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Dynamical variational Monte Carlo as a quantum impurity solver:
Application to cluster dynamical mean field theory
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Two of the primary sources of error in the Cluster dynamical mean field theory (CDMFT) technique arise
from the use of finite size clusters and finite size baths, which makes the development of impurity solvers that
can treat larger systems an essential goal. In this work we introduce an impurity solver based on the recently
developed dynamical variational Monte Carlo (dVMC) method. Variational Monte Carlo possesses a favorable
scaling as a function of system size, which enables the treatment of systems beyond the reach of current exact
diagonalization solvers. To benchmark the technique, we perform a systematic set of CDMFT calculations on
the single-band one-dimensional Hubbard model. We compare to results obtained with an exact diagonalization
solver for small clusters, and against the exact solution in the thermodynamic limit obtained by Lieb and Wu
for larger clusters. The development of improved impurity solvers will help extend the reach of quantum cluster
methods, which can be applied to a wide range of strongly correlated electron systems, promising new insights
into their emergent behavior.
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I. INTRODUCTION

Strongly correlated many-electron systems are one of the
central challenges of condensed matter physics. These sys-
tems generally do not permit exact solutions, except for
selected limiting cases. The lack of robust quantitative de-
scriptions of these systems necessitates the development
of ever-improving approximative and numerical approaches
[1]. One set of computational techniques that have proved
quite successful in the treatment of strongly correlated elec-
trons is the quantum cluster methods, comprising cluster
perturbation theory (CPT) [2–4], cluster dynamical mean-
field theory (CDMFT), and dynamical cluster approximation
(DCA) [5–11], among others.

The principle underlying these techniques is to represent
the system as a finite size cluster embedded in an infinite
lattice. The self-energy of the cluster can then be used to
approximate the self-energy of the infinite system. The ef-
fect of the infinite lattice on the cluster is incorporated by
adding additional terms to the cluster Hamiltonian, or, in the
case of CDMFT, bath degrees of freedom whose values are
determined self-consistently.

One of the central components of the CDMFT procedure
is to solve the cluster-bath problem using a so-called impurity
solver [12,13]. For discrete bath representations, most current
impurity solvers are based on exact diagonalization, which
is limited to fairly small cluster sizes given the exponential
scaling of the algorithm with the dimension of the Hilbert
space. This limitation leads to the two sources of systematic
error in the CDMFT technique: finite size clusters and finite
size baths [14]. In the limit of infinite cluster size, the CDMFT
result represents the thermodynamic limit; however, for small

clusters the finite size error can be significant. Unlike the case
of an infinite cluster, an infinite bath connected to a finite
cluster does not represent the thermodynamic limit, but larger
baths provide an improved representation of the effect of
the environment on the cluster. The development of impurity
solvers that can treat larger clusters will help minimize these
fundamental sources of error and improve the capability of
this already powerful method.

In this work we introduce an impurity solver for CDMFT
based on the dynamical variational Monte Carlo technique
(dVMC) [15]. This approach is sign-problem free and scales
polynomially with system size, which permits the treatment
of cluster sizes beyond the reach of current exact diagonal-
ization solvers. These benefits, however, come at the cost of
statistical errors inherent to all Monte Carlo approaches and
systematic errors due to the Ansatz for the ground state and
excitations. The method has already demonstrated impressive
accuracy as an impurity solver in CPT calculations on the
hole-doped two-dimensional Hubbard model [16], and here
we extend and apply the technique within CDMFT. To gauge
the accuracy of the approach we perform a set of benchmarks
on the single-band one-dimensional (1D) Hubbard model. We
compare our CDMFT-dVMC results to CDMFT-ED results
on small to intermediate size clusters before treating larger
clusters, whose results are compared to the exact solution
obtained by Lieb and Wu [17].

While we benchmark against the Lieb-Wu solution, which
provides only ground state properties, we emphasize that this
technique is designed to compute dynamical properties, such
as the spectral function, as we demonstrate below. Related
techniques based on variational Monte Carlo have been devel-
oped to access dynamical quantities [18], but these approaches
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focused on the charge or spin structure factors [19–22], or
the neutron resonance mode [23], as opposed to the Green
function, which is an essential ingredient in quantum cluster
methods.

