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Extrinsic higher-order topological corner states in AB-stacked transition metal dichalcogenides
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Higher-order topological insulators are a novel type of topological phase that supports d-dimensional topo-
logical boundary states in D-dimensional systems with D − d > 1. In this work, we theoretically predict that
interlayer couplings in AB-stacked bilayer transition metal dichalcogenides (TMDs) lead to the emergence of
extrinsic second-order topological phases, where corner states are induced by the band inversion of zigzag edge
bands. We find that the systems feature a quantized multiband Berry phase defined for a zigzag nanoribbon
geometry, unveiling the nontrivial topological properties of its two zigzag edges. With a detailed investigation
into the bilayer TMDs under different geometries, we find two types of boundary-obstructed corner states arising
from different corner terminations of either the same type or heterogeneous zigzag edges. The topological nature
of these corner states and their degeneracy is further analyzed with both the crystalline symmetries of different
geometries and a topological phase transition of the Berry phase induced by layer-dependent on-site energy.
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I. INTRODUCTION

Topological insulators are materials that exhibit robust
boundary states, protected by a band gap and distinctive
topological properties of their bulk states [1,2]. Their topo-
logical features can be classified into different “orders,”
namely an nth-order topological insulator in d-dimension
(dD) host topological boundary states in its (d − n)D bound-
aries. Topological insulators with their orders of topology
higher than 1 are known as higher-order topological insula-
tors (HOTIs) [3,4]. Their realization has been proposed and
implemented in both materials [5–9] and quantum simulation
setups such as two-dimensional (2D) dielectric photonic crys-
tals [10], acoustic crystals [11–14], and a two-dimensional
continuous elastic system [15].

Over the past decade, exploring novel topological phases
such as HOTIs in natural electronic systems has been one
of the most active research topics in condensed-matter
physics and material science [16–18]. Among the variety
of natural materials, semiconducting 2D transition metal
dichalcogenides (TMDs) possess a large bulk gap and in-
gap 1D boundary states without dangling bonds [19–22],
thus they provide an ideal platform for investigating vari-
ous boundary phenomena. In particular, HOTI phases have
been demonstrated to arise from double band inversion of
surface states in the β- and γ -phases of TMDs [23], or
from staggered coupling amplitudes between different or-
bitals and C3 rotation symmetry in TMD monolayers [24–26],
whose connection to the orbital Hall effect has been recently
unveiled [27].

In this paper, we predict the presence of higher-order
topological corner states in AB-stacked bilayer TMDs,
based on a three-band tight-binding model describing the
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low-energy and edge-state physics in monolayers of group-
VIB TMDs [28]. Recently, such structures have been shown to
support different types of first-order topological phases [29].
Conventionally, corner states are expected to be more ac-
cessible in TMDs with armchair boundaries, which possess
a large energy gap between the 1D boundary states, while
zigzag boundary states are gapless and may overwhelm possi-
ble corner states [19,24,25]. However, we find that interlayer
couplings can induce a zigzag-boundary band inversion for
bilayer TMDs, and they generate corner states corresponding
to boundary obstructed topological phases with “extrinsic”
higher-order topology, without relying on crystalline sym-
metries of the system [30–39]. Unlike a single monolayer,
AB-stacking structure allows for two types of spatially sym-
metric zigzag boundaries, formed by boundaries of the two
layers with different atoms. Interestingly, we find that dif-
ferent terminations between them give rise to two classes
of corner states, where only one of them shows a direct
correspondence to boundary-gap closing and a topological
transition characterized by a Berry phase. These rich phenom-
ena are exhaustively investigated with triangular, hexagonal,
and parallelogram geometries, which support either one or
both types of zigzag boundaries and thus different corner
terminations.

The rest of this paper is organized as follows. In Sec. II,
we introduce the three-orbital tight-binding model we use to
describe AB-stacked bilayer TMDs, including their nontrivial
topology characterized by a Berry phase, and crystalline sym-
metries that assist our analysis of corner states under different
geometries. In Sec. III, we study the emergence of corner
states and their behaviors during topological phase transitions
of the Berry phase, in triangular, hexagonal, and parallelogram
lattices, respectively, and we analyze their spatial configura-
tions with the help of the presence and absence of different
crystalline symmetries. A summary and some discussion of
our results are given in Sec. IV.
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FIG. 1. Lattice structure and energy spectrum of AB-stacked bilayer TMDs. (a) Side view and top view of the model, with R1 to R6

indicating the nearest neighbors. Dashed boxes show different zigzag edges in AB-stacked TMDs. (b) Energy spectrum of a zigzag nanoribbon,
with ν = 0.3 eV and μ = 0. Eigenstates are marked by different colors according to the quantity |�M |2 − |�X |2, where |�M |2 (|�X |2) is the
sum distribution at M edges (X edges) of the two layers for each eigenstate, namely |�M |2 − |�X |2 ≈ 1 for M edge states and ≈ −1 for X edge
states. The right panel in (b) sketches the band inversion mechanism of zigzag edge bands. EM and EX are the maximal value of the M-edge
band and the minimal value of the X -edge band, respectively. For MoS2, EM ≈ 1.32 eV and EX ≈ 0.65 eV.

