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Energy minimization of paired composite fermion wave functions in the spherical geometry
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We perform the energy minimization of the paired composite fermion (CF) wave functions, proposed by
Möller and Simon (MS) [Phys. Rev. B 77, 075319 (2008)] and extended by Yutushui and Mross (YM) [Phys.
Rev. B 102, 195153 (2020)], where the energy is minimized by varying the CF pairing function, in the case of an
approximate model of the Coulomb interaction in the second Landau level for pairing channels � = −1, 3, 1,
which are expected to be in the Pfaffian, anti-Pfaffian, and particle-hole symmetric (PH) Pfaffian phases,
respectively. It is found that the energy of the � = −1 MS wave function can be reduced substantially below
that of the Moore-Read wave function at small system sizes; however, in the � = 3 case the energy cannot be
reduced much below that of the YM trial wave function. Nonetheless, both our optimized and unoptimized
wave functions with � = −1, 3 extrapolate to roughly the same energy per particle in the thermodynamic limit.
For the � = 1 case, the optimization makes no qualitative difference and these PH-Pfaffian wave functions are
still energetically unfavorable. The effective CF pairing is analyzed in the resulting wave functions, where the
effective pairing for the � = −1, 3 channels is found to be well approximated by a weak-pairing BCS ansatz and
the � = 1 wave functions show no sign of emergent CF pairing.
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I. INTRODUCTION

Well over 30 years since its discovery [1], the precise
nature of the fractional quantum Hall effect in the half-filled
second Landau level in GaAs heterostructures still remains
elusive. The three leading candidate phases of matter, all
of which could potentially host non-Abelian anyons, are the
Pfaffian [2], the anti-Pfaffian [3–5], and the particle-hole sym-
metric Pfaffian (PH-Pfaffian) [6]. All three of these phases
can be understood as paired composite fermions (CFs) at
pairing channels � = −1 [7–9], � = 3 [10], and � = 1 [10,11]
respectively. Numerical studies have pointed toward either the
Pfaffian or anti-Pfaffian as being the most likely to occur in
this setting [12–19]. However, experimental measurements of
the heat conductivity along the edges of these systems [20]
and measurements of noise along interfaces of these systems
with other quantum Hall states [21] are more consistent with
the PH-Pfaffian state. We are thus left with an apparent con-
tradiction.

Several proposals have been made in an attempt to re-
solve this contradiction with one possibility being that the
PH-Pfaffian phase could be induced by disorder [22–24] and
another being the incomplete thermal equilibration of the
edge modes affecting the measurements of heat conductivity
along the edge [25–28]. While these lines of inquiry might be
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physically relevant, neither approach has yet provided a fully
acceptable explanation of all the experimental facts.

At the same time, it is worth noting that the numerical study
that has been performed on the 5/2 state is necessarily lim-
ited to finite-sized systems. Exact diagonalization, and even
DMRG, are limited to fairly modest system sizes. While it
seems a bit unlikely that the results obtained at small sizes
(particularly that the PH-Pfaffian is unfavored) will change
at larger system sizes, given the enduring conflict with ex-
perimental observation, it is worth exploring this possibility.
To fully resolve this issue it would then be useful to be able
to perform numerical simulations at larger system sizes, than
previously studied, with accurate numerically tractable trial
wave functions, which is what we shall pursue in the current
paper.

Whilst the Moore-Read (MR) wave function, which is a
representative of the Pfaffian phase, is numerically tractable
to large system sizes, it does have a relatively low overlap
with the exact Coulomb ground state, in the second Landau
level (LL), compared with other trial wave functions for other
states in the lowest Landau level (LLL) [12,13] (although this
overlap is comparable with other trial and exact Coulomb
states in the second Landau level). Furthermore, both the
representative trial wave functions for the anti-Pfaffian, taken
to be the particle-hole conjugate of the MR wave functions
denoted MR, and the PH-Pfaffian, proposed in Ref. [11], are
only numerically tractable at small system sizes. There is
also mounting evidence that the current representative trial
wave function for the PH-Pfaffian does not in fact represent
a gapped phase of matter [29–31].

Motivated in part by this poor overlap of the MR wave
function with the exact ground state, Möller and Simon (MS)
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proposed a numerically tractable trial wave function for the
Pfaffian phase, denoted MS−1, which can be interpreted as
a wave function of paired CFs at pairing channel � = −1,
where the pairing function can be varied [32]. By varying the
pairing function so as to minimize the energy of the wave
function MS where then able to obtain a more accurate ap-
proximation to the exact ground state. This MS construction
was later extended by Yutushui and Mross (YM) to CF par-
ing channels � = 3 (denoted MS3) and � = 1 (denoted MS1),
which are expected to be in the anti-Pfaffian and PH-Pfaffian
phases respectively. YM studied these wave functions with
fixed pairing functions (i.e., with the variational parameters
fixed), where they found the � = 3 wave function to be an
accurate representative of the MR wave function and found
the � = 1 wave function to show no sign of emergent paring
of CFs in the density-density correlation function. In their
paper, YM actually proposed two versions of these wave
functions: the single-particle projected and so-called “pair-
projected” wave functions. Here we shall only be interested in
the single-particle projected wave functions as these are more
numerically tractable. We denote the single-particle projected
fixed parameter wave functions proposed by YM at pairing
channel � by YM�.

A comparison of the energetics of the MS� versus the
YM� wave functions have not yet been performed, and it
is not known if the MS� wave functions with their energy
minimized can offer significantly better approximations to
the corresponding ground states at � = 1, 3. In particular,
minimizing the energy of the MS1 wave functions could, in
principle, produce PH-Pfaffian trial wave functions with ener-
gies significantly closer to the � = −1, 3 trial wave functions.
Performing such optimizations comes with a practical chal-
lenge in that they must be done in an efficient way in order to
access larger system sizes.

There has also been some recent interest in understanding
if the effective CF pairing in these phases can be approximated
by some weak-pairing BCS-type description, where the BCS
gap parameter can be estimated [33]. As well as offering
some physical insight into these phases of matter, it also has
some practical use, by allowing, for example, to observe when
the system is transitioning from CF pairing to the CF Fermi
liquid [32]. The precise BCS weak-pairing description has
only so far been studied for the � = −1 pairing [32,33] and it
is not known if such a description is accurate for the � = 3, 1
cases.

