
PHYSICAL REVIEW B 108, 245129 (2023)

Lindblad master equation approach to the dissipative quench dynamics of planar superconductors
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We employ the Lindblad master equation method to study the nonequilibrium dynamics following a parametric
quench in the Hamiltonian of an open, two-dimensional superconducting system coupled to an external bath.
Within our approach we show how, in the open system, the dissipation works as an effective stabilization
mechanism in the time evolution of the system after the quench. Eventually, we evidence how the mismatch
between the phases corresponding to the initial and to the final state of the system determines a dynamical
phase transition between the two distinct phases. Our method allows for fully characterizing the dynamical
phase transition in an open system in several cases of physical relevance, by means of a combined study of the
time-dependent superconducting gap and of the fidelity between density matrices.
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I. INTRODUCTION

Related to the continuous developments of time-resolved
spectroscopic investigation methods in many-particle sys-
tems, there has recently been an increasing interest in
nonequilibrium correlated systems. For instance, using time-
dependent angle-resolved spectroscopy, it becomes possible
to investigate the different time evolutions of quasiparticle
states in a superconductor in different regions of the Bril-
louin zone, together with the corresponding effects on the
dependence in time of the superconducting gap [1–3]. Also,
pertinently irradiating the system, it is possible to induce the
onset of metastable transient states with peculiar properties,
sometimes completely different from the ones of the “true”
asymptotic state reached as the time t → ∞ [4,5].

There are at least two main issues that arise in studying
the time evolution of nonequilibrium correlated systems. First
of all, typically, such systems are characterized by several
different phases [6], often close to each other in energy. Know-
ing their transient dynamics allows for finding out to which
phase they flow, once prepared in a given state, thus recov-
ering crucial information about their elementary excitations
[7,8]. Also, controlling their time evolution allows for possi-
bly stabilizing metastable phases, with novel, exotic physical
properties, sometimes rather different from the ones charac-
terizing the equilibrium states [5,9]. In addition, along their
time evolution, it is possible for the systems to go through
a dynamical phase transition (DPT), driven by the time t
between the initial state, in which they are prepared at t = 0,
toward the final state, to which they evolve as t → ∞ [10–12].

A widely implemented protocol to induce nonequilibrium
dynamics in a many-electron system consists in preparing it
in the ground state of a specific Hamiltonian, in performing

a sudden quench in some parameter(s) of the system Hamil-
tonian, and eventually in making the system evolve with the
final (“after the quench”) Hamiltonian. In the specific case
of a superconducting electronic system, the protocol outlined
above results in an effective time dependence of the super-
conducting gap, which can be accounted for by means of
a time-dependent generalization of the self-consistent mean-
field (SCMF) approach [3,13].

In this paper, we define and study a procedure for in-
ducing nonequilibrium dynamics in two-dimensional (2D)
superconducting systems, involving two, or more than two,
components of the order parameter with different symmetry
(such as, for instance, an s-wave and a d-wave component
of the superconducting gap). In analogy to Ref. [3], we set
the nonequilibrium dynamics by quenching the interaction
strength(s) of the corresponding model Hamiltonian. Even-
tually, we recover the time-dependent superconducting gap
by systematically implementing self-consistency at any given
time t > 0. In addition, we employ the Lindblad master
equation (LME) approach to the dissipative dynamics of the
density matrix of the system [14–20] to account for dissipation
and damping effects beyond the time-dependent SCMF ap-
proximation. Such effects are related to the interaction among
quasiparticles, as well as to the coupling between the quasi-
particles and the fluctuations of the superconducting order
parameter [21]. In fact, we do not derive the LME, rather
we consider the most generic equations that can drive the
system to thermal equilibrium. As detailed in Ref. [14], this is
a standard approach, based on imposing the detailed balance
condition and considering all the independent operators de-
fined within the system’s Hilbert space that allow transitions
between different system eigenstates.
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Within the LME framework, we couple the system to an
external bath, able to exchange energy and quasiparticles with
the system itself. In doing so, we show how the relaxation
dynamics induced by the coupling to the bath naturally drives
the superconductor toward its asymptotic, stationary state. We
conclude, therefore, that the dissipation works as an effective
stabilization mechanism in the time evolution of the system
after the quench. Eventually, the mismatch between the phases
corresponding to the initial and to the asymptotic state of the
superconductor can drive the system across a real-time DPT
between the two distinct phases [10–12].

In fact, while the SCMF approach is expected to be unable
to capture the complex interplay of nearby phases in strongly
correlated superconductors, such as, for instance, cuprates in
their underdoped region, it still allows for effectively high-
lighting the physics of simple models, such as the one we
employ here [3]. Moreover, we argue how resorting to the
LME approach eventually allows for accounting for effects
beyond the SCMF approximation, such as the interaction
among quasiparticles, as well as the direct coupling between
the quasiparticles and the fluctuations of the superconducting
order parameter [21].

DPTs typically arise in the time evolution of quantum
systems after a parametric quench in the system Hamiltonian
[22–29]. In our specific case, in addition to looking at the
time dependence of the superconducting order parameter, we
approach the DPT by computing the fidelity F (t ) between
the initial state of the system, |ψ (0)〉, and its state at time
t . Indeed, differently from a closed system, where a DPT
is typically investigated by looking at the singularities in
the Loschmidt echo L(t ) = |〈ψ (0)|ψ (t )〉|2 [12,22,30–33], in
open systems the Loschmidt echo (as well as quantities related
to it) is no longer applicable to monitor the DPT, and it has to
be substituted by some more appropriate quantities, such as
the fidelity F (t ) [12,34].

Although, in this paper, we focus on a limited number of
phase transitions, the effectiveness of our method is grounded
on its wide applicability to many different choices for the su-
perconducting gap, such as, for instance, the ones appropriate
for 2D oxide superconductors [35–38]. Moreover, by looking
at how the time dynamics of the system is affected by the
choice of the actual values of the system parameters, we can
in principle suggest how to tune the parameters of realistic
devices to realize phases with the desired properties, including
a nontrivial topology [39]. Finally, our approach allows, via a
synoptic monitoring of the time-dependent superconducting
gap, the fidelity, and (in the case of a topological DPT, which
we address in Ref. [39]) the spin-Hall conductance, for a
comprehensive characterization of a DPT.

Our paper is organized as follows: In Sec. II, we present
our general two-dimensional lattice model Hamiltonian for a
planar superconductor, we employ the SCMF approximation
to trade it for an effectively quadratic one, we map out the
different superconducting phases as a function of the inter-
action strengths, and we introduce the LME approach to the
system coupled to the bath. In Sec. III, we discuss in detail the
relaxation dynamics of our superconducting system for dif-
ferent choices of the superconducting order parameter before
and after the sudden change in the interaction strengths. In
Sec. IV, we compute the fidelity and employ it to characterize
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FIG. 1. Sketch of the square lattice with the various single-
fermion hopping and interaction terms in Eq. (1): the NN (solid blue)
and the NNN (solid red) hopping terms, the on-site (dashed green),
the NN (dashed blue), and the NNN (dashed red) interaction terms.

a DPT. In Sec. V, we discuss and summarize our results and
present some possible further extensions of our work. In the
Appendixes, we present the technical details of our calcula-
tions.

II. MODEL HAMILTONIAN AND METHODS

We now present our lattice model Hamiltonian H for a pla-
nar superconductor. H encompasses various interaction terms
(on-site, nearest-neighbor, next-to-nearest neighbor), allowing
for various possible kinds of spin-singlet superconducting or-
der parameters. We then employ the SCMF approximation to
recover the phase diagram of H as a function of the different
interaction strengths. Finally, we present the LME approach,
which describes the dynamics of the nonequilibrium system
coupled to the bath.

