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Chemical substitution is commonly used to explore new ground states in materials, yet the role of disorder
is often overlooked. In Mn-substituted BaFe2As2 (MnBFA), superconductivity (SC) is absent, despite being
observed for nominal hole-doped phases. Instead, a glassy magnetic phase emerges, associated with the S = 5/2
Mn local spins. In this work, we present a comprehensive investigation of the electronic structure of MnBFA
using angle-resolved photoemission spectroscopy (ARPES). We find that Mn causes a small and orbital-specific
reduction of the electron pockets, only partially disrupting nesting conditions. Based upon the analysis of the
spectral properties, we observe, for all bands, an increase in the electronic scattering rate as a function of Mn
content. This is interpreted as increasing band incoherence, which we propose as the primary contributor to
the suppression of the magnetic order in MnBFA. This finding connects the MnBFA electronic band structure
properties to the glassy magnetic behavior observed in these materials and suggests that SC is absent because of
the collective magnetic impurity behavior that scatters the Fe-derived excitations. Additionally, our analysis
shows that the binding energy (EB) dependence of the imaginary part of the self-energy [Im�(EB)] is best
described by a fractional scaling (Im�(EB) ∝ √−EB). These results indicate that Mn tunes MnBFA into an
electronic disordered phase between the correlated Hund’s metal in BaFe2As2 and the Hund’s insulator in
BaMn2As2.
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I. INTRODUCTION

Electronic correlated materials exhibit a rich phase dia-
gram when subjected to partial chemical substitution of one of
their constituting elements. Whereas a great deal of attention
is devoted to superconducting (SC) phases driven by this
strategy, non-SC phases also spark heated debate. One such
example are the Ba(Fe1−xMnx )2As2 materials which derive
from the parent compound BaFe2As2 (BFA).

BFA is an Iron-based superconductor (IBS) material [1].
This system undergoes nearly simultaneous phase transitions
from a tetragonal to an orthorhombic phase, and from a para-
magnetic (PM) to a spin density wave (SDW) phase with
a critical temperature (TSDW) of about 134 K [2]. A high-
temperature SC phase can be driven in BFA by multiple partial
chemical substitution strategies [1,3–8], including nominal
hole doping [9,10], which invites an explanation for the
absence of SC in Mn substituted BFA (MnBFA) [11–13].
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Whereas it was proposed that SC is absent in MnBFA
because the Mn-derived states remain localized and therefore
charge doping is not caused by Mn substitution [14,15], the
scattering of the Fe-derived SDW fluctuations by the Mn-
derived Néel fluctuations is also believed to play the key
role [16,17] in this phenomenology. The latter topic further
invites an investigation into the relative relevance attributed to
disorder or magnetic and impurity scattering [18–20] caused
by Mn.

Despite the absence of charge doping, changing electronic
bands in MnBFA cannot be discarded since the hybridization
between Fe and As states depends on Mn content [21]. Indeed,
the electronic structure cannot be totally independent of the
Mn content, since MnBFA is tuned to a Hund’s insulating
state in BaMn2As2 [22–24]. Our motivation is thus to fill
an important gap in this discussion: the detailed characteri-
zation of the electronic band structure of MnBFA samples,
which is so far lacking despite previous experimental efforts
[15]. Employing an alternative In-flux method [25], we grew
high-quality MnBFA single crystals and performed angle-
resolved photoemission spectroscopy (ARPES) experiments
of Ba(Fe1−xMnx )2As2 (x = 0.0, 0.035 and 0.085, hereafter
called BFA, Mn3.5% and Mn8.5% samples, respectively). We
find that Mn causes a sizable decrease in the electron pockets,
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FIG. 1. (a)–(c) Overview of the measured electronic band maps of the BFA, Mn3.5%, and Mn8.5% materials at T = 150 K. Measurements
were taken along the �X and �M directions and for LH and LV polarizations, as indicated. The dots represent points fitted to the second
derivative (see [29]). (d) BFA Fermi surface measured with LV polarization with the BZ drawn and its high-symmetry points indicated. The
green dashed line indicates the cut based upon which the electron pocket of (e) was reconstructed. (f)–(j) Bands obtained from MDC fits for
different Mn content focusing on states close to EF . The experimental conditions are indicated for each panel.

which partially tunes the system out of the nesting condition
and contributes to the suppression of TSDW. The absence of
charge doping in MnBFA is thus put into question.