In this paper, we will show how the energy of the MS�

wave functions can be minimized at larger system sizes, in
the spherical geometry, where we will present the results of
this optimization for the case of an approximate model of the
Coulomb interaction in the second LL in the absence of LL
mixing. At small system sizes, we find, in agreement with
Ref. [32], that the energies of the MS−1 wave functions can be
reduced substantially below the corresponding energy of the
MR wave function, with the optimized MS−1 wave functions
showing a much-improved overlap with the corresponding ex-
act ground state. It is further observed that the optimized MS3

wave functions offer considerably less energy reduction over
the corresponding zero-parameter trial wave functions in com-
parison to the MS−1 wave functions, although the optimized
MS3 still show a noticeable improvement in the overlap with

the corresponding exact ground state compared with the YM3

wave function. Furthermore, the amount by which the energy
of the MS1 wave functions can be minimized compared with
the YM1 wave functions is negligible where we find both wave
functions to be energetically unfavorable. We demonstrate
that the effective CF pairing in the optimized MS� and YM�

wave functions, for � = −1, 3, can be well approximated by
a weak-pairing BCS type description, where, for finite-size
systems, the MS� wave functions show stronger pairing than
the corresponding YM� wave functions. However, whether we
consider YM� or MS� with � = −1, 3 or MR wave functions,
within our numerical error these all extrapolate to roughly the
same energy per particle in the thermodynamic limit. Finally,
further pathologies of the MS1 wave functions are found
where no evidence of emergent pairing between the CF (at
this pairing channel) is found even after some optimization.

The MS� and YM� wave functions are introduced in Sec. II.
Then in Sec. III we present the approximate LLL model of the
Coulomb interaction in the first excited LL. Finally, in Sec. IV
the results of these energy minimizations are presented in the
case of the approximate model of the Coulomb interaction
in the second LL, where it is also shown how the effective
weak-pairing BCS description can be extracted from these
wave functions. The optimization algorithm used in this paper
is detailed in Appendix B.

Throughout this paper, we will assume the ν = 5/2 system
to be such that the LLL is completely full for the spin-up
and spin-down electron orbitals and that the second LL is
at half-filling with the electrons being spin polarized. This
second LL system is then mapped to the LLL in the usual
way (see Sec. III). Note that we will not include any Landau
level mixing in the calculations presented in this paper.

II. PAIRED CF WAVE FUNCTIONS ON THE SPHERE

In the BCS theory of superconductivity [34] one typi-
cally starts with the mean-field Hamiltonian for a system of
fermions, which we will take to be in two spatial dimensions,
which takes the form

HBCS =
∑

k

[
εkc†

kck + 1

2
(�kc−kck + �kc†

kc†
−k )

]
(1)

and is assumed to be a reasonable approximation to the actual
Hamiltonian of the system at low energies, where �k is known
as the gap function and εk is the kinetic energy relative to
the Fermi level of a single-particle state labeled by k (i.e.,
εk = Ek − μ with μ the chemical potential). The unnormal-
ized ground state of this Hamiltonian is given by

|�BCS〉 = exp

(
1

2

∑
k

gkc†
−kc†

k

)
|0〉 , (2)

where gk = (
εk −

√
ε2

k + |�k|2
)
/�k. Note that for this case

of spinless fermions gk must be an odd function of k, g−k =
−gk. In real-space this can be expressed as

|�BCS〉 = exp

(
1

2

∫
d2r2d2r2g(r1 − r2)c†(r1)c†(r2)

)
|0〉 .

(3)
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|�BCS〉 is physically interpreted as a paired state, where par-
ticles near the Fermi level become bound into pairs with g(r)
being referred to as the pairing function.

The average occupation of the orbital labeled by k, nk, can
be expressed as nk = 〈�BCS|�BCS〉−1 〈�BCS| c†

kck |�BCS〉 =
〈�BCS|�BCS〉−1 (gk − g−k ) 〈�BCS| ∂gk |�BCS〉 =
〈�BCS|�BCS〉−1 2(gk ) 〈�BCS| ∂gk |�BCS〉 = |gk|2/(1 + |gk|2).
This can be expressed in terms of εk and �k as
nk = 1

2 (1 − εk√
ε2

k+|�k|2 ).

For a rotationally symmetric microscopic Hamiltonian, the
gap function is some eigenstate of the rotation operator. In two
dimensions this would mean that under a rotation by angle
ϑ the gap function transforms as �k → ei�ϑ�k, where � is
known as the pairing channel. For spinless fermion cases we
are considering here �k is an odd function of k, as gk is,
and a typical ansatz for �k is �k = �|k|ei�θ , where θ is the
angle from the x axis in k space. For |r| � �/μ the pair-
ing function corresponding to this gap function is g(r) ∝ ei�θ

|r|
(see Appendix A of Ref. [35]). When this long-distance form
of g occurs the fermions are said to be in a weak-pairing
phase [9].

This BCS mean-field wave function can be used to cre-
ate a trial wave function for a fixed number of fermions
N , by projecting it to the space of states with N par-
ticles, with the projector written as PN . We then de-
fine |�N 〉 ≡ PN |�BCS〉. The wave function of |�N 〉 is
given by �N (r1, r2, . . . , rN ) = Pf[g(ri − r j )]. Note that as
[c†

kck, PN ] = 0, we still have the property that c†
kck |�N 〉 =

2gk∂gk |�N 〉. Hence, the average orbital occupations are given
by nk = 〈�N |�N 〉−1 2gk 〈�N | ∂gk |�N 〉.

Now we move to a system of N spinless fermions mov-
ing on a sphere with Nφ = 2Q = 2(N − 1 + q) flux quanta
passing through its surface, where q is on the order of one
(i.e., does not scale with N) and it is presumed that the mag-
netic field is strong enough that the fermions are confined to
the LLL. Thus, in the thermodynamic limit, this system is
at filling fraction ν = limN→∞ N

Nφ
= 1

2 . Let us then assume
they form CFs with each fermion being bound to two wave
function vortices. The effective flux that the CFs experience is
then N∗

φ = 2q. As the effective magnetic field is negligible in
the thermodynamic limit, if the effective interaction between
the CFs is weakly attractive we then expect them to form some
weakly paired BCS state. Let ui, vi be the spinor coordinates
for ith fermion. On the sphere, the flux attaching Jastrow fac-
tor is

∏N
i< j (uiv j − viu j )2. From standard CF theory we then

write the “ideal” trial wave function as � = PLLLPf[g(ri −
r j )]

∏N
i< j (uiv j − viu j )2, where, by imposing rotational in-

variance, the pairing function takes the general form g(ri −
r j ) = ∑

lm(−1)m+|q|glYqlm(�i )Yql (−m)(� j ) for some unspeci-
fied gl ∈ C with Yqlm(�) being the monopole harmonics [36].
In principle, one can then extract the pairing physics of the
CFs by finding the gl that minimizes the energy of this wave
function.