A. Model Hamiltonian for the lattice planar superconductor

Our main model Hamiltonian describes a system of inter-
acting spinful electrons, defined over a 2D square lattice. The
single-particle dispersion relation is determined by a nearest-
neighbor (NN) hopping strength J (which we will use as our
unit of energy, i.e., J = 1), and a next-to-nearest neighbor
(NNN) hopping strength t ′. In addition, we allow for finite
on-site NN and NNN density-density interactions, all in the
spin-singlet channel, with interaction strength, respectively,
given by U , V , and Z . Accordingly, H is given by (see Fig. 1)

H = − μ
∑

r

∑
σ

c†
r,σ cr,σ

−
∑
r,δ̂

∑
σ

c†
r+δ̂,σ

cr,σ − t ′ ∑
r,δ̂′

∑
σ

c†
r+δ̂′,σ

cr,σ

− U
∑

r

nr,↑nr,↓ − V

2

∑
r,δ̂

nrnr+δ̂ − Z

2

∑
r,δ̂′

nrnr+δ̂′ ,

(1)

with cr,σ , c†
r,σ being the annihilation and the creation opera-

tors for an electron with spin σ at site r of a square lattice, and
μ being the chemical potential. cr,σ , c†

r,σ satisfy the canon-
ical anticommutation relations {cr,σ , c†

r′,σ ′ } = δr,r′δσ,σ ′ . The
spin-polarized density operators in Eq. (1) are defined as
nr,σ = c†

r,σ cr,σ , while nr = ∑
σ nr,σ . In Eq. (1) we have set the

lattice constant to 1. δ̂ denotes a generic (unit length) vector
connecting r with the corresponding NN sites of the lattice,
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while δ̂′ denotes a generic vector (of length
√

2), connecting
r with the corresponding NNN sites of the lattice. In the
context of solid-state systems, the Hamiltonian H in Eq. (1)
is a generalization of model Hamiltonians widely applied to
describe high-Tc superconductors [40–43]. Within alternative
platforms, such as cold-atom condensates, optical realiza-
tions of systems effectively described by Hamiltonians similar
to H are now within the reach of the present technology
[44].

In Appendix A, we implement the SCMF approximation to
trade H in Eq. (1) for the corresponding mean-field, quadratic
(in the fermionic operators) Hamiltonian HMF, given by

HMF =
∑

k

∑
σ

ξkc†
k,σ ck,σ −

∑
k

{�kc†
k,↑c†

−k,↓ + H.c.}, (2)

with H.c. standing for Hermitian conjugate, and with the
single-fermion operators in momentum space, ck,σ , related to
the cr,σ ’s by means of

ck,σ = 1√
N

∑
r

e−ik·rcr,σ , (3)

N being the number of lattice sites. Also, in Eq. (2) we have
set

ξk = − 2[cos(kx ) + cos(ky)] − 4t ′ cos(kx ) cos(ky) − μ,

�k = �S + 2�x2−y2{cos(kx ) − cos(ky)}
− 4i�xy sin(kx ) sin(ky), (4)

with �S,�x2−y2 ,�xy, respectively, being equal to the s-wave,
to the d-wave, and to the id-wave components of the super-
conducting order parameters. As we show in Appendix A,
they are determined by the self-consistent equations

�S = U

2N

∑
k

�k

εk
,

�x2−y2 = V

4N

∑
k

[cos(kx ) − cos(ky)]�k

εk
, (5)

�xy = iZ

2N

∑
k

sin(kx ) sin(ky)�k

εk
,

with the single quasiparticle dispersion relation εk =√
ξ 2

k + |�k|2 . In the following, when we refer to Eqs. (5)
when addressing the system dynamics, we keep N finite. At
variance, to recover the thermodynamics of the system, we
refer to the large-N limit of Eqs. (5), in which they become
the “standard” integral equations for the superconducting gaps
within the SCMF approximation, with 1

N

∑
k → ∫

BZ
d2k

(2π )2 ,
with the integral taken over the full Brillouin zone.

At a given k, the eigenvalues of HMF corresponding to
Bogoliubov quasiparticle excitations are given by ±εk ≡
±

√
ξ 2

k + |�k|2 , with the corresponding fermion operator
eigenmodes 	k,± determined by the Bogoliubov-Valatin
transformation as[

	k,+
	k,−

]
=

[
cos

(
θk
2

) −eiφk sin
(

θk
2

)
e−iφk sin

(
θk
2

)
cos

(
θk
2

)
][

ck,↑
c†
−k,↓

]
, (6)

and the parameters θk, φk defined by

ξk = εk cos(θk ),

�k = εk sin(θk )eiφk . (7)

We now discuss the various superconducting phases that
can set in on varying the parameters of HMF and the corre-
sponding phase diagram of the system.

B. Superconducting phases and phase diagram

In this section, we derive the phase diagram of the system
as a function of U, V , and Z by holding t ′ and μ fixed at
selected value(s). To do so, we employ Eqs. (5) to determine
�S, �x2−y2 , and �xy at a given value of the various system
parameters.

In particular, we first study the phase diagram obtained
by setting two of the three interaction strengths to 0 and
increasing the third one. In this case, we always find a critical
value of the variable interaction strength, beyond which the
corresponding superconducting phase sets in. We draw the
corresponding phase diagrams in Fig. 2, where we plot �S

as a function of U for V = Z = 0 [panel (a)], �x2−y2 as a
function of V for U = Z = 0 [panel (b)], and �xy as a function
of Z for U = V = 0 [panel (c)] for μ = 0, 0.8, and −0.7,
respectively, with t ′ = 0. In all three cases, we identify the
superconducting phase transition, corresponding to the order
parameter developing a nonzero value as soon as the corre-
sponding interaction strength becomes greater than a finite
critical value. As a function of the chemical potential, the
critical value is recovered by solving Eqs. (5) at a given μ.
In particular, from the plots drawn at different values of μ,
we see how, as expected [45], the tendency of the system
to develop superconducting order is maximal at half-filling
(μ = 0), while it gets lower as μ is moved to either positive
or negative values.

As a next step, we now turn on two different interactions
strengths by holding at zero the third one. In this case, it is
possible to recover (at least at SCMF level) phases with two
out of �S, �x2−y2 , and �xy being �= 0. The importance of
phases as such has been, in fact, argued to play a crucial role in
the physics of high-temperature superconductors [40,46–48].
Moreover, the two-gap coexistence can lead to topologically
nontrivial superconducting phases, such as the d + id super-
conductor [49]. Finally, as we discuss in the following, having
(at least) two superconducting gaps �= 0 is an indispensable
prerequisite to recovering a DPT between superconducting
phases (including topologically nontrivial ones) along the
time evolution of the nonequilibrium system [38,39].

As specific model calculations, in Fig. 3(a) we show the
phase diagram in the U -V plane at Z = μ = t ′ = 0. In this
case, from Eqs. (5) we first find a normal (N) phase for
U < Uc and V < Vc, with (for μ = 0) Uc ≈ 0.6 and Vc ≈
0.35, and �S = �x2−y2 = �xy = 0. On either increasing U
at fixed (and small) V , or V at fixed (and small) U , we
find, respectively, a purely s-wave superconducting phase with
�S �= 0, �s2−y2 = �xy = 0, and a purely d-wave phase, with
�x2−y2 = 0, �S = �xy = 0. For large U and V of comparable
magnitude, we find here no phase where both �S and �x2−y2

are �= 0. In fact, the system undergoes a direct phase transition
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FIG. 2. (a) �S as a function of U computed from Eqs. (5) by
setting t ′ = V = Z = 0 and μ = 0 (blue line), μ = 0.8 (green line),
and μ = −0.7 (red line). (b) �x2−y2 as a function of V computed
from Eqs. (5) by setting t ′ = U = Z = 0 and μ = 0 (blue line), μ =
0.8 (green line), and μ = −0.7 (red line). (c) �xy as a function of Z
computed from Eqs. (5) by setting t ′ = U = V = 0 and μ = 0 (blue
line), μ = 0.8 (green line), and μ = −0.7 (red line).

from the s-wave to the d-wave superconducting phase (or
vice versa). Of course, we note that this is a specific result
we obtained within our SCMF approach. While it is unlikely
that a better estimate of the effects of the fluctuations might
stabilize a mixed s + d phase, pertinent modifications of our
model Hamiltonian (which go beyond the scope of our pa-
per), including additional hoppings and/or interactions, would
likely stabilize it.

