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Rényi entropy of a quantum anharmonic chain at nonzero temperature
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The interplay of quantum and classical fluctuations in the vicinity of a quantum critical point (QCP) gives rise
to various regimes or phases with distinct quantum character. In this work, we show that the Rényi entropy is a
precious tool to characterize the phase diagram of critical systems not only around the QCP but also away from it,
thanks to its capability to detect the emergence of local moments at finite temperature. For an efficient evaluation
of the Rényi entropy, we introduce an algorithm based on a path-integral Langevin dynamics combined with a
previously proposed thermodynamic integration method built on regularized paths. We apply this framework to
study the critical behavior of a linear chain of anharmonic oscillators, a particular realization of the φ4 model. We
fully resolved its phase diagram, as a function of both temperature and interaction strength. At finite temperature,
we find a sequence of three regimes—para, disordered, and antiferro—met as the interaction is increased. The
Rényi entropy divergence coincides with the crossover between the para and disordered regimes, which shows
no temperature dependence. The occurrence of the antiferro regime, on the other hand, is temperature dependent.
The two crossover lines merge in proximity of the QCP, at zero temperature, where the Rényi entropy is sharply
peaked. Via its subsystem-size scaling, we confirm that the transition belongs to the two-dimensional Ising
universality class. This phenomenology is expected to happen in all φ4-like systems, as well as in the elusive
water-ice transition across phases VII, VIII, and X.
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I. INTRODUCTION

Classical phase transitions are driven by thermal fluctu-
ations, which affect the volume of explored phase space.
Due to the wave nature of quantum mechanics, fluctuations
appear even at zero temperature, this time stemming from
the uncertainty principle of wave mechanics. At sufficiently
low temperature, the interplay of both effects results in a rich
phase diagram [1–3]. Quantum fluctuations typically suppress
phase transitions, and direct the classical critical region to-
wards the quantum critical point (QCP) at lower temperatures.
This effect has been experimentally observed, for instance,
in the Ising-like transition in LiHoF4 [4], in the so-called
quantum paraelectric materials (SrTiO3, BaTiO3, KTaO3), in
quantum dielectric compounds, such as κ − ET2Cu2(CN)3

[5] and κ − ET2Cu[N(CN)2]Cl [6], and in structural phase
transitions of hydrogen-bonded materials, such as water ice
VII-VIII-X [7], superconducting hydrides LaH10 [8], YHn [9],
and H3S [10], and hydrogen halides, like HF and HBr [11–13].
Throughout their phase diagram, the interplay of quantum and
thermal fluctuations introduces typical regimes with distinct
scaling laws and entanglement properties [14–16]. A promi-
nent example of such regimes is the quantum critical behavior
above the QCP, where long-range order is destroyed while
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local moments, like spin or local polarization, can be pre-
served, locally breaking a symmetry. A prototypical example
of this situation is found in the one-dimensional (1D)
transverse Ising model, where three distinct regimes are
well understood to be a consequence of different types of
symmetry-breaking mechanisms [17,18].

All previously mentioned experimental systems can be
approximated by a generalization of the Ising model—the
discretized φ4 model—where particles live in a double-well
external potential, interacting through a quadratic term. By
increasing the interaction, they freeze in a long-range-ordered
configuration through a phase transition belonging to the Ising
universality class [19–21]. The transition can be of displacive
(soft mode) or order-disorder type, depending on the height of
the double-well barrier. When the barrier is low, particles fluc-
tuate around the origin until the interaction displaces them,
by softening their shuttling vibrational mode. Conversely, in
the large barrier regime, particles tunnel or switch between
off-centered positions and, eventually, their interaction can
force them to occupy the same double-well minimum if the
coupling is ferro, or the opposite one in an antiferro model.

The finite-temperature phase diagram of the φ4 model
continues to be a field of active research, as it can change
considerably from system to system [22]. In higher dimen-
sions, the phase diagram shows the occurrence of classical
phase transition, induced by thermal fluctuations, emerging
from quantum criticality [23]. However, different regimes
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surrounding the QCP are not well understood, with the ex-
ception of the infinite-barrier limit, which is analogous to the
Ising model. This owes mostly to the fact that not all the
physical mechanisms associated with quantum criticality are
known and, hence, reliable physical and experimental probes
are hard to devise. As a result, phase diagrams of many critical
systems, such as certain superhydrides [7,24–27] or the su-
perconducting cuprates [28–34] as notable examples, are not
fully explained yet.

On the other hand, entanglement and entropic properties
have proven to be valuable tools for the analysis and classi-
fication of quantum phase transitions in many-body systems
[35,36]. One of the most commonly used measures is the
Rényi entropy, as it directly quantifies quantum and classical
fluctuations [37–51]. Its scaling with the subsystem size is
markedly different at the QCP [52]. Particularly in 1D sys-
tems, the entanglement of a pure state generally saturates
at some finite system size, while at the QCP it diverges as
a logarithm. The prefactor in front of the logarithm can be
analytically shown to be equal to the central charge of the
conformal field theory describing the QCP, one of the most
striking features of 1D systems [35,37].

Rényi entropy allows to detect the emergence of a local
symmetry breaking and the corresponding local moment for-
mation at finite temperature. In this work, we consider the
Rényi entropy to characterize the phase diagram not only
around the QCP but also away from it. With the use of the
replica trick ideas in path-integral simulations [38–48], the
Rényi entropy can be evaluated at finite temperature for a
targeted subsystem. However, the Rényi entropy evaluation is
very computationally demanding, with errors increasing with
system size, level of entanglement, and area of subsystem
boundaries. With the aim at making the Rényi entropy evalu-
ation much more easily accessible, we introduce an algorithm
based on path-integral equations, sampled by a Langevin
dynamics, that exploits a recently developed thermodynamic
integration method [53].

