom). We can combine these two steps to describe the two
parallel transportations as parallel transport along a single,
combined, surface. In order to compose the two surfaces in
this way, the target of the first surface must match the source of
the second one. After composition, the source of the combined
surface is the source of the first surface and the target of the
combined surface is the target of the second surface.

FIG. 6. Consider two surfaces over which we can sequentially
transport a path, such as the ones in the left side of the figure. In
this case we first transport the top path over the upper surface (across
the arrow) to the middle location (the straight path) and then over
the lower surface to the bottom position. We can express the same
process as transport over a single surface, made from a combination
of the two individual surfaces, as shown in the right figure. This is
called vertical composition of the surfaces.

We map vertical composition of two surfaces onto the
group multiplication, with the first surface label on the right
and the second on the left, following the convention in
Ref. [56]. As shown in Fig. 6, requiring the label of the
bottom path to be the same on both sides of Fig. 6 gives the
consistency condition ∂ (e2e1) = ∂ (e2)∂ (e1), which is why ∂

must be a group homomorphism. This ensures that the effect
of transporting the edge along one surface, labeled by e1, and
then another surface, labeled by e2, is the same as transporting
the edge along the combined surface (labeled by e2e1).

We may also combine the surfaces horizontally [63,64], as
shown in Fig. 7. This horizontal combination corresponds to
the case where we have two paths lying end to end, which
we can parallel transport separately. However, we can also
combine the two paths into one, before transporting them
across a single surface.

As a special case of horizontal combination, we have the
case where the first path is not parallel transported across any
surface. This lets us combine a surface with a path. As an
example, such a situation is shown in Fig. 8. In Fig. 8, we com-
bine the edge that runs from A to B with a surface, by treating

FIG. 7. In addition to vertical composition of surfaces, as shown
in Fig. 6, we can consider horizontal composition of two surfaces that
lie side by side. In this case, the individual surfaces describe parallel
transport of two paths (A-B and B-C) which can be composed,
while the combined surface describes the parallel transport of the
paths after they have been composed (into A-C). While we show
the resulting surface as a simple bigon (2-gon) for convenience, the
composition does not change the shape of the constituent surfaces
on the lattice, and so the point B remains on the boundary of the
combined surface. The two points labeled B in the right-hand side
are the same and so should be glued together.
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FIG. 8. Here we consider “whiskering” a surface (the bigon with
base point B and end point C) along a path, which is described by
the map �. Just as for horizontal composition, the shape of the final
surface should match the combined shape of the path and surface,
though we have represented the final surface as a simple bigon. The
point B remains on the boundary of the final surface, in both the
source and target. Note that the base point of the surface changes
from B in the first image to A in the second. Requiring the lower path
from A to C to have the same label after combining the edge with the
surface via whiskering gives the condition that g∂ (e)h = ∂ (g� e)gh,
so that ∂ (g� e) = g∂ (e)g−1.

the edge and its inverse (the inverse is the same edge, but
with reversed direction) as bounding an infinitesimally thin
surface and then using horizontal composition. This process
of combining a surface with a path is known as whiskering

[64], and can also be thought of as moving the base point of
a surface (in the case shown in Fig. 8, the base point of the
surface is initially at B, but is moved to A). Because parallel
transport of objects along paths is described by the group G,
the whiskering must be described by an action of G on E . This
action is given by a map � from G to the endomorphisms on E
[56,64] (endomorphisms are homomorphisms from a group to
itself). That is, given an element g of G, the object g� is then
a map from E to itself. We write g� acting on an element e
of E as g� e. In Fig. 8, we see how this map � is involved in
whiskering. If we move the base point of a surface (initially B
in the figure) across an edge labeled by g, against the direction
of the edge, then the surface label changes from e to g� e. On
the other hand, moving the end point (C in the figure), rather
than the base point, has no effect on the surface label.

For the diagrams that we have considered to give a consis-
tent theory, the different ways of combining the elements of
the diagram must be consistent. One consequence of this is
that we can find the result of horizontal composition of two
surfaces, by combining the rules for vertical composition and
whiskering. Consider Fig. 9, which shows a diagram involving
the horizontal composition of two surfaces (on the top line),
where the left and right surfaces are labeled by group elements

FIG. 9. The requirement that the different ways of combining a diagram must be consistent means that we can express the horizontal
composition of two surfaces in terms of whiskering and vertical composition. Consider the top-left image, consisting of a left and right surface
with labels eL and eR, respectively. We wish to combine these two surfaces to obtain the surface in the top-right image. There are two ways
around the diagram that lead from the top-left to the top-right image, and these are required to give the same result for the label of the final
surface. The first way is horizontal composition of the two surfaces, which gives us an unknown label for the final surface that we wish to
find. The second way around the diagram involves the other processes that we do have algebraic expressions for. We can therefore use this to
find the label resulting from horizontal composition. The first step (represented by the downwards arrow) is to whisker the right-hand surface
so that it has the same base point (A) as the left surface. This gives the right surface a label gL � eR, where gL is the label of the path from
A to the original base point B, as shown in the bottom-left image. The next step is to move the end point of the right surface from C to B, to
match the end point of the left surface, as shown in the bottom-right image. This has no effect on the label of the surface. Then the target of
the right surface is the same as the source of the left surface (the path from A to B with label gL) and so the two surfaces can be combined via
vertical composition, giving a surface with label eL[gL � eR] as shown in the center-right image. Finally, moving the end point from B to C
(the original end point of the right surface) gives us the same surface that we would have from horizontal composition, with label eL[gL � eR].
This is therefore the label resulting from horizontal composition.

245132-7



JOE HUXFORD AND STEVEN H. SIMON PHYSICAL REVIEW B 108, 245132 (2023)

FIG. 10. Requiring consistency of whiskering with the vertical composition of surfaces demands that the map g�, for arbitrary g ∈ G, is a
group homomorphism on E . That is (g� f )(g� e) = g� ( f e) for g ∈ G and e, f ∈ E . This can be seen from the figure because consistency
demands that the diagram commute, i.e., the two routes from the top-left image to the bottom-right image should give the same result.

eL and eR, respectively. We can reproduce this horizontal
composition with a series of other manipulations, which takes
us the other way around the diagram. These other processes
involve changing the base point and end point of surfaces, as
well as vertical composition, all of which we already know
how to perform. Applying these manipulations (as explained
in Fig. 9), we find that the label resulting from horizontal
composition must be eL[gL � eR].

Requiring the consistency of various diagrams also en-
forces certain restrictions on the algebraic objects we have
already discussed. For example, if we have a diagram with
three surfaces to combine, the order in which we combine the
surfaces should not matter. This restricts our multiplication of
surface labels to be associative. Because our vertical compo-
sition is described by group multiplication in the group E , this
associativity is immediately guaranteed by the group proper-
ties without any additional conditions on the group. However,
there are additional constraints that must be satisfied by the
maps ∂ and �. Requiring the consistency of whiskering with
vertical composition of surfaces and composition of paths (see
Figs. 10 and 11 or Ref. [64] for more detail) gives us the
following conditions for all g, h ∈ G and e, f ∈ E [56]:

g� (e f ) = (g� e) (g� f ), (2)

g� (h � e) = (gh) � e. (3)

These are the conditions for a group action of G on E . That
is, these conditions mean that � is a homomorphism from
G to the endomorphisms on E , where endomorphisms are
group homomorphisms from E to itself. Furthermore, because
these endomorphisms are invertible [from Eq. (3), g−1 � is the
inverse of g�], they are automorphisms.

As illustrated in Ref. [64] (though note that different con-
ventions are used in this reference and in particular group
multiplication describes horizontal composition of surfaces),
consistency of whiskering with other diagrams (see Figs. 8
and 12) also demands that [63,76]

∂ (g� e) = g∂ (e)g−1, (4)

∂ (e) � f = e f e−1. (5)

These two conditions are known as the Peiffer conditions
[56]. The algebraic structure (G, E , ∂,�) satisfying all of
these conditions [Eqs. (2)–(5) in addition to ∂ being a group
homomorphism] is known as a crossed module.

Definition 1. A crossed module is a collection (G, E , ∂,�),
where G and E are groups, and ∂ : E → G and � : G →
Aut(E ) are group homomorphisms satisfying the Peiffer con-
ditions (4) and (5).

In order to familiarize the reader with these crossed mod-
ules, we describe a handful of examples here.

Example 1. One example of a crossed module is
(G, G, id, ad), where G is any finite group, id is the identity
map, and ad maps g ∈ G to conjugation by g [56]. That is,
we have ∂ (e) = e and g� e = geg−1. This clearly satisfies the
first Peiffer condition because

∂ (g� e) = g� e = geg−1 = g∂ (e)g−1.

It also satisfies the second condition as

∂ (e) � f = e � f = e f e−1.

This crossed module describes a model where all of the exci-
tations are either confined or carry trivial charge.
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FIG. 11. We require that whiskering is consistent with the composition of edges. That is, combining two edges together and then whiskering
a surface along the combined edge should give the same result as whiskering that surface by one edge and then the other in sequence. This gives
us the mathematical condition g1 � (g2 � e) = (g1g2) � e, which is the condition that the map � : G → End(E ) be a group homomorphism
on G.

Example 2. Another example is (G, { 1E }, ∂ → 1G,� →
id) [56]. That is, we take the group E to be trivial. Then ∂

maps the element of E to the identity of G and g� is the
identity map on E (clearly these are the only allowed ∂ and �

FIG. 12. The second Peiffer condition can be derived from demanding that this figure be consistent. Starting at the top-right diagram,
we may combine the left and right parts of the diagram to obtain the top-left diagram, using the rules for horizontal composition given in
Fig. 9. We can then use vertical composition to obtain the bottom-left diagram, which should have a label of e f e−1. However, we could also
have performed vertical composition on the top-right diagram to obtain the bottom-right diagram, before whiskering to obtain the bottom-left
diagram. In that case the surface label is ∂ (e) � f . Consistency therefore demands that e f e−1 = ∂ (e) � f .

245132-9



JOE HUXFORD AND STEVEN H. SIMON PHYSICAL REVIEW B 108, 245132 (2023)

when E is { 1E }). We have that

∂ (g� e) = 1G = gg−1 = g1Gg−1 = g∂ (e)g−1

so the first Peiffer condition is satisfied. Furthermore,

∂ (e) � f = 1E = e f e−1

because the only element of E is the identity, so the second
Peiffer condition is also satisfied. This special case recovers
lattice gauge theory because the surfaces all have trivial label
and so we can just neglect to label them.

Example 3. A third, more interesting, example is
(Z2,Z3, ∂ → 1G,�) [56]. We take the elements of G = Z2

to be 1G and −1G and the elements of E = Z3 to be 1E , ωE ,
and ω2

E . Then we define � by 1G � e = e and −1G � e = e−1

(where ω−1
E = ω2

E ). This satisfies the requirement of having a
group structure on the elements of G [as described in Eq. (2)]
because applying two −1G � maps in sequence gives

−1G � (−1G � e) = −1G � e−1 = e

= 1G � e

= (−1G · −1G) � e,

while the other conditions for the group structure involve
1G � and are satisfied because 1G � is the identity map. The
individual maps g� are also endomorphisms as required. For
−1G � we have

−1G � (e1e2) = e−1
2 e−1

1 = e−1
1 e−1

2

= (−1G � e1)(−1G � e2),

where we used the fact that E is Abelian to swap the or-
der of multiplication in the second line. This indicates that
−1G� is a group homomorphism on E . 1G� is also a ho-
momorphism because it is the identity map. Therefore, �
is indeed a group action of G on E . Next, we will check
that the Peiffer conditions are satisfied. We have ∂ (g� e) =
1G = ∂ (e)gg−1 = g∂ (e)g−1 [using ∂ (e) = 1G and the fact that
the group G is Abelian]. Finally, ∂ (e) � f = 1G � f = f =
f ee−1 = e f e−1, where we used that E is Abelian. Because
all of the consistency conditions are satisfied, this is indeed
a valid crossed module. This (Z2,Z3, ∂ → 1G,�) crossed
module can be generalized slightly by replacing Z3 with Zn,
where n is an odd integer, with −1G � still acting as inversion.

1. Composing general surfaces

So far, we have considered how we may combine surfaces
when their sources and targets are compatible. We can com-
bine two surfaces using vertical composition when the target
of one surface matches the source of the other. However, we
may also need to combine adjacent surfaces for which the
sources and targets are not compatible. To understand this,
we should first look in more detail at how we interpret the
2-holonomy in the case of a fixed lattice. The group element
assigned to a surface corresponds to parallel transport of a
particular path over that surface. However, we can also pull
other paths over that same surface. For example, consider a
square, with different paths denoted as the source or target,
as shown in Fig. 13. In the left diagram, we consider the
process where we transport the top edge (which is the source
for the surface) into the bottom three (which form the target).

FIG. 13. The same surface can correspond to different 2-
holonomies, depending on which parts of the boundary of that
surface are designated as the source and target. For example, in
the left image the source is the top edge and the target the bottom
three edges, so the 2-holonomy corresponds to a process where we
transport the upper edge into the bottom three. On the other hand,
in the right-hand figure the 2-holonomy corresponds to the process
where we transport the left edge into the other three. We expect the
labels assigned to these processes to be different but related, as we
describe shortly.

However, as indicated in the right diagram, we could also
transport the left edge into the right three over the same
surface. Despite corresponding to the same square in space,
the label in E associated with these two parallel transports is
different in general. We therefore need to know how the label
changes when we change the transport process. The first thing
we can do is to swap the source and target [56]. The resulting
plaquette label is just inverted [56], as shown in Fig. 14.

Next, we can move the base point around. We can either
move it along the plaquette (as shown in Fig. 15), or away
from the plaquette [56] (as shown in Fig. 16). In either case,
the surface label changes from its original label ep to g(t )−1 �
ep, where t is the path along which we move the base point
and g(t ) is the group element assigned to that path [56].

We can also move the end point, either along the plaquette,
or away from it [56]. Either way, the surface label is un-
changed [56]. This latter move (as shown in Fig. 17) allows us
to add additional edges to the boundary of the surface, though
these additional edges enclose no area. Although in Fig. 17
the edges are added near the end point, we can add these
additional edges anywhere on the surface’s boundary. If these
edges are not added at the end point, the added edges appear
twice consecutively in the source or target and are traveled
in opposite directions for their two appearances, meaning that
they do not contribute to the path element of the source or

FIG. 14. We can change the source and target of a surface by
following a set of rules that tells us how the label of that surface
should change. The first rule allows us to swap the source and target
of a surface. If the plaquette has a 2-holonomy of e, then swapping
the source and target changes the 2-holonomy to e−1.
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FIG. 15. We can also move the base point of our surface along
the boundary of that surface, which adds or removes edges from the
start of the source (and removes or adds those edges to the target).
This results in a � action on the surface label.

target [because adding a path t to the surface in this way con-
tributes g(t )g(t )−1 = 1G to the source or target]. If the edges
are added at the end point, they contribute equally to the end of
the source and target. Either way, their total contribution to the
group element associated to the surface boundary (the 1-gauge
value assigned to the path around the surface) is trivial. For
example, in Fig. 17 adding the edge of label x to the end point
takes the path label of the boundary from

g(boundary) = g(source)g(target)−1

to

g(source)x[g(target)x]−1 = g(source)xx−1g(target)−1

= g(source)g(target)−1

= g(boundary),

whereas adding such an edge in the middle of the source or
target would lead to similar cancellation within g(source) or
g(target).

Now we consider an example of how we can use the rules
we have discussed so far to combine two surfaces when their
sources and targets are not immediately compatible. In Fig. 18
we show two such adjacent surfaces. For each surface, the
source is represented by the solid green line and the target
by the dashed red one, and we have displaced the source and
target slightly away from the edges of the graph (shown in
black) for clarity. In order to match the target of the first
surface (with surface label e1) to the source of the second
(labeled by e2), we first move the end point of the second
surface, as shown in the top right of Fig. 18. Because moving

FIG. 16. We can whisker a surface by moving its base point away
from the original boundary of that surface. In the right image, the red
and green section (which is the black path from the left image) is part
of both the source and target.

FIG. 17. We can move the end point (the black dot) away from
the original boundary of the surface, thereby adding edges (in this
case the black path from the left image) to the boundary. These edges
do not enclose any area and appear once in the source and once in
the target (in the right image, the rightmost edge is part of both the
source and target). Moving the end point in this way does not change
the label of the surface, unlike moving the base point.

the end point of the surface does not affect its label, the
second surface still carries a label of e2. Next we move the
base point of the second surface to match that of the first,
as shown in the bottom-right image. When we do this, we
must whisker the second surface, so that the path t (the edge
at the bottom of the first surface) appears in both the source
and target of the second surface (represented by the parallel
red and green arrows below that edge). Upon doing so, the
label of the second edge is changed to g(t ) � e2 because t
is the path from the new base point of the surface to the old
one. By moving the base point and end points in this specific
way, we ensure that the target of the first surface matches the
source of the second (consisting of the bottom edge of the
first surface and the edge separating the two surfaces), so we
can compose the surfaces. This gives us a combined surface
with label [g(t ) � e2]e1. In general, there may be many ways
to combine a given set of surfaces into the same final surface
(i.e., a final surface with the same source and target). These
are guaranteed to be consistent only when the surfaces that
we are combining satisfy the fake-flatness condition, meaning
that each surface obeys the parallel transport rules given in
Fig. 5.

FIG. 18. In order to combine two adjacent surfaces whose
sources (shown in green) and targets (shown as red dashed lines)
are not compatible, we need to manipulate the end point and base
points of the surfaces first. In the first step, we move the end point of
the second surface (with label e2), then in the second step we move
the base point of that surface. After doing this, the target of the first
surface matches the source of the second, so we can combine them.
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FIG. 19. Instead of illustrating the orientation of the surface as an
arrow between the source and target, we can draw it as an arrow that
passes clockwise or anticlockwise around the surface, starting and
ending at the base point of the surface. The direction of this arrow
matches the direction of the source.

2. A note about notation

So far, when describing surfaces we have specified both
the source and target of the surface. However, the fact that
the label of a surface is unchanged when we move the end
point of the source and target means that we do not need to
keep track of all of the information specifying a surface in
order to be able to assign that surface a group label. This
motivates us to consider a change of notation. Rather than
specify the source and the target as two paths, with an arrow
between them to highlight the parallel transport, we simply
combine the source with the target by moving the end point
all the way along the target (so that the new source is now
the original source composed with the inverse of the original
target, and the new target is an empty path). This means that
we now just have one path all the way around the surface.
To specify this, we only need the start of that path (the base
point) and its orientation. Rather than draw an arrow, we
indicate this as a circulation, as shown in Fig. 19. Due to the
convenience of this notation, we will generally use it when
we do not need to indicate the source and target of a surface
explicitly.