At variance, as we show in Fig. 3(b) for V = 0, we find, for
μ = 0, Uc ≈ 0.6 and Zc ≈ 0.7. However, in this case, when
both U and Z are �= 0 and V = 0, in addition to the “pure”
s-wave and id-wave phases, we do find a coexistence phase
with both �S and �xy �= 0 (s + id phase). This is also what
happens when U = 0 and both V and Z are �= 0, where the
corresponding d + id phase also exhibits nontrivial topologi-
cal properties [39]. At μ �= 0 one finds that, consistently with
the results reported in Fig. 2, the nonzero chemical poten-
tial just determines a mild shrinking of the superconducting
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0.0
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FIG. 3. (a) Phase diagram in the U -V plane computed from
Eqs. (5) by setting μ = t ′ = Z = 0. (b) Phase diagram in the U -Z
plane computed from Eqs. (5) by setting μ = t ′ = V = 0. In the
figure, N , s, d , id , and s + id , respectively, denote the normal phase
(no superconducting gap), an s-wave superconducting phase (only
�S �= 0), a d-wave superconducting phase (only �x2−y2 �= 0), an id-
wave superconducting phase (only �xy �= 0), and the s + id phase,
with both �S and �xy �= 0.

regions, a feature that does not substantially affect the main
qualitative aspects of the phase diagrams reported in Fig. 3.

Finally, we point out that, although, for V = Z = 0 and at
half-filling, the superconducting state is degenerate in energy
with a charge density wave phase, as soon as a nonzero neg-
ative V and/or Z is turned on and/or the system is tuned out
of half-filling (μ �= 0), the superconducting phase comes out
to be always more stable than the charge density wave one
[45]. Consistently with the above conclusion, throughout our
paper we focused on superconducting phases only, although
with different possible kinds of gap order parameter.

Given a phase diagram such as the ones we show in Fig. 3,
a protocol leading to a DPT can, in principle, be realized by
simply preparing the system in an initial state within a given
phase and by quenching, at t = 0+, the interaction parameters
to a point within a different phase in the phase diagram.

As we evidence above, the real-time evolution induces
an effective dependence on time in the superconducting gap
order parameter [3]. The time-dependent superconducting
gap can be tuned and possibly observed in, e.g., an out-of-
equilibrium pump-probe experiment. In such an experiment,
the pump pulse induces a change in the gap. At the same time,
the reflectivity and the optical conductivity can be measured
with a second probe pulse at different pump-probe time de-
lays. The saturated reflectivity and the gap in the real part
of the optical conductivity make it possible to monitor the
magnitude of the superconducting gap as a function of time
[5,50]. It is also possible to experimentally adjust the inter-
action strengths U, V , and Z by tuning the electron-phonon
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coupling as, for example, in synthetic crystals [51], or in time-
and angle-resolved photoemission spectroscopy experiments
[52].

C. Lindblad master equation

We now review the LME approach, which we employ to
describe the dynamics of the nonequilibrium open system.

As stated above, our protocol for inducing the relax-
ation dynamics in the nonequilibrium system consists first in
quenching, at t = 0, the interaction strengths from their initial
values U (0),V (0), Z (0) (not necessarily all �= 0), from which
we determine the initial state of the system, to U (1),V (1), Z (1).
Along the derivation of Ref. [3], we study the dynamics of our
system within a time-dependent version of the SCMF approx-
imation, based on the LME approach. This approach recovers
the dissipative dynamics induced in the system by the interac-
tions between quasiparticles beyond the BCS approximation,
and/or by the coupling between the fluctuations of the or-
der parameter and the quasiparticle continuum [21,25,53,54].
Following Refs. [55,56] and using HMF in Eq. (2) as our
main system Hamiltonian, we write down the full set of
LME for the time evolution of the density matrix operator
of the system coupled to the bath, ρ(t ), which we perti-
nently complement by self-consistently recalculating, at any t ,
the (time-dependent) superconducting order parameter �k(t ).
Eventually, we show that our systematic approach is perfectly
consistent with the one introduced in Ref. [21] on phenomeno-
logical grounds.

The LME for ρ(t ) has the form

dρ(t )

dt
= − i[HMF(t ), ρ(t )] + g

∑
λ=±

×
∑

k

[1 − f (λεk(t ))]{[	k,λ(t ), ρ(t )	†
k,λ(t )]

− [	†
k,λ(t ), 	k,λ(t )ρ(t )]}

+ g
∑
λ=±

∑
k

f (λεk(t )){[	†
k,λ(t ), ρ(t )	k,λ(t )]

− [	k,λ(t ), 	†
k,λ(t )ρ(t )]}. (8)

In Eq. (8) we have denoted by g the strength of the cou-
pling between the system and the external bath. Moreover, we
have set the coupling strength corresponding to the quasipar-
ticle annihilation and creation operators, 	k,λ and 	

†
k,λ [see

Eq. (6)], so as to make them proportional to [1 − f (λεk )] and
f (λεk ), respectively, with f (ε) being the Fermi distribution
function. Accordingly, Eq. (8) describes the system coupled
to a bath with which it can exchange both energy and mat-
ter, through the injection or the annihilation of Bogoliubov
quasiparticles. Indeed, Lindblad jump operators describe the
creation/annihilation of these quasiparticles with, as stated
above, a transition probability chosen so as to satisfy the
detailed balance condition and to make the stationary state of
the LME to be described by a thermal grand-canonical density
matrix. Our choice is a particular case of the generic system-
bath Hamiltonian [as shown in Eq. (3.128) of Ref. [14]],
which is realized as a pertinent linear combination of the
tensor products between system and bath eigenstates [note

that changing the linear combination would only affect the
numerical values of the coupling strengths, not the general
form, of Eq. (8)].

While, in principle, we could arbitrarily choose the Lind-
blad jump operators and the corresponding coupling strengths,
setting them as we do here, we make sure that the detailed
balance is ensured and the Boltzmann distribution is a station-
ary solution of the Lindblad equation [14,16]. Moreover, as
we discuss below, our choice eventually yields results for the
time evolution and for the asymptotic alternative states of our
system that are perfectly consistent with the phenomenologi-
cal approach of Ref. [21]. Since we self-consistently compute
the superconducting order parameter, �k(t ), at any time t ,
HMF(t ) at the right-hand side of Eq. (8) acquires an explicit
dependence on t and, accordingly, its eigenvalues [±εk(t )]
and the corresponding eigenmodes [	k,±(t )] depend on
t as well.