We then present a full study of the low-temperature phase
diagram of the 1D discrete φ4 model in the regime of
vanishing double-well barrier, where it represents a chain
of antiferromagnetically coupled anharmonic oscillators. By
computing the Rényi entropy, we accurately predict the QCP
location. We perform the subsystem-size scaling analysis and
confirm that the central charge of the theory takes the value
of c = 1/2, as expected for the Ising universality class with
one fermionic degree of freedom. In the explored temperature
range, we discover three regimes. A para regime, with no
local order parameter, a disordered regime with local order in
imaginary time, corresponding to a local moment formation,
and an antiferro regime, analogous to the domain-wall regime
of the Ising model [17]. In the third regime, the particles are
mostly trapped in one of the minima and form domains due to
thermal fluctuations. Since this is a one-dimensional model,
at sufficiently large system sizes and infinite simulation times,
the domains would on average restore the symmetry, and the
order parameter would vanish on both sides of the QCP at any
finite temperature.

This demonstrates that the Rényi entropy indeed detects the
local moment formation. We find that the line separating the
para and disordered regimes, as identified by the maximum

of Rényi entropy, exhibits no temperature dependence. This
behavior is analogous to the spin-freezing crossover, de-
scribed by Werner et al. [54] for fermionic systems, and
detectable through imaginary-time correlations. On the con-
trary, the crossover between the disordered and antiferro
regimes shows a temperature dependence, with classical fluc-
tuations aiding to break the global symmetry at finite system
sizes.

The rest of the paper is structured as follows. In Sec. II,
we describe the implementation of an original algorithm for
the evaluation of Rényi entropy at finite temperature with
Langevin dynamics. In Sec. III, we consider the coupled an-
harmonic chain and evaluate Rényi entropy across the phase
transition. By studying the subsystem-size scaling, we con-
clude that the transition belongs to the two-dimensional (2D)
Ising universality class. Furthermore, we show the importance
of extrapolating the results to the zero-imaginary-time step,
otherwise affected by a sizable imaginary-time discretization
bias. Finally, in Sec. IV we explore the nonzero-temperature
phase diagram and discuss the crossover properties between
the three regimes. In Sec. V, we present our conclusions
and draw the connections between the described regimes and
some phases observed in real systems such as water ice. Some
further discussions, technical details, and proofs are left in the
Appendixes.

II. RÉNYI ENTROPY AND PATH INTEGRALS

Quantum Rényi entropy is a generalization of quantum von
Neumann entropy, with free parameter α ∈ R>0 \ {1}. For a
bipartite system A ∪ B, the definition of the Rényi entropy
of subsystem A and order α, Sα

A , is based on the the reduced
density matrix ρ̂A of the partition A (ρ̂A = TrBρ) raised to the
power α and traced out over the A degrees of freedom. More
precisely,

Sα
A = 1

1 − α
log

TrA[ρ̂A]α

[Trρ̂]α
, (1)

where Trρ̂ is the normalization constant, ensuring that the
density matrix has unit trace. In the limit of α → 1 the entropy
equals the von Neumann entropy. The Rényi entropy fulfills
almost all essential properties of entropy, except for some
inequalities, like the subadditivity and triangle inequality [55].
This does not affect its performance as an entanglement mea-
sure in a pure state [56]. The reason for the Rényi entropy
popularity is its simplicity. In particular, the evaluation of the
collision entropy (α = 2), defined as a logarithm of the purity
Tr[ρ̂2], is considerably simpler if compared to the evaluation
of Tr[ρ̂A log ρ̂A].

By considering α replicas of the system, Rényi entropy can
be recast as the average of a SWAP operator (when α = 2)
or a circular permutation operator (for α > 2), acting on the
subsystem of interest. When expressed in path-integral for-
malism, these operators reduce to the free energy of merging
imaginary-time trajectories (world lines) for the subsystem
of interest. The remaining difficulty of evaluating the loga-
rithm of observables that can still vary over several orders
of magnitude has been addressed by recent works [39,41–
43,45–48,53]. In one of them, we proposed a thermody-
namic integration scheme based on regularizing paths which
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significantly reduces the Rényi entropy variance, yielding
low-error low-bias averages. In the following (Sec. II A), we
first recall definitions and how expressing the density matrix
in terms of path integrals can be used to map the Rényi en-
tropy evaluation problem to the one of merging ring polymers.
Then, in Sec. II B we present an algorithm that allows the
inclusion of the path-regularization scheme introduced by us
in Ref. [53] into the framework of path-integral Langevin
dynamics, used to sample the quantum thermal distribution.

A. Path integrals

In the path-integral formulation, the quantum Hamiltonian
of N degrees of freedom of the form

Ĥ =
N∑
i

p̂2
i

2mi
+ V̂ (q1, q2, . . . , qN ), (2)

where qi and pi are positions and momenta of the ith particle
with mass mi, is mapped to an analogous classical model. The
resulting classical canonical partition function is expressed as

Tr[e−βĤ ] =
(

1

2π h̄

)P ∫
d f pd f qe−ζHP (p,q), (3)

where f = PN , and P is the number of beads forming rings,
each one representing a quantum particle. The accuracy of the
mapping grows with the inverse of ζ = β/P, the imaginary-
time step separating neighboring beads, with a convergence
rate dependent on the observable. The analogous classical
Hamiltonian is given by

HP(p, q)

=
N∑

i=1

P∑
j=1

(
(2π h̄)2

2mi

[
p( j)

i

]2 + 1

2
miω

2
P

(
q( j)

i − q( j+1)
i

)2
)

+
P∑

j=1

V
(
q( j)

1 , . . . , q( j)
N

)
, (4)

and ωP = 1/ζ h̄. The upper index (imaginary-time slices) has
periodic boundary conditions, with period P (q(P+1)

i = q(1)
i ).