We organize the remainder of the paper as follows. We
introduce the method in Sec. II. In Sec. III we present a
set of benchmarks, first for small and intermediate clus-
ters, followed by large clusters. Finally, we discuss the
performance of the method and possible improvements in
Sec. IV. Details of the technique are provided in a set of
appendices.

II. METHOD

The method we present in this work is based on the dVMC
technique introduced in Ref. [15], which was designed to treat
systems with periodic boundary conditions and translational
invariance. The technique was recently extended to treat sys-
tems with open boundary conditions, which enables its use as
an impurity solver in various quantum cluster methods [16]. In
Ref. [16] the technique was applied within CPT, which does
not include bath sites, nor does it involve a self-consistency
procedure. Here we implement the approach within CDMFT,
which includes both of these ingredients.

In this section, we present some relevant details of the gen-
eralized dVMC method; a more complete discussion can be
found in Refs. [15,16]. In the Supplemental Material [24], the
reader can find the code implementing the algorithm described
here, which was used to obtain the results presented below.

A. Green function from generalized dVMC

As in Refs. [15,16], the generalized dVMC technique uses
variational Monte Carlo to optimize a ground state Ansatz
describing a system of Ne electrons, which is then used to
obtain the Green function. Within the generalized dVMC ap-
proach, the Green function matrix at a complex frequency z is
computed according to [16]

G±(z) = S((z ± �)1 ∓ H)−1S (1)

= Q((z ± �)1 ∓ E)−1Q†, (2)

where S is the overlap matrix of the non-orthogonal basis used
to express the one particle excited sectors of the Hamiltonian
operator in matrix form: H. Q ≡ S1/2U and U and E are the
eigenvectors and eigenvalues respectively of the matrix M ≡
S−1/2HS−1/2. To understand this formula intuitively, recall
that the Green function is obtained from states with one more
or one less particle compared with the ground state. These
states are obtained [15,16] from an algorithm that generates
independent but nonorthogonal basis states whose overlap is
represented by the matrix S.

The matrices S and H are of dimension 2NNexc, where N
is the number of sites and Nexc is the number of single-particle
excitations, i.e., the number of many-body states containing
one more (fewer) electron than the ground state. We select
a physically motivated subset of all possible single-particle
excitations based on locality [15,16].

The factor of 2 reflects the presence of two spin species; in
the case of one spin species, these matrices are of dimension
NNexc. The matrix elements of S and H are computed with

respect to the variational ground state, obtained according to
the algorithm described in Refs. [15,16,25,26]. The plus and
minus signs of Eq. (1) refer to the electron and hole Green
function matrices respectively, and they have been omitted
from the matrices S±, H±, etc. to remain concise.

As in Ref. [16], we apply a filtering algorithm to the over-
lap matrix S to reduce Monte Carlo noise and ensure that the
matrix is positive definite. In Ref. [16], the filtering procedure
removed only negative eigenvalues of the overlap matrix. Here
we perform an additional filtering, which removes the very
small positive eigenvalues of the overlap matrix. In order to
determine the number of states to filter, we perform a singular
value decomposition, S = USVD�SVDV†

SVD, where the matrix
�SVD = diag(s1, s2, . . . , sNNexc ) contains the singular values
of S. Note that �SVD is not related to the self-energy �(ω)
defined below. The smallest singular value we keep is given by
smin = (smax) × 10−k , where k is a condition number. We fix
this condition number, for the sake of consistency, to k = 6.
Everything below smin is filtered as detailed in Ref. [16].

The Green function is then obtained by summing the
electron and hole Green function matrices and keeping only
the sector corresponding to the trivial excitation, m = n = 0,
namely c(†)|�〉:

Gi j,σ (z) = [G+(z) + G−(z)]i j,σ=σ ′,m=n=0, (3)

where the indices i, j denote site numbers and m, n denote
excitation numbers. Let us underline here that the boldface
font used up until this point included i, j and m, n, but from
now on it will include only i, j. Indeed, the m, n degrees of
freedom are only necessary to sample the excited sectors of
the Hamiltonian (H±), but not to express the cluster Green
function Gi j,σ (z).