To write the SCMF equation for �k(t ), we take advan-
tage of the fact that HMF(t ) is quadratic in the quasiparticle
operators and that the coupling to the external bath is linear
in the same operators. This allows us to employ Eq. (8) to
write a closed set of equations for the (time-dependent) av-
erage values of the products of two single-fermion operators.
Specifically, we set

νk,σ (t ) = σTr
[
ρ(t )

(
c†

k,σ ck,σ − 1
2

)]
,

fk(t ) = Tr[ρ(t )ck,↓c−k,↑]. (9)

We now point out that, on the one hand, there is zero
spin polarization in the initial state, and on the other hand,
no spin polarization can be generated along the dynamical
evolution of the system, as described by Eq. (8). Indeed, this
can be readily verified by introducing the total spin operator
S = ∑

k Sk, with the Anderson isospin operator at given k,
Sk, defined as

Sa
k = 1

2
[c†

k,↑, c−k,↓]σ a

[
ck,↑

c†
−k,↓

]
, (10)

{σ a} being the Pauli matrices. At time t , we obtain
〈S(t )〉 = Tr[ρ(t )S]. From Eq. (8), taking into account that
[HMF(t ), S] = 0 and that the quasiparticle operators 	k,λ(t )
carry a well-defined spin content, it can be readily shown that
d〈S(t )〉

dt = 0, which implies νk,↑(t ) = −νk,↓(t ) ≡ νk(t ). As a
result, we recover, in the zero-temperature limit, the (closed)
set of differential equations,

dνk(t )

dt
= − gξk

εk(t )
− 2gνk(t ) + Im{[�k(t )]∗ fk(t )},

dfk(t )

dt
= −(2iξk + 2g) fk(t ) − 2i�k(t )νk(t ) + g�k(t )

εk(t )
,

(11)

with εk(t ) =
√

ξ 2
k + |�k(t )|2 , and Im denoting the imaginary

part. To compute �k(t ), we resort to the time-dependent
SCMF approach. This corresponds to a time-dependent gen-
eralization of the BCS variational ansatz, which is equivalent
to assuming a time-dependent generalization of the latter one
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of Eqs. (4) in the form

�k(t ) = �S (t ) + 2�x2−y2 (t ){cos(kx ) − cos(ky)}
− 4i�xy(t ) sin(kx ) sin(ky). (12)

The parameters �S (t ), �x2−y2 (t ), and �xy(t ) have to
be self-consistently computed by employing a pertinent,
time-dependent generalization of Eqs. (5), by replacing
�k(t )/εk(t ) at the right-hand side of the equations with fk(t )
obtained by solving Eqs. (11). To further ground the time-
dependent SCMF approach leading to Eq. (12), we note that
the same results as the ones recovered within our approach
were derived in Ref. [3] within the Keldysh nonequilibrium
approach, in the limit of a small change in the interaction
strengths.

As we pointed out above, differently from the derivation
of Ref. [3], in our approach the direct coupling to the external
bath always determines a finite relaxation timescale [∼(2g)−1]
for the superconducting order parameter. This uniquely sets
the asymptotic value of �k(t ) as t → ∞ to the one corre-
sponding to the equilibrium superconducting phase described
by H in Eq. (1) with interaction strengths U (1),V (1), Z (1). As
we discuss in the following, when taking the system across a
DPT, the coupling to the external bath is also crucial in setting
the time t∗ at which the transition takes place.

To physically ground our choice for the Lindblad operators
entering the LME in Eq. (8), we now compare our formalism
with the phenomenological approach of Ref. [21] (to which
we refer for a systematic discussion about the relation between
the terms of the phenomenological equation—and, therefore,
of the LME—and the microscopic quasiparticle dynamics).
To do so, we employ Eqs. (11) [which are a direct conse-
quence of the LME in Eq. (8)]. We can therefore write down
the equations of motion for Sk(t ) in Eq. (10) as

d〈Sk(t )〉
dt

= 〈Sk(t )〉 × Bk(t ) − 2g〈Sk(t )〉 + 2g〈Sk,∗(t )〉, (13)

with

Bk(t ) =
⎡
⎣Re[−�k(t )]

Im[�k(t )]
ξk

⎤
⎦ (14)

and

〈Sk,∗(t )〉 = 1

2εk(t )
Bk(t ). (15)

From Eq. (15), we infer that the vector 〈Sk,∗(t )〉 is always
proportional to Bk(t ), that is, fully longitudinal. Thus, we
conclude that Eq. (14) has exactly the same form as Eq. (9) of
Ref. [21], provided, in the formalism of that paper, one takes
the longitudinal (T −1

1 ) and transverse (T −1
2 ) relaxation rates

for Sk according to T −1
1 = T −1

2 = 2g. In fact, finite values of
T −1

1 and T −1
2 in a nonequilibrium superconductor have been

argued to be related to the (inverse) timescales of integrability-
breaking (that is, non BCS-like) interactions. Specifically,
T1 is related to the interaction among quasiparticles, while
T2 to the direct coupling between the quasiparticles and the
fluctuations of the superconducting order parameter [21]. In
general, both T1 and T2 must be regarded as phenomenological
parameters, and their values depend on the specific material

and on the protocol implemented in the measurement. For
instance, in the case in which nonequilibrium is induced by
acting with strong optical pulses with terahertz frequencies on
NbN, or on Nb3Sn, typical values of the order of 10 ps have
been fitted from the experiments discussed in Ref. [21], with
a pulse duration of a few ps. Assuming, in our model, an over-
all energy scale J ∼ 1 eV would yield g ∼ 0.002. However,
since, within our protocol, we assume that the superconductor
is adiabatically prepared in the nonequilibrium state, starting
from t → −∞, we may expect, in a realistic system, values
of g that are significantly larger than the previous estimate.
Consistently with the uncertainty on its actual value in a
realistic system, we perform our calculations for at least two
values of g, typically different by orders of magnitude from
each other.

In both cases, the bath is a gas of Bogoliubov quasiparti-
cles. In the self-consistent time evolution, the bath is intrinsic
to the system and the LME accounts for residual interac-
tions between the Bogoliubov quasiparticles neglected in the
mean-field BCS approach [21]; in the non-self-consistent time
evolution, the proximity effect may allow, for instance, for
quasiparticles to be exchanged between the system and an
underneath superconductor at equilibrium [57].

In the following, we present and discuss our results for
the time evolution of the superconducting order parameter in
the system coupled to the external bath in some paradigmatic
cases. Also, in Appendix B we review the same calculation
for the case in which, at t = 0, one directly quenches �k(t ).
Besides being useful for comparison with the case in which
one quenches the interaction strengths, this latter approach is
of great relevance in our calculation of the spin-Hall conduc-
tance in Ref. [39].

III. TIME EVOLUTION OF THE SUPERCONDUCTOR
COUPLED TO THE EXTERNAL BATH

We now discuss the time evolution of our nonequilib-
rium open system. Specifically, we initialize the system in
the ground state of HMF with an assigned value of the gap
parameter �

(0)
k , corresponding to the state realized at different

values of the interaction strengths, U (0), V (0), and Z (0). Then,
at t = 0+, we quench the interaction strengths to U (1), V (1),
and Z (1) and, at the same time, we turn on the coupling g to
the bath. For t > 0, the system evolves toward its asymptotic
state, and the superconducting gaps explicitly depend on t
according to Eqs. (12).

Along our analysis, we first consider the case in which only
one of the three interaction strengths is �= 0 and, at a second
stage, we generalize our derivation to the case in which two
interaction strengths become �= 0. This eventually allows us to
investigate whether a DPT is expected to set in along the time
evolution of the system and, if so, what are its main features.

Throughout our derivation, we work in the zero-
temperature limit. In this limit, the function f (λεk(t )) in the
coupling strengths in front of the Lindblad operators in Eq. (8)
is either equal to 0, if λ = +1, or to 1, if λ = −1, regard-
less of t . While this provides a remarkable simplification of
our derivation below, following our above analysis it is in
principle straightforward to address the finite-temperature
case as well.
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FIG. 4. (a) Time evolution of the rescaled order parameters
�(t )/� self-consistently computed for g = 0.01, for the case
in which �S (t = 0) = 0.0750 and �x2−y2 (t = 0) = �xy(t = 0) =
0 (computed at U = 1.5, V = Z = 0, red curves), for the case
in which �x2−y2 (t = 0) = 0.0607 and �S (t = 0) = �xy(t = 0) = 0
(computed at V = 1.5, U = Z = 0, blue curves), and for the case
in which �xy(t = 0) = 0.1208 and �x2−y2 (t = 0) = �S (t = 0) = 0
(computed at Z = 1.5, U = V = 0, green curves). [Inset: zoom of
the plots restricted to the interval 0 � t � 20.] (b) Same as in panel
(a), but with g = 0.05.