3. Gauge transforms

Now that we have considered the fields and the parallel
transport rules, we can describe the gauge transforms. There
are two types of gauge transforms: those associated to the
more familiar 1-gauge field and those associated to the 2-
gauge field [56]. We label the 1-gauge transforms associated
to a vertex v by Ag

v , where there is one such transform for each
element g of G. Just like for lattice gauge theory, Ag

v acts on
the degrees of freedom near the vertex v in a way equivalent to
parallel transport of the vertex v along an edge of label g−1 (or
g if we transport the vertex against the direction of the edge,
as in Fig. 20). The effect on the edges around the vertex is
therefore the same as in the lattice gauge theory case and so
only paths that start or terminate on the vertex are affected by
the gauge transform (see Sec. I C 1 and Fig. 2 in particular).
The only difference is that now we must also consider parallel
transport of surfaces along the edge, so that the vertex trans-
form also affects the surface labels. This parallel transport can
be performed by adding a new edge and vertex, which we
proceed to combine with the rest of the lattice, as illustrated in
Fig. 20. In the last step we relabel the vertex v′ to v in order to
match the original vertex, so that the lattice is the same at the
end as it was before the transform, apart from changes to the
group labels. We can recognize the middle diagram in Fig. 20

FIG. 20. If the base point of a plaquette is at v, then it is affected
by the action of a gauge transform Ag

v on that plaquette. The vertex
transform is equivalent to parallel transport of the base point (i.e.,
whiskering) and induces a g� action.

as the whiskering diagram (see Fig. 8), so combining the edge
with the plaquette gives us a g� action on the plaquette label.
This tells us that any surface with base point at the vertex on
which we apply the transform must be acted on by g�. On the
other hand, surfaces not based at that vertex are left unaffected
[56]. In summary, the 1-gauge transform acts on an edge i or
plaquette p according to [56]

Ag
v : gi →

⎧⎨
⎩

ggi if v is the start of i,
gig−1 if v is the end of i,
gi otherwise,

Ag
v : ep →

{
g� ep if v is the base-point of p,
ep otherwise. (6)

In addition to these 1-gauge transforms, we also have 2-
gauge transforms, which act on an edge and the surfaces
that adjoin it [56]. The 2-gauge transform on an edge i and
labeled by an element e ∈ E (denoted by Ae

i ) acts like parallel
transport of the edge along a surface labeled by e. That is,
to find the action of a 2-gauge transform on a diagram we
add a surface and combine the surface with the rest of the
diagram, as shown in Fig. 21. This fluctuates the plaquette
labels surrounding an edge, as well as changing the edge
label itself. This is similar to how the 1-gauge transform at a
vertex fluctuates the edges around the vertex (along with any
plaquettes based at that vertex).

In Fig. 21, the base point of each surface is also the start
of edge i, which results in the simple expression for the edge
transform given in that figure. To treat a more general case,
we can use the rules for changing the base point of a surface
to move them to the start of edge i. Then we can perform
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FIG. 21. A 2-gauge transform Ae
i on an edge i, with initial label

gi, acts like parallel transport of that edge across an additional surface
of label e. In the middle picture, the new surface points upwards,
out of the plane of the other two surfaces. In the third picture, we
combine this new surface with the others and then relabel the edge i′

(the target of the additional surface) to i.

the gauge transform Ae
i on this simple case before moving

the base points back to their original positions. Because mov-
ing the base point has an � action on the plaquette label,
this results in the plaquette label ep becoming ep(g� e−1) or
(g� e)ep [56] rather than just epe−1 or eep, where g is the label
of the path on which we had to move the base point. In order
to define the edge transform, we therefore need a prescription
for choosing this path.

Consider the path around one of the plaquettes affected by
the transform, starting at the base point v0 of the plaquette and
traveling along its boundary, aligned with its orientation. This
path reaches the edge at a vertex that we call vi, as shown in
the left picture of Fig. 22. The path up to this point is denoted
by g(v0 − vi ) [56]. Now consider a path starting at the base
point of the plaquette, but traveling against the circulation of
the plaquette. At some point this path will reach the other
vertex on the edge, which we call vi+1. This path is denoted
by g(v0 − vi+1), where the overline is used to indicate that this
path travels against the circulation of the plaquette [56]. This
overline notation is illustrated in Fig. 23, where we look at
different paths around the plaquette to the same vertex. Then
the action of the edge transform on each edge i′ and plaquette

FIG. 22. The path involved in the effect of the 2-gauge transform
Ae

i on a plaquette p depends on whether the edge i is aligned with
the p (as in the left case) or antialigned (as in the right case). If
the edge is aligned with the plaquette, then the path [v0 − s(i)] in
the transformation of the plaquette label is aligned with p, whereas
if i is antialigned with p then the path [v0 − s(i)] appearing in the
transformation is antialigned with p. Either way, the path is aligned
with the edge i.

p is [56]

Ae
i : gi′ →

{
∂ (e)gi′ if i = i′,
gi′ otherwise,

Ae
i : ep →

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ep[g(v0 − vi ) � e−1] if i is on p and
aligned with p,

[g(v0 − vi+1) � e]ep if i is on p and
aligned against p,

ep otherwise.

(7)

The paths involved in the cases where the edge is aligned
or antialigned with the plaquette are indicated in Fig. 22. In
either case the path terminates at the source of edge i, which
is the adjacent vertex which the edge points away from (while
the target is the vertex it points towards). This means that we
can replace vi (in the aligned case) or vi+1 (in the antialigned
case) in the expression for the paths in Eq. (7) with this source
s(i).

4. Gauge invariants

In ordinary lattice gauge theory we could build gauge-
invariant quantities out of closed loops. What are the

FIG. 23. The two different paths from the base point v0 to the
same vertex v on a plaquette are shown in green and red. Paths that
antialign with the surface circulation (represented by the blue arrow
in the center) are indicated using overline notation.
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FIG. 24. The gauge invariant associated to plaquettes is modified
to account for parallel transport of the paths over the plaquette.

appropriate quantities for higher-lattice gauge theory? We can
build gauge invariants from the closed loops as before, but
also from closed surfaces. For the closed loops, we need to
modify the group element that labels them to account for
parallel transport of paths over surfaces. Given a closed loop
made of two paths, as shown in Fig. 24, to work out the
group element for the loop, we need to transport the paths so
that they are in the same location. This is necessary because
the two paths may be defined with different gauge choices,
with the conversion between the gauge choices performed by
parallel transport. To obtain a gauge invariant, we will need to
ensure that the two paths are described in the same gauge. The
relevant transport is shown in Fig. 24.

The parallel transport modifies the group element associ-
ated to the closed loop in Fig. 24, from gsg

−1
t to ∂ (ep)gsg

−1
t .

This quantity is the 1-flux or 1-holonomy for the closed loop.
For a general surface, we replace gsg

−1
t with the label of

the boundary of the surface. For a plaquette p, with bound-
ary label gp, the 1-flux is given by ∂ (ep)gp and we refer to
this quantity as H1(p) [56]. This label can be changed only
within a conjugacy class by either the vertex transforms (as
in Fig. 20) or the edge transforms (as in Fig. 21), so those
conjugacy classes are gauge-invariant quantities [56].

As an example, we can consider acting on the diagram in
Fig. 24 with a vertex transform. This gives us the situation
shown in Fig. 20. From that figure, we see that the plaquette
holonomy, which is initially given by ∂ (e)g1g−1

2 , transforms
as

∂ (e)g1g−1
2 → ∂ (g� e)gg1g−1

2 g−1

= g∂ (e)g−1gg1g−1
2 g−1

(using the Peiffer conditions)

= g∂ (e)g1g−1
2 g−1,

which is only conjugation.
In addition to closed paths, closed surfaces have their own

gauge invariants. The gauge invariant assigned to a closed
surface can be found from the group label (2-gauge label)
assigned to that closed surface, which may be obtained by
using the rules for composing surfaces if that closed surface
is comprised of multiple plaquettes. This label, which we
call the 2-flux of that surface, is only changed within certain
equivalence classes by the gauge transforms [56] (as long as
the constituent plaquettes satisfy fake flatness). Again, the
identity element is in a class on its own, so that trivial 2-flux
is preserved by the transforms [56].

In the same way that the 1-flux on a closed loop determines
the result of a process where we move a charge around the
loop, the 2-flux of a closed surface corresponds to a transport

FIG. 25. The 2-holonomy of a surface (in this case a sphere) can
be measured by a transport process. A small loop is created at the
base point (the small red sphere), then dragged over the surface (the
larger blue sphere), as indicated by the arrow.

process. For a sphere at least, we can measure this 2-flux by
nucleating a small loop at the base point of that surface, before
passing it over the surface and then contracting it again, as in-
dicated in Fig. 25. This reflects the fact that a spherical closed
surface (which can be built from a series of open surfaces) can
have empty source and target, and so can represent a transport
process where we nucleate the loop at the start and collapse it
at the end. For a surface such as a torus, with noncontractible
cycles, the corresponding transport process may not involve
nucleation and collapse.

E. Hamiltonian model

Having considered higher-lattice gauge theory, we can now
define the Hamiltonian model based on it (as introduced in
Ref. [56]). The three spatial dimensions of the model are
represented by a lattice, while the temporal dimension is con-
tinuous and time evolution is controlled by the Hamiltonian.
As already alluded to, we label each edge of the lattice with
an element of group G and each plaquette with an element
of group E [56]. Labelling every edge and plaquette gives a
configuration (or coloration). These configurations then form
a basis for the Hilbert space, so that a general state is a linear
combination of the different labelings of the lattice. However,
we have seen that a given plaquette can correspond to different
transport processes depending on the source and target, so
we need a way of specifying which transport process the
assigned label corresponds to. As described in Sec. I D 1, we
can then use a set of rules to manipulate the source and target
of a plaquette to find the label that would be associated to a
different process. In order to have this unambiguous reference
process, we define a “canonical” position for the source and
target paths of every plaquette when we set up the lattice.
Because the label of the plaquette is invariant under changes
to the end point, it is sufficient to choose a base point and
orientation for each plaquette. We also need to choose an
orientation for each edge. This can be done formally via a
branching structure, which assigns every vertex in the lattice a
unique integer vertex. The edges and plaquettes then inherit
their data from the vertices involved [56]. The details of
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this are not important for our discussion, so we will directly
choose the canonical data (orientation and base point) for each
edge and plaquette. We will sometimes refer to this choice
as the branching structure, or the decoration of the lattice. In
the Appendix, we demonstrate how the energy terms change
under changes to this branching structure.

To motivate the Hamiltonian considered by Bullivant et al.
[56], we can take the same approach used for Kitaev’s quan-
tum double model. We first demote the gauge symmetries
to energetic constraints, by including them as terms in the
Hamiltonian:

H = −
∑

vertices, v

Av −
∑

edges, i

Ai + · · · .

Here Av is the average over gauge transforms at the vertex v:

Av = 1

|G|
∑
g∈G

Ag
v, (8)

where the action of the gauge transform Ag
v is defined in

Eq. (6).
As with Kitaev’s quantum double model, the vertex trans-

forms satisfy Ag
vAh

v = Agh
v for any g, h ∈ G, which follows

from their interpretation in terms of parallel transport (see
Fig. 20). The relation Ag

vAh
v = Agh

v results in Av being a pro-
jector [56], just as for the equivalent term in Kitaev’s quantum
double model [see Eq. (1)]. We can absorb vertex transforms
into the corresponding vertex energy term, by which we mean
that Ax

vAv = Av for any x ∈ G, as we can demonstrate by
expanding the vertex term and then using the algebra of the
vertex transforms:

Ax
vAv = Ax

v

1

|G|
∑
g∈G

Ag
v

= 1

|G|
∑
g∈G

Axg
v

= 1

|G|
∑

x′=xg∈G

Ax′
v

= Av.

This means that the states (such as the ground states) which
satisfy Av|ψ〉 = |ψ〉 are invariant under the individual vertex
transforms, rather than just the energy term:

Ag
v|ψ〉 = Ag

vAv|ψ〉
= Av|ψ〉
= |ψ〉.

Therefore, the eigenvalue of one for the energy term corre-
sponds to states which are gauge invariant at that vertex.

In a similar way to the vertex terms, the edge term Ai is the
average over 2-gauge transforms at the edge i [56]:

Ai = 1

|E |
∑
e∈E

Ae
i . (9)

FIG. 26. The plaquette term checks that the flux through a pla-
quette is trivial. In this case, the boundary of the plaquette is made of
two edges, labeled by gs and gt , and the boundary label is gsg−1

t .
The flux through the plaquette is therefore ∂ (ep)gsg−1

t , where ep

is the plaquette label, and the plaquette term checks whether this
expression for the flux is trivial.

The edge terms can be combined in the same way as the vertex
terms [56]:

Ae
iA

f
i = Ae f

i . (10)

As with the vertex terms, this means that

Ae
iAi = Ai. (11)

This leads to the energy term Ai being a projector [56], with
the eigenvalue of one corresponding to states that are 2-gauge
symmetric at that edge. The minus sign with which this term
enters the Hamiltonian ensures that the energy term favors
these gauge-symmetric states.

So far we have considered energy terms that enforce the
1-gauge symmetry and 2-gauge symmetry. Now we add terms
that depend on quantities that are invariant under the two
types of gauge transform. By building these terms from gauge-
invariant quantities, we guarantee that the new terms commute
with the gauge transforms. Recall from Sec. I D 4 that there
are gauge-invariant quantities associated to the closed cycles
of the lattice. In particular, whether a cycle has a trivial group
element or not is invariant under gauge transforms. We can
therefore energetically penalize cycles that have nontrivial 1-
flux. We do this with an energy term at each plaquette, which
gives one if the plaquette has trivial flux and zero if the flux is
nontrivial. As explained in Sec. I D 4, the 1-flux for a plaquette
with label ep and path label gp for its boundary is given by
∂ (ep)gp. The plaquette term therefore acts as δ(∂ (ep)gp, 1G).
An example of the plaquette energy term is shown in Fig. 26.
The plaquette terms enter the Hamiltonian with a minus sign,
which ensures that the lowest-energy states have trivial flux
on the plaquettes. We call plaquettes that satisfy this condition
fake flat [56].

Finally, we consider the gauge-invariant quantity associ-
ated to the closed surfaces. In the same way as for closed
cycles, we penalize closed surfaces with nontrivial 2-flux (2-
holonomy). This is done with an energy term at each “blob”
(3-cell) [56]. The blobs are the smallest three-dimensional
volumes, such as the smallest cubes in a cubic lattice. For
each blob, we have an energy term that checks the value of
the surface of that blob, leaving it unchanged if that value is
1E and giving zero otherwise [56], as shown in Fig. 27. We
denote the blob term associated to a blob b by Bb. The blob
term also enters the Hamiltonian with a minus sign, so that the
full Hamiltonian is given by [56]

H = −
∑

vertices, v

Av −
∑

edges, i

Ai −
∑

plaquettes, p

Bp −
∑

blobs, b

Bb. (12)
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FIG. 27. The blob energy term Bb checks whether the total sur-
face label of the blob b, ê(b), is the identity element or not. This
surface label must be determined by using the rules for combining
surface elements from Secs. I D and I E to combine the plaquettes
on the boundary of the blob. For example, when � is trivial the
surface label is a product of the plaquette labels (with inverses if the
orientation of the plaquette needs to be reversed to match the overall
surface).

Note that the model can also be defined in (2+1)D, in which
case there are no blob energy terms.

Building the Hamiltonian out of gauge transforms and
gauge-invariant quantities should mean that the different en-
ergy terms commute. However, when fake flatness is not
satisfied, the blob terms may not actually be gauge invariant
[56]. In fact, the rules for combining surfaces become incon-
sistent and so the blob terms are ill defined without some
convention for how combination should be done. This means
that the energy terms do not commute on the full Hilbert space
and the model is not a commuting projector model (and so is
not necessarily solvable). This problem will occur in models
where � is nontrivial, i.e., models for which g� e �= e in
general. When � is trivial this complication does not occur
and we have a commuting projector Hamiltonian regardless
[56]. One solution to this problem for nontrivial � is to define
the blob terms to be zero when any of the nearby plaquette
terms are not satisfied [56], similar to the approach taken for
plaquette terms in the string-net model when the neighboring
vertices are not satisfied. However, there are some further
complications when � is not trivial in the general case, and
so we make some restrictions to the model in order to make it
more manageable, as we discuss in Sec. I F.

F. Some special cases and consistency

As we mentioned in the previous section, for the most
general crossed modules the Hamiltonian model has certain
inconsistencies. As an example of this, consider the surface
holonomy of a plaquette ep. We can move the base point of the
plaquette all the way around the plaquette and back to its ini-
tial position. This induces a change to the surface label of the
plaquette, given by ep → g−1

p � ep [56], where gp is the path
label of the boundary of the plaquette, as shown in Fig. 28.
The base point is back to the same position, and the surface
appears to be the same, yet the label may have changed.
The label does stay constant if the plaquette is fake flat. In
that case, the boundary label satisfies g−1

p = ∂ (ep) and so
g−1

p � ep = ∂ (ep) � ep = epepe−1
p = ep [56], where we used

the Peiffer condition (5) in the second step. However, if fake
flatness is not satisfied, then we cannot guarantee that the
plaquette label is unchanged.

This is not the only issue arising from violating fake
flatness: as we describe in Appendix A 1, the edge energy
term also appears to become inconsistent with changes to the

FIG. 28. Moving the base point of a plaquette all the way around
the plaquette transforms the surface label from ep to g−1

p � ep, where
gp is the path label of the plaquette’s boundary.

branching structure of the lattice. One approach for dealing
with this problem is to enforce fake flatness on the level of
the Hilbert space, as a hard constraint rather than an energy
term. This is the case most closely considered in the paper
introducing this model [56]. However, another possibility is
to take � trivial, so that the base point of the plaquette loses
any meaning, but allows fake-flatness violations. If we use this
condition, then all of the energy terms commute naturally,
with no need to restrict the Hilbert space. In this case the
model loses some of its complexity, due to the 1-gauge field
having no way to act on the 2-gauge field. Some additional
consequences of taking � trivial are that E must be Abelian
and that ∂ maps to the center of G. The first condition, that E
is Abelian, comes from the second Peiffer condition [Eq. (5)
in Sec. I D) because ∂ (e) � f = e f e−1 ⇒ f = e f e−1 so that
any elements of E commute with each other. The second
condition, that ∂ maps to the center of G, comes from the first
Peiffer condition [Eq. (4) in Sec. I D], as ∂ (g� e) = g∂ (e)g−1

becomes ∂ (e) = g∂ (e)g−1, so that ∂ (e) commutes with all ele-
ments of G. In this paper, both of these special cases (� trivial
and restricting to fake-flat configurations) are considered. We
also consider a third case where E is Abelian and ∂ maps to
the center of G, but we do not enforce fake flatness on the level
of the Hilbert space or require � to be trivial. In this case, the
inconsistencies we mentioned previously are still present, but
are not as generic. For example, if a plaquette p with label ep

violates fake flatness because the boundary label gp of the pla-
quette differs from ∂ (ep)−1 only by an element ∂ (e) ∈ ∂ (E ),
then moving the base point of the plaquette around p results
in the plaquette label ep transforming to

g−1
p � ep = [∂ (e)−1∂ (ep)] � ep = (e−1ep)ep(e−1ep)−1,

which is just ep because E is Abelian. This case, where the
boundary label differs from ∂ (e−1

p ) by an element in ∂ (E ), is
significant because it occurs when the fake-flatness violation
is caused by a change to the plaquette label ep, rather than
changes to the edge labels. Such flatness-violating changes to
the plaquette labels occur for a whole class of ribbon operators
(the confined blob ribbon operators we describe in Sec. IV).
We will see other simplifications that occur due to E being
Abelian and ∂ mapping to the center of G throughout the
paper. Because we will refer to these restrictions, along with
the other cases that we have considered in this section, many
times in the following text, we summarize all of them in
Table I.
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TABLE I. A summary of the special cases of the model.

Full
Hilbert

Case E � ∂ (E ) Space

1 Abelian Trivial ⊂ center(G) Yes
2 Abelian General ⊂ center(G) Yes
3 General General General No

G. Braiding relations in (3+1)D

One of the important features that we are interested in is the
braiding of the various excitations that we find in the higher-
lattice gauge theory model. While we anticipate that most
readers will have at least some familiarity with the concept
of braiding in (2+1)D, it may be useful to give an overview
of braiding in (3+1)D, particularly where looplike excitations
are involved. In (2+1)D, topological phases support exci-
tations with exchange statistics that generalize the familiar
Fermi and Bose statistics [18–20], and which are described
by the (colored) braid group. On the other hand, in (3+1)D
the pointlike particles can only have Fermi or Bose statis-
tics [22,26,27]. However, the presence of looplike excitations
means that we can still have interesting braiding statistics. The
motion of loops can be described by the (colored) loop braid
group [68–70] (considered under different names and contexts
in papers such as Refs. [77–79]). The braid and loop braid
groups are both examples of motion groups [80,81], which
describe the motions of arbitrary objects, up to homotopy
[69] (formally the objects should return to the same positions,
perhaps swapping positions).