B. Cluster dynamical mean field theory (CDMFT)

We implement the dVMC impurity solver within the
CDMFT technique, so in this section we present the essen-
tial components of the CDMFT approach. In CDMFT, the
infinite lattice system is modeled by an impurity Hamiltonian
composed of a set of interacting cluster sites coupled to nonin-
teracting bath sites. The impurity Hamiltonian has the general
form

Ĥimp =
Nc∑

i j,σ

(ti j ĉ
†
iσ ĉ jσ + H.c.) + U

Nc∑
i

n̂i↑n̂i↓ − μ

Nc∑
i,σ

n̂iσ

+
∑
iλ,σ

(θiλĉ†
iσ b̂λσ + H.c.) +

Nb∑
λ

ελb̂†
λσ b̂λσ , (4)

where ĉiσ annihilates an electron of spin σ = ↑,↓ on a cluster
site i = 1, . . . , Nc, and b̂λσ annihilates an electron of spin σ on
a bath site labeled by λ = 1, . . . , Nb, where Nc and Nb are the
numbers of cluster sites and bath sites, respectively. The bath
is parametrized by cluster-bath hybridization terms, θiλ, and
bath site energies, ελ [14,27,28]. An illustration of the bath
configuration used in this work is given in Fig. 1.

The cluster Green function, Gc(ω), is obtained by the
impurity solver, which provides an efficient means of extract-
ing the self-energy �(ω) at any complex frequency, ω. The
Green function of the original lattice Hamiltonian can then be
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FIG. 1. Bath configuration. Bath sites couple to both edges of the
cluster, with half of the bath sites belonging to the symmetric repre-
sentation of the reflection symmetry, and the other half belonging
to the antisymmetric representation. Symmetry considerations are
useful to define bath parameters [28,34,35]. When more bath sites
are used, the number of symmetric and antisymmetric independent
baths remains the same.

computed using the cluster self-energy and the noninteracting
lattice Green function, G0(k̃, ω):

G−1(k̃, ω) = G−1
0 (k̃, ω) − �(ω). (5)

The momentum k̃ runs over the reduced Brillouin zone of the
superlattice of clusters.

In order to compare the Green function of the lattice to that
of the cluster, the lattice Green function is projected back onto
the cluster,

Ḡ(ω) = Nc

N

∑
k̃

[
G−1

0 (k̃, ω) − �(ω)
]−1

. (6)

The remainder of the CDMFT procedure consists in finding
a set of bath parameters that makes the cluster Green func-
tion, Gc(ω), and the projected lattice Green function, Ḡ(ω),
as close as possible to each other [11]. This can be done
by minimizing a distance function [14,27]. A new cluster
Green function can then be computed with this new set of
bath parameters and the procedure is repeated until conver-
gence. In the case of the dVMC impurity solver, we determine
convergence by inspection of the bath parameters (see Ap-
pendix A). We note that the the computational cost scales with
the number of sites, Ns = Nc + Nb, as N3.5

s , and the number of
excitations as N1.5

exc [16], but with a larger prefactor in the case
of CDMFT.

After convergence, the lattice Green function G(k̃, ω)
[Eq. (5)] can then be used to compute the average value of
observables. The average lattice density is computed with

n =
∫ 0

−∞
dω

∑
k̃

Tr[G(k̃, ω)]. (7)

This will be the main focus of Sec. III.

III. RESULTS

A. Model

As an initial test of the CDMFT-dVMC technique, we per-
form a set of calculations on the single-band one-dimensional
Hubbard model. This model has been solved exactly [17], and
has been well studied by other numerical techniques [28–33],
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FIG. 2. Density versus chemical potential for a two site cluster
with four bath sites. The inset shows the relative error between the
result from the dVMC solver and the result from the ED solver
at each value of μ studied. The error bars represent the error
of the CDMFT-dVMC result (see Appendix A for details). Note
that the same error is given in the inset as a fraction of the ED result.
The exact result from Lieb and Wu [17] is given by the black curve.

which makes it an ideal testbed to assess the accuracy of the
approach.