A. Relaxation dynamics of a single-component order parameter

We begin by keeping only one among the interaction
strengths U, V , and Z to be �= 0. In Fig. 4 we plot the su-
perconducting gap, normalized to its asymptotic (that is, t →
∞) value, for the case in which �S (t ) �= 0 and �x2−y2 (t ) =
�xy(t ) = 0 (red curves), in which �x2−y2 (t ) �= 0 and �S (t ) =
�xy(t ) = 0 (blue curves), and for the case in which �xy(t ) �=
0 and �x2−y2 (t ) = �S (t ) = 0 (green curves). We respectively
set g = 0.01 [Fig. 4(a)] and g = 0.05 [Fig. 4(b)]. Here, as ba-
sically anywhere else below, we set t ′ = μ = 0. From Fig. 4,
we see that, for any one of the three gaps, the relaxation rate
is solely determined by the coupling to the bath: the larger
is g, the faster is the relaxation of the superconducting order
parameter toward its asymptotic value. In addition, we also
note a remarkable dependence of the relaxation time on the
symmetry of the order parameter. This is demonstrated by the
different shape of the curves for different gaps, which is appar-
ent in both cases, although it is much more evident in Fig. 4(a)
due to the smaller value of g and to the correspondingly
slower relaxation of the superconducting gaps. Remarkably,
a similar effect also appears for a closed system (g = 0) [3].
It is likely related to different dissipation mechanisms that set
in along the relaxation of the order parameter. Such effects
are, in general, well-captured by the time-dependent SCMF
approach. At variance, if one gives up self-consistency and
simply “quenches” the superconducting gap at t = 0 (see
Appendix B for details), any dependence on the symmetry
of the superconducting order parameter is washed out. To
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FIG. 5. Time evolution of the rescaled order parameters �(t )/�
non-self-consistently computed for g = 0.01 for the case in which
�S (t = 0) = 0.075 and �x2−y2 (t ) = �xy(t ) = 0 (computed at U =
1.5, V = Z = 0, red curve), for the case in which �x2−y2 (t = 0) =
0.030 and �S (t ) = �xy(t ) = 0 (computed at V = 1.5, U = Z = 0,
blue curve), and for the case in which �xy(t = 0) = 0.0302 and
�x2−y2 (t ) = �S (t ) = 0 (computed at Z = 1.5, U = V = 0, green
curve).

evidence this point, in Fig. 5 we draw plots similar to the
ones in Fig. 4 but by giving up self-consistency. Indeed, we
then see no appreciable dependence of the time-dependent
superconducting order parameter on its symmetry.

Another remarkable feature of the time evolution of �k(t )
is given by the oscillations in the amplitude of the super-
conducting order parameter. While they have already been
noticed and discussed in Ref. [3], in our specific case they
exhibit a peculiar behavior, due to the nonzero coupling to
the bath. As the system is prepared in a nonequilibrium state
that, in principle, has a nonzero overlap with all the excited
states of the Hamiltonian that determines the time evolution
for t > 0, we expect, for small time intervals, oscillations in
the amplitude of the order parameters over several frequen-
cies. To evidence that this is, in fact, the case, in the inset
of Fig. 4(a) we show the same plot as in the main figure,
but restricted to the interval 0 � t � 20. We clearly see the
expected oscillations, which, as t gets large, start to be damped
by the finite value of g. A similar effect can be identified in the
inset of Fig. 4(b), although now the damping is much faster,
due to the larger value of g.

B. Relaxation dynamics of a two-component order parameter

We now focus on the case in which (at least) two interac-
tion strengths are �= 0. We consider the relaxation dynamics
of a system prepared in the ground state of HMF in Eq. (2),
with �

(0)
S = �

(0)
x2−y2 = 0, and �(0)

xy = 0.03, which corresponds

to having U (0) = V (0) = 0, Z (0) > 0. Moving across t = 0,
we quench the interaction strengths to (U (1),V (1), Z (1) ) =
(1.5, 0, 1.5). As a result, the system develops a nonzero �S (t )
and �xy(t ), which we compute for two different values of g
and for t ′ = μ = 0.

In Fig. 6 we plot �S (t ) and �xy(t ). To evidence the ef-
fects of the coupling to the bath on the time evolution of the
superconducting gap, we perform the calculation for g = 0.2
[Fig. 6(a)] and for g = 0.002 [Fig. 6(b)]. We see that, on
the one hand, there is, for the larger values of g, a suppres-
sion of the oscillations in the superconducting gap. However,
in both cases we identify a finite interval of time [0, t∗]
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FIG. 6. (a) Time evolution of �S (t ) (red curve) and of �xy(t )
(green curve) computed in a system with U = Z = 1.5, V = 0, cou-
pled to a bath with interaction strength g = 0.2 and prepared, at
t = 0, in a state with �(0)

xy ≈ 0.03 (inset: the same plot [for �xy(t )
only], restricted to 0 � t < 20). (b) Same as in panel (a) but with
g = 0.002. In both cases, the vertical dashed lines mark the onset
of the DPT (inset: the same plot [for �xy(t ) only], restricted to
0 � t < 40).

within which �S (t ) remains pinned at 0, and �xy(t ) remains
finite and basically constant at large g, while it smoothly
increases, with a fast oscillating modulation, at small g. Also,
we note how the “critical time” t∗ increases upon lowering
g. As t goes across t∗, �S (t ) jumps to a finite value. For
t > t∗, for g = 0.2, �S (t ) has a finite value, roughly con-
stant. For g = 0.002, �S (t ) displays damped oscillations. In
both cases, however, we clearly see how, as t → ∞, �S (t )
converges toward the value �S,∞ = 0.15. A similar trend is
shown by �xy(t ) for t > t∗, which also asymptotically flows to
�xy,∞ = 0.073. Remarkably, (�S,�xy) = (�S,∞,�xy,∞) =
(0.15, 0.073) is exactly the set of values of the superconduct-
ing gap that one finds from the phase diagram of Fig. 3(b)
for U = Z = 1.5. Thus, we conclude that the net effect of
coupling the system to the bath is to trigger a time evolu-
tion of the superconductor between two equilibrium phases,
an initial phase with �

(0)
S = �

(0)
x2−y2 = 0, �(0)

xy = 0.03, and a

final (asymptotic) phase with �S,∞ = 0.15, �
(1)
x2−y2 = 0, and

�xy,∞ = 0.073. Therefore, as a matter of fact, both plots in
Fig. 6 evidence a DPT in our system, whose precise loca-
tion (t = t∗) depends on the value of g. In the following,
we further corroborate our conclusion by studying the time
dependence of the fidelity between the initial state of the
system and the state that, at time t , is described by the density
matrix ρ(t ) [10–12].

To summarize, from the time dependence of the supercon-
ducting order parameters, we clearly find evidence for DPTs,
basically determined by the mismatch between the initial and
the final state of the system. To better ground our conclusions,

in the following we estimate the fidelity F (t ) along the time
evolution, finding an excellent consistency with the conclu-
sions about the DPT we recovered from the time-dependent
superconducting order parameters.