II. MODEL

A. Lattice structure and Hamiltonian

The systems we consider are AB-stacked bilayer TMDs,
commonly referred to as MX 2, with M and X denoting
atoms of transition metals and chalcogens, respectively, with
a honeycomb-like structure as sketched in Fig. 1(a). To an-
alyze the edge and corner physics, we adopt a three-orbital
model for each layer [28], constructed using only the dz2 ,
dxy, and dx2−y2 orbitals of M atoms, which gives a reason-
able description of zigzag edge states of these materials, and
it has been applied to investigate various edge phenomena
therein [27,40–42]. The tight-binding Hamiltonian can be
written as

Ĥ = Ĥ1st + Ĥ2nd + Ĥint + μ

2
(N̂1 − N̂2), (1)

with Ĥ1st (Ĥ2nd) the monolayer Hamiltonian for the top (bot-
tom) layer, Ĥint the interlayer couplings, and N̂1,2 the total
electron number operator. The last term of μ describes the
difference of on-site energy for the two layers, which may
be induced by external electric fields applied perpendicular
to the layers [43,44]. Note that a nonzero μ is not essential to
induce corner states in our systems. However, it can lead to a
topological phase transition that changes the number of corner
states, as demonstrated in later sections.

Explicitly, the first two Hamiltonian operators are given by

Ĥ1st =
∑
i,R

∑
α,α′

â†
i,αtR,α,α′ âi+R,α′ +

∑
i,α

â†
i,αεα âi,α, (2)

Ĥ2nd =
∑
i,R

∑
α,α′

b̂†
i,αtR̄,α,α′ b̂i+R,α′ +

∑
i,α

b̂†
i,αεα b̂i,α, (3)

where â†
i,α (b̂†

i,α) creates an electron at lattice site i and or-
bital α in the top (bottom) layer, R is one of the six vectors
connecting nearest-neighbor M atoms, with tR,α,α′ being its
corresponding hopping strength [see Fig. 1(a) and Table I],
and εα are on-site energies corresponding to different orbitals.

The third term Ĥint in Eq. (1) is the interlayer hopping.
Using a Slater-Koster table [45], Ĥint reads

Ĥint = â†
i,dz2

Vddσ b̂i,dz2 + â†
i,dxy

Vddδ b̂i,dxy

+ â†
i,dx2−y2

Vddδ b̂i,dx2−y2 + H.c., (4)

where Vddσ and Vddδ are two types of overlap integrals of
different d-d orbitals, and Vddσ is generally much larger than
Vddδ for a relatively large distance between M atoms [46,47].
In the following discussion, we shall assume

Vddσ = ν, Vddδ = 0.3ν, (5)

and we use the tight-binding parameters for MoS2 given
in Ref. [28] (εdz2 = 1.046 eV, εdxy = εdx2−y2 = 2.104 eV; see
Table I for other parameters), unless otherwise specified.

B. Zigzag edge states and edge-band inversion
in a nanoribbon structure

To reveal the topological nature that gives rise to higher-
order corner states, we take a look at the system with a zigzag
nanoribbon structure along the x direction. When μ = ν = 0,
our model reduces to two identical monolayers of TMDs,
where edge bands of different zigzag edge states (namely,
M-edge and X -edge) of the two layers cross each other in their
eigenenergies. The AB-stacked structure allows for a mixture
of the two branches of edge states on the same edge of the
bilayer TMD, denoted as M-X or X -M edge according to
the boundary atoms of the two layers [see Fig. 1(a)]. Thus,
with a nonzero ν that couples M- and X -edges of different
layers, an edge-band inversion occurs and opens a bound-
ary gap between these edge states, as shown in Figs. 1(b)
and 1(c). Note that these edge states are twofold-degenerate
when μ = 0, due to an inversion symmetry between M-X and
X -M edges. With a nonzero μ, the degeneracy is lifted, and
one pair of edge states is separated in energy (the one at X -M
edge for a positive μ), resulting in a reversed process of band
inversion and thus a topological phase transition, as shown
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TABLE I. Hopping amplitudes tR,α,α′ for TMDs [28,40]. Different rows show hoppings between different orbitals, and different columns
are for different spatial hopping vectors R for the top layer in Fig. 1(a). For the bottom layer, R1, R2, and R3 are exchanged with R4, R5,
and R6, respectively. For MoS2, the parameters are approximately given by t0 = −0.184, t1 = 0.401, t2 = 0.507, t11 = 0.218, t12 = 0.338, and
t22 = 0.057 (in eV) [40].

α-α′ R1 R2 R3 R4 R5 R6

dz2 -dz2 t0 t0 t0 t0 t0 t0

dxy-dxy t11
t11+3t22

4
t11+3t22

4 t11
t11+3t22

4
t11+3t22

4

dx2−y2 -dx2−y2 t22
3t11+t22

4
3t11+t22

4 t22
3t11+t22

4
3t11+t22

4

dz2 -dxy t1
t1+√

3t2
2 − t1+√

3t2
2 −t1 − t1−√

3t2
2

t1−√
3t2

2

dz2 -dx2−y2 t2 − t2−√
3t1

2 − t2−√
3t1

2 t2 − t2+√
3t1

2 − t2+√
3t1

2

dxy-dx2−y2 t12

√
3(t11−t22 )

4 − t12

√
3(t22−t11 )

4 + t12 −t12

√
3(t11−t22 )

4 + t12

√
3(t22−t11 )

4 − t12

in Fig. 2. These different topological phases can be further
characterized by a multiband Berry phase γ , defined as

γ = −i
∑

l

log det U (kl ), (6)

where Umn(kl ) = 〈ψm(kl )|ψn(kl+1)〉 is the (m, n) element of
the link matrix U (kl ), |ψm(kl )〉 is the Bloch wave function of
the mth band at the discrete crystal momentum kl , and m, n ∈
[1, Nocc], with Nocc the number of occupied bands (all bands
below the edge-gap in our case; see Fig. 2).