Our results derived from the analysis of the spectral proper-
ties, however, suggest that the suppression of TSDW is mainly
an effect of disorder and magnetic scattering, both of which
combine to preclude the formation of a SC ground state
[18–20]. Our findings support that the indirect exchange
interaction between the Mn local moments is mediated by
incoherent electronic states, explaining the glassy behavior of
the Mn local moments [26]. Moreover, we find that the imag-
inary part of the self-energy [Im�(E )] displays a fractional
scaling as a function of the binding energy (EB), characteriz-
ing the MnBFA as a Hund’s metal [27,28].

II. MATERIALS AND METHODS

Ba(Fe1−xMnx )2As2 single crystals were grown using the
In-flux method [25]. All samples were characterized by resis-
tivity, powder x-ray diffraction (XRD), and energy-dispersive
x-ray spectroscopy (EDS) to obtain TSDW, lattice parameters,
and chemical composition, respectively. The final Mn content
(x) was characterized by energy-dispersive x-ray spectroscopy
(EDS) and by comparing the sample’s TSDW to other x vs T
phase diagrams in literature [12,14] to benchmark the EDS
determined values of x.

The ARPES experiments were performed at the Bloch
beamline of the Max IV synchrotron in Lund, Sweden, using
the Scienta DA30 photoelectron analyzer. The total energy
resolution was set at about 8 to 10 meV for incident photon
energies between 60 and 81 eV, and angular resolution of
0.1◦. The samples were cleaved using Al posts inside the main
preparation chamber (vacuum of 3 × 10−10 mbar) and then

transferred to the analyzer chamber (vacuum of 2 × 10−11

mbar) for the experiments. For all samples, measurements
were performed at 150 K and 20 K, corresponding to above
and below TSDW, respectively. The cooling was performed
through a six-axis cryo manipulator using a closed-cycle liq-
uid Helium system.

Our ARPES experiments were carried out along the high
symmetry directions �X and �M for both � and Z kz levels.
The high symmetry points are labeled with respect to the
body-centered tetragonal crystal structure. Linear horizontal
(LH or π ) and vertical (LV or σ ) polarized x-rays were used
to probe different Fe-3d orbital contributions to the ARPES
signal. The final polarization state, and its respective ARPES
selection rule, depend on the parity of the product between
each orbital and the x-ray polarization with respect to the
photoemission mirror plane [30–33].

III. RESULTS AND DISCUSSION

A. Paramagnetic state results

In Figs. 1(a)–1(c), we present a survey of the electronic
band structures, as a function of Mn content, in the tetrag-
onal PM state (T = 150 K) of our samples. Measurements
were taken along the high-symmetry directions and adopting
linear beam polarizations, either linear horizontal (LH) or
linear vertical (LV), as indicated in each panel. The crystal
body-centered tetragonal geometry was adopted to label the
Brillouin zone (BZ) high-symmetry points.

Band features are distinguishable for all samples, allowing
a comprehensive characterization of the MnBFA electronic
bands. In the simplest model, the IBS electronic bands derive
from Fe 3d states that are subjected to the effects of the As
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FIG. 2. ARPES spectral function analysis. Fittings (blue lines) of several MDCs (red dots) for increasing binding energies. Data obtained
for BFA adopting (a) LV polarization, measured along �X and (b) LH polarization, measured along �M. In panels (c) and (d) the respective
fittings for the Mn8.5% sample are presented. In panels (b) and (d) the MDCs are due to two bands and therefore four Lorentzian peaks
are included in the fittings. Details of this procedure for the representative MDC spectra highlighted in green in (b) and (d) are presented,
respectively, in the upper (BFA) and lower (Mn8.5%) panels of (e).

ligands, which break the Fe 3d states degeneracy and instill a
strong orbital character to the electronic bands [1,34]. Based
upon the selection rules for the ARPES intensity polarization
dependence and guided by previous works [30–33,35,36], the
orbital character of the electronic bands were labeled.