IV. FIDELITY ACROSS THE DYNAMICAL
PHASE TRANSITION

In Sec. III B we inferred the emergence of the DPT from
the time dependence of the superconducting order parame-
ter after quenching the interaction strengths. In general, in
a closed nonequilibrium system that, at time t , is described
by a pure state |ψ (t )〉, the standard mean to analyze a DPT
is looking at nonanalyticities in the Loschmidt echo L(t ) =
|〈ψ (0)|ψ (t )〉|2, with |ψ (0)〉 being the initial state of the sys-
tem [10–12]. In our case, for t > 0, the state is described by
the density matrix ρ(t ), which, in general, does not correspond
to a pure quantum state. For this reason, we now characterize
the DPT by looking at nonanalyticities in the fidelity F (t )
between |ψ (0)〉 and density matrix ρ(t ) [10–12,34]. Specif-
ically, in our case F (t ) is defined as [58]

F (t ) = 〈ψ (0)|ρ(t )|ψ (0)〉. (16)

The time evolution of ρ(t ) for t > 0 is determined ac-
cording to the LME in Eq. (8). Due to the time-dependent
self-consistency, Eq. (8) is effectively nonlinear and, there-
fore, it is quite a formidable task to solve it in practice, even
for small lattices. For this reason, in the following, we resort
to a sequence of reasonable approximations, which eventually
allow us to recast F (t ) in a tractable form.

To begin with, let us introduce the basis of the N -particle
many-body states created by the quasiparticle creation opera-
tors determined by HMF(t ). Specifically, we set

|N , t〉{q j },{λ j} =
N∏
j=1

[	q j ,λ j (t )]†|0〉, (17)

with the vacuum |0〉 defined by the condition 	q,λ(t )|0〉 = 0,
∀q, λ. Now, on numerically integrating Eqs. (11) for νk(t ),
we easily verify that, in the half-filled system, νk(t ) = 0
constantly, along the time evolution. Therefore, consistently
with the result that, on average, we get N = N , we make
the assumption that all the density matrix elements involving
states with total filling different from 1/2 are negligible, and
then can be safely set equal to 0. This allows us to simplify
the right-hand side of Eq. (8) by neglecting terms that would
change N . Accordingly, we resort to the approximate equa-
tion for ρ(t ) given by

∂ρ(t )

∂t
≈ − i{HMF(t )ρ(t ) − ρ(t )HMF(t )}

− g
∑

k

{[	k,+(t )]†	k,+(t )ρ(t )

+ ρ(t )[	k,+(t )]†	k,+(t ) + 	k,−(t )[	k,−(t )]†ρ(t )

+ ρ(t )	k,−(t )[	k,−(t )]†}. (18)

As a result, retaining only the matrix elements of ρ(t ) be-
tween states at half-filling (that is, states containing N = N
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particles, due to the spin degeneracy), we write it in the ap-
proximate form

ρ(t ) ≈
∑
{q j}

∑
{λ j};{μ j}

ρ
(N )
{λ j},{μ j},{q j}(t )

× |N, t〉{q j },{λ j} {q j},{μ j}〈N, t |, (19)

with N being the number of lattice sites.
Next, we note that, due to the parametric dependence on

t of the operators 	k,λ(t ), a solution of the time-dependent
Schrödinger equation,

∂

∂t
|ψ (t )〉 = HMF(t )|ψ (t )〉, (20)

is not simply provided by setting

|ψ (t )〉 = exp

⎡
⎣−i

∫ t

0

N∑
j=1

λ jεq j (τ ) dτ

⎤
⎦ |N, t〉{q j },{λ j}, (21)

as one would in fact obtain
∂

∂t
|ψ (t )〉 = − iHMF(t )|ψ (t )〉

+ exp

⎡
⎣−i

∫ t

0

N∑
j=1

λ jεq j (τ ) dτ

⎤
⎦ ∂

∂t
|N, t〉{q j },{λ j}.

(22)

Yet, while the “dynamical” phases on the right-hand side of
Eq. (21) typically grow linearly with time t , the time evolution
of the state |N, t〉{q j },{λ j} [which is determined by the paramet-
ric dependence on t of the operators 	k,λ(t )] takes place over
periodic patterns in time. For this reason, it is reasonable to
assume that the dependence on time of the dynamical phases
takes place over typical frequencies much larger than the one
associated with the parametric dependence of |N, t〉{q j },{λ j} on
t . Thus, in the following we neglect the latter contribution to
the right-hand side of Eq. (22). This leads us to write a sim-
plified (and closed) set of equations for the matrix elements
ρ

(N )
{λ j},{μ j},{q j}(t ), given by

ρ
(N )
{λ j},{μ j},{q j}(t )

dt
= − i

N∑
j=1

{[λ j − μ j]εq j (t )}ρ (N )
{λ j},{μ j},{q j}(t )

− g

⎧⎨
⎩2N +

N∑
j=1

[λ j + μ j]

⎫⎬
⎭ρ

(N )
{λ j},{μ j},{q j}(t ).

(23)

Upon integrating Eqs. (23), we obtain

ρ
(N )
{λ j},{μ j},{q j}(t )

= e[−i
∫ t

0 dτ
∑N

j=1[λ j−μ j ]εq j (τ )]

× exp

⎡
⎣−g

⎧⎨
⎩2N +

N∑
j=1

[λ j + μ j]

⎫⎬
⎭t

⎤
⎦ρ

(N )
{λ j},{μ j},{q j}(0).

(24)

An important consequence of Eq. (24) is that all the el-
ements ρN

{λ j},{μ j},{q j}(t ) are exponentially suppressed as soon

as 2gt � 1, except for the diagonal ones with λ1 = · · · =
λN = −, and μ1 = · · · = μN = −. Over timescales > (2g)−1,
we therefore obtain

ρ(t ) ≈ |N, t〉{q j },{−}{q j},{−}〈N, t | . (25)

Moreover, we point out how, in writing the right-hand
side of Eq. (25), we did not sum over the q j , as the state
|N, t〉{q j },{−} is uniquely fixed by populating the negative-
energy modes at time t for all possible values of q j . As a result
of our approximations, we eventually find

F (t ) = 〈ψ (0)|ρ(t )|ψ (0)〉
≈ |〈ψ (0)|N, t〉{q j },{−}|2. (26)

Remarkably, Eq. (26), which is valid for 2gt > 1 and
which provides us with the starting point of our follow-
ing derivation, coincides with the value that the Loschmidt
echo would have in a closed system whose (pure) collective
state, at time t > 0, is given by |ψ (t )〉 = ∏

j[	q j ,−(t )]†|0〉.
In fact, the analogy is not accidental. For a closed system,
the Loschmidt echo is nothing but a fidelity between the
state at the initial time t = 0 and its time-evolved counter-
part at general t . Therefore, if the evolved state crosses a
quantum phase transition, a nonanalyticity is expected on
F (t ) [12,59,60].

To probe the DPT, in the following we rather look
for nonanalyticities in the rate function ω(t ), defined as
[10–12,23,39]

ω(t ) = − 1

N
log[F (t )], (27)

by computing F (t ) as

F (t ) = |〈ψ (t = 0)|U (t )|ψ (t = 0)〉|2, (28)

with U (t ) = T exp[−i
∫ t

0 dτH (τ )], where T is the time-
ordered evolution operator. To compute the right-hand side of
Eq. (28), we follow a two-step procedure. Specifically, we first
numerically compute �k(t ) within the time-dependent SCMF
approximation. Therefore, we use �k(t ) self-consistently
computed as an input parameter of the time-dependent Hamil-
tonian HMF(t ), which we eventually employ to compute the
right-hand side of Eq. (28). In this way, we compute ω(t )
along the time evolution of the systems with parameters set as
in Fig. 6. In Fig. 7 we draw the corresponding plot of ω(t ). The
blue and the red curves, respectively, correspond to g = 0.2
and 0.002, with all the other parameters chosen exactly as in
Fig. 6. In both cases, we mark with a vertical dashed line the
time t = t∗ at which the system goes through the DPT. Despite
some differences between the two plots, including, of course,
the different values for t∗ determined by the different values
of g, we note an overall similar behavior of ω(t ). Specifically,
for 0 � t < t∗, ω(t ) takes only a mild time dependence on t ,
with ω(t ) ∼ 0.1–0.2 denoting an appreciable overlap between
|ψ (0)〉 and |ψ (t )〉. Therefore, we see that the first part of
the plots indicates the persistence of the system in the initial
prequench phase for times t up to the transition time t∗ [12].
At t = t∗, a sudden change in the slope of ω(t ) evidences
how t = t∗ corresponds to a point where the derivative of ω(t )
does not exist, that is, to a typical sort of nonanalyticity that
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FIG. 7. Rate function ω(t ) [Eq. (27)] as a function of time t
computed with the time-dependent MF Hamiltonian with parame-
ters �S (t ) and �xy(t ) as in Fig. 6, using g = 0.2 (blue curve) and
g = 0.002 (red curve). The dashed vertical lines mark the DPT in the
two cases.

signals a DPT. For t > t∗, the rapid increase in ω(t ), follow-
ing the sudden change in the slope, corresponds to a drastic
reduction in F (t ) (by orders of magnitude), which is a clear
signal that, moving across t = t∗, the system has gone through
a DPT.