FIG. 2. Energy spectrum and a topological phase diagram of the
bilayer TMDs in a nanoribbon structure, with μ = 0.1, 0.68, and
0.8 eV from (a) to (c), respectively, and the same colormap as in
Fig. 1(b), indicating distribution of each eigenstate at M and X edges.
With increasing μ, a reversed process of band inversion occurs for
one pair of edge states, which becomes topologically trivial after
the transition at μ ≈ 0.67 eV. In (a) and (c), γ is calculated for all
eigenstates below the band gap (indicated by the dashed lines). We
find γ = 0 in (a) as edge-band inversion occurs for both M-X and
X -M edge states, which possess the opposite single-band Berry phase
(see Appendix A). In (c), we have γ = π since one pair of these
edge states is trivialized after the topological phase transition. 1D
edge states in (b) are gapless, and thus the Berry phase is ill-defined.
Other parameters are the same as in Fig. 1(b). (d) A phase diagram
determined by the value of γ .

Numerically, we find that γ = 0 for small μ with band
inversion for both M-X and X -M edge states [Fig. 2(a)],
as they possess opposite topological charges characterized
by edge-band Berry phases of ±π , respectively (see Ap-
pendix A). Nonetheless, corner states may still emerge under
the full OBCs with different geometries, as demonstrated in
later sections. This is because the 1D edges are spatially sepa-
rated by the bulk, therefore their opposite topological charges
cannot annihilate each other. On the other hand, increasing μ

will lead to a topological phase transition and trivialize one
pair of edge states, resulting in a π Berry phase contributed
solely by the other pair with edge-band inversion, as illus-
trated in Fig. 2(c). Following this analysis, the topological
phase transition shall occur when the amplitude of μ matches
the energy difference between the maximal value of M-edge
band and the minimal value of X -edge band [see Fig. 1(b)],
μ ≈ |EM − EX | ≈ 0.67 eV, which is verified in the explicit
examples discussed in later sections. A topological phase di-
agram regarding different values of ν and μ is displayed in
Fig. 2(d), which shows that the strength of interlayer coupling
ν does not affect much the Berry phase or the topological
transition induced by μ. In other words, the nontrivial topol-
ogy and its corresponding higher-order corner states are not
sensitive to the exact value of interlayer couplings, and thus
can be expected to manifest in a more realistic parameter
regime [compared with our assumption in Eq. (5)] of TMD
materials.

C. Crystalline symmetries of the AB-stacked bilayer TMDs

Although not essential to the extrinsic higher-order corner
states, the lattice structure of TMDs naturally hosts several
crystal symmetries, which are useful in our analysis of corner
states under different geometries. In particular, the space sym-
metry group of monolayer TMDs is the D3h point group, con-
taining symmetry operators {Ê , Ĉ3, Ĉ2

3 , M̂x, M̂1, M̂2}, where
Ê is the identity operation, Ĉ3 is the rotation by 2π

3 about
the z-axis, M̂x is the mirror-reflection along the x-axis, and
M̂1 and M̂2 are obtained through rotating M̂x around the
z-axis by 2π

3 and 4π
3 , respectively. In addition to these sym-

metries, AB-stacked bilayer TMDs (without a boundary)
further satisfy a 3D inversion symmetry described by the
operator Î = σx

ˆ̄R, with σx exchanging the two layers, and ˆ̄R
is the central rotation around the z-axis of 180◦. An extra
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(a)
(b)

(d)(c)

FIG. 3. Lattice structure and corner states in AB-stacked bilayer
TMDs with a triangular structure. (a) Top view of the triangular
lattice. (b) A total of 60 eigenenergies close to E = 0.95 eV, with two
sets of threefold-degenerate corner states (red) within the energy gap.
(c),(d) Distribution of the two sets of threefold-degenerate corner
states, respectively. The size of each point is proportional to the
summed distribution at each site i, ρi = ∑

α,n(|ψ1st
i,α,n|2 + |ψ2nd

i,α,n|2),
with α denoting the three orbitals and n summing over the three
states indicated in each panel. The colormap displays the value of
W 1st

i , the weight of occupation on the first layer for each site. Namely,
W 1st

i = 1 (0) means that the states occupy only the first (second) layer
on the lattice site indexed by i. The system’s size is chosen to have
100 M atoms along each edge. Other parameters are ν = 0.3 eV and
μ = 0.

interlayer-mirror symmetry along the y-axis also emerges,
described by the operator M̂ ′

y = ÎM̂x, which represents a com-
bination of mirror-reflection along the y-axis and exchanging
the two layers. This symmetry is also equivalent to a C2

symmetry around the x axis in 3D.