The model has the following Hamiltonian:

Ĥ =
∑
〈i j〉,σ

−t (ĉ†
iσ ĉ jσ + H.c.) + U

∑
i

n̂i↑n̂i↓ − μ
∑
i,σ

n̂iσ ,

(8)

where t is the amplitude for nearest neighbor hopping, U is the
on-site interaction strength, and μ is the chemical potential. In
the results that follow we take U/t = 4.

B. Benchmark against ED solver

In this section we present a series of benchmark CDMFT
calculations on small clusters, which provide a direct compar-
ison of the performance of the dVMC impurity solver to that
of an exact diagonalization solver.

We first study a cluster of two sites with four bath sites.
We chose a bath configuration in which each bath site is con-
nected to the edge sites at either end of the cluster, where two
bath sites, with energies ε1 and ε2, belong to the symmetric
representation of the reflection symmetry and the other bath
sites, with energies ε3 and ε4, belong to the antisymmetric
representation. The role of the bath sites is to represent the
environment surrounding the cluster, therefore they couple
only to the edges of the cluster. The bath configuration is
illustrated in Fig. 1. These small clusters can be treated by
exact diagonalization, which provides a reliable assessment
of the accuracy of the dVMC solver.

In Fig. 2 we show the average lattice density computed
via CDMFT versus chemical potential. We observe that the
results obtained by the dVMC impurity solver (red circles) are
in excellent agreement with the exact diagonalization results
(ED, dashed blue line). As shown in the inset, the relative error
is below 0.1% for the range of chemical potentials we have
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FIG. 3. Top: Average density versus chemical potential com-
puted with dVMC and ED impurity solvers. The exact result from
Lieb and Wu [17] is given by the black curve. Bottom: Grand
potential (units of t) of the cluster versus chemical potential. The
purple circles show the CDMFT-dVMC result and the orange crosses
show the ED result computed with the bath parameters from the
converged CDMFT-dVMC iterations. The error bars represent the
error of the CDMFT-dVMC result (see Appendix A for details). Note
that the same error is given in the inset as a fraction of the ED result.
The system has Nc = 8 cluster sites, Nb = 4 bath sites, and Ne = 12
electrons.

considered, which spans from the metallic to the insulating
state. This is an important initial demonstration of the capa-
bility of dVMC as a CDMFT impurity solver, indicating that
it can reproduce the results of CDMFT with an ED impurity
solver on small clusters with quantitative accuracy. Note that
we also show the exact result obtained by Lieb and Wu for an
infinite 1D interacting lattice from the Bethe Ansatz [17] as a
black line throughout this paper. It is only a reference for now
because in the best-case scenario we do not expect dVMC to
obtain a result closer to the Lieb-Wu result than that obtained
with ED.

Having calibrated the accuracy of the dVMC solver on
small clusters, we proceed with a set of calculations on in-
termediate sized clusters. In the top panel of Fig. 3 we again
show the average lattice density versus chemical potential,
computed with the dVMC and exact diagonalization impurity
solvers. We find that the dVMC results are in good agreement
with the exact diagonalization results in both the metallic and
insulating limits, for values of μ < 1.3 and μ > 1.4. In the

region near the transition between the metallic and insulating
states, μ ∈ [1.32, 1.38], the dVMC results are in qualitative
agreement with the exact diagonalization results; however,
the dVMC impurity solver obtains a different value of the
critical chemical potential μc, which indicates the edge of the
gap. The dVMC curve still shows a sharp increase in slope
as the chemical potential approaches μc, but this increase
occurs at a slightly lower value of chemical potential than
the corresponding exact diagonalization result.