The loop braid group is generated by a few simple motions.
First, consider braiding that involves only two looplike exci-
tations, and for simplicity suppose that those two excitations
are stacked vertically, as shown in Fig. 29. Then if we want to
move the lower loop up past the upper loop, there are several
ways to do this. The first way, shown in Fig. 30, is to simply
move the lower loop around and past the upper one, so that
neither loop passes through the other [68,70]. We refer to this
motion as a permutation move because such moves generate
the permutation group (symmetric group) [69] that would
describe the motions of point particles in (3+1)D. The second
way, shown in the left side of Fig. 31, is to move the lower loop
through the upper loop [68,70]. We call this a braiding move
and say that the lower loop has braided through the upper loop.
The third way, shown in the right side of Fig. 31, is to pull the

A

B

FIG. 29. We first consider the motion of a pair of loops A and B,
in the frame where the upper one (B) is held fixed. The motion of
a set of loops can be described by such pairwise motions, together
with flips of the two loops.

A’s initial position

B

A

FIG. 30. In the permutation move, we move one loop around the
other so that neither loop passes through the other. The motion of
the (red) loop A is represented by the (yellow) sheet, with the initial
position of the moving loop represented by the lowest (yellow) torus.

lower loop over the upper loop, which we can also think of as
the upper loop passing through the lower loop (and so is the
inverse of the previous motion). Another difference from point
particles is that loops have an orientation, and so we must also
allow a move that flips this orientation, as shown in Fig. 32.
Then any motion of the two loops can be performed by a series
of such moves (we say that these generate the loop braid group
for the two excitations) [68,70]. More generally, we can have
any number of loops, and the different motions of this set of
loops can be performed using these pairwise moves.

Generally, we are interested in comparing two motions
that result in the same final position of all of the excitations.
For example, we could compare the result of the permutation
move in Fig. 30 to the braiding move in Fig. 31, or we could
compare a motion that returns all particles to their initial
positions to the trivial motion. Making a comparison between
states where the excitations have the same final position is use-
ful because it separates the topological content of the model
from the geometric details. As we explain in Sec. V, we will
be considering processes that involve the production of the
looplike excitations from the ground state, rather than just
the movement of existing excitations, but the same principles
discussed in this section hold regardless.

In addition to looplike particles, the lattice model supports
pointlike excitations. While braiding between two pointlike
particles in (3+1)D is bosonic or fermionic [26,27] as de-
scribed earlier (and is exclusively bosonic in this model), the
pointlike excitations may braid nontrivially with the looplike
excitations of the model. In order to move a pointlike particle

A’s initial position

B

A

A’s initial position

B

A

FIG. 31. Schematic of the two braid moves. The sheet swept by
the motion of the red loop A is shown in yellow, with the initial
position of the moving loop shown as a yellow torus. In the left
image, the loop A is passed up through loop B. In the right image,
the loop A passes over loop B, meaning that loop B passes down
through loop A from its perspective. The right image can therefore
be thought of as the inverse of the left one (analogous to the two types
of crossing in the normal braid group).
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FIG. 32. Unlike point particles, loop-like excitations have an ori-
entation. We can reverse the orientation of a loop by rotating it by π

radians out of its plane, which leaves the loop in the same position
but flipped over [70].

past a loop excitation, we can either move the pointlike ex-
citation around the looplike excitation (analogous to Fig. 30
for two loops, if we replace the initially lower loop A with a
pointlike excitation), or we can move the pointlike excitation
through the looplike one (analogous to the left side of Fig. 31,
if we replace the lower loop A with a pointlike excitation).

II. PROPERTIES FROM GAUGE THEORY PICTURE

A. Gauge theory

Before we discuss the excitations that we find in the model
in great mathematical detail, it will be instructive to give a
more qualitative description of the excitations that we expect,
using ideas from higher gauge theory. As a starting point, we
shall briefly review the excitations in ordinary gauge theory,
which are electric charges and magnetic fluxes. A clear ex-
position on these objects and their properties, in the (2+1)D
case, is given by Preskill’s lecture notes on topological quan-
tum computation [82, Chap. 9] and an early description of
non-Abelian magnetic fluxes is given in Ref. [83] (see also
Refs. [36,37]). Here we will instead examine the (3+1)D case,
as described in (for example) Ref. [84].

Electric charges are point particles labeled by irreducible
representations of the group G and excite the vertex gauge
terms. The gauge transforms Ag

v at a particular vertex form
a group, with the product Ag

vAh
v = Agh

v , which is isomorphic
to G. The Hilbert space therefore splits into subspaces that
transform as irreducible representations (irreps) of G under
the action of the gauge transforms at every vertex. The trivial
irrep corresponds to states that are gauge invariant at that
vertex, which can be thought of as the absence of an electric
charge. On the other hand, if a state transforms as some other,
nontrivial, irrep at a particular vertex, then that vertex will
be excited. This means that we expect to find excitations that
carry some nontrivial irrep of G, with this irrep describing how
the excitations transform under the gauge transforms. These
excitations should be produced in pairs, with a particle and
antiparticle. We denote such a pair, associated to irrep R, by
(R, a, b), where a, b are the matrix indices of the represen-
tation and describe an internal space for the pair. The irrep
determines the action of the vertex operator applied on one of

FIG. 33. The magnetic excitation (thick red torus) is measured
by a nontrivial closed loop linking with it, such as the thin green
line. This closed loop begins at some start point (shown as a yellow
sphere) and the value of the flux that we measure depends on which
start point we choose, but the conjugacy class of the flux does not.

the particles:

Ag
v (R, a, b) =

∑
c

[DR(g−1)]ac(R, c, b), (13)

where DR(g) is the matrix representation of element g. The la-
bel g−1, rather than g, is used to ensure that the action of the Ag

v

satisfies the composition rule Ag
vAh

v = Agh
v . We could equally

have defined the action of Ag
v to be right multiplication by

DR(g) instead, which would also satisfy the composition law.
In the current prescription, this right multiplication instead
describes the transformation of the antiparticle under a vertex
transformation at its position. This transformation under the
vertex transforms can also be used to tell us something about
the transport properties of the excitation. In Sec. I D 3 we
explained that the vertex transforms are equivalent to parallel
transport. Therefore, Eq. (13) tells us how we expect these
excitations to behave under parallel transport over an edge
labeled by g−1. Looking at Eq. (13), we see that there is mix-
ing between states defined by different matrix indices, while
the irrep is unchanged. This suggests that the electric charges
carry some conserved charge labeled by the representation,
while the matrix indices describe some nonconserved details.

In addition to the electric charges, lattice gauge theory
hosts magnetic flux tubes. Recall from Sec. I C 2 that fluxes
are associated with closed paths that have nontrivial labels.
In that section, we drew an analogy to how a magnetic field
leads to a nontrivial Aharanov-Bohm effect for taking a charge
around a closed loop. In a (2+1)D model, flux can be created
by a point particle, which we can think of as being similar to a
magnetic field penetrating our surface at a point. If this point
particle generates a flux, then this flux should be measured
by a closed loop that encloses the particle. Therefore, we can
describe this particle with the closed loop that measures the
flux. However, a point particle cannot be sensibly described
by a closed loop in a (3+1)D topological theory. This is be-
cause any closed loop around a point particle can be smoothly
deformed away from that particle and contracted to nothing,
i.e., to a path with a trivial label. Therefore, the label of
the path cannot be a topological quantity if the excitation
generating the flux is a point particle. Instead, the magnetic
flux particles should be closed loops (flux tubes). The flux
generated by such a tube can be measured by a closed path
that links with the flux tube, as shown in Fig. 33. Then there
is no way to smoothly contract the measurement path without
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new s.p

g(t) g(t)−1

h

FIG. 34. With the start point (s.p.) at the higher (gray) sphere, the
flux label is h, however with the s.p. at the lower (yellow) sphere the
flux is g(t )hg(t )−1.

it intersecting with the flux tube, and so the label of the path
can be a topological quantity.

We can label a flux tube by the group element of the closed
path that measures the flux. This label describes how a charge
would evolve as it travels along that closed path. However,
the value we assign to a path depends on the start point of
that path. To see this, we consider taking a particular closed
path that links with that excitation and then changing its start
point, as shown in Fig. 34. In order to traverse the new path,
we must first travel the path joining the start points, then the
original closed path, and then back along the path joining
the start points. If the original path has label h, then the new
one will have label g(t )hg(t )−1, where t is the path between
the start points. We therefore see that this new path has a
label that is different from the label of the original path, but
which lies in the same conjugacy class. This means that the
conjugacy class describes the excitation in a robust way, but to
obtain a full description of the flux tube we must also specify
its element within that conjugacy class and the start point from
which we measure that value.

This geometric picture for the two types of excitations also
gives us their braiding relations. We already established how
an electric excitation should transform as it moves through
space. We can now create a pair of electric excitations, labeled
by an irrep R, and move one on a closed path that links with a
flux tube labeled by h, as shown in Fig. 35. If this closed path

Flux tube h

Charge R

FIG. 35. Schematic view of braiding a charge through a loop.
The red line tracks the motion of the charge.

is the one used to define the flux, then the path label is given by
the flux label of the flux tube h. Therefore, the object (R, a, b)
should become

∑
c[DR(h)]ac(R, c, b) after the motion. On the

other hand, if the path has a different start point to the defining
path of the flux, we should replace h with some other element
g(t )hg(t )−1 to describe the transport of the charge to and from
the start point (along path t) as well as around the defining
loop of the flux. This gives us the braiding relation

(R, a, b) →
∑

c

∑
d

∑
e

[DR(g(t ))]ac[DR(h)]cd

× [DR(g(t )−1)]de(R, e, b)

=
∑

e

[DR(g(t )hg(t )−1)]ae(R, e, b),

from which we see that the charge experiences the same trans-
form as if it traveled around a flux of g(t )hg(t )−1, as expected
from the rules for changing the start points of fluxes.

We can also obtain the braiding relations of the magnetic
fluxes using this picture. Consider the case where we have two
flux tubes, which we define with the same start point. We want
to keep track of the measurement paths and the flux labels,
as we move the fluxes around. We consider exchanging the
two flux loops by pushing one through the other, as shown in
Fig. 36. When we move a flux loop, the measurement path
(which is associated with the flux label) moves with it so that
the measurement path and flux tube remain linked (we can
imagine the flux tube dragging the measurement path with it).
For example, in the top-right part of Fig. 36, which shows
the situation after we perform the braiding move, we see that
the measurement path for the initially lower flux tube (the
blue tube) is pulled through the other (now lower) tube (the
red tube). This new deformed path carries the original flux
label (h in Fig. 36) and so this flux label is now associated
to a process where we pull a charge through the lower loop,
then around the upper one and then back through the lower
loop, rather than a process where we simply braid the charge
around the upper loop. We want to define our fluxes with
respect to our original measurement paths, in order to find the
labels associated to the original measurement processes and
so to find the change to the system under braiding. That is, we
want to find the labels associated to the original measurement
paths (α and β in Fig. 36). To do this, we need to write the
original paths in terms of the new deformed ones, for which
we know the path labels. This will allow us to obtain the labels
of the original paths and so tell us the result of braiding our
fluxes.

Looking at Fig. 36, we see that β is the path originally
associated to the upper (red) flux, with label g. When we
deform space to push the lower (blue) flux tube through the
upper (red) flux tube, this path β is deformed to β ′. This means
that the label of this new path β ′ is equal to the original label
g of path β. However, this path is equivalent to (i.e., can be
smoothly deformed into) the original path α around the old
lower flux. So we have β ′ = α and so the new label of the
path α is g (which is now associated with the red flux tube).
On the other hand, consider the path α originally associated
with the blue (initially lower) flux. When we move the fluxes,
this path is deformed into α′ and it keeps its label of h, as
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→move loops

↓deform
measurement
paths

path α label h

path β label g

path β′ = α
label g

path α′ label h

path α′′ = αβα−1

label h

path α label g

path β label g−1hg

←
use
old
paths

FIG. 36. Starting with two fluxes (top left) we can move the lower one through the upper one, swapping their positions. When we do so,
we must also move the measurement paths associated with each flux (top right). Then we can deform these paths (bottom right) to write them
as products of the original paths. Knowing the labels for these new paths (which are just the original flux labels of the two loops) allows us to
find new labels for the fluxes, when measured along the original paths (bottom left).

indicated in the upper right diagram. We want to write α′
in terms of our old paths α and β. To do this we note that
α′ can be smoothly deformed into another path α′′, which
is equal to the path αβα−1 obtained by traversing α then β

and then α in reverse, as shown in the bottom-right figure.
Therefore, we have α′ = αβα−1 and so β = α−1α′α. Using
the fact that α now has the label g and α′ has the label h,
we see that β has the label g−1hg. We can write this braiding
relation in the following way. We start with (h, g), where the
first symbol in brackets is the label given to path α and the
second is the one given to path β. Then under braiding we
have (h, g) → (g, g−1hg), where on both sides the first symbol
refers to the value of path α and the second to the value of
path β, rather than giving the label of a particular one of the
excitations (blue or red). If we instead keep track of the labels
of each tube, we see that h → g−1hg for the blue tube and
g → g for the red tube. Therefore, we see that the label of one
of our flux tubes is conjugated by the label of the other one
under our braiding.

B. Higher gauge theory

We have so far described the excitations for ordinary lattice
gauge theory, but we can use very similar ideas to explore
higher-lattice gauge theory. Our vertex terms still have the
same algebra as in ordinary gauge theory. Namely, we have
a group isomorphic to G at each vertex. Therefore, we expect
to find electric charges labeled by irreps of G, just as with lat-
tice gauge theory. Again, under parallel transport the charges
will transform according to this irrep. This suggests that our
electric excitations will be largely unchanged when compared
to those from the quantum double model. Similarly, we expect
to find magnetic flux tubes that are similar to those from lattice
gauge theory. However, there is some subtlety in considering
the braiding between these two types of excitation. This is
because the lattice does not satisfy flatness in the ground state,
but instead fake flatness. This means that deforming a path
over an unexcited region causes the path label to pick up a
factor of the form ∂ (e). As we discussed earlier, moving an
electric excitation through space, such as when we braid it
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around a magnetic flux tube, causes it to transform according
to the label of the path traversed. This suggests that the result
of braiding an electric charge around such a tube depends on
the precise path chosen for the braiding, not just its homotopy
class, implying that the braiding relation is not topological.
As we shall discuss further in Sec. IV A, the resolution to this
is that any electric excitation that is sensitive to such factors
of ∂ (e) must be confined (i.e., cost energy to separate from
its antiparticle), and so is not topological. In addition, the fact
that we have fake flatness rather than flatness indicates that
a closed path may have a nontrivial label ∂ (e) even in the
ground state. This implies that fluxes with label in ∂ (E ) cannot
be distinguished from trivial fluxes just by measuring the
closed path. Furthermore, deforming the measurement path
for a magnetic flux tube will change the label measured by an
element of ∂ (E ). Therefore, when we talk about the flux of a
magnetic excitation, we should only define it up to elements
in ∂ (E ). This leads to magnetic excitations with label in ∂ (E )
becoming topologically trivial, in a sense that we explain in
Sec. IV B.

In addition to the vertex gauge transforms we also have
the 2-gauge (or edge) transforms, which again have a group
structure. These operators form a group isomorphic to E for
each edge: Ae

i · A f
i = Ae f

i . Therefore, we expect to find edge
excitations that are labeled by irreps of the group E . Recall
that the 2-gauge transform is equivalent to parallel transport
of an extended object (a line object) over a surface. Therefore,
an object which transforms as a particular irrep under the
2-gauge transform should also transform as that irrep under
parallel transport over a surface. Because of the fact that this
transport is over a surface rather than a path, we expect our
“2-charges” to be extended objects. In fact, we will find that
these 2-charges are looplike objects. Then when we transport
a loop, labeled by an irrep μ and matrix indices a and b, over
a surface labeled by e, we should obtain the transformation
(μ, a, b) → ∑

c[Dμ(e−1)]ac(μ, c, b). There is some subtlety
to this, however. Whenever we define a surface element we
must give it a base point. If we change the base point we
change the label of that surface from e to some g� e for
some g ∈ G. Then how do we know if we should have [Dμ(e)]
or [Dμ(g� e)] in our transformation when we transport the
loop? That is, where should we take the base point of our
surfaces? The answer is that we must define the 2-charges
with respect some start point, just like the flux excitations.
When we move the loop over a surface, we always take the
label of that surface with respect to the start point of our loop
excitation. This start point is particularly important for these
loop excitations because the action of the group G on the
start point, which changes the surface label by some g� map,
enables G to affect the loop excitations. This action can even
change the irrep labeling a 2-charge loop, suggesting that the
irrep is not a conserved quantity. Instead, there is some mixing
within certain classes of irreps, which we term �-Rep classes
of irreps of E , with the irreps in a particular class being related
by the action of �. When E is Abelian we define the classes
with the equivalence relation

μ1 ∼ μ2 ⇐⇒ ∃g ∈ G s.t. μ1(e) = μ2(g� e) ∀ e ∈ E (14)

and when E is non-Abelian we must generalize this to account
for irreps related by conjugation. We therefore see that �
plays a significant role in determining how the excitations
behave.

Just as we have magnetic fluxes that are associated with
nontrivial loops, there are also “2-fluxes” associated to non-
trivial closed surfaces, labeled by elements in E . We expect
excitations corresponding to the 2-flux of a sphere to be point
excitations because we can shrink a sphere to enclose just a
single point. Because these 2-fluxes are measured by closed
surfaces, and every surface must be defined with a base point,
we must choose a base point for our 2-flux excitation, which
we call the start point of the excitation. Note that we use
the term start point to refer to privileged vertices related to
the excitations, while base point is used to refer to the base
point of a surface. For the 2-flux excitations the base point of
our measurement surface is the start point of the excitation.
Moving the base point of a surface along a path labeled by
g changes the surface label from e to g−1 � e, so similarly
changing the start point of our 2-flux changes its label by this
g−1 � action. We also expect the 2-flux excitation to transform
in this way as it moves along a path. This tells us that the
2-flux label is not conserved, but rather each group element
belongs in a class of elements related by the � action. The
equivalence relation defining such a class is that two elements
e, f ∈ E satisfy

e ∼ f ⇐⇒ ∃ g ∈ G such that e = g� f . (15)

These “� classes” are then conserved under motion.
As this picture gives us the transport properties of these

excitations, we can obtain their braiding relations as well. We
know how our E -valued loops, the 2-charges, transform under
transport over a surface, which tells us how they transform
when pulled over the surface assigned to a 2-flux. For a loop
excitation (μ, a, b) and a 2-flux e, defined with the same start
point, the loop excitation becomes

∑
c[Dμ(e−1)]ac(μ, c, b)

when it is pulled over the 2-flux. We can also work out how
the 2-fluxes braid with ordinary fluxes. When a 2-flux moves
along a path t , the 2-flux label changes from e to g(t ) � e.
Therefore, when moving a 2-flux labeled by e around an ordi-
nary magnetic flux labeled by h, the 2-flux becomes h � e (or
h−1 � e, depending on the orientation of the magnetic flux).

This picture therefore tidily describes several types of sim-
ple excitation that we expect to find. However, as explained
in Ref. [68], there may be more complicated excitations as
well. We may expect to find loop particles that generate both
a 2-flux and a 1-flux. The nontrivial magnetic 1-flux is asso-
ciated to a closed path that links with the excitation, while
the 2-flux corresponds to a spherical surface enclosing that
excitation. In Ref. [68], the braiding relation between two such
loops is established, using geometric arguments and study of
the loop braid group. The authors look at the situation where
they braid two such excitations labeled by (g, e) and (h, f ),
where the first label of each pair gives the magnetic flux and
the second the 2-flux. When the excitation labeled by (g, e)
is pushed through the one labeled by (h, f ), the excitations
should transform under braiding to become (h−1gh, h−1 � e)
and (h, e f [h−1 � e−1]). As will be explained in Sec. V, we do
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indeed find such excitations with these braiding statistics in
the lattice model.

III. EXCITATIONS

The aim of this study is to find the excitations of the higher-
lattice gauge theory model and their properties. In the previous
section, we gave brief arguments about these characteristics
from geometric arguments. However, we wish to show that the
lattice model does indeed support such excitations, and give
a fuller description of their properties. A significant feature
of this model is that we can explicitly find the operators
to produce the excitations in various broad cases. Here we
will explicitly construct these operators for the higher-lattice
gauge theory model, and use the operators to study the excita-
tions directly.