The effects of Mn substitution on the electronic bands are
examined in Figs. 1(f)–1(j). We focus on states close to EF .
To characterize how the hole pockets change as a function
of Mn content, we track the hole bands with main dxz/yz and
dxy orbital character close to � and measured along the high-
symmetry directions [Figs. 1(a)–1(c)]. Results are presented
in Figs. 1(f)–1(h). Electronic states at the electron pockets
around the X/Y points, however, have C2v point symmetry
which is reflected in the idealized elliptical shape of the pock-
ets. Therefore, we must also look at the bands in a direction
perpendicular to the �X direction. We consider a cut in our
Fermi maps along the green dashed line shown in Fig. 1(d), for
the BFA case, representing the Y Z direction. The associated
electronlike band is shown in Fig. 1(e) and is called the “shal-
low” electronlike band as opposed to the “deep” electronlike
band observed directly in Figs. 1(a)–1(c), as the blue points
for �X and LV polarization. The shallow (deep) electronlike
band determines the minor (major) semiaxis of the electron
pocket around X/Y and has dyz (dxy) main orbital character. In
Figs. 1(i) and 1(j) we compile the deep and shallow electron-
like bands as a function of Mn content.

In the rigid band shift picture, increasing hole pockets and
shrinking electron pockets are the putative effects of hole
doping caused by Mn. By inspection of Figs. 1(f)–1(j), the
experimentally determined scenario is more involved. Bands
forming the hole pockets and the deep electronlike band are
barely affected [Figs. 1(f)–1(h)], whereas the intersection
of the shallow electronlike band (dyz orbital character) with
EF (which determines kF) is systematically decreasing.
Our experiments thus reveal that Mn can contribute holes
to BFA but not in a way that can be described as a rigid
band shift. We suggest that it is the effect of the changing

Fe3dyz/xz and As4pz hybridization as a function of Mn
content [21,22].

Assuming the scenario wherein the SDW phase is stabi-
lized by the nesting between hole and electron states [34,37],
the Mn8.5% effect on the shallow electronlike band is compa-
rable, albeit in the opposite direction, to that caused on the
electron pockets by nearly the same amount of Co (xCo =
0.08) [38]. For xCo = 0.08, however, the SDW is already ab-
sent, because Co also causes the hole pockets to shrink, tuning
CoBFA off the nesting condition. If one chooses a comparison
between systems with the same TSDW, our Mn8.5% sam-
ple (TSDW = 66 K) is closer to xCo = 0.045 (TSDW = 65 K).
Again, one finds [38] that the main source of a partial detuning
of the nesting condition is the simultaneous change in electron
and hole pockets. Therefore, whereas the electronic tuning
caused by Mn may contribute to the suppression of the SDW
phase, it cannot be the dominant effect.

We thus resort to a quantitative analysis of the ARPES
spectral function to probe for other effects of the Mn substi-
tution. We fit momentum distribution curves (MDCs) to the
expression for the one-particle spectral function A(k, EB) for a
system of weakly correlated electrons [39]. Our objective is to
extract the electronic scattering rate �(EB) and the imaginary
part of the self-energy Im�(EB), both as a function of the
binding energy EB. We concentrate on extracting �(EB) and
Im�(EB) from the MDCs analysis for the bands with dyz

and dxy main orbital character in the measurements in direc-
tion �X with LV polarization and �M with LH polarization,
respectively, represented as green and blue hole pockets of
Figs. 1(a)–1(c).