In order to better understand the behavior of the dVMC
solver, we next consider the accuracy of the ground state of
the cluster obtained by the solver. The bottom panel of Fig. 3
shows the grand potential of the cluster, �c, versus chem-
ical potential. In the top panel, at each chemical potential,
the dVMC value represents the average over the converged
CDMFT iterations (see Appendix A), whereas the ED result
is the value at the final CDMFT iteration. In the bottom panel,
the dVMC value is again obtained by averaging over the
converged iterations, whereas the ED value is computed using
the bath parameters from the converged CDMFT-dVMC iter-
ations. The grand potential of the cluster computed by dVMC
is generally in excellent agreement with the exact diagonaliza-
tion result, typically within ∼0.2%. The dVMC result tends
to become more accurate as a function of increasing chemical
potential, with the most accurate results being obtained after
the transition to the insulating state above μ ∼ 1.4. We note,
however, that the error bars are largest in the region near μc

[28], for μ ∈ [1.3, 1.6]. This suggests that the ground state en-
ergy landscape in this region is complicated, which is reflected
in the larger variance in the representation of the ground state
achieved by the dVMC solver. The ground state energy of
a dVMC solution has many potential sources of noise; note
that the fluctuations between VMC iterations are of the same
order or smaller than those between CDMFT iterations. See
Appendix C for a detailed analysis. The dVMC description
of the ground state is a subject we will touch upon in a later
section.

As highlighted above, the ability to compute dynamical
properties of strongly correlated systems is one of the cen-
tral motivations behind the development of this technique.
We therefore proceed by computing the spectral function,
A(k, ω), for several of the systems presented in Fig. 3. To
further gauge the accuracy of the dVMC impurity solver we
compute the same quantity with both the dVMC and exact
diagonalization solvers. In the top row of Fig. 4 we present
the spectral function versus average density obtained with the
exact diagonalization impurity solver and in the bottom row
we show the result obtained with the dVMC solver.

We find that the CDMFT-dVMC results capture the same
basic qualitative features as the CDMFT-ED results. In both
sets of calculations, a single band crosses the Fermi level at
lower density, which gradually loses spectral weight until a
gap opens that is symmetric about the Fermi level at half
filling.

Finally, to complement the results presented above, we
compute the local density at several values of chemical po-
tential. As in earlier results, the CDMFT-dVMC values are
obtained by averaging over the set of converged iterations,
whereas the CDMFT-ED values are taken from the final
CDMFT-ED iteration.
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column corresponds to a specific μ, with the resulting average lattice density given at the bottom of each plot.

The CDMFT-dVMC results for the local density are gen-
erally in good quantitative agreement with the CDMFT-ED
results (Fig. 5). At smaller values of chemical potential (top
row) the CDMFT-ED result shows an oscillatory feature
that the CDMFT-dVMC results match to within ∼1% er-
ror. At larger values of chemical potential (bottom row) the
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FIG. 5. Local density, ni, versus cluster site, i, from CDMFT-
dVMC and CDMFT-ED. Each system has Nc = 8 cluster sites, Nb =
4 bath sites, and Ne = 12 electrons.

CDMFT-dVMC results are even more accurate, in this case
within ∼0.25% of the CDMFT-ED result.

C. Results for large systems

In the preceding sections we presented a thorough set
of benchmarks on small and intermediate sized clusters to
establish the accuracy of the dVMC impurity solver within
CDMFT. Here we perform a set of calculations on large
clusters, beyond the reach of exact diagonalization solvers.
The ability to treat larger clusters reduces finite size effects
and provides a clearer understanding of the behavior of the
method as a function of the number of cluster sites as well
as bath sites. Our results for the average lattice density versus
chemical potential are summarized in Fig. 6.

We used two different clusters for this set of calculations,
both with 24 total sites. We observe that for small to inter-
mediate chemical potential (μ � 1.2) the 20 site cluster with
4 bath sites (20 + 4) and the 16 site cluster with 8 bath sites
(16 + 8) both obtain results for the average density in good
agreement with the Lieb-Wu result, generally within ∼1%.
Similarly to the results for smaller clusters, the agreement
between the CDMFT-dVMC result and the Lieb-Wu result
is somewhat worse towards the transition to the insulating
state. The Monte Carlo estimate of the error is also larger
in this region, suggesting a potentially complicated ground
state landscape that poses a challenge for the dVMC approach,
which is consistent with the previous benchmark against ED
shown in Fig. 3. For chemical potentials beyond the transition,
the CDMFT-dVMC results are exceptionally accurate.