About the relation between t∗ and the coupling g, we note
that the physical intuition behind the existence of a critical
time for a DPT is related to the geometric properties of the
energy landscape of the system [61]. During the dissipative
dynamics induced by the coupling with the bath, the system
evolves with a speed that depends on its geometric properties.
If the system crosses a “flat” region in energy, the time evolu-
tion is extremely slow. As soon as the edge of the stationary
solution is reached, the evolution becomes extremely fast and
the DPT toward the true stationary solution takes place. The
critical time at which this happens depends on the trajectory
itself and cannot easily be predicted due to the fact that the
energy landscape itself is a function of time in the SCMF. A
similar behavior has been observed in a much simpler spin
system, where it has also been observed that t∗ can depend on
the existence of shortcuts in the energy landscapes [16], or on
the values of the bath-system coupling strengths [18].

While we do not discuss this point in our paper, it is finally
worth mentioning that, in addition to the fidelity, one might
also potentially use the entropy S(t ) as an effective mean
to detect the DPT. Indeed, along the derivation presented in
Ref. [62], we expect that, in the zero-temperature limit, S(t )
for our system would be 0 both at t = 0 (because our system
is prepared in a pure state) as well as for t → ∞ (because
asymptotically our system is described by a Boltzmann dis-
tribution at T = 0). In between, for g = 0.2, from the plot
of Fig. 6(a), we infer that the time evolution of the system
is characterized by large intervals of time over which the
gaps keep constant, and by rapid changes in the gap them-
selves right after starting the time evolution and at the DPT.
The rapid changes in the gaps can be effectively regarded as
quenches of the superconducting order parameters. Therefore,
by analogy with what is discussed in Ref. [62] for a bosonic
system, we expect that a significant number of quasiparticle
excitations are created at any change in the gaps, contributing
to a corresponding sharp increase of the entropy. The increase
of the entropy should, therefore, work as a signal of the DPT.

At smaller values of g, we expect that the entropy increase
is present at the DPT as well, although the feature should be
smoother and less marked.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have constructed a protocol to induce
nonequilibrium dynamics in an open, superconducting system
coupled to an external bath. Pertinently choosing the jump
operators in the Lindblad master equation approach to the dis-
sipative dynamics of the density matrix of the system, we let
the system evolve toward the thermodynamic stationary state
by making sure that the Boltzmann distribution is a stationary
solution of the Lindblad equation. Along our derivation, we
have discussed in detail how the mismatch between the initial
state and the asymptotic state of the system can lead to a
dynamical phase transition, which, under suitable conditions,
may also determine a transition between a topologically non-
trivial and a topologically trivial phase, or vice versa [39].

To monitor the system across the DPT, we look at the
self-consistently computed superconducting gap �k(t ) and at
the fidelity F (t ). At the time t∗ at which the phase transition
takes place, the components of �k(t ) abruptly change: this
corresponds to a nonanalyticity (a change in the slope) of the
function ω(t ) = − lnF (t )

N , that is, a point where ω(t ) is not
differentiable.

As a general comment we note that, while there is already
a remarkable amount of results on DPTs in closed systems,
still very little is known about DPTs in open systems. In our
paper, we attempt to fill such a gap by performing an explicit
model calculation of a DPT in superconducting, open systems.
Among the results we obtain along our derivation, we show
how, in an open system, the mismatch between the initial
state and the choice of the Hamiltonian parameters, combined
with the relaxation dynamics due to the coupling to the bath,
triggers the onset of the DPT, how the location in time of the
DPT (t∗) is affected by the coupling to the bath, and how it
is possible, by pertinently tuning the system parameters, to
select the asymptotic state toward which the system evolves.

In principle, our approach can be readily generalized
to a generic dynamical phase transition in other many-
body, fermionic systems [63–65]. Of course, our model is
amenable to substantial improvements, possibly on the nu-
merical computational side, such as resorting to a fully
time-dependent mean-field Hamiltonian HMF(t ), in which
�k(t ), self-consistently computed, should appear as a time-
dependent parameter. Also, it would be extremely interesting
to perform a systematic analysis of how the critical time t∗
depends on the value of g, thus to eventually recover the
results of Ref. [3] as a limiting case of ours. While interesting,
all these tasks fall beyond the scope of this paper, and we are
planning to address them as a further development of the work
we present here.
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APPENDIX A: SELF-CONSISTENT MEAN-FIELD
APPROXIMATION FOR THE SUPERCONDUCTING

HAMILTONIAN IN EQ. (1)

In this Appendix, we provide the details of the SCMF
approximation, through which we trade H in Eq. (1) for the
MF Hamiltonian, HMF, in Eq. (2).

In the Hamiltonian of Eq. (1), we have introduced three
different interactions, which, in resorting to the SCMF ap-
proximation, we decouple as follows:

(i) Local superconducting pairing:

− U
∑

r

〈c†
r,↑cr,↑c†

r,↓cr,↓〉 → U
∑

r

〈cr,↓cr,↑〉〈c†
r,↑c†

r,↓〉

− U
∑

r

〈cr,↓cr,↑〉c†
r,↑c†

r,↓ − U
∑

r

cr,↓cr,↑〈c†
r,↑c†

r,↓〉

= N

U
|�S|2 −

∑
r

{�Sc†
r,↑c†

r,↓ + �∗
Scr,↓cr,↑}, (A1)

with �S = U 〈cr,↓cr,↑〉.
(ii) Nearest-neighbor superconducting pairing:

−V

2

∑
r,δ̂

∑
σ

∑
σ ′

c†
r,σ cr,σ c†

r+δ̂,σ ′cr+δ̂,σ ′

→ V

2

∑
r

∑
δ̂

∑
σ

〈cr,σ cr+δ̂,σ̄ 〉〈c†
r+δ̂,σ̄

c†
r,σ 〉

− V

2

∑
r

∑
δ̂

∑
σ

〈cr,σ cr+δ̂,σ̄ 〉c†
r+δ̂,σ̄

c†
r,σ

− V

2

∑
r

∑
δ̂

∑
σ

cr,σ cr+δ̂,σ̄ 〈c†
r+δ̂,σ̄

c†
r,σ 〉

= N

V

∑
δ̂

|�NN(δ̂)|2 −
∑

r

∑
δ̂

{�NN(δ̂)c†
r+δ̂,↑c†

r,↓

+ [�NN(δ̂)]∗cr,↓cr+δ̂,↑}, (A2)

with �NN(δ̂) = V 〈cr,↓cr+δ̂,↑〉 and with the additional assump-
tion that 〈cr,↓cr+δ̂,↑〉 = −〈cr,↑cr−δ̂,↓〉. (Here, σ̄ = −σ is the
spin index opposite to σ .)