Pointlike excitations are produced by ribbon operators.
These ribbon operators act on a linearly extended region
(often with some finite width), called a ribbon, and produce
excitations at the two ends of the ribbon. One of the defining
properties of the ribbon operators that produce the topolog-
ical excitations is that they commute with the Hamiltonian
everywhere except at the start and end of the ribbon and so
act to produce a pair of anyons [13,34]. Because the bulk of
the ribbon does not produce any excitations, the ribbon itself is
largely invisible apart from its end points. Indeed, ribbon op-
erators are topological, in the sense that they can be smoothly
deformed through the ground state (or any unexcited region
of the lattice) without affecting the action of the operator.
Important exceptions to this are the ribbon operators which
produce confined excitations. These excitations cost energy
to separate from their antiparticle, and so the corresponding
ribbon operators have an energy cost associated to the length
of the ribbon and are therefore not topological (the location
of the ribbon can be detected by the energy terms along the
length of the ribbon).

The fact that the topological excitations must be produced
in pairs at the ends of ribbon operators, rather than locally,
is no accident. These excitations carry a conserved charge,
known as topological charge. In (3+1)D, there are multiple
types of topological charge, corresponding to different mea-
surement surfaces, as we explain in Sec. VI (and in more
detail in Ref. [72]). In this work we will consider the charge
measured by a sphere, which captures the pointlike character
of an excitation or set of excitations, and the charge measured
by a torus, which captures the looplike character. Because this
charge is conserved, it can only be produced in one region by
moving it out of another region. Ribbon operators do exactly
this, and the charge carried by the excitation produced at one
end of the ribbon operator must be balanced by the charge
carried by the excitation at the other end.

Instead of being produced at the ends of ribbon operators,
the looplike excitations are created at the boundary of so-
called membrane operators. As the name suggests, membrane
operators act across some extended surface in the 3D spatial
lattice, often with some finite thickness. These membrane
operators must be applied on unexcited regions of the lat-
tice, otherwise they may produce additional excitations or
in some cases become ill defined. The membrane operators,
just like the ribbon operators, are topological, meaning that

FIG. 37. An electric ribbon operator measures the value of a path
and assigns a weight to each possibility, creating excitations at the
two ends of the path. In this example, the edges along the path are
shown in black. Some of the edges are antialigned with the path
and so we must invert the elements associated to these edges to find
their contribution to the path element. This is represented by the gray
dashed lines, which are labeled with the contribution of each edge to
the path.

the membrane is largely invisible and deforming it through
an unexcited region without changing its boundary leaves the
action of the corresponding operator unchanged.

These ribbon and membrane operators carry significant
information about topological phases. They can be used to
obtain the fusion rules for the associated particles, which de-
scribe how two anyons can be combined into a single particle
[34]. Furthermore, ribbon and membrane operators allow us
to find the braiding statistics of the topological excitations
because these operators encode the creation and motion of the
excitations.

In the following sections we construct the ribbon and mem-
brane operators for the higher-lattice gauge theory model and
use the operators to study the properties of the excitations
directly. We find four types of excitation in our model, with a
rough correspondence to the four energy terms of the Hamilto-
nian. In (3+1)D, two of these types of excitation are pointlike
and two types are looplike.

A. Electric excitations

The first type of excitation we construct is called the
electric excitation and is primarily associated to the vertex
terms of our Hamiltonian. These electric excitations therefore
correspond to the “electric charges” that we described at the
start of Sec. II. In order to create these electric excitations,
we measure the group element associated to some path on our
lattice and apply weights depending on the result. In order to
measure a path element, we take the product of edge elements
along the path, with inverses if the orientation of the edge
is against the orientation of the path. An example of this is
shown in Fig. 37. In order to measure each possible value of
the path label, we apply a ribbon operator of the form

S �α (t ) =
∑
g∈G

αgδ(ĝ(t ), g), (16)

where ĝ(t ) is the path element for path t and αg is a coefficient
(or weight) for the element g. This operator can excite the two
vertex terms at the ends of the path t . We call the start of path
t the start point of the operator, and it can be thought of as
the position where the pair of excitations is created before the
excitations are moved.

These electric excitations are equivalent to the electric ex-
citations found in Kitaev’s quantum double model [13], even
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up to the precise form of the ribbon operator that creates them.
As we go on we will find that several features of the quantum
double model (which is based on lattice gauge theory) carry
over to the higher-lattice gauge theory model. However, we
will also see important distinctions between the two models.
For instance, as we describe in Sec. IV A [and prove in Sec. S-
I of Ref. [71], with the proof holding in both (2+1)D and
(3+1)D], some of our electric excitations are confined, with
the ribbon operator having an energy cost that scales with its
length.

Any set of weights αg that we choose in Eq. (16) will
give a valid ribbon operator. Varying the weights therefore
takes us through a space of these electric ribbon operators.
A particularly useful basis for this space has the weights de-
scribed using representations of G, as we anticipated in Sec. II.
Each basis element is labeled by an irreducible representation
(irrep) of the group G, along with two matrix indices. Then
for the irrep R and the indices a and b, the corresponding basis
ribbon operator is given by

ŜR,a,b(t ) =
∑
g∈G

[DR(g)]abδ(ĝ(t ), g), (17)

where DR(g) is the matrix representation of the element g in
the irrep R. The operator labeled by the identity irrep is then
the identity operator

1 =
∑
g∈G

δ(g, ĝ(t ))

and so does not produce any excitations. Any other basis
operator (i.e., an operator labeled by a nontrivial irrep) does
produce excitations at the two ends of the ribbon.

In addition to determining which operators excite the ver-
tices, this basis is a good choice for examining the topological
charge of the excitations. As we show in Ref. [72] (in Sec. IX
A 1), the pointlike topological charge for (nonconfined) pure
electric excitations is labeled by the irreps of the group
G/∂ (E ) (the quotient removes the confined excitations) and
the basis operators given above transport definite values of
topological charge. That is, in the operator above R labels a
conserved charge, while the matrix indices a and b describe
some internal space to the sector (as we expect from our
discussion of gauge theory in Sec. II). In particular, when R
is the trivial irrep the ribbon operator transports the vacuum
charge, as we require from the fact that the ribbon operator is
just the identity. On the other hand, if R is nontrivial in the
subgroup ∂ (E ), then the excitation is confined.

B. Blob excitations

The next pointlike excitations that we find are called blob
excitations because they primarily correspond to violations of
the blob terms of the Hamiltonian. These excitations are there-
fore associated to the nontrivial closed surfaces we discussed
in Sec. I D 4 of the Introduction. That is, the blob excitations
correspond to nontrivial “2-fluxes” on a sphere. In order to
excite a blob term, which enforces that the surface element of
that blob is trivial, we can multiply one of the plaquette labels
on that blob by an element e of E . However, each plaquette
is shared by two blobs, one on either side of the plaquette.
Changing a plaquette’s label will therefore excite both of the

FIG. 38. We consider a series of blobs in the ground state (left-
most image). In the ground state, all of the blob terms are satisfied,
which we represent here by coloring the blobs blue (dark gray in
grayscale). Changing the label of the plaquette between blobs 1 and
2 excites both adjacent blobs, as can be seen in the middle image
(we represent excited blobs by coloring them orange, or lighter gray
in grayscale). Multiplying another plaquette label on blob 2 to try to
correct it just moves the right-hand excitation from blob 2 to blob
3 (rightmost image). In each step, the plaquettes whose labels we
changed are indicated by the (red) squares and their orientations are
indicated by an arrow.

adjacent blobs. We can try to correct this by changing another
plaquette on this second blob. However, that plaquette will in
turn be connected to a third blob, which will become excited,
as illustrated in Fig. 38. This means that we simply move
the second excitation from the second to the third blob. We
therefore see that we produce these blob excitations in pairs,
just as with the electric excitations. The series of plaquettes
that we have to change to produce the excitations forms a
string that passes through the centers of the blobs (3-cells).
The operator that changes the plaquette labels is therefore
another of our ribbon operators.

The precise action of our blob ribbon operator depends on
which special case from Sec. I F we consider. In the simplest
case, where � is trivial (case 1 in Table I), the action is fairly
simple. We choose an element of E to label the operator. We
also choose a path on the dual lattice, which passes between
the centers of blobs just as a path on the direct lattice passes
between vertices. This path cuts through the plaquettes that
separate the blobs (analogous to direct paths passing along
edges), such as the red plaquettes in the example in Fig. 38.
The choice of element e ∈ E and path r gives us a blob ribbon
operator Be(r). The action of this operator is just to multiply
the labels of all of the plaquettes pierced by this dual path
by e or e−1, depending on the orientation of these plaquettes
relative to the ribbon (where the orientation of the plaquette is
obtained from its circulation using the right-hand rule). This
results in the two blobs at the end of the path being excited,
as we discussed for the example in Fig. 38. As we explain in
Sec. IV A, some of the blob ribbon operators [those labeled
by an element e ∈ E for which ∂ (e) is not 1G] also excite
the plaquettes pierced by the ribbon operator, resulting in the
corresponding blob excitations being confined.

We must modify the action of the blob ribbon operators
slightly if � is nontrivial, as in cases 2 and 3 of Table I.
When � is nontrivial, we must keep track of the base points
of the plaquettes that we want to change. We first move all
of their base points to a common location at the start of our
operator (for example, the base point of the first plaquette that
we want to change), which we call the start point. Then we
multiply the label of each plaquette by e or e−1 before moving
their base point back to its original location. Recall from the
Introduction that moving the base point of a plaquette along
path t changes its label from ep to g(t )−1 � ep (see Fig. 8 for
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a reminder). The total change to ep is therefore

ep → g(t )−1 � ep (move base point)

→ [g(t )−1 � ep] e−1( postmultiply by e−1)

→ g(t ) � ([g(t )−1 � ep] e−1) (move base point back)

= ep[g(t ) � e−1],

where t is the path from the base point v0(p) of plaquette p to
the start point of our operator. This gives us the action

Be(r) : ep

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ep[g(s.p.(r) − v0(p))−1 � e−1] if p is aligned

with r,

[g(s.p.(r) − v0(p))−1 � e]ep if p is antialigned

with r,
(18)

where g(s.p.(r) − v0(p)) is the path element from the start
point of our operator to the base point of p and the plaquette is
aligned with the ribbon if the circulation of the plaquette can
be obtained from the local direction of the ribbon by using
the right-hand rule. The path from the start point to the base
point of the plaquette can be deformed over a fake-flat region
without affecting the action of the operator, so its precise
position is not usually important. However, the start point
itself is important and the vertex term there may be excited
by the ribbon operator. This is because the vertex transform
affects the path element g(s.p.(r) − v0(p)) and so does not
commute with the ribbon operator in general. While we leave
a more detailed discussion and proof of this for Ref. [72],
we can understand this somewhat intuitively using the geo-
metric interpretation discussed in Sec. II. The blob excitations
correspond to nontrivial 2-fluxes, and these 2-fluxes must be
defined with respect to a base -point, which is the start point
of the ribbon operator. Moving this base point induces a g�
action on the label of the 2-flux. Then, because applying a
vertex transform at a vertex is analogous to parallel transport
of that vertex (see Sec. I D), the vertex transform also has
a similar g� action on the label of the 2-flux produced by
the ribbon operator. The ribbon operators which are invariant
under this action therefore commute with the vertex trans-
forms and so with the vertex energy term at the start point.
However, generic ribbon operators are not invariant under this
action, which leads to some of them exciting the start point.
Specifically, given a linear combination

∑
e αeBe(r) of group-

labeled blob ribbon operators, the start point is not excited if
the coefficients αe are a function of � class, so that α f = αg� f

for all pairs g ∈ G and f ∈ E . On the other hand, the start
point is definitely excited if the sum of the coefficients in each
� class is zero (i.e.,

∑
g∈G αg�e = 0 for all e ∈ E ). Ribbon

operators that do not satisfy either of these conditions do not
produce eigenstates of the vertex term when acting on the
ground state, but can be written as a linear combination of
operators that excite the vertex and operators that do not.

C. E-valued loops

The first looplike excitations that we find, which we call E -
valued loop excitations, are produced by membrane operators
which act primarily on the surface labels. These membrane
operators measure the label of a surface in our lattice, using
the rules for combining surface elements given in Secs. I D
and I E and apply a weight depending on the result. This is
very similar to the electric ribbon operators except that the
membrane operator measures a surface rather than a path.
Indeed, if the electric excitations are charges for the 1-gauge
field, then the E -valued loops are “2-charges” corresponding
to the higher gauge (2-gauge) field. In the same way as with
the electric excitations, the weights describe a space of oper-
ators and an appropriate basis is given using irreps, this time
of the group E . For an irrep μ and matrix indices a and b, the
operator acting on a membrane m is given by

Lμ,a,b(m) =
∑
e∈E

[Dμ(e)]abδ(ê(m), e), (19)

where ê(m) is the total surface element of membrane m. This
surface element can be written in terms of the labels of the
plaquettes making up the membrane as

ê(m) =
∏

plaquettes p∈m

g(s.p.(m) − v0(p)) � e
σp
p , (20)

where v0(p) is the base point of the plaquette p, s.p.(m) is
the base point with respect to which we measure the surface
label (and which we call the start point of the membrane),
and σp is ±1 depending on the plaquette’s orientation (+1
if it matches that of m and −1 if it is antialigned with m).
Note that when E is non-Abelian, the order of the product
in Eq. (20) is important and must be obtained by applying
the rules for composing surfaces given in Secs. I D and I E.
There are generally many ways of composing the surfaces
and each way is associated to different paths [s.p.(m) − v0(p)]
and different orders of multiplication, which should give the
same result as long as fake flatness is satisfied on the mem-
brane. Applying the membrane operator in Eq. (19) causes the
edges along the boundary of the surface to become excited
(as long as μ is nontrivial), as indicated in Fig. 39. If μ

is the trivial irrep, then the membrane operator is instead
the identity operator, so the operator does not produce any
excitations.

As with the blob excitations, there are some features that
depend on which special case from Sec. I F that we look at.
As we explained in Sec. I F, when � is trivial, the Peiffer
conditions [Eqs. (4) and (5) in Sec. I D] imply that E is
Abelian. In this case, the irreps are all one dimensional, so we
can drop the matrix indices a and b in Eq. (19). In addition, a
trivial � means that we do not need to keep track of the start
point of the membrane.

On the other hand, when � is nontrivial, E may be non-
Abelian and so generally we must include the matrix indices.
In addition, the start point of the membrane becomes impor-
tant and cannot generally be changed without affecting the
action of the operator. Much as with the blob excitations,
this start point can be excited by the operator, which re-
flects the nontrivial transformation undergone by the operator
when we move the start point (due to the connection between
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membrane, m

s.p(m)

FIG. 39. We consider applying an E -valued membrane on the
shaded membrane m in a fragment of the three-dimensional lattice.
The membrane operator measures the surface label of the membrane,
with a weight for each possible label. When measuring a surface, if
� is nontrivial we must specify the base point of that surface. The
base point of the surface measured by the membrane operator (the
yellow dot) is called the start point of the membrane. A nontrivial
E -valued membrane operator excites the edges (solid blue lines) on
the boundary of the membrane, and may also excite the start point of
the membrane.

vertex transforms and parallel transport). The start point is not
excited if the membrane operator is made of a linear combina-
tion

∑
e αeδ(ê(m), e) whose set of coefficients αe is a function

of � class (i.e., αe = αg�e). If the start point is not excited,
then it can be moved without affecting the operator. On the
other hand, the start point may be excited if the coefficient
αe transforms nontrivially under the � action, as we describe
in more detail in Refs. [71,72]. The start-point excitation
is significant because it can carry a (pointlike) topological
charge, which must be balanced by a pointlike charge on the
loop itself, as we prove explicitly in Ref. [72], in Sec. IX
A 1. Furthermore, as we describe in Ref. [72] in Sec. V,
this pointlike charge can be confined for certain membrane
operators, in which case the charge drags a line of excited
edges between the start point and the loop excitation. We note
that this confinement can only occur when E is non-Abelian,
so it does not occur for cases 1 and 2 in Table I.

D. Magnetic excitations

The final type of elementary excitation is the magnetic
excitation, named so due to its correspondence to the magnetic
excitations in Kitaev’s quantum double model [13] and its
analogy to magnetic flux. The magnetic loop excitation is
primarily associated with excitation of the plaquette energy
terms. Recall from Sec. I E (see Fig. 26) that the plaquette
term checks that the 1-flux of the plaquette is trivial, where
the 1-flux is given by the product of edge elements around
the boundary multiplied by the image under ∂ of the plaque-
tte’s surface element. In order to create an elementary flux
excitation, we must excite the fewest number of plaquettes
by changing edge labels (changing the plaquette label could
also excite the plaquette, but this results in blob excitations
as we saw in Sec. III B). We therefore consider trying to
excite a single plaquette by changing one of the edges on
that plaquette. However, in three spatial dimensions the edge
will generally be shared by multiple plaquettes. Therefore,
changing the edge label will excite all of the plaquettes sur-

→
↓

←

FIG. 40. In order to excite one of the plaquettes in the lattice and
produce a magnetic excitation, we change the label of one of the
edges (black cylinders) on the boundary of the plaquette. However,
this excites all of the plaquettes adjacent to that edge, as shown in the
first image (the excited plaquettes are shown in red). Note that these
plaquettes lie on a closed loop (blue tube) through their centers. If
we change another edge label to try to prevent some of the plaquette
excitations, we will excite the other plaquettes adjacent to that edge,
as shown in the second image. Repeating the process, by changing
the additional edges shown in black in each step, simply changes the
shape of this loop (unless we change all of the edges bisected by a
closed membrane and shrink the loop to nothing).

rounding this edge. We can try to fix one of these additional
excited plaquettes by changing the label of another edge on
that plaquette, but this will in turn excite the other plaquettes
surrounding that edge. We can repeat this process, but always
get a closed string of excited plaquettes, as shown in Fig. 40
(unless we collapse the loop to nothing). This means that the
magnetic excitation is indeed looplike. The edges that we have
to change to produce the magnetic excitation are bisected by a
membrane bounded by the excited loop, as shown in Fig. 41.
We call the membrane cutting these edges the dual membrane
because the membrane bisects the edges of the lattice rather
than lying on the lattice itself. The fact that we must change
degrees of freedom across a membrane in order to produce a
general magnetic excitation means that the creation operator is
a membrane operator, which we call the magnetic membrane
operator.

Next we will explicitly describe the action of the mem-
brane operator. The features of the magnetic excitation depend
strongly on the special case that we take. We first consider the
� trivial case (case 1 in Table I). In this case the operator to
produce the excitation is analogous to the (2+1)D magnetic
ribbon operator from Kitaev’s quantum double model [13].
We denote the magnetic membrane operator labeled by an
element h ∈ G and acting on a membrane m by Ch(m). When
the group G is Abelian, the action of this membrane operator
is simple. We just multiply the labels of each of the affected
edges (those cut by the dual membrane) by the element h or
its inverse, depending on the orientation of the edge. On the
other hand, when the group is non-Abelian, we must multiply
each edge by some element in the same conjugacy class as h
(or the inverse). To determine which element this is, we must
first endow our operator with a privileged point, called the
start point. Furthermore, we must specify a path from this start
point to each edge cut by the membrane. Denoting the path to
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start-point dual
membrane

direct
membrane

cut edges

example
path ti

excited
plaquettes

example action:
gi → g(ti)

−1hg(ti)gi

FIG. 41. Here we give an example of the membranes for the flux
creation operator (magnetic membrane operator). The dual mem-
brane (green) cuts through the edges changed by the operator. The
direct membrane (blue) contains a vertex at the end of each of these
cut edges (such as the orange sphere). A path from a privileged start
point to the end of the edge (such as the example path ti) determines
the action on the edge. This action leads to the plaquettes around the
boundary of the membrane being excited.

edge i by ti, the action of the membrane operator on edge i is

Ch(m) : gi =

⎧⎪⎪⎨
⎪⎪⎩

g(ti )−1hg(ti )gi if i points away from
the direct membrane,

gig(ti )−1h−1g(ti ) if i points towards
the direct membrane.