In Fig. 7 we show the spectral function versus average
density for the 16 + 8 system (top row) and the 20 + 4 system
(bottom row). The results for both clusters reliably capture the
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major qualitative features of the physics at increasing values
of average density [33]. At low density there is a single band
with significant spectral weight crossing the Fermi level. As
the density increases, this band loses spectral weight above
the Fermi level and eventually a gap opens, with the Fermi
level lying in the middle of the gap at the particle-hole sym-
metric point (μ = 2.0 in this case). The differences between
the results presented in the top row of Fig. 7 and the bottom
row provide a good estimate of the error or imprecision of the
method. While the average densities are not identical for the
two systems, they capture the same physics and qualitative be-
havior of the spectral function. Importantly, despite the small
discrepancies between these two sets of results, the quality
of the spectra is considerably improved, and less discretized,
than the result for smaller clusters, from ED or dVMC (Fig. 4),
which shows visible finite size effects.

Finally, we compute the local density at several values of
average total lattice density for both clusters. Far from half
filling (upper left panels of Figs. 8 and 9), the local den-
sity shows a modulation that is likely induced by the finite
size of the lattice in combination with the particular value
of total average lattice density. No charge order is observed
in the Lieb-Wu solution. As the total density increases, this
oscillation disappears and the local density becomes more
uniform towards the center of the cluster. At half filling the
local density is essentially constant, as expected.
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FIG. 7. A(k, ω) versus average density for Nc = 16 and Nb = 8 (top row) and Nc = 20 and Nb = 4 (bottom row) systems from CDMFT-
dVMC. Each column corresponds to a specific μ, with the resulting average lattice density given at the bottom of each plot.
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FIG. 8. Local density, ni, versus cluster site, i, at various values
of total average density for a 16 + 8 system. An oscillation in the lo-
cal density, likely related to the finite cluster size and average density,
is evident at n = 0.677. This oscillation disappears at larger values
of average density until the local density is essentially constant at
n = 1.0.

IV. DISCUSSION

In this section we note some of the remaining techni-
cal challenges that currently limit the performance of the
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FIG. 9. Local density, ni, versus cluster site, i, at various values
of total average density for a 20 + 4 system. A similar oscillation to
the 16 + 8 system is evident at n = 0.673, though with a different
period, suggesting that it is indeed a finite-size effect. The local den-
sity again becomes more uniform as the average density approaches
1.0.

technique, and suggest potential improvements reserved for
future work.

One of the limitations of the method is the description
of the ground state. In the results presented in Fig. 3, we
observe that the error in the grand potential of the cluster
relative to the ED result is generally quite small, on the order
of 0.1%–0.2%; however, the error bar grows in the region
near the transition between the metallic and insulating states.
This behavior suggests that there may be closely spaced local
minima in the ground state energy landscape, which leads to
a larger variance in the dVMC result. The error in the average
lattice density is also largest near the transition, indicating that
some of the error in the lattice Green function may come from
inaccuracies, or the higher variance, of the ground state.

One means of addressing this limitation is to consider
different, more flexible, variational ground state Ansätze, that
might provide a more accurate description of the ground state
[36]. The past several years have seen considerable progress in
this direction, with the development of innovative variational
Monte Carlo approaches, including many inspired by ideas
from machine learning [37–41] or tensor networks [42,43].
The application of these approaches within dVMC remains
an interesting prospect, with the potential to produce higher
accuracy results for dynamical properties.

One other potential source of error in the technique is
the choice of excitations, i.e., the choice of the nonorthog-
onal basis used to express the one particle excited sectors
of the Hamiltonian. As illustrated in Fig. 3, the overall er-
ror in the average lattice density seems to depend somewhat
on the accuracy of the ground state, but the ground state
generally agrees quite well with the ED result. While it is
difficult to disentangle the sources of error, given that the
CDMFT-dVMC technique involves a self-consistency proce-
dure comprising multiple variational minimizations, it may be
possible to reduce the overall error by further optimizing the
choice of excitations, as discussed in Appendix B.