This is, however, numerically intractable for N � 10 due
to the projection to the LLL. To create a numerically tractable
trial wave function MS proposed using the Jain-Kamila [37]
procedure where we can produce a LLL wave function sim-
ply by replacing the single-particle orbitals Yqlm(�i ) by the

corresponding CF “orbitals” defined by

Ỹqlm(�i ) ≡ J−1
i [PLLLYqlm(�i )Ji], (4)

where Ji = ∏N
j �=i(uiv j − viu j ) and PLLL projects particle i to

the LLL with magnetic flux 2q + N − 1. The resulting family
of pairing wave functions then defines MS paired CF wave
functions [32]

�MS = Pf

[∑
lm

(−1)m+|q|glỸqlm(�i )Ỹql (−m)(� j )

]

×
N∏

i< j

(uiv j − viu j )
2. (5)

In particular, we denote the MS family of wave functions
at effective flux q by MS2q. One can then vary the gl to
minimize the energy. The YM wave function at effective flux
2q, denoted YM2q, is defined to be the MS2q wave function
with gl = 1

2l+1 . Note that as the interaction potential V (r)
is real valued, we must have that 〈�MS|V |�MS〉 is invari-
ant under time reversal where we simply replace the wave
function by its complex conjugate. Furthermore, by express-
ing 〈�MS|V |�MS〉 as an integral one can perform a change
of variable where we change the azimuthal angle φ → −φ,
which is the same as the transformation u → u∗ and v → v∗.
Combining these two transformations we must have that
〈�MS|V |�MS〉 is invariant under gl → g∗

l . Assuming that the
minimum energy solution is unique up to multiplying all gl by
the same complex number, it then follows that the minimum-
energy wave function can be expressed with gl all being real
numbers. We will take gl ∈ R from now on.

From the usual CF theory, we expect that this can be
physically interpreted as being analogous to a BCS state, of
the CFs, of the form

|�BCS〉 = exp

(
1

2

∑
lm

gl (−1)m+|q|c†
qlmc†

ql (−m)

)
|0〉 , (6)

where c†
qlm is the creation operator for the orbital Yqlm(�).

The pairing wave function of this BCS state is g(ri − r j ) =∑
lm gl (−1)m+|q|Yqlm(�i )Yql (−m)(� j ). This expansion of the

pair wave functions was shown to describe pairing in the
� = 2q channel [38–40], as follows from the properties of the
Dirac monopole harmonics on the sphere [41] by considering
relations for the complex conjugation of these functions {see
Eq. (A5) in [40]}. Alternatively, using Eq. (B4) of Ref. [35]
the pair wave function can be expressed as g(ri − r j ) =∑

l
gl (−1)|q|−q (2l+1)

4π
(uiv j − viu j )2qP(2q,0)

l−q (cos θ ), where θ is the

angle between particle i and particle j and P(2q,0)
n are the Ja-

cobi polynomials, where it should be noted that if q < 0 then
one should replace (u, v) → (u∗, v∗). Here, the Jastrow factor
(uiv j − viu j )2q allows one to read off the pairing channel ex-
plicitly, as the remainder of the expression is real, confirming
the result � = 2q [42]. Also from Eq. (B6b) of Ref. [35] we

have (uiv j−viu j )q−1/2

(u∗
i v

∗
j −v∗

i u∗
j )q+1/2 = ∑∞

l=q(−1)q+m 4π
2l+l Yqlm(�i )Yql (−m)(� j ),

where again negative q requires complex conjugation. This
pairing function scales with the distance between particle i
and particle j as g ∼ 1/r. Thus the analogous weak pairing
on the sphere is given by gl ∼ 1

2l+1 at small l , the form
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assumed by YM [35]. Now let εl = h̄2

2mCF R2 (l (l + 1) − lF (lF +
1)) where R is the radius of the sphere, mCF the the CF
effective mass and lF is the Fermi “shell”. We can express

gl = (εl −
√

ε2
l + �2

l )/�∗
l where �l is the gap function on

the sphere. We can then make the analogous weak-pairing
ansatz for the gap function �l = �

l+1/2
R . By matching the

kinetic energy for l � 1 one can see that the correspondence
between l and the wave vector k is k = l

R for large l . This then
reproduces the previous ansatz for the gap function in terms
of k for large l , �l ≈ �k. By symmetry, the occupation of all
orbitals in the l shell must be the same nl , which can then be
expressed as nl = 2gl

2l+1 〈�BCS|�BCS〉−1 〈�BCS| ∂gl |�BCS〉. For
the weak-pairing ansatz, this gives

nl = 1

2

⎛
⎜⎝1 − εl√

ε2
l + (

�(l+1/2)
R

)2

⎞
⎟⎠. (7)

Whilst this is perhaps an appealing way to physically in-
terpret the MS wave function, it is not obvious if the CF
orbitals are “normalized” in such a way that the gl of the MS
wave function should be the same as the gl of the effective
BCS state. As discussed by MS in Ref. [32], one can get
around this issue by defining the effective CF occupations
as nCF

l ≡ 2gl

2l+1 〈�MS|�MS〉−1 〈�MS| ∂gl |�MS〉. This can also be
expressed as

nCF
l = 2gl

2l + 1

〈
∂gl �MS

�MS

〉
, (8)

where the expectation value is taken with respect to |�MS〉.
From their definition, these clearly do not depend on the
normalization of gl . These effective occupation probabili-
ties for the minimum energy gl were empirically found by
MS to behave as the occupation probabilities of an actual
fermion system. We will then use these nCF

l in this paper to
relate optimized MS wave functions to their effective CF-BCS
description.

As the pairing channel is given by � = 2q, we expect that
the MS wave functions MS−1, MS3, and MS1 to be in the
Pfaffian, anti-Pfaffian, and PH-Pfaffian phases, respectively.
In what follows we will also use yet another variational wave
function for the Pfaffian phase, which we will denote MR*
and can be expressed as

�MR* = Pf

[
1

uiv j − viu j

+
∑
lm

(−1)m+1/2glỸ(− 1
2 )lm(�i )Ỹ(− 1

2 )l (−m)(� j )

]

×
N∏

i< j

(uiv j − viu j )
2. (9)

Roughly speaking, the MR* wave function allows us to “per-
turb” around the MR wave function, where if we take the gl

to zero we recover exactly the MR wave function. By varying
the gl parameters, one may expect that an MR* wave function
can always be found with lower energy than the corresponding
MR wave function (at the same system size). We will thus use

the MR* wave function as a benchmark for the optimization
of the standard MS−1 wave function.