FIG. 4. Energy spectrum and Berry phase γ vs the layer-
dependent on-site energy μ, for the triangular lattice with M-X edges
and ν = 0.3 eV. A total of 200 energy points around E = 0.92 eV are
taken in our numerics. The side length of the lattice is chosen to be
70 M atoms. The energy spectrum for the triangular lattice with X -M
edges is identical to the current one by changing μ to −μ, as the two
types of edges can be mapped to each other through the inversion
operation.
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FIG. 5. Lattice structure and corner states in AB-stacked bilayer
TMDs with a hexagonal structure. (a) Top view of the hexagonal
lattice. (b) A total of 60 eigenenergies close to E = 0.95 eV, with a
set of sixfold-degenerate corner states (red) within the energy gap.
(c) Distribution of the six degenerate corner states. The size of each
point is proportional to the summed distribution ρi at site i, and the
colormap displays the value of W 1st

i . The system’s size is chosen to
have 100 M atoms along each edge. Other parameters are ν = 0.3 eV
and μ = 0.

III. CORNER STATES UNDER DIFFERENT
GEOMETRIC STRUCTURES

As seen in Fig. 2, nontrivial topological properties in our
model originate from an edge-band inversion, which shall lead
to the emergence of boundary obstructed topological corner
states in the edge-gap near E = 0.95 eV (dashed lines in
Fig. 2) under the full OBCs. More intriguingly, these corner
states may show distinguished behaviors depending on the
geometry of an OBC lattice, since shearing the lattice along
different directions will result in junctions either between
heterogeneous M-X and X -M edges, or two edges of the same
type.

FIG. 6. Energy spectrum and Berry phase γ vs the layer-
dependent on-site energy μ, for the hexagonal lattice with ν =
0.3 eV. A total of 200 energy points around E = 0.92 eV are taken.
The side length of the lattice is chosen to be 70 M atoms.
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(a)

(b)

(c) (d) (e)

(f) (g) (h)

FIG. 7. Lattice structure and corner states in AB-stacked bilayer TMDs with a parallelogram structure. (a) Top view of the parallelogram
lattice. (b) A total of 60 eigenenergies close to E = 0.95 eV at μ = 0, with three sets of twofold-degenerate corner states (red) within the
energy gap. (c)–(e) Distribution of the three sets of degenerate corner states, respectively, with μ = 0. The size of each point is proportional
to the summed distribution ρi at site i, and the colormap displays the value of W 1st

i . The system’s size is chosen to have Nx = Ny = 100, with
Nx and Ny the number of M atoms along x and y directions, respectively. (f) Distribution of the degenerate corner states (1,2) with μ = 0.9 eV.
(g),(h) Distribution of a single nondegenerate corner state with μ = 0.9. These two states are marked as states 3 and 5, as they correspond to
states (3,4) and (5,6) in a different topological phase with |μ| � 0.67 eV (see Fig. 8). ν = 0.3 eV is chosen for all panels.

A. Triangular structure

We first consider AB-stacked bilayer TMDs with a trian-
gular geometry, as shown in Fig. 3(a). A triangular lattice has
three equivalent boundaries of the same type, and here we
take the case with M-X edges as an example. In addition,
it satisfies the threefold rotation symmetry of Ĉ3, but not
the inversion symmetry that exchanges the two layers. Thus
the corner states in a triangular bilayer TMD are expected
to be symmetric between different corners, and asymmetric
between the two layers.

In Fig. 3(b), we display our numerical results of eigenen-
ergies for the triangular structure. Two sets of threefold-
degenerate states with different energies are found within the
edge gap. Note that the energies (and those in later examples)
of these corner states are generally nonzero, due to the lack

of protection from global discrete symmetries (e.g., chiral
symmetry or charge-conjugation symmetry) [3]. Their distri-
butions in real space are shown in Figs. 3(c) and 3(d), where
each set of degenerate states is distributed symmetrically on
the three corners. On the other hand, the two sets of corner
states exhibit different occupation on the two layers, as can be
seen from the weight of occupation on each site of the first
layer,

W 1st
i =

∑
n,α

∣∣ψ1st
i,α,n

∣∣2/(∑
n,α

∣∣ψ1st
i,α,n

∣∣2 +
∑
n,α

∣∣ψ2nd
i,α,n

∣∣2

)
, (7)

with ψ
1st (2nd)
i,α,n the amplitude at the ith site of the first (second)

layer of an eigenstate indexed by n, and the summation runs
over all orbitals (indexed by α) for a set of degenerate corner

245131-5



JIANG YAO AND LINHU LI PHYSICAL REVIEW B 108, 245131 (2023)

states. Namely, states 1, 2, and 3 show a roughly balanced
occupation on the two layers, and states 4, 5, and 6 mostly
occupy the second layer. Such asymmetric layer occupation
for corner states at different eigenenergies reflects the absence
of the inversion symmetry of Î = σx

ˆ̄R in the triangular lattice.
In Fig. 4, we illustrate the eigenenergies around the energy

gap as a function of the layer-dependent on-site energy μ,
which are marked by different colors according to the inverse
participation ratio (IPR) of their eigenstates, defined as

IPR(n) =
∑

i

[ ∑
α

(∣∣ψ1st
i,α,n

∣∣2 + ∣∣ψ2nd
i,α,n

∣∣2)]2

. (8)

As can be seen from the figure, by turning on the layer-
dependent on-site energy μ, the energy gap closes between
1D edge states at μ ≈ −0.67 eV, and corner states disappear
when further decreasing the (negative) value of μ. Such an ob-
servation matches a jump of the Berry phase γ from 0 to π , yet
with two unconventional properties seemingly contradictory
to conventional bulk-boundary correspondence of topological
phases: (i) corner states emerge with a trivial Berry phase
(γ = 0), and they disappear with a nontrivial one (γ = π );
and (ii) the same edge-gap closing does not occur at the other
topological transition point of μ ≈ 0.67 eV.