(iii) Next-to-nearest-neighbor superconducting pairing:

− Z

2

∑
r,δ̂′

∑
σ

∑
σ ′

c†
r,σ cr,σ c†

r+δ̂′,σ ′cr+δ̂′,σ ′

→ Z

2

∑
r

∑
δ̂′

∑
σ

〈cr,σ cr+δ̂′,σ̄ 〉〈c†
r+δ̂′,σ̄

c†
r,σ 〉

− Z

2

∑
r

∑
δ̂

∑
σ

〈cr,σ cr+δ̂′,σ̄ 〉c†
r+δ̂′,σ̄

c†
r,σ

− Z

2

∑
r

∑
δ̂

∑
σ

cr,σ cr+δ̂′,σ̄ 〈c†
r+δ̂′,σ̄

c†
r,σ 〉

= N

Z

∑
δ̂

|�NNN(δ̂′)|2 −
∑

r

∑
δ̂

{�NNN(δ̂′)c†
r+δ̂′,↑c†

r,↓

+ [�NNN(δ̂′)]∗cr,↓cr+δ̂′,↑}, (A3)

with �NNN(δ̂′) = Z〈cr,↓cr+δ̂′,↑〉 and with the additional as-
sumption that 〈cr,↓cr+δ̂′,↑〉 = −〈cr,↑cr−δ̂′,↓〉.

Resorting to Fourier space, we obtain H = HK + HP +
HQ, with the kinetic energy and the pairing term, respectively,
given by

HK =
∑

k

∑
σ

{−2[cos(kx ) + cos(ky)] − 2t ′[cos(kx + ky)

+ cos(kx − ky)] − μ}c†
k,σ ck,σ ≡

∑
k

∑
σ

ξkc†
k,σ ck,σ ,

HP = −
∑

k

{
�S +

∑
δ̂

e−ik·δ̂�NN(δ̂)

+
∑
δ̂′

e−ik·δ̂′
�NNN(δ̂′)

}
c†

k,↑c†
−k,↓ + H.c.

≡ −
∑

k

{�kc†
k,↑c†

−k,↓ + [�k]∗c−k,↓ck,↑}, (A4)

with

ξk = −2[cos(kx ) + cos(ky)] − 4t ′ cos(kx ) cos(ky) − μ,

�k = �S +
∑

δ̂

e−ik·δ̂�NN(δ̂) +
∑
δ̂′

e−ik·δ̂′
�NNN(δ̂′).

Setting

�NN(δ̂) =
{

+�x2−y2 if δ̂ = ±x̂,
−�x2−y2 if δ̂ = ±ŷ,

(A5)

�NNN(δ̂′) =
{

−i�xy if δ̂′ = ±(x̂ + ŷ),
+i�xy if δ̂′ = ±(x̂ − ŷ),

we obtain the expression of �k in Eq. (4). Finally, the energy
of the superconducting condensate, HQ, is given by

HQ = N

U
|�S|2 + 4N

V
|�x2−y2 |2 + 4N

Z
|�xy|2. (A6)
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Minimizing the total energy with respect to �S, �x2−y2 ,
and �xy, we obtain the self-consistent equations for the gap
order parameter, given by

�S = U

2N

∑
k

�S

εk
ϕ(εk ),

�x2−y2 = V

2N

∑
k

�x2−y2 [cos(kx ) − cos(ky)]2

εk
ϕ(εk ),

�xy = 2Z

N

∑
k

�xy sin2(kx ) sin2(ky)

εk
ϕ(εk ), (A7)

with εk =
√

ξ 2
k + |�k|2 and ϕ(εk ) = f (−εk ) − f (εk ), with

f (εk ) being the Fermi distribution function.
From the self-consistent equations in Eqs. (A7) (taken in

the zero-temperature limit), we have derived the phase dia-
gram discussed in the main text.

APPENDIX B: RELAXATION DYNAMICS FOLLOWING
A SUDDEN QUENCH ON �k(t )

In this Appendix, we present a simplified version of the
approach we used throughout our paper. Specifically, rather
than quenching, at t = 0, the interaction strengths, we directly

quench the superconducting order parameter, so that it takes
the form

�̂k(t ) = �
(0)
k θ (−t ) + �kθ (t ). (B1)

As a result of giving up self-consistency, for t > 0,
Eqs. (11) become purely linear and simplify to

dνk(t )

dt
= −2gνk(t ) + gξk

εk
+ 2 Im[�k[ fk(t )]∗],

dfk(t )

dt
= −2(g + iξk ) fk(t ) + 2i�kνk(t ) + g�k

εk
, (B2)

with εk =
√

ξ 2
k + |�k|2 and the initial conditions given by

νk(t = 0) = ξk

ε
(0)
k

,

fk(t = 0) = �
(0)
k

ε
(0)
k

, (B3)

with ε
(0)
k =

√
ξ 2

k + |�(0)
k |2 . We may now readily solve

Eqs. (B2) in terms of the Laplace transforms of νk(t ) and
fk(t ). As a result, we obtain

νk(z) = gξk

εkz(z + 2g)
+

[
(z + 2g){2 Im{[ fk(0)]∗�k} + (z + 2g)νk(0)} + 4ξkRe{[ fk(0)]∗�k} + 4νk(0)ξ 2

k

(z + 2g)
[
(z + 2g)2 + 4ε2

k

]
]
,

fk(z) = g�k

εkz(z + 2g)
+

[
fk(0)[2|�k|2 + (z + 2g)(z + 2g − 2iξk )] + 2�k{�k[ fk(0)]∗ + iνk(0)(z + 2g − 2iξk )}

(z + 2g)
[
(z + 2g)2 + 4ε2

k

]
]
. (B4)

In the three cases we are investigating here, the Laplace trans-
forms of the superconducting gap—�S (z), �x2−y2 (z), and
�xy(z)—are given by

�S (z) = U

2N

∑
k

fk(z),

�x2−y2 (z) = V

2N

∑
k

{cos(kx ) − cos(ky)} fk(z),

�xy(z) = 2iZ

2N

∑
k

sin(kx ) sin(ky) fk(z). (B5)

Using Eqs. (B4) and going through Eqs. (B5), we can
readily compute the position of the poles of the Laplace trans-
forms of the superconducting gaps, which provide us with
the relevant information concerning the gap dynamics. To do
so, we first replace νk(0) and fk(0) with their expressions in
Eqs. (B3) by setting

�
(0)
k = �

(0)
S + 2�

(0)
x2−y2 [cos(kx ) − cos(ky)]

− 4i�(0)
xy sin(kx ) sin(ky)

ε
(0)
k =

√
ξ 2

k + ∣∣�(0)
k

∣∣2
. (B6)

Moreover, we also set

�k(z) = �S (z) + 2�x2−y2 (z)[cos(kx ) − cos(ky)]

− 4i�xy(z) sin(kx ) sin(ky). (B7)

From the explicit expression of fk(z) in Eqs. (B4), we
can infer the relaxation dynamics of the superconducting
order parameter for t � 0. Indeed, we readily identify two
single poles at z = 0 and z = −2g. The former determines
the asymptotic value of the superconducting gap. Taking the
corresponding residue and employing the time-dependent
version of Eqs. (B5), we readily find that, from the pole at
z = 0, the superconducting order parameter as t → ∞ takes a
contribution equal to the after-the-quench value. An additional
simple pole takes place at z = −2g, which corresponds to a
damping of the corresponding contribution to �k(t ) as e−2gt .
Finally, an additional complex pole is expected to arise at
z = −2g + iω∗, with ω∗ determined by the integration over
d2k: this determines again an exponential damping of the
corresponding contribution to the superconducting gap over a
timescale ∼ (2g)−1 on top of an oscillating modulation with
frequency ω∗. Apparently, as long as g > 0, all the contribu-
tions are washed out by the exponential damping, except the
ones entering the after-the-quench �k, according to Eq. (B7).
As g → 0, the asymptotic behavior becomes more involuted,
also depending on the symmetry of the order parameter.
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From the above discussion we expect that, when only a single
interaction strength is different from zero, the relaxation time

scale of the corresponding order parameter is independent of
its symmetry as, in fact, witnessed by the results in Fig. 5.
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