III. MODEL INTERACTION

As is standard in the FQHE literature we model a system of
electrons confined to the first excited Landau level (LL), and
without LL mixing, by an effective description of electrons in
the LLL. In the spherical geometry, where the actual system
of interest has magnetic flux 2Q passing through the sphere’s
surface, the effective interaction V eff for the LLL system is
defined by

〈Q + 1, Q + 1, m1, m2|V eff |Q + 1, Q + 1, m3m4〉
≡ 〈Q, Q + 1, m1m2|V |Q, Q + 1, m3m4〉 , (10)

where |Q, l, m1m2〉 is a two-particle state (with the particles
not identical) with particle 1 and 2 in the YQlm1 and YQlm2

orbitals respectively and V is the interaction of the original
problem. This definition of V eff is equivalent to requiring all
the Haldane pseudopotential coefficients V eff in the LLL to
match the corresponding pseudopotential coefficients of the
actual interaction V in the second LL. Note that for the second
LL system, we will take the radius of the sphere to be R =
lB

√
Q and for the LLL system we will take R∗ = lB

√
Q + 1,

with lB being the magnetic length.
In this paper, we are interested in modeling the Coulomb

interaction in the second LL. In particular, as the trial wave
functions we are using (for the effective system) are all ex-
pressed in real-space (position) representation we then require
a real-space form of the effective interaction. An ideal real-
space form of the effective interaction would be such that all
its pseudopotential coefficients matched those of V eff (where

0 5 10 15

m

0.2

0.3

0.4

0.5

0.6

V
m

[e
2
/(

4π
ε 0

l B
)]
−1

2Q = 35 2nd LL Coulomb

V eff

Exact

FIG. 1. Haldane pseudopotential coefficients Vm of both the
Coulomb interaction in the second LL along with the Vm of the fitted
LLL V eff, where the total number of magnetic flux quanta is 2Q = 35
for the system in the second LL. Note that VL = Vm=2Q+2−L .
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(Ẽ
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)[
e2
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4π
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−1

(Model) Coulomb 2nd LL

ED1

YM1

MS1

ED−1

MR

YM−1

MS−1

MS3

MR*

ED3

MR

YM3

MS3

MS−1

FIG. 2. Ẽ/N [see Eq. (12)] for the optimized wave functions as well for the MR, the particle-hole conjugated wave functions of these,
denoted with a bar, and the exact ground states ED�, which are at Lz = 0 with total magnetic flux Nφ = 2N − 2 + �, for the approximate model
(see Sec. III) of the Coulomb interaction in the 2nd LL. Lines show the resulting polynomial fits in 1/N (see main text for full details). Whilst
error bars are included for the Monte Carlo estimated energies their sizes are similar to those of the markers. Note that the ED�, MS�, and YM�

all occur at shifts S = 2 − �.

it should be noted that there exist many ideal real-space po-
tentials for a given magnetic flux). For a fixed magnetic flux,
one can in principle find an effective real-space potential by
expressing the effective interaction as a sum of 2Q + 4 real-
space potentials whose vectors of pseudopotential coefficients
are linearly independent. In practice, this can make evaluating
the real-space potential, which must be performed many times
when using Monte Carlo methods, computationally expen-
sive. Instead in this paper, we use an approximate effective
interaction, whose real-space form is simple to evaluate.

The model interaction we use to approximate the ideal
effective interaction of the second LL Coulomb interaction is

V eff(r) = a0

r
+ a1e−α1r2 + a2r2e−α2r2

, (11)

where r is the chord length between the two particles on the
sphere, and ai and αi are parameters that must be fit. This has
been shown in previous papers [8,33] to provide a good ap-
proximation to the desired effective interaction. In this paper,
we allow for the parameters ai, αi to vary with the system size,
where the parameters are determined by minimizing the sum
of squared differences between the pseudopotential of this
interaction in the LLL and those of the Coulomb interaction
in the second LL for L = 0, 1, 2, . . . , 2Q + 2 (with 2Q being
the magnetic flux for the system in the second LL). It should
be emphasized that both the odd and even pseudopotential co-
efficients are used in the least squares regression even though
we are considering a spin polarized system.

To fit the effective interaction, we compute the VL’s using
Eq. (2.37) of Ref. [43], where the pseudopotential coefficients
are expressed in terms of Wigner 3- j and 6- j symbols, and Vk ,
which are the coefficients in the expansion of V (r) in terms of
Legendre polynomials, V (r) = ∑

k VkPk (cos θ ) (with θ being
the angle between the two particles on the sphere). The results
of this fitting procedure for the 2Q = 35 case can be seen in
Fig. 1, where it can be seen V eff can accurately reproduce the
Haldane pseudopotential coefficients for the Coulomb interac-
tion in the 2nd LL with only slight deviations at intermediate
m. The parameters used for V eff for the Coulomb interaction
in the second LL for the system sizes used in this study are
given in Appendix A.

IV. RESULTS AND DISCUSSION

Supplementary data for this section can be found in
Ref. [44].

A. Energetics and overlaps

Throughout this section, we will use the shorthand notation
ED� to denote the exact ground state of the approximate
model of the Coulomb interaction in the second Landau level
(see Sec. III) at Lz = 0 and for total magnetic flux Nφ =
2Q = 2N − 2 + �. Note that at fixed N the ED� states for
� = −1, 1, 3 occur at the same total magnetic fluxes as the
MS� for � = −1, 1, 3 respectively. In other words the ED�,
MS� and YM� occur at shifts S = 2 − �.
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TABLE I. The thermodynamic energies per particle Ẽ/N for the
approximate model of the Coulomb interaction in the second LL (see
Sec. III), which are estimated by fitting polynomials to the adjusted
energy per particle as a function of 1/N (see Fig. 2), for the various
wave functions. Fit1 uses all data points to fit the given polynomial
and Fit2 includes all data points except the smallest system size
to fit the given polynomial. Errors have been estimated using the
square root of the corresponding diagonal element of the estimated
covariance matrix of the polynomial parameters that is outputted by
the scipy curve fitting function. Note that the actual errors may be
larger as can be seen in the difference between Fit1 and Fit2.

(Ẽ/N )[e2/(4πε0lB )]−1

State Fit1 Fit2

MR −0.360 ± 0.001 −0.363 ± 0.002
MS−1 −0.358 ± 0.002 −0.358 ± 0.003
YM−1 −0.359 ± 0.001 −0.362 ± 0.001
MS3 −0.361 ± 0.002 −0.358 ± 0.003
MR −0.360 ± 0.001 −0.363 ± 0.002
MS3 −0.361 ± 0.002 −0.358 ± 0.003
YM3 −0.361 ± 0.001 −0.362 ± 0.002
MS−1 −0.358 ± 0.002 −0.358 ± 0.002
MS1 −0.355 ± 0.000 −0.355 ± 0.000
YM1 −0.354 ± 0.000 −0.355 ± 0.000

Figure 2 shows the adjusted energy Ẽ per particle of the
optimized MR* and MS� wave functions with � = −1, 1, 3,
as well as the Ẽ/N of the exact ground states, ED� [45] for
� = −1, 1, 3, MR, YM�, with � = −1, 1, 3, MR and MS�,
with � = −1, 3, wave functions as a function of 1/N for the
approximate model of the Coulomb interaction in the second
LL (see Sec. III), where a bar denotes the particle-hole con-
jugate of a wave function. The energies of the MS� and MR*
wave functions have been minimized using the optimization
algorithm of Appendix B. The adjusted energy is defined by