In this way, the particles are mapped to harmonic rings, where
each bead belongs to an imaginary-time slice. Interparticle
interaction involves only beads with the same upper index.

Looking back at Eq. (1), we see that the denominator
describes an ensemble with α rings of length P for each
particle. Also the trace over B in the numerator results in the
particles belonging to B to form rings of length P. However,
the multiplication of the reduced density matrix ρ̂A with itself
results in the ensemble of |A| rings of length αP. The effect of
the traces is therefore visible in the imaginary-time boundary
conditions.

Hence, the free energy cost of changing boundary condi-
tions equals the Rényi entropy. The evaluation of free energy
differences is a very common computational problem for
which many algorithms exist. It is therefore no surprise that
a whole arsenal of these methods was already applied to the
quantum Rényi entropy evaluation in Monte Carlo simulations
[38–42,45–48,53,57–60]. One of the methods, particularly
suitable for large or continuous systems, is the recent ex-
tension of the thermodynamic integration, where regularized

paths are used. In this method [53], one expresses the entropy
as an integral over λ in such a way that

log
Trρα

A

[Trρ]α
=

∫ 1

0
∂λ log(Z[λ])dλ

= −ζ

∫ 1

0
〈∂λH (λ)〉Z[λ]dλ, (5)

where the boundary conditions in imaginary time of the
Hamiltonian of the system are smoothly deformed so that
Z[0] = [Trρ]α and Z[1] = Trρα

A . The entropy is then defined
as the work required to change the boundary conditions from
α replicas of independent rings to the system where each
particle belonging to system A is merged into a single ring.
In the simulation, the λ integral is performed numerically on a
finite grid. However, the path has to be chosen wisely in order
to result in a low-variance estimate.

We use the same path as the one described in Ref. [53],
where only the interactions that enforce the boundary condi-
tions are varied. The classical Hamiltonian along the path is
written as

Hi(λ) = HαP(p, q) +
∑
i∈A

α∑
j=1

g(λ)
(
q( jP)

i − q( jP−P+1)
i

)2

+ (h(λ) − 1)
(
q( jP)

i − q( jP+1)
i

)2
, (6)

where HαP is the extended Hamiltonian of fused rings given
by Eq. (4) for the particles belonging to subsystem A, while
the particles in B keep the boundary conditions of α dis-
connected ensembles. For particles in A, the upper index
is periodic with period αP (q(αP+1)

i = q(1)
i ). H (λ) lives on

a plane spanned by the coordinates g and h, with the path
described by the prescription

(g, h) = ((1 − λ)3, λ3). (7)

In Sec. II B we present a Langevin dynamics algorithm that is
able to simulate the ensembles along the presented integration
path.

B. Path-integral Ornstein-Uhlenbeck dynamics

Path-integral molecular dynamics (PIMD) algorithms aim
at sampling ring polymer configurations through dynamical
trajectories [61,62]. Among those, path-integral Ornstein-
Uhlenbeck dynamics (PIOUD) uses dynamical equations [63]
driven by the forces acting on the coordinates along the
trajectory, and a Langevin thermostat. Langevin dynamics
equations are solved in order to introduce the coupling
with a thermal bath. This approach is free from the need
of designing smart Monte Carlo moves and is therefore
much more transferable to the simulations of more com-
plex higher-dimensional models. Nevertheless, solving the
Langevin equations of motion should be done efficiently.

Sampling the phase space according to the canonical dis-
tribution is achieved by evolving the following stochastic
equations of motion:

˙̃p = −γ p̃ − Kq̃ + f (q̃) + η(t ),

˙̃q = p̃, (8)
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where p̃ and q̃ are DNPα-dimensional vectors of momenta
and positions of the whole system rescaled by mass ( p̃i =
pi/

√
mi and q̃i = qi

√
mi), and f = −∇q̃V is the vector of

forces obtained from the Born-Oppenheimer (BO) potential
energy surface V . The only stochastic contribution comes
from η, a normally distributed noise with zero mean and
unit variance. Together with the damping, controlled by γ ,
these two terms fix the temperature in accordance with the
fluctuation-dissipation theorem. Usually, γ is a diagonal ma-
trix. In a more general setting, where forces are sampled
stochastically because they are affected by intrinsic errors,
such as the ones evaluated, for instance, by electronic quan-
tum Monte Carlo methods [64], it can also have off-diagonal
terms, related to the force covariance matrix.

On the other hand, K is an off-diagonal matrix in the
imaginary-time indices, which represents the harmonic in-

teraction in imaginary time. In the normal path-integral
ensemble driven by the Hamiltonian in Eq. (4), it is simply
written as

K ( j)(k)
il = ω2

Pδil (2δ( j)(k) − δ( j)(k−1) − δ( j)(k+1)). (9)

Yet, in our case the matrix depends on the lower index as well.
Indeed, particles belonging to subsystem A have modified
boundary conditions, that are functions of the parameters g
and h [Eq. (7)]. The new K matrix should therefore be

ω2
Pδil (δ

i∈AK̃ ( j)(k)(g, h) + δi/∈AK̃ ( j)(k)(1, 0)), (10)

when subsystem A is considered in the evaluation of the Rényi
entropy. The upper index is again periodic, with period αP.
The new smaller matrix K̃ ( j)(k)(g, h) includes all the ensem-
bles described by Eq. (6). It is a function of parameters g and
h, defined as

K̃ ( j)(k)(g, h) =

⎧⎪⎪⎨
⎪⎪⎩

ω2
P((1 + g + h)δ( j)(k) − hδ( j)(k−1) − δ( j)(k+1) − gδ( j)(k+P−1) for (j mod P) = 0

ω2
P((1 + g + h)δ( j)(k) − δ( j)(k−1) − hδ( j)(k+1) − gδ( j)(k−P+1)) for (j mod P) = 1

ω2
P(2δ( j)(k) − δ( j)(k−1) − δ( j)(k+1)) otherwise.