To understand these enigmatic behaviors, we note that
the Berry phase is calculated under the nanoribbon geometry
with both M-X and X -M edges, and the “trivial” phase with
γ = 0 is in fact nontrivial with single-band Berry phases of
±π for the two edge bands, as discussed for Fig. 2 and in
Appendix A. The triangular lattice we consider in Fig. 3
possesses only M-X edges, therefore it only inherits “half”
of the topological properties of a nanoribbon geometry, which
is trivialized when μ � −0.67 eV. Alternatively, a triangular
lattice with X -M edges shall inherit the other “half” of the
topological properties, possessing a spectrum symmetric to
Fig. 4 regarding μ = 0, with a topological phase transition
at μ ≈ 0.67 eV (not shown). As a side note, a large amplitude
of μ will shift different bulk bands of the two layers and mix
them in energy, thus all corner states will eventually merge
into the bulk bands even without a topological transition, as
seen in Fig. 4 with μ � 1 eV.

B. Hexagonal structure

Next we consider a hexagonal structure of the AB-stacked
bilayer TMDs, as sketched in Fig. 5(a). Unlike the triangular
lattice, a hexagonal lattice has adjacent M-X and X -M edges,
and satisfies both the inversion symmetry of Î = σx

ˆ̄R and the
threefold rotation symmetry of Ĉ3. Consequently, corner states
in the hexagonal lattice shall be sixfold-degenerate, and dis-
tribute evenly on the two layers, as verified by our numerical
results in Figs. 5(b) and 5(c).

Due to the different boundary terminations, corner states
of the hexagonal lattice behave rather differently across the
topological phase transition characterized by the Berry phase
γ . As demonstrated in Fig. 6, the sixfold-degenerate corner
states survive in all three parameter regions separated by the
gap closing at μ ≈ ±0.67 eV (except that they merge into
bulk bands for μ � 1 eV). This is because under a hexagonal
geometry, each corner connects two distinct M-X and X -M

FIG. 8. Energy spectrum and Berry phase γ vs the layer-
dependent on-site energy μ, for the parallelogram lattice with ν =
0.3 eV. A total of 200 energy points around E = 0.92 eV are taken.
The size of the lattice is chosen to be Nx = Ny = 70.

edges, and at least one of them is governed by nontrivial
topology in the three parameter regions, resulting in a corner
state at each of their joint corners.

C. Parallelogram structure

From the aspect of boundary terminations, a parallelogram
structure can be viewed as a mixture of triangular and hexago-
nal ones, as it support both types of corners connecting either
the same or two different M-X and X -M edges, as sketched
in Fig. 7(a). Consequently, corner states in a parallelogram
lattice are expected to behave differently on different types
of corners, which is also suggested by the lack of C3 rotation
symmetry in such a geometry.

The energy spectrum around the zigzag edge gap of AB-
stacked bilayer TMDs in a parallelogram geometry is shown
in Fig. 7(b), where three sets of twofold-degenerate corner
states are found inside the gap. Their distribution in real space
is illustrated in Figs. 7(c)–7(e), where one set of corner states
(labeled as states 1 and 2) occupies the top-left and bottom-
right corners, in analogy to the corner states in the hexagonal
lattice, and the remaining two sets (labeled as states 3–6)
occupy the other two corners, in analogy to the corner states
in the triangular lattice. Remarkably, due to the presence of
inversion symmetry (Î = ˆ̄Rσx), each set of corner states now
exhibits a symmetric distribution on the two layers, in contrast
to the case of the inversion-asymmetric triangular lattice.

Due to their different boundary terminations, these corner
states behave rather differently upon turning on a nonzero
μ. As demonstrated in Fig. 8, the hexagon-analogous cor-
ner states (1,2) remain degenerate and exist for all values
of μ, as they both originate from the same type of joint
corners between M-X and X -M edges. In contrast, the two
triangle-analogous corner states of a degenerate pair [(3,4)
or (5,6)] originate from corners of different types of edges.
That is, the bottom-left corner connects two M-X edges, and
the top-right corner connects two X -M edges. As discussed
previously for the triangular lattice, these two types of corners
react to μ differently (but symmetric about μ = 0), therefore
their degeneracy is lifted by a nonzero μ. Further increasing
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FIG. 9. Energy spectrum at μ = 0 vs interlayer hopping strength ν for (a) the triangular structure with 200 points around 0.87 eV, (b) the
hexagonal structure with 300 points around 0.9 eV, and (c) the parallelogram structure with 200 points around 0.9 eV.

the amplitude of μ, a topological phase transition occurs for
the M-X (X -M) edge when μ < 0 (μ > 0), and one corner
state of each triangle-analogous pair disappears when |μ| �
0.67 eV. The disappearance of two corner states at the same
corner is in agreement with our results and analysis for the
triangular lattice, which hosts three C3-rotation-symmetric
corners connecting the same type of edges. In Fig. 9, we
display the energy spectra versus ν under different geome-
tries. It is seen that corner states of the triangular lattice in
Fig. 9(a) [the hexagonal lattice in Fig. 9(b)] match well with
corner states 3–6 (1 and 2) of the parallelogram lattice in
Fig. 9(c), which further verifies the analogy between these
corner states.