(21)

This action is shown in Fig. 41. The paths involved in
this action lie on a second membrane, which we call the
direct membrane, so the support of the membrane operator
actually lies on both the direct and dual membranes, which we
sometimes refer to together as the thickened membrane. This
is analogous to how the ribbon operators in Kitaev’s quantum
double model act on a ribbon [13], which is a thickened string.

The precise choice of the paths on the direct membrane is
not usually significant, as we can deform them over a fake-flat
region without affecting the action of the membrane operator.
This is because the group elements assigned to two paths
differing by such a deformation only differ by an element of
∂ (E ), due to the fake-flatness condition. When � is trivial,
elements of ∂ (E ) are in the center of G (see Sec. I F) and so
do not affect the expression g(ti )−1hg(ti ). Because we usually
apply membrane operators on regions without any other exci-
tations, this means that we do not generally need to specify the
precise positions of the paths. An important exception that we
describe in Ref. [72] is when we produce two linked magnetic
excitations by applying intersecting membrane operators.

As with the blob and E -valued loop excitations, the start
point of the magnetic membrane operator may be excited. As
mentioned previously, the magnetic excitations in this model
are analogous to the magnetic excitations from Kitaev’s quan-
tum double model [13], and the potential start-point excitation
is also present for the magnetic ribbon operators in that model
(see, for example, Ref. [85]). We can interpret the start point
of the magnetic membrane operators in this model, as well as
the start points of the magnetic ribbon operators in Kitaev’s
quantum double model, in terms of gauge theory. Recall from
Sec. II that whenever we measure a flux, we must do so with
respect to a certain start point. The flux created by Ch(m) is
only h when we measure with respect to the start point of
the membrane operator (or ribbon operator for the quantum
double model). Measuring the flux from a different point gives
us a result of ĝ(t )hĝ(t )−1, where ĝ(t ) is a path element operator
for which we are not generally in an eigenstate (even if there
are no excitations present other than the magnetic flux). Note
that the element ĝ(t )hĝ(t )−1 is still in the conjugacy class of h,
indicating that this conjugacy class is independent of the start
point even if the flux element is not. This interpretation of the
start point is then connected to whether the start point of a
magnetic membrane operator is excited. The vertex transform
at a vertex acts like parallel transport of that vertex, and so
we can think of the vertex transform at the start point as
moving that start point, which conjugates the flux label. In
order to diagonalize the vertex term at the start point, we
must therefore take a linear combination of magnetic mem-
brane operators with different labels in the conjugacy class
of h (so that we are considering a state in a superposition of
different flux labels), as we prove in Ref. [72]. If the start
point is unexcited, it means that the membrane operator is
not sensitive to changes to the start point from which we
measure the flux, which occurs when the membrane operator
produces an equal combination of fluxes in the conjugacy
class (i.e., the coefficients of the linear combination are the
same for each element in the conjugacy class). This equal
combination of elements in the conjugacy class produces a
flux tube with a trivial pointlike charge [or in the (2+1)D case
such as the quantum double model, a pair of excitations that
can be annihilated, as described in Ref. [82]].

So far this consideration of the magnetic excitations has
all been in the case where � is trivial. In the case where �
is nontrivial but we restrict to fake-flat configurations (case 3
in Table I), we cannot include the magnetic excitations at all
because the magnetic excitations violate the plaquette terms
and hence break fake flatness. The most interesting case is
case 2 from Table I, where we loosen the restrictions on the
crossed module without throwing out the non-fake-flat con-
figurations. Specifically, we require that ∂ maps to the center
of G and that E is Abelian. In this case, we are allowed to
keep the magnetic excitations, though their operators must be
modified. We briefly describe this modification here, but give
a full description in Ref. [72]. The new membrane operators
act on edge elements in the same way as described above in
the � trivial case, but they also act on the plaquette elements
around the membrane in two ways. First, the membrane op-
erator directly affects the plaquettes that are cut by the dual
membrane. If a cut plaquette p has its base point on the direct
membrane, then its label ep is changed to (g(t )−1hg(t )) � ep,
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start-point

example path, t, to
base-point base-point on direct membrane

direct membrane

dual membrane

example plaquette based on
direct membrane:
ep → (g(t)−1hg(t)) � ep

example plaquette based away
from direct membrane: ep → ep

base-point away from
direct membrane

FIG. 42. In addition to changing the edges cut by the dual membrane, when � is nontrivial the magnetic membrane operator affects the
plaquettes cut by the dual membrane if their base points lie on the direct membrane.

where g(t ) is the path from the start point of the operator to
the base point of the plaquette. Any plaquette whose base
point is away from the direct membrane is left unaffected.
An example of this action is shown in Fig. 42. This action
on the plaquettes is analogous to how the vertex transform
affects plaquettes based at that vertex, but not plaquettes that
are not based at the vertex. Indeed, the vertex transform is like
a closed magnetic membrane operator, whose dual membrane
encloses that vertex and whose direct membrane is just the
vertex itself (it is this equivalence that leads to the membrane
operators being topological, as we explain in Ref. [72]).

In addition to this � action, we have to multiply the mem-
brane operator by blob ribbon operators, with these ribbons
running from a special blob defined in the membrane operator,
which we call blob 0, to the plaquettes of the direct membrane.
In the � trivial case (case 1 of Table I), the plaquettes around
the membrane were excited and the start point could also
be excited. In this more general case (case 2 of Table I) the
special blob, blob 0, may also be excited, as may the edges and
blobs surrounding the membrane. The word “may” is impor-
tant for the edges and blobs at the boundary of the membrane
because, near an excited plaquette, the edge and blob terms
cease to commute and also become inconsistent with changes
to the branching structure of the lattice. This effect would
only become worse if we lifted the condition on ∂ . In that
case, the blob ribbon operators that we add would generally be
confined, which could lead to plaquette excitations away from
the boundary, which is the reason that we do not consider the

fully general case. In case 2 the problematic plaquette excita-
tions are restricted to the boundary of the membrane, and any
topological quantities can be measured far from this boundary
(if the membrane is sufficiently large), so the inconsistencies
from the plaquette excitations are not important.

Due to the extra features of the magnetic membrane op-
erator in this case, the magnetic excitation may carry both
an ordinary 1-flux and a 2-flux, as we discussed in Sec. II.
Recall that a nontrivial 2-flux indicates a closed surface with
a nontrivial label. We can see that the loop excitation must be
associated to a nontrivial surface when blob 0 of the mem-
brane operator is excited. This is because blob 0 being excited
indicates that this blob carries a nontrivial 2-flux, which must
be balanced by a 2-flux belonging to the looplike excitation
itself.

IV. CONDENSATION AND CONFINEMENT

A. Confinement

As we alluded to in Sec. III, we found that some of the exci-
tations in the higher-lattice gauge theory model are confined,
meaning that there is an energetic cost to separating particles
(or growing and moving looplike excitations) which grows at
least linearly with separation (or with the area swept by the
loop). Specifically, some of the pointlike (electric and blob)
excitations are confined.

For the blob excitations, the mechanism for this confine-
ment is the plaquette terms. Recall from Sec. III B that the
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blob ribbon operator Be(t ) multiplies each plaquette p pierced
by the ribbon by an element [g(s.p.(t ) − v0(p))−1 � e±1] of E .
In addition to exciting the blobs at the ends of the ribbon, this
action may excite the plaquettes that are pierced by the ribbon.
This is because the plaquette term projects onto states for
which the plaquette label ep and the path label gp of the bound-
ary of the plaquette are related by ∂ (ep)gp = 1G. If the ribbon
operator changes ∂ (ep) for the plaquettes that it pierces, it
will excite those plaquettes. This occurs when ∂{g[s.p.(t ) −
v0(p)]−1 � e} is nontrivial. The Peiffer condition (4) states
that ∂ (g� e) = g∂ (e)g−1, and so ∂[g(s.p.(t ) − v0(p))−1 � e]
is the identity element when ∂ (e) = 1G regardless of the value
of g(s.p.(t ) − v0(p)). That is, the blob ribbon operator Be(t )
excites every plaquette it pierces when e is outside the kernel
of ∂ . In this case, the ribbon operator has an energetic cost
that grows linearly with the length of the ribbon and so the
associated blob excitations are confined. Note that for case 3
in Table I, where we exclude states that excite the plaquette
terms from the Hilbert space, we must not allow the confined
blob excitations.

We also find that some of the electric excitations are con-
fined. The mechanism of this confinement is the edge terms
along the ribbon. This is because the edge transforms change
the path element measured by the electric ribbon operator by
an element in ∂ (E ) (the image of ∂) and so may fail to com-
mute with the ribbon operator. To determine which electric
ribbon operators are confined, we use the irrep basis for the
ribbon operators. Given an electric ribbon operator labeled by
irrep R of G, we can determine whether the corresponding ex-
citations are confined by evaluating the irrep R on elements of
the normal subgroup ∂ (E ) and treating this as a representation
of the subgroup. Restricting the irrep R to the subgroup in this
way produces a generally reducible representation of the sub-
group. When we decompose this representation into irreps of
∂ (E ), by Clifford’s theorem [86] the constituent irreps will all
be related by conjugation. This means that if one of the irreps
of ∂ (E ) found by restricting R is the trivial irrep, then they
all are [this result can also be obtained by Schur’s Lemma in
the case where ∂ (E ) is in the center of G]. If R branches to the
trivial irrep in this way, then the ribbon operator will transform
trivially when we alter the path element by an element in ∂ (E ).
This means that the ribbon operator commutes with the edge
transforms and the electric excitations are not confined. On
the other hand, if R does not branch to the trivial irrep then the
ribbon operator does not commute with the edge transforms.
In particular, it transforms as a nontrivial irrep of ∂ (E ) under
them and so gives zero when we act with the edge energy
term, which is an average over all labels of the edge transform,
due to the grand orthogonality theorem. This means that all of
the edges along the ribbon are excited and the corresponding
excitations are confined. We note that this is equivalent to the
confinement for the field theory discussed in Ref. [65], where
the electric operators are confined if they can detect factors in
a subgroup π1(H ) [equivalent to ∂ (E ) here].

Some of the E -valued looplike excitations can also be
confined in a certain sense when E is non-Abelian, as de-
scribed in Sec. III C. This confinement does not give an energy
cost to growing the looplike excitation, but instead it costs
energy to move the excitation away from the start point of
the membrane. As we discussed in Sec. III C, it seems like

the pointlike charge carried by the loop excitation is confined,
rather than the looplike charge. This is also reflected in the
topological properties of the membrane operator. Normally,
the creation operator (ribbon or membrane operator) for a
confined excitation is not topological because the position
of the operator can be detected by the energy terms it ex-
cites. In the case of the membrane operators producing the
particular confined looplike excitations in this model, how-
ever, the membrane operator is still partially topological: we
can deform the membrane without affecting the action of
the operator, but we must keep the location of the excited
edges fixed (and so the location of the confining string is
fixed). This is again because it is the pointlike charge that
is confined (and so the motion of the pointlike charge is not
topological).

B. Condensation

The phenomenon of confinement is closely related to
a process known as condensation. Consider a topological
model with some set of topological charges. By deforming
the Hamiltonian, we may find that some of the nontrivial
topological charges from the old Hamiltonian are present
in the ground state of the deformed Hamiltonian. Because
the ground state corresponds to the topological vacuum, this
means that the excitations which carried the previously non-
trivial charges now carry the trivial charge, although they may
still remain energetic. We say that those excitations condense
[87–91]. When this occurs, any excitations that braided non-
trivially with those excitations in the original become confined
in the deformed model [87,88] (this is a bit of a simplification,
but is sufficient to describe this model). This process is known
as a condensation-confinement transition. While this is fairly
well understood in (2+1)D, there has been comparatively
little study of such transitions in the (3+1)D case (examples of
work in this area include Refs. [92,93]), and so it is interesting
to see how condensation and confinement arise in this (3+1)D
model.

In the higher-lattice gauge theory models, we can consider
the process of condensation by constructing two models re-
lated by such a transition. That is, we consider cases where we
can turn the confinement on and off by changing a parameter
in the Hamiltonian. We cannot change the groups G and E ,
which also fix the Hilbert space, but we can change the map ∂ .
When E is Abelian we can construct a model with no confine-
ment, described by the crossed module (G, E , ∂ → 1G,�),
and called the uncondensed model. Here ∂ → 1G indicates
that ∂ maps to the identity of G. The condition that E be
Abelian is required from the second Peiffer condition (5),
which enforces that ∂ (e) � f = e f e−1 for every pair of ele-
ments e and f in E . Because ∂ (e) = 1G for the uncondensed
model and 1G � is always the trivial map, the second Peiffer
condition ensures that conjugation is also trivial: e f e−1 =
1G � f = f . Starting from this uncondensed model we can
“turn on” ∂ (while keeping the groups fixed), by moving into
a model described by a crossed module where ∂ maps to some
nontrivial subgroup of G. This can be done by interpolat-
ing between the two Hamiltonians because the two models
have the same Hilbert space. During this process, some of
the excitations condense. When this occurs, the condensing
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excitations may still cost energy in the new model, but they
carry trivial charge in this condensed phase. We therefore
refer to such excitations in the condensed phase as condensed
excitations. These condensed excitations can be produced by
an operator local to the excitation. For looplike excitations this
means that a condensed looplike excitation can be produced
with an operator that only acts near the loop, rather than on an
entire membrane. Indeed, finding such an operator to produce
the loop excitation is one way to show that the excitation is
condensed.

In this model, we find that some of the looplike excitations
are indeed condensed. Recall from Sec. III D that the magnetic
excitations are labeled by elements of the group G. If that
element is in the image of ∂ , then the excitation is condensed.
This can be seen from considering the magnetic excitations
in light of the plaquette term. We discussed in Sec. II that
the magnetic excitations are associated with closed loops that
have nontrivial label. However, the plaquette energy term
enforces that the label of closed loops in our lattice match
the image under ∂ of the surface element bounded by the
loop, rather than just being the identity element. Therefore,
the ground state contains closed loops with all values in the
image of ∂ . A magnetic membrane operator with label in the
image of ∂ modifies the labels of closed loops that link with
the excitation only by multiplication by another element of
∂ (E ), and so results in closed-loop values already found in
the ground state. Therefore, the topological charges of the
corresponding magnetic excitations (which we measure with
closed paths) belong in the ground state, and so these charges
have been condensed (in the uncondensed model, only 1G is
in the image of ∂). However, note that this does not mean that
these magnetic excitations are not excitations at all. Changing
the path label by an element of ∂ (E ) still leads to plaquette
excitations because the path labels do not match the surface
enclosed by the loop. In Ref. [72] (in Sec. S-III) we explicitly
show that the action of a condensed membrane operator on
the ground state is equivalent to the action of a (confined)
blob ribbon operator around the boundary of the membrane
operator, which is local to the excitation, confirming that
the corresponding looplike excitation is condensed. Like the
confinement of the electric excitations, this condensation is
equivalent to that for the field theory discussed in Ref. [65],
where fluxes in the subgroup π1(H ) [equivalent to ∂ (E )] are
condensed.

Some of the E -valued loops are also condensed. This is
because some of the membrane operators that produce them
are equivalent (when acting on the ground state) to an electric
ribbon operator acting around the boundary of that membrane.
The membrane operators for the E -valued loops measure the
surface element of the membrane that they are placed on.
However, in the ground state the group element em assigned to
a surface m is related to the path around the boundary of the
surface [labeled by g(boundary)] by ∂ (em)g(boundary) = 1G,
due to the plaquette terms. This suggests that we can mea-
sure the surface element just by examining the boundary, but
because this expression involves only ∂ (em), this correspon-
dence between the surface and boundary does not fully fix
the value em. The surface element can be split into a part that
describes the image under ∂ of that element and a part in
the kernel of ∂ , with the former part fixed by the boundary

|Ψ〉

|Ψ〉

·

·

·

·
FIG. 43. The commutation of operators used to calculate the

braiding. The partially transparent surfaces indicate the membranes
for the operators, while the opaque loops indicate the excited regions,
which are the boundaries of the membranes.

label. Therefore, if a membrane operator is only sensitive
to the former part of the surface element, and not to the
part in the kernel, then it is equivalent to an operator that
simply measures the boundary path element. In this case, the
corresponding loop excitation can be produced by an electric
ribbon operator that only acts near the loop itself, indicating
that the loop cannot carry nontrivial loop topological charge
and is condensed.

We can be more precise about this notion of sensitivity to
the kernel by using the irrep basis for the membrane operators.
Recall from Sec. III C that the E -valued loops are labeled by
irreps of E , as seen in Eq. (19). We can construct an irrep of
the kernel of ∂ (which is a subgroup of E ) by restricting the
irrep of E to the kernel. This results in a (generally reducible)
representation of ker(∂). The kernel is always central in E due
to the second Peiffer condition (5), so Schur’s Lemma applies.
This means that the matrix representation of any group ele-
ment in the kernel must be a scalar multiple of the identity,
with the scalar being an irrep of the kernel. If this irrep of the
kernel is trivial then the excitation is condensed, otherwise
it is not condensed. That is, for an excitation produced by a
membrane operator labeled by an irrep μ of E , if the matrix
representation satisfies Dμ(eK ) = 1 for all eK in the kernel
then the excitation is condensed.

V. BRAIDING

In this section we will first explain how braiding relations
can be obtained from the ribbon and membrane operators,
then describe our results for this model. Ribbon operators
can be thought of as creating a pair of excitations and then
separating them along the ribbon. The ribbon operator there-
fore encodes the result of moving an excitation. Similarly, a
membrane operator can be thought of as nucleating a small
loop and moving it across the membrane. Therefore, we
should be able to find the result of braiding by applying
successive membrane operators. In particular, the braiding is
related to the commutation relations of the membrane opera-
tors. For instance, consider the commutation relation shown in
Fig. 43, which we will see relates to loop-loop braiding. The
images represent membrane operators, which are displaced
horizontally to indicate an order of operators (although the
membranes intersect in space). In the first line, we first act
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with an operator that produces a loop excitation (the green
loop) and then act with an operator that creates another loop
(shown in red) and moves it through that first loop. This
performs a braiding move, specifically the one from the left
side of Fig. 31. In the second line of Fig. 43, we first act
with the operator that creates and moves the red loop through
empty space, before creating the other loop excitation. In this
case no braiding move occurs. Comparing these two lines
(that is, working out the commutation relation for the two
membrane operators) therefore lets us compare the situation
with braiding to the one without, but where the excitations
have the same final positions in each case. This latter point is
important because ensuring that the excitations have the same
final positions in the two cases isolates the effect of braiding
from any other effects.

There are some subtleties when determining the braid-
ing relations, which mean that we have to take care when
interpreting the commutation relations between membrane
operators. The formulas given in this section will refer to
“same-site” braiding. This refers to the case where the start
points of the operators (as defined when discussing the ex-
citations in Sec. III) are in the same location. In this case
the excitations involved have a definite fusion product (i.e.,
well-defined combined topological charge). In a non-Abelian
anyon theory, where two anyons may fuse to multiple dif-
ferent types of anyon, the braiding of two particles depends
not only on the charges of the two particles, but also which
charge they fuse to [21, Preliminaries]. To find the braiding
relations we therefore want to consider the case where they
have definite total charge, otherwise the braiding relations are
not well defined (which in practice is reflected in this model
by the presence of operator labels in the braiding relations).
In simple cases, where the fusion is Abelian (i.e., where two
charges only have one fusion channel), this requirement for
same-site braiding is lifted (and this is usually reflected by the
start point of the corresponding membrane or ribbon operators
being irrelevant to the commutation relation). While we only
discuss the same-site case here, we will give more general
results in Ref. [72].