(11)

The structure of the K̃ matrix is illustrated in Fig. 1.
The forces in Eq. (8) come from both the harmonic and

interparticle interactions; thus they span very different energy
scales. This renders the sampling very inefficient. The solution
employed in the PIOUD algorithm is to split the time evolu-
tion into two operators. Indeed, the time evolution described
by the action of the Fokker-Planck Liouville operator is split
with symmetric Trotterization to yield

eiLδt = eiLBOδt/2eiLharmδt eiLBOδt/2 + O(δt3), (12)

where LBO contains the propagation of the particles interact-
ing at each imaginary-time slice through the BO forces f ,
neglecting the harmonic interaction between the beads, which
is instead included in Lharm. Both LBO and Lharm contain
stochastic and dissipation terms, where the γ matrix is ad-

FIG. 1. The matrix K̃ (g, h) for α = 2. Abbreviation g̃h = 1 +
g + h is used.

justed for each propagator. While in the BO ensemble the
γ matrix is used as a user-defined constant (γ BO), in the
harmonic one it is chosen according to the optimal damping
scheme for harmonic oscillators [65]. This corresponds to
writing it in the eigenbasis of the matrix K in Eq. (9), where
γ is a diagonal matrix with elements [63]

γ
(k)

harm =
{

2�k if 2�k � γ0

γ0 otherwise.
(13)

�k are eigenvalues of matrix K , and now the upper in-
dex (k) indicates the corresponding kth eigenvector in the
beads space. This choice for γharm not only optimizes the
dumping process but also guarantees that [γharm, K] = 0. This
latter condition is needed to integrate exactly the Ornstein-
Uhlenbeck dynamics, i.e., the thermalized Brownian quantum
diffusion, encoded in Lharm [63]. As in the BO ensemble, the
damping coefficient related to the center-of-mass dynamics
(γ0) has to be found by optimizing the diffusion coefficient
of the process by running short simulations. Once the optimal
value is found, it is transferable to similar systems.

However, with the new K matrix of Eq. (10), different
particles have different eigenvalues and eigenvectors, depend-
ing on which subsystem they belong to. The same should
therefore hold also for the γ matrix, which now depends on
the particle (lower) index as well, since the K eigenvalues
depend on it. Indeed, what we propose is to simply extend
the prescription in Eq. (13), and write

[
γ

(k)
harm

]
i =

{
2�

(k)
i if 2�

(k)
i � γ0

γ0 otherwise.
(14)

This has profound implications, as it shows that this type
of Langevin thermalization cannot work in an integration
scheme where the propagation of the harmonic part is not
diagonal in the lower index. Nevertheless, our choice of γharm
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in Eqs. (14) still fulfills the condition [γharm, K] = 0 by con-
struction. Therefore, Lharm can be exactly integrated even
with the optimal dumping scheme of Eqs. (14), appropriately
generalized for the extended Hamiltonian in Eq. (6).

The algorithm then proceeds as follows. First, the eigen-
values of K̃ ( j)(k)(g, h) are found for either of the two cases in
Eq. (10). The propagator eiLharmδt can be evaluated exactly if
written in the K eigenbasis, owing to the fact that there are no
contributions from physical forces f present. From here on the
algorithm consists of rotating the coordinates back and forth
between the eigenbasis of K̃ ( j)(k)(g, h) and the coordinate
basis, according to the following prescription:

(1) Update the particles’ momenta by applying the
eiLBOδt/2 propagator, according to the equation

p̃(t ) = e−γ BOδt/2p̃(t − δt/2)

+
∫ t

t−δt/2
dt ′eγ BO(t ′−t )[f (t − δt/2) + η(t ′)]. (15)

(2) Transform the vectors of positions and momenta of
each particle from the coordinate basis to the K̃ ( j)(k)(g, h)
eigenbasis.

(3) Propagate them exactly, by means of the eiLharmδt prop-
agator.

(4) Perform the inverse transformation, back to the coor-
dinate basis.

(5) Evaluate the forces coming from the physical potential
as f (t + δt ) = −∇q̃V (t + δt ).

(6) Close the symmetric form by applying the eiLBOδt/2

propagator in Eq. (15) again, according to Eq. (12).
Further numerical details are given in Appendix A. Also,

as molecular dynamics (MD) is not always efficient to sam-
ple phase space when large energy barriers are present, we
have introduced a SWAP move (see Appendix B), performed
randomly. Thus, the sampling performed is a hybrid MD and
Monte Carlo scheme. The algorithm was tested on an inte-
grable entangled model of two coupled harmonic oscillators
(see Appendix C).

III. CHAIN OF ANHARMONIC OSCILLATORS:
ZERO-TEMPERATURE PHASE DIAGRAM

A. System description

The discrete φ4 model, where the field φ is discretized in
space, analogous to an ultraviolet cutoff, is described by the
Hamiltonian in Eq. (2), with the potential term

V̂ (q̂) =
N∑
i

θ

2
(q̂i − q̂i+1)2 − mω2q̂2

i + λq̂4
i , (16)

where qi = φ(i) are values of the field at fixed positions
i. It depicts a chain of N particles trapped in an external
double-well potential of the form U = (θ − mω2)q̂2

i + λq̂4
i .