V. CONCLUSION

The dVMC technique has proved to be an accurate
method to compute the Green function for models of strongly
correlated electrons, with and without periodic boundary
conditions and translational invariance [15,16]. These pre-
vious developments laid the foundation for the approach
to be implemented as an impurity solver in various quan-
tum cluster techniques. Here we have focused on CDMFT,
which includes the additional components of coupling to
bath sites and the self-consistent optimization of the bath
parameters.

We have introduced an impurity solver for CDMFT based
on the dVMC technique and performed a systematic set
of benchmarks on the single-band 1D Hubbard model. We
compare against CDMFT-ED results on smaller clusters and
against the Lieb-Wu solution for larger clusters. As we have
shown, the approach is capable of achieving impressive ac-
curacy (generally within 1.5% error), and, importantly, scales
reasonably with system size, which makes it possible to treat
large systems.

Though we have focused here on the single-band 1D
Hubbard model, the approach can be applied to a wide

245122-7



P. ROSENBERG et al. PHYSICAL REVIEW B 108, 245122 (2023)

0 5 10 15 20 25

iteration

0.85

0.86

0.87

0.88

n

Lieb–Wu
8 + 8
10 + 6

14 + 2
12 + 4

−0.199 0.371 0.9528 1.3
μ

0.00

0.01

0.02
|nL–W − ndVMC|/nL–W

FIG. 10. Top: CDMFT-dVMC measurements of the average den-
sity versus iteration at chemical potential μ = 0.9528. The open
symbols indicate iterations that are included in the computation of
the converged value of the average density. Bottom: Relative error
with respect to the Lieb-Wu result at several values of chemical
potential.

range of strongly correlated Hamiltonians, including two- and
three-dimensional systems. Another goal of future work will
be to extend the technique to treat superconducting systems,
which requires measurement of the Nambu Green function.
The ability to treat larger clusters is an important means
of improving the approximation underlying quantum cluster
methods. The approach we have introduced here extends
the range of these already powerful methods, and holds the
promise of new insights into the physics of strongly correlated
electrons.
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APPENDIX A: CONVERGENCE VERSUS NUMBER
OF BATH SITES

In Fig. 10 we show several calculations of the average
density for a system with a total of 16 sites, but different
numbers of bath sites (See also Ref. [28]). In the upper panel
we show the average lattice density computed at each iteration
of the CDMFT self-consistency loop for each system. As al-
luded to in the main text, in the CDMFT-dVMC approach we
determine convergence by inspection of the bath parameters.
Once the calculation has converged we perform an additional
set of iterations. The average value of an observable and the
associated error bar are obtained by computing the average
and standard deviation of the measurements of that observable
over this set of converged iterations.

In the upper panel of Fig. 10 the converged iterations are
indicated by the open symbols. For the chemical potential
shown in this panel, we observe that the result for the system
with the largest number of bath sites is closest to the exact
result. However, this behavior is not consistent across all the
values of chemical potential we have studied, as illustrated
in the lower panel. For instance, while the 8 + 8 system is
the most accurate at μ = 0.9528, it is the least accurate at
μ = −0.199.

APPENDIX B: CONVERGENCE VERSUS
NUMBER OF EXCITATIONS

In this Appendix we study the behavior of the technique as
a function of the number of excitations. In Fig. 11 we show
several calculations of the average lattice density for a 12 + 4
and an 8 + 8 system across a range of Nexc, for several values
of chemical potential.