Having discussed the method for finding the braiding, we
now discuss our results. First, we note that any braiding
of two pointlike excitations (which we term permutation) is
trivial. This is because in this model the permutation is imple-
mented by ribbon operators that connect the initial and final
positions of the excitations. In (3+1)D, the ribbon operators
that permute the two excitations do not need to intersect
and so commute, which leads to trivial (bosonic) exchange
statistics. That is, the result of moving a pointlike excitation
past another one is always the same as moving that exci-
tation through empty space (and then producing the other
pointlike particle), as long as the excitations stay well sepa-
rated. Even if the ribbons do intersect, they can be deformed
away from one another using the topological property without
affecting their action. This contrasts with the (2+1)D case
where crossings cannot always be removed without pulling
a ribbon over an excitation. For the same reason, exchange
involving looplike excitations moving past each other (which
we refer to as permutation), rather than through each other
(which we will refer to as loop braiding or just braiding) is
trivial.

Next, we consider the braiding where we move a point-
like or looplike excitation through a looplike excitation, as
shown in Fig. 35 for the pointlike case. First consider the
case where � is trivial. In this case, the excitations split into
two separate sets, with nontrivial braiding only within each
set. First, we have the excitations that are labeled by objects
related to G, namely, the electric and magnetic excitations.
We have nontrivial point-loop braiding between the electric
and magnetic excitations, where the magnetic excitation la-
beled by a group element h acts on the electric excitation,
labeled by an irrep R and indices a and b, by multiplication
by the matrix DR(h). That is, given an electric ribbon operator
SR,a,b(t ) = ∑

g[DR(g)]abδ(ĝ(t ), g) and a magnetic membrane
operator Ch(m), commuting the operators gives the following
braiding relation:

Flux-charge braiding relation

SR,a,b(t )Ch(m)|GS〉 = Ch(m)
|R|∑

c=1

[DR(h)]acSR,c,b(t )|GS〉.

(22)

This braiding mixes ribbon operators labeled by different
indices, but not operators labeled by different irreps. This
is because R labels a conserved charge, whereas the matrix
indices only represent some internal space to the topological
sector, as we mentioned in Sec. III A. When the irrep is one di-
mensional, such as when the group G is Abelian, the braiding
relation results in the accumulation of a phase of R(h) because
the matrices belonging to a 1D unitary representation are just
phases. This braiding relation holds for a specific orientation
of the looplike excitation and direction with which the point-
like particle is moved through the loop. If either orientation
was reversed, then we would replace h with its inverse in the
braiding relation. This braiding relation is natural from the
gauge theory perspective and indeed is equivalent to the one
that we predicted in Sec. II.

We also find nontrivial loop-loop braiding between the
magnetic excitations when the group G is non-Abelian. When
one loop, labeled by g, is passed through another, labeled
by h, the first loop has its label conjugated, while the other
label is left unchanged, as indicated by Eq. (23). This braiding
is just as we would expect for the braiding of the magnetic
excitations in ordinary lattice gauge theory, as explained in
Sec. II:

Flux-flux braiding relation (� trivial)

Cg(m1)Ch(m2)|GS〉 = Ch(m2)Ch−1gh(m1)|GS〉. (23)

Next we consider the other set of excitations, those labeled
by objects corresponding to the group E . In this set the only
nontrivial braiding, whether point-loop or loop-loop, is the
braiding between the pointlike blob excitations and the E -
valued loop excitations. When a blob excitation labeled by an
element e ∈ E passes through a loop excitation labeled by the
1D irrep α of E , a phase of α(e) (or the inverse phase, depend-
ing on the orientation of the loop and direction of braiding) is
accumulated. When � is trivial, the group E is Abelian, so all
of the irreps are 1D and so the braiding transformation is only
a phase, as shown in Eq. (24):
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Loop-blob braiding relation

Be(t )
∑
f ∈E

α( f )δ( f , ê(m))|GS〉

= α(e)
∑
f ∈E

α( f )δ( f , ê(m))Be(t )|GS〉. (24)

The braiding relations are a little different when � is non-
trivial. If we restrict to fake-flat configurations (case 3 from
Table I), we have to throw out the magnetic excitations (and
the blob excitations labeled by elements outside the kernel
of ∂) and the only nontrivial braiding is between the blob
excitations and the E -valued loops. When we pass a blob
excitation labeled by e through a loop labeled by the irrep
μ and indices a and b, the loop transforms by multiplication
by the matrix Dμ(e) or the inverse. On the other hand, if
we take our other special case (case 2 in Table I), where ∂

maps from an Abelian E to the center of G, then the braid-
ing is richer than in the � trivial case. While braiding not
involving the magnetic excitations is the same as in the �
trivial case, the magnetic excitations now braid nontrivially
with all of the types of excitation. To obtain the braiding
relations we have to combine the magnetic excitation with the
E -valued loop, giving us an excitation we call a higher-flux
loop excitation. This is because the magnetic excitation now
carries a 2-flux, but this flux is not well defined unless we also
apply an E -valued membrane operator δ(e, ê(m)) on the same
region of space (which fixes the 2-flux). Then the combined
membrane operator produces an excitation labeled by a pair
of group elements (g, ẽ), where g is in G and gives the 1-flux,
while ẽ is in E and gives the 2-flux. Here g is simply the
label of the magnetic membrane operator, but ẽ is related to
the label e of the additional E -valued membrane operator by
ẽ = e[g−1 � e−1], as we explain in more detail in Ref. [72].
When a pair of these higher-flux excitations braid, we have
the following:

Higher-flux–higher-flux braiding relation
((g, ẽ2), (h, ẽ1)) → ((h, ẽ1ẽ2[h � ẽ−1

2 ]), (hgh−1, h � ẽ2)).
(25)

This braiding then matches the prediction of Ref. [68], where
the result is argued from geometric grounds. Note that the con-
jugation of the 1-flux label is slightly different from Eq. (23)
due to a different convention we use for the orientation of the
higher-flux excitations.

Finally, when a blob excitation labeled by e is passed
through a higher-flux excitation labeled by (h, f̃ ), the braiding
relation is given by the following:

Higher-flux–blob braiding relation

Be(t )Ch, f
T (m)|GS〉 = Ch, f e

T (m)Be(t ′
1)Bh−1�e(t ′

2)|GS〉, (26)
where t ′

1 and t ′
2 are the parts of the ribbon before and after the

intersection with the membrane. Note that the labels of the
excitations change in two ways. First, the label f of the pinned
E -valued loop is changed by multiplication by e or by h � e−1

(depending on orientation), which induces a change in the 2-
flux f̃ = f [h−1 � e−1] of the excitation by multiplication by
e[h−1 � e−1] or e[h � e−1]. Second, the blob ribbon operator
labeled by e is acted on by the magnetic operator, so that e →
h−1 � e or h � e after the intersection (again depending on
orientation). From this we can see that the product f̃ e of the
2-fluxes of the two excitations is preserved by the braiding.

FIG. 44. Given a loop excitation (thin red torus), we can measure
its topological charge with a toroidal surface (larger green torus)
enclosing it.

VI. TOPOLOGICAL CHARGE

In this section we will explain in more detail what we mean
by topological charge and how we can measure it. Topological
charge is a conserved quantity associated with the excitations
of the model (the anyons), while the ground state carries the
trivial charge, also called the vacuum charge. The charge held
within a region can only be changed by moving that charge
from inside the region to outside or moving charge from the
outside in. This means that the charge in a region can only
be changed by operators that connect the inside of the region
to the outside. We note that there is no need for a symmetry
to enforce this conservation. Topological charge is conserved
on the level of the Hilbert space and can be defined without
reference to any Hamiltonian (although in this case we must
define the vacuum charge in another way). We can measure
the topological charge associated to a region using operators
on the boundary of that region, which is reminiscent of the
way that we can determine the electric charge in a region by
measuring the flux of the electric field through the boundary
of that region. For example, we can measure the charge as-
sociated to a loop excitation using a torus that encloses that
loop, as shown in Fig. 44. Any operator that would move
topological charge from inside a region to outside it must cross
the boundary of that region, and so can be detected by the
measurement operator on the surface.

The choice of measurement surface is important, not just
because it determines where we want to measure the charge,
but also because the set of charges to be measured depends on
the topology of the surface. A spherical measurement surface
measures a different set of topological charges from a toroidal
surface, for example, because a spherical measurement sur-
face cannot distinguish a looplike excitation from a pointlike
one. For this reason we say that a spherical surface measures
the pointlike charge of an excitation (or set of excitations). In
order to determine the looplike charge of an excitation, we
must use a toroidal surface, such as the one shown in Fig. 44
(or a surface of higher genus, although we will not consider
these in this work).

In order to identify the operators that measure the topo-
logical charge, we first consider the characteristics that we
require such operators to have. While the topological charges
are properties of the Hilbert space, the Hamiltonian picks out
a certain set of charges, such that the ground state has the
trivial charge. Then, because a measurement operator should
not change the charge in any region, we require that the
measurement operators do not create any excitations and so
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FIG. 45. We apply closed ribbon operators on the two cycles of
the torus (the thin red and yellow loops) and a membrane operator
over the surface itself (the thicker green torus).

must commute with the Hamiltonian. In addition, smoothly
deforming the measurement operator without crossing any
excitations should preserve the measured charge because the
ground state has trivial charge. Following the method of
Bombin and Martin-Delgado [46], we construct such mea-
surement operators using closed ribbon and closed membrane
operators [the latter because we consider the (3+1)D case,
whereas Ref. [46] considered a (2+1)D model]. This may
seem restrictive, but all operators in this model can be ex-
pressed in terms of the ribbon and membrane operators, and
the ribbon operators that commute with the energy terms must
be closed. However, we may need to take additional steps
to guarantee that the closed operators commute with all of
the energy terms because there may be some obstruction to
closing the operator without producing some excitations.

As an example, consider the case of a torus, shown in
Fig. 45. We apply ribbon operators around the two noncon-
tractible cycles of the torus, and membrane operators on the
torus itself. Any other closed ribbon operators that we could
apply would not be independent (i.e., could be reduced to
operators of the types already considered by deformation or
other means), or would leave excitations on the surface. This
means that the only operators we can apply are an electric
and a blob ribbon operator running around each independent
noncontractible cycle and a magnetic and E -valued membrane
operator over the torus itself. This gives us six labels, one for
each operator. We then construct a linear combination over
all possible labels, with coefficients chosen so that the sum
commutes with the Hamiltonian:∑

ec1 ,ec2 ,em∈E

∑
gc1 ,gc2 ,h∈G

α(gc1 ,gc2 ,h,ec1 ,ec2 ,em )B
ec1 (c1)

× Bec2 (c2)Ch
T (m)δ(ê(m), em)δ(ĝ(c1), gc1 )δ(ĝ(c2), gc2 ),

(27)

where c1 and c2 are the two cycles of the torus, while m
is its surface. Unfortunately, not being able to construct the
magnetic excitations for a general crossed module (case 3
in Table I) prevents us from constructing all of our charge
measurement operators in every case. However, when E is
Abelian and ∂ maps from an Abelian group to the center of G
(case 2 in Table I, of which case 1 is a subset), we are able to
explicitly construct the measurement operators. As explained

in Ref. [72], we find that the following restrictions are neces-
sary for the operator to commute with the Hamiltonian:

Conditions for the measurement operators
First, the coefficients α(gc1 ,gc2 ,h,ec1 ,ec2 ,em ) are only nonzero

when

∂ (em) = [gc2 , gc1 ], (28)

∂ (ec2 ) = [gc1 , h], (29)

∂ (ec1 ) = [h, gc2 ], (30)

1E = [
h � e−1

m

]
eme−1

c1

[
g−1

c1
� ec1

]
e−1

c2

[
g−1

c2
� ec2

]
. (31)

Second, the coefficients must satisfy

α(gc1 ,gc2 ,h,ec1 ,ec2 ,em )

= α(ggc1 g−1,ggc2 g−1,ghg−1,g�ec1 ,g�ec2 ,g�em ) ∀ g ∈ G, (32)

α(gc1 ,gc2 ,h,ec1 ,ec2 ,em )

= α(∂ (e)−1gc1 ,gc2 ,h,ec1 ,ec2 [h�e] e−1,eme−1[g−1
c2
�e]) ∀ e ∈ E , (33)

α(gc1 ,gc2 ,h,ec1 ,ec2 ,em )

= α(gc1 ,∂ (r)gc2 ,h,ec1 [h�r] r−1,ec2 ,emr−1[g−1
c1
�r]) ∀ r ∈ E , (34)

α(gc1 ,gc2 ,h,ec1 ,ec2 ,em )

= α(gc1 ,gc2 ,∂ (e)h,ec1 [g−1
c2
�e] e−1,ec2 [g−1

c1
�e−1] e,em ) ∀ e ∈ E . (35)

The number of linearly independent operators satisfying
these conditions is then the number of topological charges
measured by the torus. In Ref. [72] we explicitly construct
a basis for this space, consisting of operators that project to
definite charge. In this case we find that the number of charges
matches the ground-state degeneracy of the 3-torus. This is
perhaps to be expected for a topological phase; in topological
quantum field theories (TQFTs) there is a correspondence
between the partition function associated to a closed (four-
dimensional) manifold M × S1 and the dimension of the
Hilbert space associated to the open manifold M × I (where
I is the interval) [94]. The ground-state degeneracy of the
higher-lattice gauge theory model on a (three-dimensional)
manifold M is equal to the partition function of the Yetter
TQFT [56,60] on a manifold M × S1. Taking M to be the
3-torus T 3 = S1 × T 2, we may therefore perhaps expect a
relationship between the ground-state degeneracy of the 3-
torus (which matches the partition function of the TQFT on
T 3 × S1 = S1 × T 2 × S1 = S1 × T 3) and the dimension of
the space for the degrees of freedom on thickened 2-torus
I × T 2 (which should match the size of the space associated
to I × T 2 × S1 = I × T 3 in the TQFT). This in turn should
match the number of independent measurement operators that
we can apply on the toroidal measurement surface (which
is really a thickened torus). This correspondence between
ground-state degeneracy and the charges for this model was
also discovered in Ref. [58], using a different method (em-
ploying tube algebra). Indeed, the projection operators we
construct in Ref. [72] are labeled by the same objects labeling
the simple modules of the tube algebra found in Ref [58].
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FIG. 46. The torus can measure loops that are held within it (e.g.,
the red loop shown) or that link with it but are outside (e.g., the
yellow loop shown here). More generally, the surface can measure
two linked loops, or collections of loops that link together in this
way, together with point particles within the torus.

One important thing to note is that the torus surface can
measure loops that link with either of the cycles of the torus,
as shown in Fig. 46. This means that the general object mea-
sured by the surface is a pair of linked loops (or a set of
objects that can be fused into such a pair). In particular, we
note that the number of charges measured by the torus (and
so the ground-state degeneracy) is not equal to the number
of distinct looplike excitations, but instead the number of
linklike excitations (counting those obtained by fusion with
pointlike excitations as well). This suggests that it is important
to consider the linking of looplike excitations when studying
(3+1)D topological phases. This reinforces work by other
authors [28,62] that shows that so-called three-loop (or neck-
lace) braiding, which is braiding of two loops while both are
linked to a third loop, is important for characterizing (3+1)D
topological phases.

VII. CONCLUSION

In this paper we constructed the membrane and ribbon op-
erators that produce the excitations of the higher-lattice gauge
theory model in three broad cases and used these operators
to obtain various properties of the excitations. The model has
two classes of excitations: those present in (the 3D version of)
the quantum double model and those that involve the surface
holonomy, which only appear when we consider higher-lattice
gauge theory. The character of the excitations depends on
which of the special cases we consider. When the map �
from our crossed module is trivial, the first class of excitation,
those familiar from the quantum double model, are largely
unchanged by the move to higher-lattice gauge theory. The ex-
citations related to the surface holonomy are also simple, with
Abelian fusion rules. Furthermore, the braiding between the
two sectors is trivial, with nontrivial braiding only within the
sectors (i.e., between the G-valued excitations and between
the E -valued excitations). However, unlike in the quantum
double model, some of the pointlike excitations are confined,
costing additional energy to separate pairs of excitations after
producing them, while some of the looplike excitations are
condensed and carry trivial topological charge. We discussed
how this arises from a condensation-confinement transition
between higher-lattice gauge theory models described by
crossed modules with the same groups G and E but different
maps ∂ between the groups.

We saw that the excitations are more interesting when
� is nontrivial. In particular, we looked at the case where
the group E labeling the 2-flux is Abelian and where the
map ∂ maps to the center of the group G. In this case, even
though the group E is Abelian, the excitations related to 2-flux
have an internal space controlled by �. In addition, there is
nontrivial braiding between excitations from the two different
sectors. In particular, it is sensible to consider loop excitations,
which we called higher-flux loops, built from a combination
of excitations from the two sectors. These excitations carry
both an ordinary magnetic flux along paths that link with the
loop and a 2-flux associated to a surface enclosing the loop.
The higher-flux loops have potentially nontrivial braiding with
excitations from both sectors. We found the braiding relations
of these higher-flux loops and discovered that the braiding
between two higher-flux loops matches a braiding scheme for
looplike excitations described in Ref. [68].

In addition to using the membrane operators to find the
braiding properties of the various excitations, we have dis-
cussed the explicit construction of the membrane operators
to construct operators to measure the topological charge in a
region. The charge measurement operators are operators with
support on or near the surface bounding a region, with dif-
ferent surfaces having different potential topological charges.
A related idea is the fact that in (3+1)D there are both
pointlike and looplike excitations, with associated pointlike
and looplike charge. While looplike excitations may possess
a pointlike charge, which may be measured by enclosing
the excitation in a sphere, they also possess looplike charge,
which can only be measured by surfaces with noncontractible
handles such as the torus. This approach of explicitly con-
structing the charge measurement operators (which we present
more fully in Ref. [72]) could allow us to measure the charge
of collections of excitations and so provide a tool to consider
fusion of topological charge.

There are many interesting avenues of research that would
build on the results we have obtained in this work, either
directly or indirectly. First, and most obviously, there are some
results for the higher-lattice gauge theory model that we have
so far not been able to obtain. We have considered certain
special cases (described by Table I) and while there are some
conceptual issues associated with taking the most general case
(as described in Sec. I F), there may still be a way to work
around these issues. It is possible that there are some features
exhibited by the general case that we have not been able to
study in our special cases.

It would also be interesting to further study the different
types of topological charge possible in (3+1)D topological
phases, perhaps in a more general and conceptual setting than
this specific model. In this work we have mostly considered
the simple excitations, and only considered measurement op-
erators for the topological charge within a sphere and torus.
We believe that it would be useful to do more work with the
charges themselves, either in this model or more generally.
There are several questions that could be explored in this
direction. For example, which surfaces do we need to consider
to obtain all unique charges? How do we consider the fusion
of charges that are measured by surfaces other than simple
spheres? For instance, considering two tori, we could fuse the
enclosed charges by bringing the tori together and stacking
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them on top of each other, so that a single torus can enclose
both. After some preliminary calculations, we found that, in
the higher-lattice gauge theory model at least, this leads to
consistency conditions for the “threading flux” passing up
through the two tori, which must be satisfied in order to be
able to fuse them, but a complete calculation is left for future
work. Another way to combine two torus charges would be
to bring the two tori side by side, so that a 2-handled torus
would be needed to enclose both. For more general surfaces,
there could be even more ways of fusing charges.

Another sensible direction for future study would be to
extend our approach of utilizing explicit construction of
membrane operators, to more general models for topolog-
ical phases. In particular, it is known that twisted gauge
theory models can have nontrivial three-loop braiding statis-
tics [28,48]. It has been claimed that these models cover
all phases that can be produced from bosonic degrees of
freedom and that result in bosonic point excitations (i.e.,
phases with trivial braiding between pointlike particles) [95].
Because these models have a similar structure to the model
considered in this paper, the application of our methods to
the twisted gauge theory model seems feasible. By looking at
other models, we may be able to see if the relation between
the ground-state degeneracy of the 3-torus and the number
of charges measured by a torus surface holds more generally
than just in the higher-lattice gauge theory model, as we may
expect.