The coupling between the particles comes from the harmonic
interaction (−θ q̂iq̂i+1). In this work, we consider a particu-
lar limit of the discrete φ4 model, where the quadratic term
is removed, resulting in a single-well anharmonic potential
(Appendix D). This is achieved by fixing θ = mω2 and rescal-
ing the mass through m → mλ, thus reducing the number of

free parameters to one, such that

V̂ (q̂) =
N∑
i

q̂4
i − D2q̂iq̂i−1, (17)

in the system with periodic boundary conditions (q̂N+1 = q̂1),
with D2 = mω2. In fact, D2 can be either negative (the “ferro”
case) [Eq. (17)] or positive (the “antiferro” case):

V̂ (q̂) =
N∑
i

q̂4
i + D2q̂iq̂i−1, (18)

where the negative sign in front of D2 can be interpreted as
coming from a potential term with negative curvature (i.e.,
imaginary phonon) at q = 0. Hereafter, we will adopt the
latter situation [Eq. (18)] as reference Hamiltonian for the
chain of anharmonic oscillators.

The system was shown to undergo a quantum phase tran-
sition of the order-disorder type in the double-well regime,
and of the displacive type in the anharmonic regime. In both
cases the transition belongs to the 2D Ising universality class
[13,19–21,23,66,67]. In fact, in the limit of very deep wells, it
describes a two-level system, analogous to the quantum Ising
model in a transverse field.

The model is extensively studied also in the continuous
limit (d/N → 0, d being the lattice spacing), describing a
relativistic quantum scalar field, where the interaction term
in Eq. (16) reduces to (∂xq(x))2. It is arguably the simplest
model that contains kinks, defined as abrupt changes of the
field configuration jumping from one minimum of the double
well to the other. In this limit the renormalization of the
diverging quadratic term reduces the number of free param-
eters to one [68–73]. Phase transition can be observed also
in the continuous case. However, the critical value of the
parameter is not agreed upon [73].

The discrete chain is particularly interesting because it
approximates many condensed matter systems, depending
on the interpretation of coordinates qi. If interpreted as dis-
placements of protons in the system, the model can describe
hydrogen halides, like HF and HBr [11–13], superhydrides,
such as LaH10 [8], YHn [9], and H3S [10], and even water-
ice phases, such as VII, VIII, and X [7,27,74,75]. On the
other hand, if qi are interpreted as local dipoles, the same
model can represent quantum dielectric materials [22], such
as κ − ET2Cu2(CN)3 and κ − ET2Cu[N(CN)2]Cl, possess-
ing electronic ferroelectricity [6]. In magnetic materials, such
as LiHoF4 [4], the qi coordinates represent local magnetic
moments.

According to the classical analysis, the system features two
degenerate global minima, with ferro (antiferro) order if the
coupling constant is purely imaginary (real). The two models
in Eqs. (17) and (18) are equivalent up to the symmetry trans-
formation of flipping every second coordinate. As already
mentioned, here we choose the antiferroelectric situation for
illustrative purposes in Sec. IV. The following solution repre-
sents the two minima in the antiferro case:

qm
2i = ± D√

2
, qm

2i−1 = ∓qm
2i, (19)
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(a) (b) (c)

FIG. 2. Rényi entropy as a function of D. (a) Rényi entropy of half of the system for different system sizes N at ζ = 0.06. Peak forming
at the phase transition point appears when N is sufficiently large. (b) Critical D∗ depends on how many beads we use. This is demonstrated at
100 K for the entropy of the full system (solid lines) and half of the system (dashed lines). Also the level of quantum correlations, S2

hal f − S2
f ull ,

is affected. (c) D∗
P dependence on the reciprocal of ratio ζ = 300/PT . The plot includes points extracted from data at 100 K (blue) and 300 K

(orange), which seem to agree, for the peaks of the entropy of half of the system (open circles) and the full system (solid circles). In the inset,
a clear dependence on ζ is demonstrated. By a linear extrapolation in ζ , the critical D is predicted to be D∗

∞ = 0.405 ± 0.001. Continuous
curves in (a) and (b) are splines fitted on the data. They have been used to determine the maxima.

if the number of oscillators, N , is even. A system with odd
number of oscillators is frustrated and avoided in our anal-
ysis. When N > 8, the classical system can move from one
minimum to the other through the creation of a kink-antikink
pair, by flipping only one particle. Once a kink-antikink pair
is created, it can grow a domain without additional energy
cost. The classical energy cost of kink-antikink pair creation
is �V = 2D4, as opposed to the collective crossing of the
saddle point, when the cost increases with the system size
N as �U = ND4/4. By increasing D, particles are pushed
further away, while the height of the barrier increases. In the
following, we study the system at temperatures much lower
than the height of the barrier, such that kbT 
 �V . Thus, by
choosing θ = mω2 in Eq. (16), we have one external param-
eter, D, that tunes the height of the potential energy barrier,
similar to pressure in, say, ice. Also, with this choice, there
is no phase transition at T = 0 in the classical limit, as the
barrier disappears only at D = 0. However, due to quantum
fluctuations, the particles can tunnel through the barrier for
some values of D, and thus on average restore the symmetry
〈q〉 = 0. With the algorithm introduced in Sec. II, we aim at
pinpointing the position of the QCP using the Rényi entropy
of the system. We will show that the D dependence of the
entropy strongly resembles the one of the Ising model crit-
icality and can be used to locate the phase transition, and
evaluate its central charge. In order to simplify the comparison
with realistic systems, we fix the energy scale by considering
oscillators with the proton mass mp = 1837.1799 in atomic
units and the potential given in Eq. (18). Indeed, for such
choice we observe a phase transition at physical H-H distances
and physical height of the potential barrier of 15 kJ/mol−1 per
hydrogen bond.