The above observations and analysis imply that in the
parallelogram lattice, the twofold degeneracy of triangle-
analogous corner states is protected by the inversion sym-
metry. A nonzero μ breaks the symmetry and lifts this
degeneracy. On the other hand, the threefold degeneracy of
corner states in the triangular lattice is protected by the C3

rotational symmetry, which is not affected by μ. Similarly,
the twofold degeneracy of hexagon-analogous corner states
in the parallelogram lattice, and the sixfold degeneracy of
corner states in the hexagonal lattice, are also protected by
different crystal symmetries and/or the conditions of corner
terminations. Nevertheless, despite these different symmetry
protections of degeneracy, we argue that the emergence of
these corner states can still be attributed to the topological
properties associated with the multiband and edge-band Berry
phases, as analyzed throughout this paper, and summarized in
Table II.

IV. SUMMARY AND DISCUSSION

We have unveiled a class of extrinsic higher-order topo-
logical phases induced by interlayer couplings in AB-stacked

bilayer TMDs, which host corner states insensitive to crys-
tal symmetries of the materials. Explicitly, the zigzag edge
states of these materials cross each other in their eigenen-
ergy, thus a band inversion between them can be induced by
nonzero interlayer couplings, leading to gapped edge bands
and the emergence of in-gap corner states. The relatively
large edge-band crossing region in energy indicates the ro-
bustness of these corner states against possible disorders or
perturbations. With exhaustive investigation into the system
with different triangular, hexagonal, and parallelogram ge-
ometries, we uncover two types of corner states corresponding
to different corner terminations between the M-X and X -M
zigzag edges for the bilayer structure. The topological na-
ture of these corner states is justified by a multiband Berry
phase defined for the system in a nanoribbon geometry, which
reflects the overall topological properties of both types of
zigzag edges. Topological phase transitions of the system
induced by an on-site energy detuning μ of the two layers
are studied accordingly. We find that the M-X and X -M
edges can be trivialized only for negative and positive μ,

TABLE II. Relation between the corner states and Berry phases.
γMX and γX M are the Berry phases for the corresponding edge bands
(see Appendix A). Numbers in the last three columns indicate the
numbers of corner states and their degeneracy. For example, 2/1/1
means that there are a pair of twofold-degenerate corner states, and
two nondegenerate corner states.

Edge topology Corner states under different geometries

γ μ γMX γX M M-X (X -M) 	 �

0 ± π π 3/3 6 2/1/1/1/1
π + π 0 3/3 (0) 6 2/1/1
π − 0 π 0 (3/3) 6 2/1/1
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respectively, leading to distinct behaviors for the two types
of corner states when a topological phase transition occurs.
Our results show that the higher-order corner states in bi-
layer TMDs are highly tunable due to the abundant bilayer
structures and layer-dependent physical effects (such as a
perpendicular electric field), and thus hold great promise for
quantum applications. On the other hand, these corner states
are also stable against boundary perturbations, as shown in
Appendix D.

Throughout our study, we have focused only on the zigzag
edges, as they support gapless edge states and thus an edge
band inversion can be induced by weak interlayer couplings.
In Appendix B, we have further demonstrated numerical re-
sults of the AB-stacked bilayer TMDs in a square lattice,
which support both zigzag and armchair edges. We find that
corner states in square lattices may be attributed to either
zigzag- or armchair-edge band inversion, yet the latter oc-
curs only with a relatively large interlayer hopping strength,
due to the large armchair-edge band gap of monolayer
TMDs.
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APPENDIX A: SINGLE-BAND BERRY PHASES

In this Appendix, we discuss the properties of single-band
Berry phase γn for the zigzag edges of AB-stacked bilayer
TMDs. It follows a similar definition to Eq. (6) in the main

(a)

(b) (c)

FIG. 10. Lattice structure and corner states in AB-stacked bilayer
TMDs with square structures. (a) Top view of different types of
square structures. A type-B lattice can be obtained from a type-A
one by shearing along the red dashed line. Shearing along the blue
dashed line changes the parity of Ny. (b) A total of 60 eigenenergies
close to E = 0.95 eV at μ = 0 for the type-A square lattice with an
odd Ny, with four degenerate corner states (red) within the energy
gap. (c) Distribution of the the degenerate corner states, where the
size of each point is proportional to the summed distribution ρi at
site i, and the colormap displays W 1st

i , the weight of the first-layer
occupation on each site. The system’s size is chosen to be Nx = 100
and Ny = 101. Other parameters are μ = 0 and ν = 0.3 eV.

TABLE III. Symmetry table for different types of AB-stacked
bilayer TMDs with square structure. Ny is the number of M atoms
along the y-direction.