Ẽ =
√

Q

N

(
E − N2e2

8πε0lB
√

Q

)
. (12)

In the case of the Coulomb interaction, the multiplicative
factor adjusts the energies so that the particle density is kept
constant, by rescaling the radius of the sphere R = lB

√
Q →

lB
√

N , and the N2

8πε0lB
√

Q
term is the electrostatic energy of a

uniformly charged sphere of radius lB
√

Q with total charge
Ne, which is used to cancel the O(N3/2) divergence in the
energy. As discussed in Ref. [46] this is used to improve the
estimates of the thermodynamic energy per particle, which
we achieve by fitting a quadratic polynomial in 1/N to the
Ẽ/N of the MR, YM�, MS�, and MS�, with � = −1, 3, wave
functions and a linear function of 1/N for the Ẽ/N of the YM1

and MS1 wave functions. The resulting estimated thermody-
namic energies per particle can be found in Table I, where we
have included the thermodynamic energy estimates for two
different fitting procedures: Fit1 includes all data points to fit
the given polynomial and Fit2, which includes all data points
except the smallest system size to fit the given polynomial.
This is to demonstrate that the thermodynamic energy esti-
mates are somewhat robust. However, it should be noted that

TABLE II. Overlaps of the YM1 and MS1 wave functions, ex-
pected to be in the PH-Pfaffian phase, with the exact ground state
ED1 at the corresponding shift and at Lz = 0, in the case of the
approximate model interaction for the Coulomb interaction in the
first excited Landau level (see Sec. III).

Overlap N = 12 N = 14 N = 16

| 〈YM1|ED1〉 | 3(4)% 2(4)% 2(4)%
| 〈MS1|ED1〉 | 7(4)% 2(4)% 4(4)%

the quoted errors in the thermodynamic estimates, given from
the output of the curve fitting program, are evidently larger,
which can be seen from the differences in Fit1 and Fit2. The
curves in Fig. 2 have been fit using the Fit1 procedure. For
those wave functions whose real-space form is known exactly,
the energies at each system size have been estimated using
∼5 × 109 Monte Carlo samples. The energies of the particle-
hole conjugated wave functions have been calculated using the
result Ref. [47], where for a rotationally symmetric interaction
under a particle-hole transform the energy transforms as

E →
(

1 − 2N

2Q + 1

)
Efilled + E , (13)

where Efilled is the energy of the corresponding filled Landau
level. Here we use the exact Coulomb interaction in the second
Landau level to compute Efilled (as an approximation). Note
that Eq. (13) implies that the MR and the MR wave functions
must have the same energy per particle in the thermodynamic
limit. This is because for large N Efilled scales as O(N3/2) (not-
ing that Q ≈ N at large N), which gives that the difference in
the energy per particle of the MR and the MR wave functions
at large N must scale as O(N−1/2).

As can be immediately seen from Fig. 2 despite allowing
for some optimization, the MS1 wave functions, which are
expected to be in the PH-Pfaffian phase, are energetically
unfavorable in comparison with the trial wave functions at the
other pairing channels tested in this paper in the case of the
(approximate) Coulomb interaction in the second LL. In fact,
the amount by which one can reduce the energy of these � = 1
wave functions is negligible in comparison with the energy
scales in Fig. 2.

One can also see that the energies of the YM1 and MS1

wave functions are far higher than the energies of correspond-
ing ED1’s. One can also see from Table II that the overlaps of
the YM1 and MS1 wave functions with the exact ground state
for the chosen model interaction ED1 at the corresponding
shift are nearly zero. Thus, the YM1 and energy minimized
MS1 wave functions do not offer a good approximation to the
exact ground state. These results also provide further evidence
that it is unlikely that there exists a stable quantum Hall state
at shift S = 1 at larger system sizes, that are not accessible to
exact diagonalization, as one may expect that the existence of
such a state would allow the energy of the MS1 wave functions
to be reduced by a non-negligible amount, at these larger
system sizes.

Another observation that one can make from Fig. 2 is that
the energy minimized MS−1 wave functions offer substantial
energy reduction over the MR and YM−1 wave functions at
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TABLE III. Overlaps of the MR, YM−1, and the energy mini-
mized MS−1 wave functions, expected to be in the Pfaffian phase,
with the exact ground state ED−1 at the corresponding shift and
at Lz = 0, in the case of the approximate model interaction for the
Coulomb interaction in the first excited Landau level (see Sec. III).

Overlap N = 12 N = 14 N = 16

| 〈MR|ED−1〉 | 76(4)% 58(5)% 65(4)%
| 〈YM−1|ED−1〉 | 67(4)% 45(5)% 56(4)%
| 〈MS−1|ED−1〉 | 94(2)% 75(6)% 88(3)%

small system sizes, with energies close to those of the cor-
responding exact ground states ED−1, however, still with a
notable error. This is further detailed in Table III, where it can
be seen that the energy minimized MS−1 wave functions have
significantly higher overlaps with the corresponding ED−1

states compared with those of the YM−1 and MR wave func-
tions, at small system sizes.

On the other hand, in the � = 3 sector it can also be seen
that the energy minimized MS3 offer noticeably less energy
reduction relative to the other trial states relative to the energy
gain of the MS−1 wave functions in the l = 1 sector. The
particle-hole conjugated MS−1 wave functions MS−1, in fact,
offer a better approximation to the energies of the correspond-
ing exact ground states ED3. As can be seen from Table IV
the MS3 wave functions have noticeably better overlaps with
ED3 compared with YM3, although these improvements in the
exact ground state overlaps are still not as significant as those
of the MS−1 wave functions.

Furthermore, as can be seen from Fig. 2 and Table I
the energies of the MR, MR, YM�, with � = −1, 3, and
the optimized MS�, along with their particle-hole conjugates
MS�, wave functions all converge in the thermodynamic limit.
This is perhaps surprising as one would typically expect that
allowing for some energy minimization away from the zero-
parameter trial wave functions would allow for an improved
estimate of the energy of the actual ground state in the ther-
modynamic limit. Even the MR* wave functions do not offer a
better thermodynamic energy estimate, even though we expect
these to always have lower energy than the corresponding MR
wave function, which can be seen in Fig. 2 where they have
energies that are not discernible from those of the optimized
MS−1 wave functions.

There are several possibilities at this point. Firstly, it may,
in fact, be the case that the amount by which the energy can
be reduced by optimizing the MS−1 and MS3 wave functions
compared with the MR and YM3 wave functions falls to zero

TABLE IV. Overlaps of the YM3 and the energy-minimized MS3

wave functions, expected to be in the anti-Pfaffian phase, with the
exact ground state ED3 at the corresponding shift and at Lz = 0,
in the case of the approximate model interaction for the Coulomb
interaction in the first excited Landau level (see Sec. III).