B. Quantum critical point

As argued in the Introduction, the entropy of a subsystem at
zero temperature in one dimension grows with the subsystem
size only up to a certain threshold. This rule is violated only

in the vicinity of the QCP, where the growth is logarithmic
and never saturates [52]. One can also reverse this point and
claim that by looking at the entropy of a fixed subsystem
size, where it is sufficiently large (for example, half of the
system), one could spot the critical point by the spike in the
entropy. Upon increasing the system size, one should see that
the entropy saturates everywhere except in the vicinity of the
phase transition. Given that the critical system is gapless, the
entropy should diverge exactly at the QCP. Extracting the peak
is therefore often sufficient for its detection [76–80]. However,
care has to be taken to show that away from the peak the
entropy eventually saturates. This will be done after we fully
resolve the position of the peak as a function of the system
size N and imaginary-time discretization ζ . The same can be
said also about the entropy of the system at finite (sufficiently
low) temperature. A very nice example of this is the 1D Ising
model, where the peak of the entropy at finite temperature
exactly coincides with the QCP, at relatively small system
sizes [53].

In Fig. 2(a) we scan over the parameter D at 100 K and
plot the entropy of half of the system. By increasing the
system size, the appearance of the peak is clearly visible,
with the thermodynamic limit reached already at N = 64. The
peak is positioned exactly where it would be expected, at
the point where an abrupt change in entropy appears. Because
the temperature is not exactly zero, the entropy computed here
does not quantify only pure quantum fluctuations.

So far, we neglected the effect of the discretization in
the imaginary time. The phase transition to a para phase is
driven by quantum fluctuations, which restore the symmetry
of the ground state, while the discretization in imaginary
time exactly truncates these fluctuations. Thus, at finite P
the restoration of the symmetric para state will occur slower
than in the P → ∞ limit, and the critical value of D, dubbed
D∗

P, will be always smaller than D∗ ≡ D∗
∞. This can be seen

like performing semiclassical approximations by introducing
a finite P instead of performing an expansion in the powers
of h̄.
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TABLE I. Values of critical D.

ζ = 0 CIMa [13]

D∗ 0.405 ± 0.001 0.4

aCumulant intersection method [66] at fixed ζ .

The discretization error typically depends on the param-
eter ζ = β/P, and should be studied for each observable
separately [81,82]. Convergence can be slow, or even not
reachable, for some observables [83]. In our case the
effects are quite strong on the position of the phase transi-
tion [Fig. 2(b)], if compared with the case of N = 2, where
ζ = 0.06 already coincides with the analytical result. It can be
clearly seen that ζ shifts the position of the critical point, but
also affects the scaling with the subsystem size. By decreasing
ζ , the full entropy decreases, which means that the system is
more entangled. This is consistent with a better description of
the quantumness of the particles.

To extrapolate our results to the exact limit, we studied
in Fig. 2(c) the dependence of the critical value on ζ . We
compared the results at two different temperatures and for the
entropy of the half and full system at fixed N . By doing so,
we can see that the peaks at different temperatures and differ-
ent subsystem sizes fall on a universal curve [see Fig. 2(c)].
Moreover, for sufficiently small ζ the dependence becomes
linear in ζ , as shown in the inset of Fig. 2(c). This is not
surprising, and it is observed for many convergent observables
[81,82]. A linear extrapolation can thus be used to extract the
critical value D∗ in the limit of ζ = 0, which we compare with
a previous estimate in Table I. The resulting distance well
agrees with the distances observed in realistic systems with
strong hydrogen bonds, for which we have previously shown
entanglement at room temperature [7,53].

C. Scaling of the entropy

The previous procedure could raise some objections, be-
cause we analyze the entanglement of a ground state still

dressed by thermal fluctuations, although at a very small tem-
perature, as dictated by the use of path integrals. In view of
this, we would like to see if the critical point, discovered by
inspecting the peak, corresponds to a logarithmic scaling as
a function of the subsystem size. In Figs. 3(a) and 3(b) we
can see that, for the values below and above the critical point,
the entropy indeed saturates upon increasing the subsystem
size. This feature persists even upon increasing the number of
particles in the system.

However, detecting a transition point by looking at the
subsystem-size scaling would be very time consuming. One
has to blindly extract many subsystem sizes at many cou-
plings. If N is too small, the curves will saturate in an interval
of D values that narrows only upon increasing N . Addition-
ally, we see that with larger N comes also the need for larger
P; otherwise the effective temperature increases [Fig. 3(b)].
Overall, we can see that the scaling can be used to confirm the
correctness of the critical value, but it is not a feasible method
for the search of the critical coupling.

Since the entropy clearly diverges close to the QCP and
saturates elsewhere, we compared the scaling with the log-
arithmic curve. Due to the remarkable connection between
conformal invariant quantum field theories (CFTs) and critical
phenomena, the scaling depends on the CFT central charge c
of the same universality class [35]. The exact dependence is
known even for finite temperature and finite system sizes [37].
Written in terms of the Rényi entropy of order α, the scaling
equals [37]

Sα
l ∼ c

6

(
α2 − 1

α

)
log(l ). (20)

In Fig. 3(c), we varied the parameter ζ and performed the scal-
ing analysis at a D value that corresponds to the peak of the
entropy for given ζ . The scaling is clearly in accordance with
Eq. (20). From this, the prefactor of the logarithm, directly
depending on the central charge, can be extracted. We noticed
that, at fixed ζ , the value does not agree with the universality
class of the Ising model, c = 0.5. However, the ζ -dependence

(a)

(b) (c)

FIG. 3. Rényi entropy as a function of subsystem size in the neighborhood of the phase transition at 100 K. Scaling for the (a) N = 32 and
(b) N = 64 chains for equally spaced values of D, with solid lines connecting the points. The colored sets of points are in the vicinity of the
phase transition. It is clearly visible that for a general D the entropy saturates, while it keeps growing in the critical regime. (c) Scaling for the
N = 64 chain at critical D, for various values of the ratio ζ = 300/PT . The solid lines in panel (c) are fits of Eq. (20) to the points. Effects
are relatively small and convergence is fast. In the inset, we show the parameter in front of the fitted logarithmic terms as a function of ζ . By a
crude linear extrapolation, cζ=0 is extracted.
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analysis suggests that this is again an imaginary-time dis-
cretization effect. Indeed, in the limit of ζ = 0, the data agree
with the central charge being equal to 0.5.