Type A Type B

Ny is odd (Ny > 1) {Ê , M̂x, Î, M̂ ′
y} {Ê , M̂ ′

y}
Ny is even {Ê , M̂x} {Ê , Î}

text,

γn = −i
∑

l

logUn(kl ), (A1)

with Un(kl ) = 〈ψn(kl )|ψn(kl+1)〉 and 〈ψn(kl )〉 the Bloch wave
function of the nth band at the discrete crystal momentum kl .
Here we consider the two degenerate edge bands belong the
energy gap in Fig. 1(b), labeled as ψMX and ψXM , respectively,
regarding their occupied edges. Due to the presence of inver-
sion symmetry, these two edge bands are symmetric to each
other between k and −k, i.e.,

Îy|ψMX (k)〉 = |ψXM (−k)〉,
with Îy = M̂yσx the inversion operation in the y-z plane (the
same as M̂ ′

y discussed in Sec. II C). In addition, the model
also satisfies the time-reversal symmetry Ĥ (k) = Ĥ∗(−k), or
|ψ (k)〉 = |ψ∗(−k)〉 for eigenstates. Thus the link variable
Un(k) for these two bands satisfies

UMX (k) = 〈ψMX (kl )|ψMX (kl+1)〉
= 〈ψXM (−kl )|ψXM (−kl+1)〉
= 〈ψXM (kl )

∗|ψXM (kl+1)∗〉
= 〈ψXM (kl )|ψXM (kl+1)〉∗
= UXM (k)∗, (A2)

which leads to γMX = −γXM . Therefore, the Berry phase of
two boundary states vanishes at on-site energy μ = 0.

Although these edge-band Berry phases are obtained for
μ = 0, their symmetric behavior is expected to hold even
when the inversion symmetry is broken by a nonzero μ,
unless a topological phase transition occurs for one of the
two edge bands. However, these edge-band Berry phases may
be ill-defined when the amplitude of μ increases, since the
corresponding edge bands may partially merge into the va-
lence bulk bands [e.g., see Figs. 2(b) and 2(c) in the main
text]. Therefore, we have only considered the multiband Berry
phase γ in most of the main text. Nevertheless, in most of the
parameter region we consider (including the topological tran-
sition point), there is at most one edge band merging into the
bulk. Hence we can calculate the (well-defined) Berry phase
for the other isolated edge band, and obtain the ill-defined
one through γ = γXM + γMX , since bulk bands never close
their energy gap and are always topologically trivial in our
considered cases.

APPENDIX B: CORNER STATES OF SQUARE STRUCTURE

In this Appendix, we discussed AB-stacked TMDs with
square structure, which host both armchair and zigzag edges.
Taking into account two types of M-X and X -M zigzag edges,
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FIG. 11. Spectrum and corner states for different types of square lattices. (a) A total of 60 eigenenergies close to E = 0.95 eV at μ = 0
for the type-A square lattice with an even Ny, with two sets of twofold-degenerate corner states (red) within the energy gap. Spectra for type-B
square lattices (for both even and odd Ny) are qualitatively the same as (a). (b)–(d) Distribution of the the degenerate corner states for type-A
with even Ny (Nx = 100, Ny = 100), type-B with even Ny (Nx = 100, Ny = 100), and type-B with odd Ny (Nx = 100, Ny = 101), respectively.
The size of each point is proportional to the summed distribution ρi at site i, and the colormap displays W 1st

i , the weight of the first-layer
occupation on each site. Other parameters are μ = 0 and ν = 0.3 eV.

we obtain four types of different nanoflakes, namely type-A
and type-B denoted in Fig. 10(a), with either an even or an
odd Ny, the number of M atoms along the y direction. Their
corresponding symmetries are indicated in Table III.

As seen in Figs. 10(b) and 10(c), a type-A square lattice
with an odd Ny has four degenerate corner states, distributing
evenly on the four corners. This is because it is the most sym-
metric case in the four types of square lattices, satisfying both
the inversion symmetry Î and mirror symmetries M̂x and M̂ ′

y.
On the other hand, the remaining three types of square lattices
are less symmetric, and the corner states split into two sets
of twofold-degenerate pairs, as demonstrated in Fig. 11(a) for
the example of a type-A square lattice with an even Ny. Their
spatial distributions are illustrated in Figs. 11(b)–11(d), which
reflects the M̂x, Î , and M̂ ′

y symmetries of the corresponding
square structures, respectively.

In Fig. 12(a), we demonstrate the energy spectrum as a
function of μ for a type-A square lattice with odd Ny, namely
with both X -M and M-X zigzag edges. Each state is marked
by a quantity Q defined to distinguish armchair and zigzag
edge states,

Q = (IPR)
4
5 × (IPRx )

1
5 ,

IPR =
∑

i

[ ∑
α

(∣∣ψ1st
i,α,n

∣∣2 + ∣∣ψ2nd
i,α,n

∣∣2)]2

,

IPRy =
∑

iy

[ ∑
α,ix

(∣∣ψ1st
i,α,n

∣∣2 + ∣∣ψ2nd
i,α,n

∣∣2)]2

, (B1)

FIG. 12. (a) Eigenenergy vs on-site energy in AB-stacked bilayer
TMDs with type-A structure and odd Ny. A total of 200 points around
0.92 eV are taken. The size of the lattice Nx = 71, Ny = 71. The in-
terlayer coupling strength is chosen to be ν = 0.3 eV. (b) Multiband
Berry phases for all eigenstates below the edge gap, for zigzag (red)
and armchair (blue) nanoribbons, respectively.
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FIG. 13. Lattice structure and energy spectrum of triangular
AB-stacked TMDs with armchair boundaries. (a) Top view of the
triangular lattice with armchair boundaries. (b) Energy spectrum at
μ = 0 vs the interlayer hopping ν with 200 energy points around
0.85 eV. (c) Energy spectrum vs the layer-dependent on-site energy
μ at ν = 0.3 eV, with 200 energy points taken around 0.95 eV. The
side length of the lattice is chosen to be 85 M atoms.

where the site index i := (ix, iy) indicates different positions
along the x and y directions, and IPRy describes the local-
ization strength along the y direction. With this definition,
perfectly localized zigzag and armchair edge states are ex-
pected to have Q ≈ (1/Nx )4/5 and 1/Ny, as they are localized
along the y and x directions, respectively.