The fittings are presented in Figs. 2(a)–2(d) for the
BFA and Mn8.5% samples. The fittings in Figs. 2(a) and
2(c) (band of dyz orbital character) were obtained as in
Refs. [40,41], whereas the fittings in Figs. 2(b) and 2(d)
were obtained as explained in the Supplemental Material
[29] (see also Refs. [42–52] therein). The later spectral
features are due to two bands of dxy and dxz orbital
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FIG. 3. The extracted quantities �(EB) and Im�(EB) for all three
samples obtained for (a) LV polarization, measured along �X and
(b) LH polarization, measured along �M. (c)-(d) Respectively, the
Im�(EB ) data presented in (a) and (b) but plotted as a function of√−EB. (e) Schematic summary of the experimentally determined
effect of Mn on MnBFA electronic band structure.

character (see Fig. 1), and require the use of four Lorentzian
lineshapes. In Fig. 2(e), fitting details for two represen-
tative cases, BFA and the Mn8.5% samples, are shown.
The need of four lineshapes is clear in both cases,
although the spectral features are better defined in the BFA
case because of the smaller lineshape broadening. Reliable fit-
tings of the doped samples’ spectra were achieved by adopting
the results presented in Fig. 1 as inputs to find the center of the
distributions in our spectral analysis.

The extracted values of �(EB) and the calculated Im�(EB)
are shown, as a function of EB, in Figs. 3(a) and 3(b) for
all samples. The broadening of the spectroscopic features,
here measured by �(EB), contains intrinsic and extrinsic
effects which also affect the determination of Im�(EB). A
way around this problem is to focus on the rate of change and
scaling properties of these quantities, which are less affected
by the homogeneous broadening introduced by extrinsic ef-
fects. This is qualitatively captured by the lines drawn in
Figs. 3(a) and 3(b), which serve as guides to eyes and suggest
that �(EB) can be described as a linear function of EB close to
EF .

Observing the lines, we can see that the rate of change of
�(EB) increases as a function of Mn content in the cases of
both dyz and dxy bands. Certainly, the effect is more prominent

for the dyz band. Physically, �(EB) being proportional to the
inverse of the quasiparticle lifetime, it is a measurement of the
electronic states’ coherence. An increasing rate of change thus
translates into less coherent electronic band states and this is
precisely the observed effect caused by Mn substitution in all
bands.

Turning our attention to the lower panel of the same figure,
we can see that Im�(EB) only follows a linear scaling very
close to EF. A linear scaling is reminiscent of a marginal
Fermi liquid [39,53], and an analysis based upon this picture
is carried out in [29] and serves as a source for comparison
with previous similar analysis [40,41,54].

Here, we focus on the scaling properties of Im�(EB) in a
broader energy interval. As presented in Figs. 3(c) and 3(d),
for the energy interval 0.4 >

√−EB > 0 and 0.3 >
√−EB >

0, for the dyz and dxy bands, respectively, Im�(EB) presents
a fractional scaling as a function of EB. In the particular case
of the dyz bands, an excellent Im�(EB) ∝ √−EB scaling is
observed. This type of behavior is the hallmark of a Hund’s
metal for temperatures above the onset of spin screen-
ing, wherein the charge degrees of freedom are itinerant
but the spin degrees of freedom retain a local character
[22,24,27,28,55]. In our work, this regime is observed in the
presence of increasing electronic disorder caused by the Mn
substitution.