IV. PHASE DIAGRAM AT NONZERO TEMPERATURE

So far, we have been focusing on the critical phenomena at
small fixed temperature with the purpose of locating and char-
acterizing the zero-temperature phase transition. However, the
phase diagram around a quantum phase transition usually
features rich temperature dependence [1,3,14,15,17,84].

Studies of higher-dimensional systems found the emer-
gence of classical order-disorder phase transition in the
double-well chain with finite barrier and a displacive transi-
tion at vanishing barrier [23]. Investigations in 1D discrete φ4

models were done in the limit of large double-well barrier, i.e.,
the Ising model. The transverse Ising model at finite tempera-
ture splits into three distinct regimes [17]. For large magnetic
field, the ground state is aligned with the magnetic field, while
thermal fluctuations flip individual spin in the opposite direc-
tion. On the other side of the transition, where the magnetic
field is weak, there exists a domain-wall regime, with the pres-
ence of kink-antikink pairs. Both of these regimes evolve into
a quantum critical regime with strong quantum fluctuations.
This raises the question whether the same regimes persist after
the double-well barrier is removed.

To address this question, let us now discuss the finite-
temperature phase diagram of the coupled anharmonic chain,
exploiting once more the evaluation of the Rényi entropy.
Similarly to the Ising chain, we observe three regimes. How-
ever, these regimes are different, and we will describe them as
para, disordered, and antiferro, as presented in the Introduc-
tion. They can be found in this order by raising the coupling D.
They are separated by two crossovers, that merge in the limit
of low temperature at the QCP. Our calculations suggest that
the disordered regime disappears close to zero temperature,
which results in a direct transition between the antiferro and
para regimes.

A. Crossover from antiferro to disordered regime

Let us start by looking at the strong-coupling side of the
phase diagram at finite temperature, and progressively reduce
D. In order to investigate the crossover from antiferro to dis-
ordered regime, we consider the total polarization as the order
parameter, and extend the study of the ground-state symmetry
done by Wang et al. [13] to higher temperatures. For the model
in Eq. (18), displaying antiferromagnetic order, we write the
order parameter as

�(D) = 1

PN

∣∣∣∣∣
P∑

j=1

N/2∑
i=1

q( j)
2i

∣∣∣∣∣, (21)

where the sign of the interaction is taken into account by
looking at one of the two bipartite lattices.

Figure 4 displays the computed order parameter 〈�(D)〉 at
different temperatures. Two regimes are clearly visible. Due
to the presence of quantum fluctuations, the average 〈�(D)〉
vanishes for small enough D even at the lowest temperature
we could access (50 K; top panel of Fig. 4). The interparticle

0.0

0.1

0.2

0.3

Φ
[a

.u
.]

classical

0.350 0.375 0.400 0.425 0.450 0.475

0

5

χ
/T

FIG. 4. Order-disorder order parameter �. Top: The value of
the parameter � across the transition at various temperatures. The
restoration of the broken symmetry is marked by a sudden drop of the
parameter values. The effect is visible also at higher temperatures.
The dashed line is the position of the minima of the classical po-
tential. Bottom: Fluctuations (susceptibility) of the order parameter,
weighted by the temperature to improve readability. By increasing
the temperature the peak of susceptibility function drifts to higher D.
Colors range from purple at 50 K to red at 1000 K.

interaction counteracts the effect of quantum and thermal
fluctuations, which have the tendency to restore the symmetry
of the potential. By increasing D, the value of 〈�(D)〉 sharply
increases and the system undergoes a phase transition (Fig. 4).
Thermal fluctuations, although smaller than the energy cost of
a flip (kbT 
 �V ), delay the transition to larger D.

In 1D systems, thermal fluctuations not only delay the
transition but also break true long-range order, due to the for-
mation of domain walls (kink-antikink pairs). A way to locate
the crossover between the disordered and antiferro regimes is
to compute the susceptibility of the order parameter, defined
as χ = βPN (〈�(D)2〉 − 〈�(D)〉2), and look at the position of
its maximum. Just as for the Rényi entropy, the position of the
peak displays a strong dependence on the imaginary-time step
ζ , with scaling almost identical to the one of the Rényi entropy
(Appendix E). The extrapolated location of the susceptibility
peak is shown on the T -D diagram in Fig. 8. It shows a
linear dependence on D, even though classical analysis would
suggest a dependence on D4. This indicates that its behavior
is strongly affected by quantum effects.

We now investigate the full entropy of the system as a
function of D and temperature, displayed in Fig. 5. Except for
very low temperature, already discussed in Sec. III, we can
distinguish three regimes. At low D the Rényi entropy is seen
to be increasing with D, followed by a decrease after reaching
a maximum. Then, at even larger values of D, the Rényi
entropy plateaus at S2 = 1, as expected in the ordered regime,
with two degenerate ground states. The crossover between
the last two regimes can be estimated as the intersection of
a linear extrapolation of the Rényi entropy at the inflection
point on the right side of the peak, with the S2 = 1 line. These
linear fits are shown in Fig. 5 and the crossover values of D at
each temperature obtained by this procedure are very close
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FIG. 5. Temperature dependence of the Rényi entropy. Thermo-
dynamic entropy of a system of N = 128 particles as a function of
coupling D at different temperatures and fixed imaginary-time step
ζ . Different regimes, described by the order parameter � [Eq. (21)]
and imaginary-time correlations CT [Eq. (22)], are marked by dashed
(para), solid (disordered), and dotted (antiferro) lines. These regimes
are clearly visible in the Rényi entropy: exponential growth of fluc-
tuations with D in the para regime, divergence of the Rényi entropy
at the QCP, almost linear suppression of correlation with increased D
in the disordered regime, and fast relaxation of entropy to the value
of S2 = 1 in the antiferro regime. Colors range from purple at 100 K
to red at 1000 K.

to our estimate of the disorder-to-order crossover from the
susceptibility χ .