We observe that the result for the average lattice density
shows relatively little dependence on the number of exci-
tations included before filtering, as the difference between
the result with Nexc = 5 and Nexc = 50 is below ∼5 × 10−3,
or 0.5% of the final result for the average lattice density,
at all values of chemical potential studied. We observe that
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FIG. 11. Convergence versus Nexc. Each panel plots �n ≡ |n(Nexc) − n(5)|, which gives the change in the average lattice density as a
function the number of excitations, relative to the value at Nexc = 5. Note, we refer to the number of excitations included before filtering.
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FIG. 12. Energy versus iteration for an 8 + 4 system. The left-
hand column shows the energy estimate relative to the converged
value from VMC versus Monte Carlo iteration, for a single CDMFT
iteration. The right-hand column shows the VMC energy estimate
relative to the converged CDMFT value versus CDMFT iteration.
The VMC energy standard deviation is indicated by the vertical
bars. In the left-hand column, the subtracted converged values were
Eavg = −15.211, −16.300, and −20.332 for μ = 1.2, 1.3, and 1.6 re-
spectively. And in the right-hand column, Eavg = −15.208, −16.301,
and −20.333 for μ = 1.2, 1.3, and 1.6 respectively.

the dependence is particularly small for systems within the
insulating state (rightmost panel). This is true for both the
12 + 4 and the 8 + 8 system; however, the 8 + 8 system has
larger error bars, likely due in part to the larger number of
variational parameters.

APPENDIX C: SIMULATION PARAMETERS

In this Appendix we provide typical values of the simula-
tion parameters used to produce the results presented in the
main text.

Each VMC calculation uses 1500 iterations to optimize the
variational parameters of the ground state ( fi j , gi, and vi j of
Ref. [16]). At each VMC iteration, a set of 100 thermalization
samples is generated via Monte Carlo, followed by around
100 000 measurement samples of the ground state energy.
Between each set of samples, the electron configurations are
updated Ns times via hopping and exchange processes. After
computing the ground state, we measure the Green function
with dVMC using similar parameters, but perform roughly
3 000 000 Monte Carlo measurements of the matrix elements
of S and H. Within the CDMFT loop we perform the inte-
gration over Mastubara frequencies using a sharp cutoff at
ωc = 2.0 and a fictitious inverse temperature β = 25.

In order to estimate the accuracy of the results with respect
to the choice of simulation parameters, we study the standard
deviation of the ground state energy. In Fig. 12 we show the
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FIG. 13. Same as Fig. 12 for a 20 + 4 system. In the left-
hand column, the subtracted converged values were Eavg = −28.657,
−35.273, and −56.459 for μ = 0.761, 1.134, and 2.0 respectively.
And in the right-hand column, Eavg = −28.658, −35.288, and
−56.456 for μ = 0.761, 1.134, and 2.0 respectively.

energy versus parameter optimization iteration for a system
with Nc = 8 and Nb = 4. The left-hand column shows the
energy estimate versus Monte Carlo iteration from the VMC
calculation corresponding to the final CDMFT iteration. We
plot the relative difference of the energy estimate from the
converged value, (Eavg − Ei )/Eavg, where the converged value
Eavg is obtained by averaging the last 50 VMC iterations and i
refers to the VMC iteration. The right-hand column shows the
same quantity versus CDMFT iteration, i.e., in this case Eavg

is the average over converged CDMFT iterations, and i refers
to the CDMFT iteration. The vertical bars show the standard
deviation of the energy from VMC relative to Eavg.

We observe that the energy estimate from the VMC calcu-
lation is well converged with a standard deviation of roughly
0.2 × 10−3 in all cases shown. The fluctuations of the VMC
energy versus CDMFT iteration are generally on the order of
10−2, or ∼0.05% of the average value, and larger than the
standard deviation of the VMC energy at a given iteration.

To see the effect of increasing system size, we plot in
Fig. 13 the same quantities as above, but for a system with
Nc = 20 and Nb = 4. In this case, we find that the VMC
energy converges more slowly as the system approaches the
metal-insulator transition near μ ≈ 1.4, and the standard de-
viation is somewhat larger, though still on the order of 10−3.
This is to be expected as there is correlated metal physics
found close to the Mott insulating phase, which makes for a
complicated ground state energy landscape. The fluctuations
of the VMC energy estimate versus CDMFT iteration are
again on the order of 10−2 (∼0.05% of the average value)
for all μ, but we see that the CDMFT iterations are more
correlated to one another than for the smaller system.
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