Finally, it would be interesting to study the condensation-
confinement transitions in (3+1)D topological phases in more
detail. We have seen some examples in the higher-lattice
gauge theory model, but in the cases where E is Abelian
(which we studied in more detail) the pattern of condensation
is rather simple. The current understanding of condensation in
(3+1)D is perhaps incomplete, particularly when it comes to
looplike excitations condensing, and the examples considered
in this work may be useful in studying this process.

In compliance with EPSRC policy framework on research
data, this publication is theoretical work that does not require
supporting research data.
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APPENDIX: CONSISTENCY OF THE HIGHER-LATTICE
GAUGE THEORY MODEL UNDER CHANGES

TO THE BRANCHING STRUCTURE

As we discussed in Sec. I E, when we define a lattice for the
higher-lattice gauge theory model, we must give the lattice a
branching structure. This determines the orientations of the
edges of the lattice as well as the orientation and base point
of each plaquette, which we call the “dressing” of the lattice.
In order for the model to be topological, it must somehow be

resilient to changes to these details. In this Appendix we will
show that there is a certain sense in which the energy terms
are invariant under changes to the branching structure (to
be more precise, a branching structure forbids local oriented
loops, and has an ordering of vertices, but we will not make
these restrictions for the altered dressing). We note that this
issue of consistency under changes to the branching structure
is also addressed by Ref. [96], but we will need the more
explicit treatment used here for future results. To understand
what we mean by consistency under changes to the branching
structure, let us first consider an example of how we can
change the dressing of the lattice. In Sec. I C, we described
the notion of parallel transport across an edge of the lattice.
The label of the edge describes the result of parallel transport
and the orientation of the edge describes the direction of the
parallel transport that gives this result. If we were to perform
parallel transport in the opposite direction, we would expect
the inverse transformation. This suggests that there is a nat-
ural operation in which we can take an edge with a given
orientation and a label g and reverse the orientation of the
edge, while simultaneously changing the label to g−1, without
changing the physical meaning of the label. In a similar way,
in Sec. I E we described how reversing the orientation of a
surface should change its label from e to e−1. We can also
move the base point of a plaquette from v1 to v2, which should
change its label from e to g(v1 − v2)−1 � e, where g(v1 − v2)
is the group element assigned to the path along which we
move the base point. We can treat these transformations as
maps between two copies of our Hilbert space, where each
Hilbert space corresponds to different dressings of the lattice.
We extend the action of these transformations to states where
the edges or plaquettes are labeled by linear combinations
of the group elements (and to states where the different de-
grees of freedom are entangled) in the sensible way, to make
these transformations linear. Then the transformations, which
involve changes to the dressing of a lattice (orientations and
base points) as well as to the labels attached to the different
cells of the lattice, are maps that connect states from different
Hilbert spaces that should have the same physical content,
but have different descriptions. Each of the Hilbert spaces is
equipped with a Hamiltonian of the form given by Eq. (12)
from Sec. I E. If the states related by the transformations do
indeed contain the same physical content, then the energy of
a state should be preserved under these transformations. That
is, if we first apply the Hamiltonian on a state in one of the
Hilbert spaces and then apply a transformation to change the
dressing of the lattice, this should give us the same result
as applying the transformation then the Hamiltonian on the
new Hilbert space. Equivalently, given a transformation T̂ that
changes the dressing, then the Hamiltonian H1 in the original
space should be related to the Hamiltonian H2 in the second
space by T̂ −1H2T̂ = H1. If this is true, then we have a way to
move between the different dressed lattices, while preserving
the structure endowed on the space by the Hamiltonian. This
demonstrates the desired resilience of the higher-lattice gauge
theory model to changes to the dressing of the lattice. In this
section we will show that the Hamiltonian does indeed have
this property, subject to certain caveats related to fake flatness
and the map �.
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1. Reversing the orientation of an edge

Let us start by considering the procedure where we reverse
the orientation of an edge and simultaneously invert the label
of that edge. We denote this edge-flipping transformation on
an edge i by P̂i. We wish to show that this map preserves
each energy term individually (which is a slightly stronger
condition than just preserving the Hamiltonian). Suppose that
we start in one copy of our Hilbert space H1, and Pi maps to
another copy H2 of the Hilbert space. Then for any vertex,
edge, plaquette, or blob in our lattice we have an energy term
Ô1 acting on the first Hilbert space, and a corresponding en-
ergy term Ô2 acting on the second Hilbert space, where these
energy terms are defined in Sec. I E. We wish to show that the
energy is preserved under the transformation P̂i, by which we
mean that P̂iÔ1 = Ô2P̂i. Thinking in terms of the eigenstates,
if this is true then for a state |ψ〉 which is an eigenstate of the
energy term Ô1, with eigenvalue λ, the state P̂i|ψ〉 reached by
flipping the edge i is an eigenstate of the equivalent energy
term Ô2 with the same eigenvalue λ. Because the map P̂i

is invertible (we can undo Pi by flipping the edge back and
inverting the edge element again, so Pi is in fact its own
inverse), we can also write the condition as Ô1 = P̂−1

i Ô2P̂i.
Therefore, when we say that the energy is preserved by the

transformation, we mean that changing the orientation of the
edge, applying an energy term and then changing the orien-
tation back has the same net effect as simply applying the
corresponding energy term without flipping the edge.

We first wish to show that the edge-flipping procedure
is consistent with the vertex terms Av . Each vertex term is
an equal sum of the vertex transforms: Av = 1

|G|
∑

g∈G Ag
v .

Therefore, if we can show that the vertex transforms Ag
v are

invariant under Pi, this will also be true for the vertex terms
Av . The vertex transform on a vertex v only has support on
the edges that are adjacent to that vertex (and neighboring
plaquettes, although the action on plaquettes is independent
of edge orientation). Therefore, the vertex transform is only
sensitive to the edge-flipping procedure on adjacent edges.
Recall that the action of the vertex transform on an adjacent
edge i, labeled by gi, is

Ax
v : gi =

{
xgi i points away from v,

gix−1 i points towards v.

The action of the vertex transform on edge i is only sensi-
tive to the orientation of edge i itself and not to the orientation
of any other edges. Therefore, we only need to consider the
effect of flipping edge i itself. We have

P̂−1
i Ax

vP̂i : gi = P̂−1
i Ax

v : g−1
i

= P̂−1
i :

{
g−1

i x−1 i originally pointed away from (now towards) v,

xg−1
i i originally pointed towards v

=
{

xgi i points away from v,

gix−1 i points towards v,

from which we see that the action of the vertex transform is preserved under the edge-flipping procedure Pi.
Next, we consider the plaquette and blob energy terms. These terms only involve the edges through path elements (the path

around the boundary of the plaquette for the plaquette term, and paths between the base points of surfaces for the blob term).
When we construct a path element from the edge elements, each edge contributes the group element it would have if it pointed
along the path. That is, if the edge is aligned with the path the edge contributes its group element, but if the edge is antialigned
with the path, then it instead contributes the inverse of its group element. This means that path elements are invariant under the
flipping procedure. If an edge with label gi already points along the path, then it contributes gi to the path. If we flip the edge,
then we change its label to g−1

i . However, the flipped edge then points against the path, so it contributes (g−1
i )−1 = gi to the path

due to the way that we calculate path elements. Similarly, if the edge originally points against the path, then it contributes g−1
i .

If we flip it, then we change its label to g−1
i . However, the edge then points along the path, so it still contributes g−1

i . The path
elements being invariant under the edge-flipping procedure in this way means that both the plaquette and blob energy terms are
similarly invariant under this procedure.

This leaves us to consider the edge energy terms. The energy term for an edge i is Ai, which is made of a sum of edge
transforms: Ai = 1

|E |
∑

e∈E Ae
i . Let us consider how an edge transform is affected by the edge-flipping procedures. Recall that

the edge transform Ae
i acts on the edge i and on neighboring plaquettes. The support of Ae

i also includes some of the other edges
along the boundaries of the adjacent plaquettes because the action of Ae

i on an adjacent plaquette p is

Ae
i : ep =

{
ep [g(v0(p) − vi ) � e−1] i points along the boundary of p,

[g(v0(p) − vi+1) � e] ep i points against the boundary,
(A1)

which depends on the path element g[v0(p) − vi] or
g[v0(p) − vi+1]. Flipping the orientation of the edges along
these paths will not affect the action on the edge transform
because the path elements are invariant under the flipping

operation, as we just saw. However, the action of Ae
i directly

depends on the orientation of i itself. Therefore, we need
to consider whether Ae

i is invariant under the edge-flipping
operation on edge i. First consider the action of Ae

i on the
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edge i itself. If the edge initially has label gi, then the edge
transform acts as Ae

i : gi = ∂ (e)gi. Therefore,

P−1
i Ae

i Pi : gi = P−1
i Ae

i : g−1
i

= P−1
i : ∂ (e)g−1

i

= gi∂ (e)−1

= gi∂ (e)−1g−1
i gi

= ∂ (gi � e−1)gi

= Agi�e−1

i : gi,

where we used the Peiffer condition (4) to write ∂ (gi � e−1) =
gi∂ (e)g−1

i . We therefore see that, unlike the vertex transforms,
the individual edge transforms are not generally invariant un-
der the edge-flipping procedure. However, this does not mean
that the edge energy term itself is not invariant. We have, at
least for the action on the edge,

P−1
i AiPi : gi = 1

|E |
∑
e∈E

P−1
i Ae

i Pi : gi

= 1

|E |
∑
e∈E

Agi�e−1

i : gi

= 1

|E |
∑

e′=gi�e−1

Ae′
i : gi = Ai : gi,

which suggests that the energy term is invariant under the
procedure, even if the individual transforms are not. However,
we have only shown this for the action on the edges, and it
must also hold for the plaquettes in order to obtain the operator
relation P−1

i Ae
i Pi = Agi�e−1

i (i.e., we must also satisfy the

relationship P−1
i Ae

i Pi : ep = Agi�e−1

i : ep for all plaquettes p).
In order to determine whether the action on the plaque-

ttes also satisfies this relationship, consider Eq. (A1) which
defines this action on the adjacent plaquettes. When we flip
the edge, we reverse the relative orientation of i and the
plaquette, and so change which path element g(v0(p) − vi ) or
g(v0(p) − vi ) appears in the expression for the action on the
plaquette (i.e., we change whether the path travels along the
circulation of the plaquette or against it). Furthermore, note
that the vertex vi or vi+1 which is the end-point of the path
is always the source of the edge i, the vertex which the edge
points away from. When we flip the edge, we exchange the
source and target of the edge (where the target is the vertex the
edge points towards), which therefore changes the end point
of the path that appears in the edge transform. These changes
are shown in Fig. 47. Denoting the original source of the edge
i by s(i) and the original target of i by t (i), the action of the
edge transform on an adjacent plaquette (without flipping the
edge) is

Ae
i : ep =

{
ep [g(v0(p) − s(i)) � e−1] i points along the boundary of p,

[g(v0(p) − s(i)) � e] ep i points against the boundary.

On the other hand if we act with P−1
i Ae

i Pi, we have

P−1
i Ae

i Pi : ep =
{

[g(v0(p) − t (i)) � e] ep i originally points along the boundary of p,

ep [g(v0(p) − t (i)) � e−1] i originally points against the boundary.

Note that if � is trivial, we can forget the path elements
and so we get P−1

i Ae
i Pi = Ae−1

i and the overall edge term will
commute with the flipping procedure. On the other hand, if
� is nontrivial we need to consider the path elements more
closely. Looking at Fig. 47, we see that when i points along
the boundary of p, we have

g(v0(p) − t (i))g−1
i g(v0(p) − s(i))−1 = g(boundary(p))−1.

Provided that the plaquette satisfies fake flatness, so that
g[boundary(p)]−1 = ∂ (ep), this means that

g(v0(p) − t (i)) = g(boundary(p))−1g(v0(p) − s(i))gi

= ∂ (ep)g(v0(p) − s(i))gi

and so

P−1
i Ae

i Pi : ep = [g(v0(p) − t (i)) � e]ep

= [
(∂ (ep)g(v0(p) − s(i))gi ) � e

]
ep.

Using the Peiffer condition (5), this becomes

P−1
i Ae

i Pi : ep = ep[(g[v0(p) − s(i)]gi) � e]e−1
p ep

= ep[g(v0(p) − s(i)) � (gi � e−1)−1]

= Agi�e−1

i : ep.

In a similar way, if i points against the boundary of the
plaquette, we see from Fig. 47 that

g(v0(p) − t (i))g−1
i g(v0(p) − si )

−1 = g(boundary(p)).

Again, if the plaquette satisfies fake flatness, so that
g(boundary(p)) = ∂ (ep)−1, then (following the same steps as
before)

P−1
i Ae

i Pi : ep = epg(v0(p) − t (i)) � e−1

= ep([∂ (ep)−1g(v0(p) − si )gi] � e−1)

= epe−1
p

(
[g(v0(p) − si )gi] � e−1

)
ep

= (g(v0(p) − si ) � (gi � e)−1)ep

= Agi�e−1

i : ep.

We can therefore see that, for the action on every degree
of freedom (and so for the operators themselves), P−1

i Ae
i Pi =

Agi�e−1

i and so P−1
i AiPi = Ai. However, note that (unless �

is trivial) this relies on the plaquettes around the edge satis-
fying fake flatness. If fake flatness is not satisfied near the
edge and � is not trivial, then we cannot say that the edge
energy term is invariant under the edge-flipping procedure.
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FIG. 47. The action of an edge transform applied on edge i on an adjacent plaquette p depends on the orientation of that edge. If we flip
the edge, then the paths which appear in the action of the edge transform change. In the top line, we consider the case where the edge i initially
points along the plaquette’s orientation. The path which appears in the action of the edge transform is then v0(p) − s(i). If we flip the edge and
then apply the edge transform, then instead the path v0(p) − s(i) from the right side appears in the edge transform. Because we have flipped the
edge, the source of the edge after it is flipped is the target of the edge before the flip. Therefore, the path v0(p) − s(i) that appears in the edge
transform after the flip is the same path as v0(p) − t (i) (green path on the left side) before the flip. In the lower line, we show the analogous
situation when the edge initially points against the plaquette’s orientation.

This indicates that the energy of the edge energy term is not
independent of the supposedly arbitrary dressing of the lattice
and so we do not consider the energy of the edge to be well
defined (although note that if we fix a branching structure and
never consider changing it, the energy can still be defined).
However, in the ground state, or more generally in regions
where fake flatness is satisfied, the energy of the edge is
well defined. We are typically interested in the ground state,
and states with a few excitations. For such states, the edge
energy is only ill defined near these excitations. This does
not affect the topological quantities of the theory, such as the
braiding relations or topological charges, because these can be
measured far away from the affected regions, where the theory
is still fully consistent.

2. Reversing the orientation of a plaquette

Having considered the procedure of flipping an edge and
inverting the corresponding edge label, and having shown
that this is consistent with the various energy terms, we now
consider the analogous procedure where we reverse the ori-

entation of a plaquette and invert its label. We denote this
operation by Qp for a plaquette p. First consider the vertex
transform Ag

v . Apart from the edges, which are unaffected
by the orientation of plaquettes, this transform acts only on
plaquettes with base point at v. We have

Ag
v : ep =

{
g� ep if v0(p) = v,

ep otherwise,

where v0(p) is the base point of plaquette p. The action of
the vertex transform on plaquette p can only be affected by
flipping the plaquette p itself (it is not affected by flipping
other plaquettes). We have

Q−1
p Ag

vQp : ep = Q−1
p Ag

v : e−1
p

= Q−1
p :

{
g� e−1

p if v0(p) = v,

e−1
p otherwise

=
{

g� ep if v0(p) = v,

ep otherwise

= Ag
v : ep,
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FIG. 48. The paths used for the action of an edge transform on a plaquette depend on the orientation of the plaquette with respect to the
edge. We may therefore think that flipping the orientation of the plaquette will change the path used for the action of the edge transform.
However, we can see that while we do swap whether the path v0(p) − s(i) or v0(p) − s(i) is used, we also swap the definition of these paths.
If the plaquette is initially aligned with the edge and we swap the orientation of the plaquette, then the path v0(p) − s(i) before the flip is the
same as the path v0(p) − s(i) after the flip (and vice versa).

from which we see that the vertex transforms (and so the
vertex energy term) are invariant under the plaquette-flipping
procedure.

Next, consider the plaquette term. Recall that the plaquette
term for a plaquette p is

Bp = δ(∂ (ep)g(boundary(p)), 1G).

If we flip the orientation of the plaquette, then we also reverse
the orientation of its boundary, so that g[boundary(p)] is in-
verted. Therefore,

Q−1
p BpQp = δ

(
∂
(
e−1

p

)
g(boundary(p))−1, 1G

)
= δ(g(boundary(p))−1, ∂ (ep))

= δ(1G, ∂ (ep)g(boundary(p)))

= Bp,

so that the plaquette energy term is preserved by the plaquette-
flipping procedure.

The blob energy term is similarly preserved by Qp. Recall
that the blob energy term checks that the blob 2-holonomy is

equal to the identity of group E , where the blob 2-holonomy
is a product of the plaquette elements around the boundary of
the blob. For a blob B, the 2-holonomy is

H2(B) =
∏

p∈Bd(B)

g(v0(B) − v0(p)) � e
σp
p ,

where σp is 1 or −1 depending on the orientation of the
plaquette p, v0(p) is the base point of plaquette p, and v0(B)
is the base point of the blob B. Flipping the orientation of
plaquette p swaps σp between the two, which cancels with
the inverse from the flipping procedure itself (in a similar
way to how the contribution of edge elements to a path was
invariant under the edge-flipping procedure), so that the blob
2-holonomy, and thus the blob energy term, is preserved by
the plaquette-flipping orientation.

This just leaves the edge energy terms to consider. Recall
that the action of the edge transform Ae

i on an adjacent pla-
quette p depends on the relative orientation of the edge i and
the plaquette p. We have

Ae
i : ep =

{
ep [g(v0(p) − s(i)) � e−1] i points along the boundary of p,

[g(v0(p) − s(i)) � e] ep i points against the boundary.

Swapping the orientation of the plaquette does not change the source of i, unlike the edge-flipping procedure. However, it does
change the relative orientation of the plaquette and the edge. The orientation of the plaquette determines which path between
the base point of the plaquette and source of the edge we use. When the edge aligns with the orientation of the plaquette we use
the path (v0(p) − s(i)) that also aligns with the orientation of the plaquette, and when the edge is antialigned with the plaquette
we use the path (v0(p) − s(i)) that travels against the orientation of the plaquette. Therefore, flipping the plaquette changes
which of these paths we use. However, when we flip the plaquette, the path that previously was aligned with the plaquette is
now antialigned with the plaquette. This means that (v0(p) − s(i)) before the flip is equal to (v0(p) − s(i)) afterwards (and
vice versa), as we show in Fig. 48. These two effects cancel, and therefore flipping the orientation of the plaquette has no net
effect on the path that appears in the edge transform (we swap whether we should use the aligned or antialigned path, but also
swap which one is which). In addition, reversing the orientation of the plaquette changes whether we use premultiplication (by
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g(v0(p) − s(i)) � e) or postmultiplication (by g(v0(p) − s(i)) � e−1). Using this, we see that

Q−1
p Ae

i Qp : ep = Q−1
p Ae

i : e−1
p

= Q−1
p :

{
[g(v0(p) − s(i)) � e] e−1

p i originally points along the boundary of p,

e−1
p [g(v0(p) − s(i)) � e−1] i originally points against the boundary of p

=
{

ep [g(v0(p) − s(i)) � e−1] i points along the boundary of p,

[g(v0(p) − s(i)) � e] ep i points against the boundary

= Ae
i : ep,

so the edge transforms are invariant under the plaquette-flipping procedure. This means that every energy term is invariant under
this procedure.