Thus, the effects caused by Mn substitution amount to (i)
a small and orbital-specific shrinking of the electron pockets
and (ii) the increase of the electronic bands’ incoherence
in all bands crossing EF. The orbital-specific doping effect
stems from the interaction between the metal and the lig-
and orbitals and cannot be put in terms of a rigid band
shift or, equivalently, the depleting of the Fe local electronic
occupation. Thus, it favors the interpretation that Mn tunes
MnBFA from a Hund’s metal in BFA to a Hund’s insulating
state in BaMn2As2 [22,24,28] over the Mott scenario, since
the latter explicitly proposes a change in the Fe electronic
occupation as a way to get into the correlated phase and
eventually into a Mott regime in half filling [56–58]. The
weak hole doping effect, however, cannot explain the TSDW

suppression.
In keeping with the nesting scenario, the emergence of

incoherent carriers may act as a mechanism for the TSDW sup-
pression, since the broadening of the electronic states implies
incoherent carriers that do not contribute to the nesting condi-
tion [59]. Our scaling results, however, characterize MnBFA
as a Hund’s metal where spins retain a local character. This
tendency for localization of the magnetism in MnBFA is cap-
tured by optical spectroscopy measurements [60] and, from a
phenomenological standpoint, could be related to the almost
linear decrease of TSDW as a function of Mn content. In any
case, it is suggested that disorder is the main mechanism for
the suppression of TSDW, not electronic tuning. It is intriguing
that Mn, being close to Fe, behaves similarly to Zn which, in
principle, is a much stronger impurity scatter, and not similar
to Co [61,62].

The left and right panels in Fig. 2(e) summarize our find-
ings concerning the electronic structure of the PM state. The
upper panel shows schematics of the BFA PM Fermi surface.
Nested electron and hole states are connected by a (π, π )
vector drawn to scale. The lower panel shows the respective
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FIG. 4. Second derivatives of high and low-temperature bands of MnBFA sample for different polarization: (a) FS maps showing the cuts,
traced in pink and green, for which the bands are shown in panels (b)–(e). (b) �X direction and (c) YZ direction second derivatives for the BFA
sample. The respective (d) Mn3.5% and (e) Mn8.5% sample results. The directions and light polarization are indicated in each panel and the
fitted band points are marked as purple points.

schematics for MnBFA. Mn causes a significant broadening
of all electronic states and the shrinking and deformation of
the electron pockets, resulting in the partial detuning of the
nesting condition.

B. Magnetically ordered state results

We now turn to the reconstructed electronic structures,
characterized at T = 20 K, well below the magnetic
transition. First, we discuss the nematic splitting �, between
bands with dxz and dyz orbital character, as a function of Mn.
In Fig. 4(a), a FS map for the BFA sample (obtained with
LV polarization and along �X ) is shown, wherein cuts along
the Y Z and �X are indicated, respectively, by the green and
pink dashed lines. The second derivative of the electronic
band maps along these directions are shown in Figs. 4(b) and
4(c) for BFA and Figs. 4(d) and 4(e) for the Mn substituted
samples. We could not resolve the reconstructed “petallike”
fourfold symmetric shape recently reported [63]. From the
Y Z cut, we can access � of the shallow electronlike band,
reported as � = 40 meV for the BFA [32]. This splitting,
the consequence of breaking the degeneracy of the dxz/dyz

electron bands, manifests as well in the almost flat electron
band close to the X point, as shown in the lower panel of
Fig 4(b). Indeed the entire band appears duplicated along the
�X direction. Using EDCs to fit the band positions, we super-
impose the bands performing a rigid energy shift on the lower
duplicated band to estimate �, and Fig. 5(a) presents � as a
function of Mn.
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FIG. 5. (a) Nematic splitting size for shallow and flat bands as a
function of Mn %. (b) RIXS derived magnon damping coefficients
(γ ) and bare frequencies (ω0) for 0% and 8%Mn samples as a
function of momentum for two directions.

There is still debate about the nematic splitting size for
these materials [64], reported as 60 meV for FeSe thin film
[65] and 70 meV for BFA [66], which is in good agreement
with our findings. We can observe that for both bands there
is no scaling between � and TSDW: indeed, � decreases only
about 20% from its value for BFA whereas TSDW decreases by
about 60%.This splitting is currently understood as evidence
of nematic ordering and a consequence of the orthorhombic
distortion. It is only for x > 0.1 that Mn substitution sup-
presses the orthorhombic transition [12,26,67]. For x < 0.1,
TSDW and the orthorhombic distortion are intertwined, but
the weak � dependence on Mn content for x < 0.1 does not
reflect this phenomenology.