As shown in the figure, the fourfold-degenerate corner
states split into two pairs of two-fold-degenerate ones, due to
the breaking of inversion symmetry under a nonzero μ. The
gap of both zigzag and armchair edge states closes at |μ| ≈
0.67 eV, the same as for the cases with zigzag edges only.
As discussed in the main text, the gap closing and reopening
represents a topological phase transition that trivializes one of
the M-X and X -M zigzag edges, thus only one pair of edge
states can be attributed to zigzag edges when |μ| � 0.67 eV.
However, the gap closing and reopening also indicate a band
inversion for the armchair edge bands, which are gapped at
μ = 0. Thus we still observe two pairs of edge states after
the transition, with one of them originating from an armchair-
edge band inversion [at X -M edge for positive μ and M-X
edge of negative μ; see Fig. 12(a)].

In Fig. 12(b), we display the Berry phases of both zigzag
and armchair nanoribbons, where the latter is found to be not
quantized generally. Nevertheless, the armchair Berry phase is
found to be 0 at μ = 0, indicating that the armchair edges are
topologically trivial when μ is small, i.e., within the parameter
region between the two gap closing points for armchair edge
states. The rapid change of the armchair Berry phase at the gap
closing points suggests a transition analogous to a topological
one, which reflects the origin of armchair-edge band inversion
for one pair of edge states at |μ| � 0.67 eV.

Finally, we give a brief discussion of the
quantization/nonquantization of these Berry phases. It
is known that inversion symmetry can protect nontrivial
topological insulating phases in 1D systems [48,49]. Taking
the boundaries of the bilayer TMDs as 1D models, we note

FIG. 14. Energy spectrum vs boundary perturbations for the AB-
stacked TMDs with a parallelogram lattice. The size of the lattice
is Nx = 70, Ny = 70. The interlayer hopping strength is chosen to
be ν = 0.3 eV. (a) Boundary perturbation on on-site energies, where
edge parameters are (1 + ε1) times of bulk ones. (b) Boundary per-
turbation on hopping strengths, where edge parameters are (1 + ε2)
times of bulk ones. A total of 300 energy points around 0.95 eV are
taken for each panel.

that zigzag edges always satisfy an x-inversion symmetry
(M̂x), but armchair edges satisfy a combining symmetry
of y-inversion and layer exchange operations (σxM̂y) only
at μ = 0. Consistently, the zigzag Berry phase is always
quantized, and the armchair one is quantized (zero) only in
the absence of the energy detuning μ.

APPENDIX C: CORNER STATES
OF ARMCHAIR BOUNDARIES

To confirm the origin of armchair-edge band inversion for
edge states at |μ| � 0.67 eV, as discussed in Appendix B,
we consider AB-stacked TMDs in a triangular structure with
only armchair boundaries, as sketched in Fig. 13(a). Recent
research has unveiled the existence of crystalline symmetry-
protected corner states in a triangular monolayer of TMDs
with armchair edges [24]. Hence, there are sixfold-degenerate
corner sates in our bilayer system when ν = 0 and μ = 0 (de-
coupled monolayers with no energy detuning). Upon turning
on interlayer hopping ν, the corner states split into two sets of
threefold-degenerate ones, as shown in Fig. 13(b).

In Fig. 13(c), we display the spectrum versus the energy de-
tuning μ at ν = 0.3 eV, i.e., the same as in Fig. 12. For |μ| �
0.67 eV, only one set of the crystalline-symmetry-protected
threefold-degenerate corner states can be found in the gap,
as the other one merges into edge/bulk bands at ν = 0.3 eV
[see Fig. 13(b)]. Two sets of threefold-degenerate corner states
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are seen to emerge when |μ| exceeds 0.67 eV, where the
armchair-edge gap closes and the Berry phase in Fig. 12(b)
jumps rapidly, confirming the origin of armchair-edge band
inversion for corner states of the square lattice at large |μ|
[Fig. 12(a)].

APPENDIX D: STABILITY OF CORNER STATES
AGAINST BOUNDARY PERTURBATION

Natural solid systems are often affected by boundary
effects, such as couplings to the environment or adjacent

systems, which may induce a difference between bulk and
edge parameters. To confirm the stability of topological corner
states in our model, we display numerical results of the energy
spectrum for a parallelogram lattice with different boundary
perturbations in Fig. 14. In particular, we take boundary on-
site energies and hopping strengths to be (1 + ε1) and (1 + ε2)
times those of bulk parameters, as demonstrated in Figs. 14(a)
and 14(b), respectively. It is seen that the energy gap and
in-gap corner states (shown in red with larger IPR) are robust
against perturbations up to 20% of bulk parameters, which
verifies the stability of the higher-order topological phases in
our model.
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