Overlap N = 10 N = 12 N = 14

| 〈YM3|ED3〉 | 73(4)% 52(5)% 63(5)%
| 〈MS3|ED3〉 | 89(3)% 65(5)% 74(4)%

in the thermodynamic limit. In short, these wave functions
may just not offer enough variational freedom at larger sys-
tem sizes. One may expect, however, that the MS−1 wave
functions should offer better thermodynamic estimates given
that at smaller system sizes their energies are comparable with
more exact methods. On the contrary, it should be noted that
the polynomial used to extrapolate MS−1 has a noticeable
curvature, which implies even slight differences between the
exact energies and the MS−1 can result in a large difference
between their thermodynamic extrapolations [48]. Of course,
one could object to the extrapolation method used here. Whilst
it can never be definitively known if the extrapolation method
is correct, we can at least verify it is a “reasonable” method
by the fact that the thermodynamic energy extrapolations of
each wave function converge precisely with its corresponding
particle-hole conjugate, when the conjugate wave function has
been included.

Another possibility is that the optimization algorithm is
getting stuck at a local minimum. This could be alleviated
by starting the optimization at randomized gl ; however, this
would come at an increased computational cost as the algo-
rithm must explore a larger area of parameter space to find a
minimum. Indeed, the computational cost of optimizing these
wave functions using the procedure outlined in Appendix B
should be emphasized. For example, at N = 26 particles the
optimization of a wave function with eight gl using 300 com-
puting nodes can take around a week, at current computer
standards, from the beginning of the optimization to obtaining
an accurate estimate of the energy of the optimized wave
function. In the worst case, if several fine-tuning phases are
required, obtaining the optimum energy at the desired level
of accuracy can take on the order of a month. As can be seen
from Fig. 2 this is partly due to the fact that many Monte Carlo
samples are required at each iteration of the optimization in
order to resolve the rather small differences in the energies
of the various wave functions. Thus, although the algorithm
could be started from randomized gl this would come at an
increased cost, which would render this procedure impracti-
cal for most interesting use cases. Whilst, we have checked
in Fig. 5 (see below) if using extra gl in the optimizations
performed makes very little difference in the energies, it is
possible that adding these extra gl could make a difference to
the thermodynamic extrapolation, particularly for the MS−1

where the extrapolating polynomial has noticeable curvature.
However, with each new gl the computational cost increases
as many more CF orbitals need to be computed. In short,
this is perhaps not a practical method for obtaining better
thermodynamic estimates in comparison with other numerical
methods.

Finally, we would also like to emphasise that at small sys-
tem sizes the YM−1 and YM3 are very good approximations

TABLE V. Overlaps at different system sizes between the YM3

wave function and the particle-hole conjugate of the MR wave func-
tion MR, which is a representative wave function of the anti-Pfaffian
phase.

Overlap N = 10 N = 12 N = 14

| 〈YM3|MR〉 | 99(1)% 99(1)% 98(1)%
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TABLE VI. Overlaps between the YM−1 wave function the MR
wave function at different system sizes.

Overlap N = 12 N = 14 N = 16

| 〈YM−1|MR〉 | 98(1)% 98(1)% 98(1)%

to the MR and MR wave functions respectively. From Table V
one can see that the YM3 wave function has an overlap with
the MR wave function that is at least 98% for system sizes
of 10–14 particles and from Table VI that the YM−1 wave
function has an overlap with the MR wave function of around
98% for system sizes of 12–16 particles. Such overlaps had
already been reported by YM between the YM3 and MR wave
function, at smaller system sizes, and between the YM−1 and
MR wave functions at larger system sizes [35]. The fact that
these YM wave functions are good approximations to the
MR wave function and its particle-hole conjugate can also
be observed from Fig. 2 where the energies of the YM3 and
YM−1 wave functions are very close to those of the MR and
MR wave functions respectively. Whilst the YM−1 wave func-
tion is clearly not as numerically tractable as the MR wave

function, the YM3 does provide a more numerically tractable
approximation to the MR wave function, at least at small and
intermediate system sizes.

B. Effective CF pairing

Whilst the optimized MS� wave functions do not appear
to offer any better thermodynamic energy estimates compared
with the YM�, they do offer more insight at finite-size sys-
tems through the effective paired CF description. We have
estimated, using Monte Carlo, the effective CF occupation
probabilities nCF

l [Eq. (8)] for the optimized MS� wave func-
tions and for the corresponding YM�. We have then fitted the
BCS type weak-pairing ansatz (WPA) of Eq. (7) for the var-
ious estimated nCF

l , where we allow for the Fermi level lF to
be a continuous parameter that can be varied in the fit and we
take the radius of the sphere used in Eq. (7) to be R = lB

√
N

so as to keep the particle density constant. This then allows
us to give an estimate for the dimensionless parameter mCFlB�

h̄2 ,
where mCF is the effective CF mass, which we will assume
to be constant so that we can take mCFlB�

h̄2 as a measure of the
effective CF pairing strength.
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FIG. 3. The CF orbital occupation probabilities nCF
l [see Eq. (8)] for various YM� and optimized MS� wave functions (dashed lines) along

with a corresponding fit to the weak-pairing ansatz of Eq. (7) (solid lines), where lF is taken to be an adjustable continuous parameter. The
fitted parameters are indicated in the bottom left corner of the corresponding plot, where mCF is the (unknown) effective CF mass. Note that
mCFlB�/h̄2 parameter has been estimated where we take the radius of the sphere to be R = lB

√
N , which keeps the particle density constant.
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FIG. 4. The fitted mCFlB�/h̄2 of the weak-pairing ansatz, Eq. (7), for the effective CF occupations nCF
l for the optimized MS� and the

fixed parameter YM� wave functions for � = −1, 3 over a variety of system sizes, where mCF is the unknown effective CF mass. Note that
mCFlB�/h̄2 parameter has been estimated where we take the radius of the sphere to be R = lB

√
N , which keeps the particle density constant.

Figure 3 shows the estimated nCF
l and corresponding fitted

WPA for the optimized MS� and fixed parameter YM� wave
functions at � = −1, 3, 1 for N = 20, 18, 20 respectively. The
nCF

l of the MS� and YM� for � = −1, 3 can be fit reasonably
well to the WPA.

Figure 4 shows the fitted mCFlB�/h̄2 parameter of the
optimized MS� and YM� wave functions for � = −1, 3 as
a function of 1/N , where it can generally be seen that the
effective CF pairing in the optimized MS� wave functions is
higher than that of the YM�. Interestingly we find the effective
pairing strength for the optimized MS� for � = −1, 3 wave
functions to be roughly the same at the same number of
particles N , where it should be emphasized that at the same
N the MS−1 and MS3 wave functions occur at different total
magnetic flux through the sphere (i.e., have different shifts S).