The presented ARPES results can be applied to an in-depth
reexamination of previous Resonant Inelastic X-ray Scattering
(RIXS) experiments of MnBFA samples [17], which char-
acterized the magnon dispersions along �X and �M as a
function of Mn. In Fig. 5(b), we show the RIXS measured
(T = 20 K) magnon damping coefficients (γ ) and the magnon
bare frequencies (ω0) for BFA and Mn8.0% samples, as a
function of the in-plane momentum, ||q||, along the main
symmetry directions of the 1Fe Brillouin zone. As a function
of Mn, ω0 remains unaffected, whereas γ increases, with
the excitations becoming overdamped (ω0 � γ /2) for almost
all values of ||q|| in the case of the Mn8.0% sample. This
abnormally large magnon damping is not observed in RIXS
results for other IBS materials [68–70].

The RIXS measured magnons are due to spin flips as-
sociated with the dxy orbitals [71]. Our ARPES data show
explicitly that the reconstructed electronic structure is related
to an energy scale of the order of 60 meV in the case of BFA.
However, the relative change with Mn substitution in � is at
most 20% of this value, ≈12 meV, which is beyond the highest
resolution RIXS experiments to date. In this sense, the posi-
tioning of the dxy-derived bands in the reconstructed electron
structure is also not affected by Mn content, which is compat-
ible with the RIXS measured ω0 values being not affected by
Mn. The magnon damping γ , however, is strongly increased
by Mn, suggesting that the cooperative behavior between the
Mn local moments and conduction electrons plays the key
role in promoting the scattering of the Fe-derived excitations
by the short-range Néel fluctuations [17–19]. Therefore, the
present observation by ARPES of increasing band incoher-
ence naturally connects with the RIXS results.
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IV. CONCLUSIONS AND OUTLOOK

Our experiments and analysis show that Mn causes a siz-
able hole doping effect, which manifests in the shrinking of
electron pockets. The dominant effect of Mn, however, is the
increase of electronic incoherence, observed for all bands, as
deduced from the behavior of �(EB) in the spectral analysis.
We suggest that the latter and magnetic scattering [17–19]
are the control parameters for the evolution of TSDW. We also
show explicitly that Mn causes a sizable effect on the nematic
splitting �, which decreases with increasing Mn content.

Our findings support that the indirect exchange between
Mn local moments is mediated by incoherent electronic states,
explaining the glassy behavior of Mn spins [26]. Indeed, as
previously observed [12], the suppression of TSDW as a func-
tion of Cr and Mn content in substituted BFA does not depend
on the nature of the dopant, but the spin glass state of the Mn
spins distinguishes the physics of Cr and Mn substitutions.
The electronic band incoherence here observed should be a
feature only of MnBFA. We should also comment on a re-
cent analysis of Mn and Cr substituted 1144 IBS materials
[72,73], which also proposes that the amount of doped holes
is not controlling the suppression of TC and TSDW for these
substitutions.

A robust finding of our spectral analysis is the Im�(EB) ∝√−EB scaling. Whereas this was already observed in the case
of the IBS materials [55], our paper highlights the coexistence
of this correlated Hund’s metal phase with the electronic
disorder. In this regard, whereas our findings provide the
mechanism for the glassy behavior of Mn spins, the specific
proposition of a Griffths-like phase in MnBFA [26] (or even
in Mn substituted SrFe2As2 [74]) should be reexamined, since
in general grounds it demands proximity to a Mott phase
[75–77]. Indeed, the effects of disorder in a Hund’s metal re-

mains to be explored and we hope that our work may stimulate
this discussion.

Finally, given the entirety of our results, the picture
advanced in Refs. [19,20] provide the most complete scenario
to explain the absence of SC in MnBFA samples since our
work shows that disorder is an integral property of the elec-
tronic states in MnBFA.
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