3. Moving the base point of a plaquette

The final procedure to consider is changing the base point of a plaquette. We denote the procedure that moves the base point
of plaquette p from a vertex v1 to a vertex v2 by Ep(v1 → v2). In cases where the precise path by which we move the base point
(rather than just the end points) is important, we will state that this is the case. Under the operation Ep(v1 → v2), as well as
changing the base point of the plaquette, we must change the plaquette’s label from ep to g(v1 − v2)−1 � ep, where g(v1 − v2)
is the group element assigned to the path along which we move the base point. In the case where � is trivial, the base point of
a plaquette is irrelevant, but in the more general cases the base point of a plaquette affects the action of all of the energy terms.
We first consider a vertex transform. The vertex transform at a vertex v affects any plaquette whose base point is at the vertex
v. Furthermore, it affects path elements which start or end at the vertex v. This is relevant because the transformation of the
plaquette label under Ep(v1 → v2) depends on the path element g(v1 − v2), which is affected by vertex transforms at v1 and
v2. This means that the vertex transforms at v1 and v2 might not commute with the procedure for moving the base point. First
consider the vertex transform Ax

v1
. We have Ax

v1
: ep = x � ep. On the other hand, we have

E−1
p (v1 → v2)Ax

v1
Ep(v1 − v2) : ep = E−1

p (v1 → v2)Ax
v1

: g(v1 − v2)−1 � ep = E−1
p (v1 → v2) : g(v1 − v2)−1 � ep,

where in the last line the vertex transform leaves the plaquette element unchanged because the base point of p is no longer at
v1. However, the path element for v1 − v2 has been changed by the action of the vertex transform from its original value of
g(v1 − v2) to xg(v1 − v2). This means that when we move the base point back along the path, we pick up a factor of xg(v1 − v2)
acting on the plaquette, rather than just a factor of g(v1 − v2). This gives us

E−1
p (v1 → v2) : g(v1 − v2)−1 � ep = [xg(v1 − v2)] � [g(v1 − v2)−1 � ep]

= x � ep,

so that

E−1
p (v1 → v2)Ax

v1
Ep(v1 → v2) : ep = Ax

v1
: ep.

We therefore see that the vertex transforms (and so the vertex energy term) at v1 are invariant under changing the base point.
Now consider the vertex transforms at v2, the position of the base point after we move it. If we do not move the base point, we
have Ax

v2
: ep = ep. On the other hand, if we do move the base point we have

E−1
p (v1 → v2)Ax

v2
Ep(v1 → v2) : ep = E−1

p (v1 → v2)Ax
v2

: g(v1 → v2)−1 � ep

= E−1
p (v1 → v2) : x � [g(v1 → v2)−1 � ep],

where the vertex transform affects the plaquette label because the base point is at v2 after the action of Ep(v1 → v2). However,
the vertex transform also changes the path element g(v1 → v2) to g(v1 → v2)x−1. Therefore,

E−1
p (v1 → v2) : x � [g(v1 → v2)−1 � ep] = [g(v1 → v2)x−1] � (x � [g(v1 → v2)−1 � ep]) = ep,

from which we see that

E−1
p (v1 → v2)Ax

v2
Ep(v1 → v2) : ep = Ax

v2
: ep.

This means that the vertex energy term at v2 is also unaffected by our procedure for changing the base points of plaquettes, and
so all of the vertex transforms are preserved by this procedure.

Next, consider the plaquette energy terms. Moving the base point of a plaquette also affects the boundary of that plaquette, as
shown in Fig. 49. We see that under Ep(v1 → v2), the boundary of plaquette p transforms as

g(boundary(p)) → g(v1 → v2)−1g(boundary(p))g(v1 → v2).
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FIG. 49. When we change the base point of a plaquette, we also change the boundary of that plaquette. In the left image we show a
case where the base point is moved from a vertex v1 to v2, along a path v1 − v2 (green) that leaves the plaquette. That is, we whisker the
plaquette. We can see that the new boundary (gray dotted line) is (v1 − v2)−1(boundary)(v1 − v2), where (boundary) is the original boundary
of the plaquette (black). In the right image, we instead show a case where the base point of the plaquette is moved along the boundary of the
plaquette. In this case, it is still true that the boundary after moving the base point is (v1 − v2)−1(boundary)(v1 − v2), although this time there
is some cancellation between sections of the original boundary and (v1 − v2).

Therefore, the plaquette holonomy H1(p) = ∂ (ep)g(boundary(p)) becomes

∂[g(v1 → v2)−1 � ep]g(v1 → v2)−1g(boundary(p))g(v1 → v2)

= g(v1 → v2)−1∂ (ep)g(v1 → v2)g(v1 → v2)−1g(boundary(p))g(v1 → v2)

= g(v1 → v2)−1∂ (ep)g(boundary(p))g(v1 → v2),

where we used the Peiffer condition (4) to write ∂[g(v1 → v2)−1 � ep] = g(v1 → v2)−1∂ (ep)g(v1 → v2). We see that the
plaquette holonomy is merely conjugated by a path element, which preserves the identity element. Therefore, the energy term
(which checks if the plaquette holonomy is equal to the identity) is unaffected by the base-point changing procedure.

The next energy term to consider is the blob term. This checks that the blob 2-holonomy is the identity, where the blob
2-holonomy is

H2(B) =
∏

p∈Bd(B)

g(v0(B) − v0(p)) � e
σp
p ,

where σp depends on the orientation of the plaquette. The contribution of a particular plaquette p to the blob 2-holonomy
is g(v0(B) − v0(p)) � e

σp
p . If we change the base point of this plaquette from v1 to v2, then we must change the label ep to

g(v1 → v2)−1 � ep due to the effect of Ep, but we must also change the base point v0(p) that appears in the expression g(v0(B) −
v0(p)) � e

σp
p along the same path (the same path so that the resulting surface is the same as the original). This means that when

we change the base point of plaquette p, its contribution to the blob 2-holonomy transforms as

g(v0(B) − v0(p)) � e
σp
p → g(v0(B) − v2) �

[
g(v1 → v2)−1 � e

σp
p

]
= (g(v0(B) − v1)g(v1 → v2)) �

[
g(v1 → v2)−1 � e

σp
p

]
= g(v0(B) − v1) � e

σp
p ,

so that the contribution of the plaquette to the blob 2-holonomy is unchanged by moving the base point of the plaquette.
The final energy terms to consider are the edge energy terms. There are several cases to consider. We need to consider edge

terms that directly affect the plaquette whose base point is being moved (i.e., the edges on the boundary of that plaquette), but
also any edge transforms along the path on which we move the plaquette’s base point. First consider the latter kind of edge,
which is not on the original boundary of the plaquette, but is on the path along which we move the base point. If we move the
base point of the plaquette before acting with the edge transform, then the path becomes part of the boundary of the plaquette.
That is, the plaquette is whiskered along the path through which we move the base point. The action of the edge transform, as
defined in Eq. (7), does not account for the possibility of a whiskered plaquette. We give a more general definition of the edge
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FIG. 50. The action of the edge transform on a plaquette p depends on various paths, which change when we change the base point of the
plaquette. In this figure, we show two examples. In the left case, the orientation of the edge on which we apply the transform (i) matches the
orientation of the plaquette (shown in blue). Because these orientations match, the path which appears in the edge transform is v0(p) − s(i),
which has the same orientation as the plaquette. We see that if the original base point is v1 and we move it to v2 along the path v1 − v2, where
the edge i is not on this path, then v1 − s(i) = (v1 − v2)[v2 − s(i)]. Similarly, in the right of the figure we show a case where the edge points
against the orientation of the plaquette, so that the path v0(p) − s(i), which has the opposite orientation to the plaquette, appears in the edge
transform. In this case v1 − s(i) = (v1 − v2)[v0(p) − s(i)]. Note that there are two other cases, where we flip the orientation of the plaquette
in each of these images, where the paths obey similar relations.

transform in Ref. [71] (in Sec. S-I C), which describes the action on whiskered plaquettes and other special cases. We define this
generalized edge transform in a way that is consistent with the procedure for changing the base point by whiskering (at least if
fake flatness is satisfied), as we show in Ref. [71] when we define the transform. We will therefore not prove this consistency
here.

Next, we consider the case where we move the base point along the boundary of the plaquette and i is one of the edges on the
plaquette. Recall that the action of the edge transform Ae

i on an adjacent plaquette is

Ae
i : ep =

{
ep[g(v0(p) − s(i)) � e−1] i points along the boundary of p,

[g(v0(p) − s(i)) � e]ep i points against the boundary.

Now consider Ep(v1 → v2)−1Ae
i Ep(v1 → v2), where v1 is the initial base point of the plaquette p, v0(p). Then

Ep(v1 → v2)−1Ae
i Ep(v1 → v2) : ep

= Ep(v1 → v2)−1Ae
i : g(v1 − v2)−1 � ep

= Ep(v1 → v2)−1 :

{
[g(v1 − v2)−1 � ep] {g[v2 − s(i)] � e−1} i points along the boundary of p,

[g(v2 − s(i)) � e][g(v1 − v2)−1 � ep] i points against the boundary.

Then, if the edge i is not on the path v1 − v2, so that the label of the path is unaffected by the edge transform, moving the
base point of the plaquette back gives

Ep(v1 → v2)−1Ae
i Ep(v1 → v2) : ep

=
{

g(v1 − v2) � ([g(v1 − v2)−1 � ep] {g[v2 − s(i)] � e−1}) i points along the boundary of p,

g(v1 − v2) � ([g(v2 − s(i)) � e] [g(v1 − v2)−1 � ep]) i points against the boundary

=
{

ep [(g(v1 − v2)g(v2 − s(i))) � e−1] i points along the boundary of p,

[(g(v1 − v2)g(v2 − s(i))) � e]ep i points against the boundary.

We then need to consider the path elements involved in the expression above. There are various cases, as shown in Fig. 50.
We see that g(v1 − v2)g(v2 − s(i)) = g(v1 − s(i)) if the edge is aligned with the boundary of p and g(v1 − v2)g(v2 − s(i)) =
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FIG. 51. In this figure, we consider the case where the path on which we move the base point includes the edge i on which we apply the
edge transform. In the left case, the edge i has the same orientation as the plaquette. In this case, the path (v1 − v2)[v2 − s(i)] includes the
entire boundary of the plaquette, so (v1 − v2)[v2 − s(i)] = (boundary)[v1 − s(i)]. In the right image, we consider the case where the edge and
plaquette have opposite orientations. In this case (v1 − v2)[v2 − s(i)] = (boundary)−1[v1 − s(i)].

g(v1 − s(i)) if it is antialigned. Therefore,

Ep(v1 → v2)−1Ae
i Ep(v1 → v2) : ep =

{
ep ([g(v1 − v2)g(v2 − s(i))] � e−1) i points along the boundary of p,

([g(v1 − v2)g(v2 − s(i))] � e) ep i points against the boundary

=
{

ep [g(v0(p) − s(i)) � e−1] i points along the boundary of p,

[g(v0(p) − s(i)) � e] ep i points against the boundary

= Ae
i : ep,

and so the action of the edge transform is preserved.
Next we consider the case where i is not only on the plaquette, but is also one of the edges on the path along which we move the

base point, as shown in Fig. 51. In this case, the edge transform affects the path element before we return it to its original position.
If the edge i points along v1 − v2, then the edge transform acts on the path element g(v1 − v2) = g(v1 − s(i))gig(t (i) − v2) as

Ae
i : g(v1 − v2) = Ae

i :

{
g(v1 − s(i))gig(t (i) − v2) i points along the boundary of p,

g(v1 − s(i))gig(t (i) − v2) i points against the boundary of p

=
{

g(v1 − s(i))∂ (e)gig(t (i) − v2) i points along the boundary of p,

g(v1 − s(i))∂ (e)gig(t (i) − v2) i points against the boundary of p,

where we split the path g(v1 − v2) into parts and then used the action of the edge transform on the edge i. Then we want to
write this again in terms of g(v1 − v2), so we introduce a factor of the identity in the form of g(v1 − s(i))−1g(v1 − s(i)) (or the
equivalent with g(v1 − s(i))) to obtain

Ae
i : g(v1 − v2) =

{
g(v1 − s(i))∂ (e)g(v1 − s(i))−1g(v1 − s(i))gig(t (i) − v2) i points along the boundary of p,

g(v1 − s(i))∂ (e)g(v1 − s(i))−1g(v1 − s(i))gig(t (i) − v2) i points against the boundary of p

=
{

∂ (g(v1 − s(i)) � e)g(v1 − v2) i points along the boundary of p,

∂ (g(v1 − s(i)) � e)g(v1 − v2) i points against the boundary of p.
(A2)

In addition, when i is on the path v1 − v2, then the path v1 − s(i) [or v1 − s(i)] along the boundary is not (v1 − v2)[v2 − s(i)]
(or (v1 − v2)[v2 − s(i)]), as we can see from Fig. 51. Instead (v1 − v2)[v2 − s(i)] = [boundary(p)][v1 − s(i)] if i points along
the boundary and (v1 − v2)[v2 − s(i)] = [boundary(p)]−1(v1 − vi ) if the edge i points against the boundary. If the plaquette
satisfies fake flatness, then g[boundary(p)]−1 = ∂ (ep). We can then use this to find the action of Ep(v1 → v2)−1Ae

i Ep(v1 → v2)
on the plaquette label. We have

Ep(v1 → v2)−1Ae
i Ep(v1 → v2) : ep

= Ep(v1 → v2)−1Ae
i : g(v1 − v2)−1 � ep

= Ep(v1 → v2)−1 :

{
[g(v1 − v2)−1 � ep] [g(v2 − s(i)) � e−1] i points along the boundary of p,
{g(v2 − s(i)) � e} [g(v1 − v2)−1 � ep] i points against the boundary of p.
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Then because the edge i is on the path v1 − v2, so that the label of this path is altered by the edge transform according to
Eq. (A2), moving the base point of the plaquette back gives

Ep(v1 → v2)−1Ae
i Ep(v1 → v2) : ep

=
{

(∂[g(v1 − s(i)) � e]g(v1 − v2)) � ([g(v1 − v2)−1 � ep] [g(v2 − s(i)) � e−1]) i points along the boundary of p,

(∂[g(v1 − s(i)) � e]g(v1 − v2)) � ([g(v2 − s(i)) � e] [g(v1 − v2)−1 � ep]) i points against the boundary of p.

We can then use the Peiffer condition (5) to remove the factor of ∂[g(v1 − s(i)) � e] in [∂{g(v1 − s(i)) � e}g(v1 − v2)] in
favor of conjugation of the entire expression by g(v1 − s(i)) � e (and similar for the other orientation):

Ep(v1 → v2)−1Ae
i Ep(v1 → v2) : ep

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[g(v1 − s(i)) � e][g(v1 − v2) � ([g(v1 − v2)−1 � ep][g(v2 − s(i)) � e−1])][g(v1 − s(i)) � e−1] i points along

the boundary of p,

[g(v1 − s(i)) � e][g(v1 − v2) � ([g(v2 − s(i)) � e][g(v1 − v2)−1 � ep])][g(v1 − s(i)) � e−1] i points against
the boundary of p

=
{

[g(v1 − s(i)) � e][ep{g(v1 − v2)g(v2 − s(i)) � e−1}] [g(v1 − s(i)) � e−1] i points along the boundary of p,

[g(v1 − s(i)) � e][{[g(v1 − v2)g(v2 − s(i)] � e}ep][g(v1 − s(i)) � e−1] i points against the boundary of p,

where in the last line we used the group homomorphism property g� (e1e2) = (g� e1)(g� e2) to distribute the action g(v1 −
v2) � across the terms in the curved brackets. Next we use the relationships

g(v1 − s(i)) = g(boundary(p))−1g(v1 − v2)g(v2 − s(i)) = ∂ (ep)g(v1 − v2)g(v2 − s(i))

and

g(v1 − s(i)) = g(boundary(p))g(v1 − v2)g(v2 − s(i)) = ∂
(
e−1

p

)
g(v1 − v2)g(v2 − s(i))

(where in each case the latter equality is obtained from fake flatness of the plaquette) to write

Ep(v1 → v2)−1Ae
i Ep(v1 → v2) : ep

=
{

[g(v1 − s(i)) � e][ep
{[

∂
(
e−1

p

)
g(v1 − s(i)

]}
� e−1][g(v1 − s(i)) � e−1] i points along the boundary of p,

[g(v1 − s(i)) � e][([∂ (ep)g(v1 − s(i))] � e)ep][g(v1 − s(i)) � e−1] i points against the boundary

=
{

[g(v1 − s(i)) � e][epe−1
p [g(v1 − s(i)) � e−1] ep][g(v1 − s(i)) � e−1] i points along the boundary of p,

[g(v1 − s(i)) � e] [ep[g(v1 − s(i)) � e]e−1
p ep][g(v1 − s(i)) � e−1] i points against the boundary,

where we again used the Peiffer condition (5), this time on the factor ∂ (ep). Then we can simplify the expression to give

Ep(v1 → v2)−1Ae
i Ep(v1 → v2) : ep

=
{

[(v1 − s(i)) � e][g(v1 − s(i)) � e−1]ep[g(v1 − s(i)) � e−1] i points along the boundary of p,

[g(v1 − s(i)) � e]ep[g([v1 − s(i)) � e][g(v1 − s(i)) � e−1] i points against the boundary

=
{

ep [g(v1 − s(i)) � e−1] i points along the boundary of p,

[g(v1 − s(i)) � e] ep i points against the boundary

= Ae
i : ep.

This means that again the action of the edge transform, and
therefore the edge energy term, is invariant under moving the
base point. We also need to consider the case where i points
against the path v1 − v2. The calculation for this case is very
similar. Rather than go through it, we will justify the fact
that this case works by noting that the edge energy term is
invariant under flipping the edge (from previous calculations
in this section). Similarly, the base-point moving procedure is
invariant under such a flip. Therefore, we can always flip the
edge so that it points along v1 − v2 before we apply either the
edge transform or move the base point of the plaquette. This

means that if i points in the wrong way, we can apply Pi first.
Then, using the above argument for the case where i points
along the path, we have

Ae
i Pi = Ep(v1 → v2)−1Ae

i Ep(v1 → v2)Pi

which implies that Ae
i = Ep(v1 → v2)−1Ae

i Ep(v1 → v2).
We have therefore shown that each of the procedures for

changing the structure of the lattice (flipping the orientations
of edges and plaquettes or moving the base point of a plaque-
tte) is consistent with each of the energy terms. It is important
to note that to show this for some energy terms we had to
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require that fake flatness was satisfied in the region where the
energy operator has support, at least when � is nontrivial. This
further shows the importance of fake flatness in ensuring the
consistency of the higher-lattice gauge theory model.

4. Use of the rebranching procedures for other proofs

In addition to demonstrating the consistency of the higher-
lattice gauge theory model, these procedures for changing the
dressing of the lattice will be useful when considering the
ribbon or membrane operators and their commutation rela-
tions with the energy terms, as we do in Refs. [71,72]. When
we consider such commutation relations, the dressing of the
lattice determines the action of both the energy terms and the
ribbon operators, which means we need to consider several
different cases for each commutation relation, depending on
the branching structure in the region of the membrane oper-
ator and energy term. However, we can avoid this by instead
showing that the membrane and ribbon operators are invariant
under changing the dressing of the lattice in the same way
as the energy terms are. In this case, we can demonstrate

the commutation relations for one choice of the branching
structure. Then, because the operators are invariant under
changes to the dressing, the commutation relation will hold for
all choices of branching structure. Let X̂ be a series of these
rebranching operations, and suppose a commutation relation
between two operators Ô1 and Ô2 holds when acting on states
that are defined when the lattice has a particular structure.
Then the relation also holds for the branching structure pro-
duced by acting with X̂ on these states. For example, suppose
the operators Ô1 and Ô2 commute for one choice of branching
structure. Then for any state |ψ〉 defined on the original lattice,
Ô1Ô2|ψ〉 = Ô2Ô1|ψ〉. If the operators are consistent with the
rebranching then X −1ÔiX = Ôi. Therefore

X −1Ô1XX −1Ô2X |ψ〉 = X −1Ô2XX −1Ô1X |ψ〉
⇒ X −1Ô1Ô2X |ψ〉 = X −1Ô2Ô1X |ψ〉

⇒ Ô1Ô2X |ψ〉 = Ô2Ô1X |ψ〉,
so that the commutation relation also holds for the state X |ψ〉,
that is for states defined on the lattice with the altered branch-
ing structure.
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