The data from Fig. 4 can also offer more insight into some
of the observations one can make from Fig. 2. One can see
that from Fig. 2 that the amount by which the energy of
the MS−1 wave functions can be lowered compared with the
corresponding MR wave functions is generally larger than the
amount by which the energy of the MS3 wave function can be
lowered in comparison with the YM3 wave functions. Taking
the YM−1 wave function as an approximation of the MR
wave function, this has a simple interpretation in the effective
pairing description in that the effective pairing strength of the
YM−1 wave function is generally lower than that of the YM3

wave functions. Thus the YM3 wave functions have an effec-
tive pairing closer to the optimum compared with the YM−1

wave functions, which gives some explanation as to why the
energy of the YM3 wave functions are already close to optimal
MS3 wave functions, whereas at intermediate system sizes the
optimum MS−1 wave functions have energy noticeably lower
than the corresponding MR wave function.

Finally, as can also be seen in Fig. 3 the nCF
l of the op-

timized MS1 and YM1 wave functions are noticeably larger
than one in some cases and are negative in some other cases,
which is clearly inconsistent with interpreting these nCF

l as
occupation probabilities. This was found to occur at all other
tested system sizes. This interpretation of the nCF

l is based on
the assumption that the Jastrow factor of the wave function
can be approximated in some “mean-field” way, which is
usually assumed when interpreting generic CF wave func-
tions. Combining this with the observations of YM, that the

YM1 wave function shows no sign of emergent pairing in
the pair correlation function, and with the evidence that the
“ideal” PH-Pfaffian wave function may, in fact, represent a
gapless phase of matter [31], indicates the possibility that
this usual “mean-field” interpretation of the Jastrow factor
might break down for the current candidate PH-Pfaffian wave
functions and so may in fact not be a representative for the
phase of matter predicted by Son [6]. It has also recently been
argued by Haldane [49], based on a conjecture that FQH states
must have a nonzero so-called “guiding center quadrupole
moment”, that particle-hole symmetric states can never be
FQH states, which may give an explanation for these observed
pathologies. Despite this, we can still see that the nCF

l of the
optimized MS1 wave functions can still be roughly fit to the
WPA with � = 0, which would correspond to the gapless CF
Fermi liquid. In summary, even after some optimization, we
see no evidence of an effective paired CF description for the
PH-Pfaffian wave functions.

V. CONCLUSIONS

In this paper, we have shown how the energy of the paired
CF wave functions MS�, proposed by MS [32] and extended
by YM [35], can be minimized in a practical manner by vary-
ing the pairing function for the pairing channels � = −1, 3, 1,
which are believed to represent the Pfaffian, anti-Pfaffian,
and PH-Pfaffian topological orders, respectively. We have
presented the result of such optimizations in the case of an
approximate model of the Coulomb interaction in the second
Landau level (LL). For pairing channel � = −1 we found that
the energy can be reduced substantially below that of the
MR wave function at intermediate system sizes, with a no-
ticeable improvement in the overlaps with the corresponding
exact ground state. For the � = 3 pairing channel, however,
we find the energy cannot be reduced as much, although the
resulting improvement in the overlaps with the corresponding
exact ground state are still notable. We find that optimizing
the pairing channel � = 1 wave functions makes no qualita-
tive difference and these PH-Pfaffian wave functions are still
very energetically unfavorable compared with the � = −1, 3
pairing channels. We have further emphasized that the fixed
parameter versions of these wave functions YM�, proposed
by YM [35], at pairing channels � = −1 and � = 3 have very
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high overlaps (98–99%) with the MR and MR wave functions
respectively, at system sizes of around 10–16 particles.

The effective CF pairing of these MS� and YM� wave
functions was then investigated by studying the effective CF
orbital occupation probabilities. For the pairing channels � =
−1, 3 we found both the energy minimized MS� and YM�

wave functions show effective CF pairing, which can be well
approximated by some weak-paring BCS type ansatz where
the pairing parameters could be extracted, with the MS� wave
functions showing a stronger pairing strength than the YM�

wave functions. For the YM1 and energy minimized MS1

wave functions showed no sign of effective CF pairing, which
adds to the growing list of pathologies found for current trial
wave functions for the PH-Pfaffian phase.

It is not clear from this paper if the observed convergence
of the thermodynamic energies of both the energy minimized
and fixed parameter wave functions in the Pfaffian and anti-
Pfaffian phases is unique to the Coulomb interaction in the
second LL. It would be useful to perform these optimizations
at slightly different interactions to see if this convergence is
generic. Although one should be cautious of the observed
charge density wave phase in the vicinity of the Coulomb
interaction in the second LL [13]. It would also be interesting
to see if minimizing the energy of the MS1 wave function for
some interaction near the Coulomb interaction will result in
an � = 1 wave function, which shows a definite signature of
emergent CF pairing.

There are several natural extensions of this paper. One
might consider varying the interelectron interaction to account
for finite-well width, or the effects of Landau level mixing
treated perturbatively [16,50–52]. The methods presented here
could also, in principle, be applied to other even denominator
filling fraction states such as those occurring in the lowest
Landau level in wide quantum wells [53], higher Landau
levels [54], and in monolayer graphene [55]. It could then
perhaps be interesting to use the methods presented here to
compare the possible pairing channels of the CFs to determine
which is the most energetically favorable.
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APPENDIX A: EFFECTIVE INTERACTION PARAMETERS

See Table VII for the V eff parameters used in this study for
the Coulomb interaction in the second LL.

APPENDIX B: OPTIMIZATION ALGORITHM

One possible way of minimizing the energy of an MS wave
function at a given system size would be to use a standard
optimization algorithm where the energy for a given set of

TABLE VII. Fitted V eff parameters for the second LL Coulomb
interaction at all 2Q (of the second LL system) considered in this
study.

2Q a0 a1 α1 a2 α2

19 1.120 115.660 1.357 –757.200 2.964
21 1.111 140.458 1.458 –973.385 3.164
23 1.102 115.604 1.353 –755.689 2.959
25 1.096 115.688 1.351 –755.678 2.956
27 1.090 115.754 1.350 –755.670 2.954
29 1.085 116.224 1.350 –758.751 2.954
31 1.081 115.866 1.348 –755.656 2.951
33 1.077 115.913 1.347 –755.650 2.949
35 1.073 115.957 1.346 –755.645 2.948
37 1.070 115.995 1.345 –755.640 2.947
47 1.059 116.095 1.342 –755.259 2.942
49 1.057 116.178 1.342 –755.617 2.941

parameters is computed exactly. This is, however, computa-
tionally expensive and would restrict one to only working
with smaller system sizes. For the energy minimization of
wave functions of large systems, there exists a large class
of algorithms under the name variational quantum Monte
Carlo [56], where Monte Carlo methods are used to esti-
mate the energy and energy gradients. Whilst there are many
specific algorithms to choose from, for the problem at hand
we have used a combination of the stochastic reconfiguration
(SR) algorithm [57] and the Adam optimizer [58], which we
will now describe.

First, let us describe the Adam optimizer. Let E (g) be the
expectation value of the energy as a function of the wave
function parameters g. We will then impose a yet unspecified
geometry on this parameter space defined by some metric
tensor S, which can vary over the parameter space. At each
iteration t of the optimization, we have three vectors, ft ≡ ∂E

∂gt

(gradient vector), mt (momentum), and m̂t (bias-corrected
momentum). We also have the real numbers vt and v̂t the bias-
corrected version. The algorithm has four hyper parameters: γ

(learning rate), β1, β2, and ε.
Using the momentum mt allows the algorithm to smooth

out the noise in estimating gradients and vt ensures we move
roughly the same distance in parameter space at every iter-
ation. One can view this algorithm as a particle moving in
parameter space with friction and noise in the potential given
by E . β1 can then be thought of as setting our inertia. β2 sets
the time scale over which we average the sizes of S−1gt . The
ε parameter is simply a distance cut-off.

At each iteration, everything is updated by

mt+1 = β1mt + (1 − β1)S−1ft ,

m̂t+1 = mt+1/(1 − βt+1
1 ),

vt+1 = β2vt + (1 − β2)fT
t S−1ft ,

v̂t+1 = vt+1/(1 − βt+1
2 ),

gt+1 = gt − γ m̂t+1/(
√

v̂t+1 + ε). (B1)

Let Ol be an operator, which is diagonal in the position space
representation, which is defined by Ol ≡ ∂gl �MS

�MS
. The energy
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gradients can then be expressed as

∂E

∂gl
= 2� 〈V effOl〉 − 2 〈V eff〉 � 〈Ol〉 , (B2)

where � denotes the real part. We compute these expectation
values using the Hastings-Metropolis Monte Carlo algorithm,
which introduces stochastic noise into the optimization.

The SR algorithm can be interpreted as a standard gradient
descent algorithm where one uses the Fubini-Study metric
to define the geometry of the parameter space of the wave
function. To combine this with the Adam optimizer we simply
take S to be the Fubini-Study metric. This metric is given by
defining the distance between two nearby points in parameter
space to be the Hilbert space norm of the difference between
the normalized states at the two coordinate points. This can be
straightforwardly shown to be given by

Sl1l2 = �〈O∗
l1 Ol2〉 − � 〈Ol1〉 � 〈Ol2〉 . (B3)

Using this metric has the advantage that it removes the
ambiguity over how the parameters are normalized. At each it-
eration of the algorithm, we again use the Hastings-Metropolis
Monte Carlo algorithm to estimate S.

Both the gradients f and S are estimated using ∼106 Monte
Carlo samples, with the actual number of samples used in-
creasing with the system size. To lessen the computation time
sampling at each iteration was run in parallel using around 102

computing nodes.
In practice, we regularise this metric as the �MS is invari-

ant under multiplying all the gl by a constant, which will
mean S will always have determinant zero. We regularize
by Sl1l2 → (1 + εδl1l2 )Sl1l2 for some small ε, which is kept
constant throughout the optimization.

Throughout the optimizations performed in this study we
use the recommended hyperparameters from Ref. [58] of β1 =
0.9, β2 = 0.999, and ε = 10−5. We found that a suitable learn-
ing rate for this optimization problem is around γ ∼ 0.005
and we use the same ε to regulate S as given in Ref. [59] with
ε = 10−3.

The issue of how to pick the number of gl to use is
addressed as follows. For the MS−1 case, we ran the opti-
mization at N = 12 with the first seven gl , where it was found
that the broadening of the Fermi surface, as seen through
the nCF

l , was around two in l space (i.e., nCF
l were found to

be sufficiently close to zero for l > l f + 2). We expect this
broadening in l space to scale as

√
N as l ∼ kR. Thus, for

system sizes from 12–20 particles, we used the first seven gl

to optimize the MS−1 wave functions and at 26 particles we
used the first eight. To demonstrate this number of parameters
is sufficient we estimated the energy as a function of the
around the optimum set when using the first eight gl for the
N = 26 MS−1 optimization with the approximate model of
the Coulomb interaction in the second LL. The result of this
parameter scan can be seen in the plot of Fig. 5, where it can
be seen that the possible energy reduction per particle that can
be achieved by varying this parameter is small in comparison
to the difference between the previous optimum energy per
particle and the thermodynamic energy per particle of the
Moore-Read wave function (see Fig. 2 and Table I for details
of thermodynamic estimates where we use the Fit1 estimate
for the thermodynamic energy per particle of the MR wave
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Ẽ
(0

))

N = 26 MS−1 Parameter Scan

Quadratic fit

Scan data

FIG. 5. Adjusted energy Ẽ [see Eq. (12)] as a function of the
ninth gl , around the optimum solution for the first eight gl for the
N = 26 MS−1 wave function with the approximate model of the
second LL Coulomb interaction, where ¯̃EMR is the thermodynamic
Ẽ/N of the MR wave function (see Table I where we use the Fit1
value).

function). Similarly, for both the MR* and the MS1 wave
functions we used the first seven gl for 12–20 particles and
used the first eight for 26 particles. By the same method, we
found that using the first six and seven gl were sufficient to
optimize the MS3 wave functions for 10–18 and 24 particles,
respectively.
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FIG. 6. nCF
9
2

[see Eq. (8)] at each iteration t of the optimization of

the N = 20 MS−1 wave function with the approximate model of the
2nd LL Coulomb interaction.
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When optimizing a given MS� wave function we start the
algorithm with gl = 1

2l+1 for the parameters that are actually
varied and all other gl are set to zero, gl = 0. This is the
approximate YM� wave function, which we expect to be close
to the minimum energy.

The plot of Fig. 6 shows the nCF
9
2

occupation proba-

bility at each iteration t for the optimization of the N =
20 MS−1 wave function with the approximate model of the
second LL Coulomb interaction (note that l = 9

2 is just at the
Fermi level). Initially, the algorithm moves sharply towards

a minimum where it plateaus near the minimum energy at
around t = 4000. We found that this algorithm converged
after around t ∼ 4000 iterations for all cases considered us-
ing the hyperparameters given above. One can also see that
the apparent noise in the nCF

9
2

(t ) path increases as we ap-

proach the minimum. At larger system sizes this sometimes
required a fine-tuning stage with around 100 iterations where
the number of samples and the learning rate are increased
to obtain the minimum energy solution with the desired
accuracy.
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