B. Crossover from disordered to para regime

The maximum of the Rényi entropy in Fig. 5 occurs at the
strength D corresponding to the critical value for the quantum
phase transition observed at low temperature. This suggests
that it is the signature of a crossover from a regime where the
particles are fully delocalized over the two minima, through a
combination of quantum and thermal fluctuations, to a regime
where individual particles localize in one basin, with forma-
tion of local moments. This is consistent with an expansion of
the available phase space, through the formation of a double
well, as D increases, and the macroscopic localization in one
local minimum as D is increased further. The corresponding
increase in the entropy in the first regime and the decrease in
the second regime lead to the maximum at the transition point.
Due to thermal fluctuations, this does not result in long-range
order, but in a regime where the formed local moments are
spatially disordered (Fig. 8).

This crossover thus appears analogous to the spin-freezing
phenomenon, described by Werner et al. [54] for strongly
correlated fermionic systems, and we denote the two regimes
as the para phase at low D and the disordered phase at inter-
mediate D. To check this interpretation, it is possible to look
at the correlation in the imaginary time, defined as

CT (τζ ) =
〈

1

NP

N∑
i

P∑
j

q( j)
i q( j+τ )

i

〉
. (22)

It is averaged over the simulation time, while τ is an integer
running from 0 to P, specifying the distance in imaginary
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FIG. 6. Local moment formation. Top: The imaginary-time cor-
relation function at half time CT (β/2) for various temperatures.
In the local moment regime, CT (β/2) saturates to a finite value.
Analogously to the spin freezing [54], the temperature dependence
of CT (β/2) is suppressed. Bottom: The ratio between CT (β/2) at
T = 100 K and the correlation function at higher temperatures. Inset:
In logarithmic scale the dependence is linear and the critical D can
be estimated. Colors range from dark blue at 100 K to red at 1000 K.

time, bounded by β = 1/kbT . In the para regime the particles
do not distinguish between being right and left, and their
position is randomly distributed in imaginary time. When
the interaction is increased and the underlying ground state
undergoes a displacive transition, a whole ring or sections of
a ring become trapped in one of the minima and the correla-
tion increases. Upon crossing the para-to-disorder crossover,
individual particles are locked in the minima and correlation
saturates, which is the hallmark of the local moment regime.
Looking at the imaginary-time correlation at half inverse tem-
perature in the upper panel of Fig. 6, we see that indeed the
correlation vanishes at low temperatures in the para regime
and increases with temperature, due to the sharp decrease of
de Broglie wavelength � =

√
2π h̄2/mkbT , which determines

the spread of the particle’s ring. After the crossover line of
local moment formation is crossed, the imaginary-time cor-
relation saturates and does not show temperature dependence
any more, because thermal fluctuations can at most move the
full particle or a large section of the ring. Indeed, the particles
are already localized due to the interaction D, and displacing
each individual bead becomes too expensive. We located the
crossover by using a similar procedure to the one described by
Werner et al. [54]. We compute the CT correlations at different
temperatures and compare them to the one at T = 100 K. By
noticing that the ratio of correlation functions scales exponen-
tially, we were able to precisely locate the critical value of
D, where the ratio reaches unity. Indeed, the saturation point
happens almost exactly at the value of D where the Rényi
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FIG. 7. World-line snapshots in different regimes. Each ring is
collapsed according to the sign in front of the bead position to either
−1 (dark blue) or +1 (light blue). At the point of local moment
formation (middle panel), the ordering in imaginary time appears,
but it is not frozen. Upon increasing the interaction further, entire
rings get trapped to the left- or right-hand side with respect to the
central symmetric position. The snapshots are taken at 200 K with
25 beads and N = 128.

entropy reaches its maximum (see Fig. 8), unambiguously
identifying the local moment formation point. The described
behavior is clearly visible, if a system configuration is taken at
random along the PIMD trajectory, and all the bead positions
are mapped to {−1, 1}, i.e., left and right, with a sign func-

FIG. 8. Phase diagram of 1D anharmonic chain in Eq. (18). We
observe three distinct regimes: para (red), disordered (blue), and
antiferro (green). The crossovers between these regimes are located
by looking at the peak of the Rényi entropy (red points), the ratio
of the correlation functions in imaginary time, CT (β/2), of Eq. (22)
and Fig. 6 (black points, “Spin freezing”), and the susceptibility χ

of the order parameter in Eq. (21) and Fig. 4 (blue points, “Global
order”). Results are obtained at finite ζ and for N = 128, and then
extrapolated to ζ = 0, by shifting all points by δD = 0.01546 to the
right, as demonstrated for the Rényi entropy and susceptibility peaks
(see Appendix E). The error bars represent the width of the peaks at
95% of their height.

tion (see Fig. 7). Ordering in imaginary time starts to appear
around the QCP, when world-line paths become much stiffer.

Based on all these observations, we finally draw the con-
verged phase diagram of the anharmonic chain in Fig. 8. In a
general 1D φ4 model we expect to see a gradual disappearance
of the para regime, upon increase of the double-well barrier.
This should be replaced by the disordered regime so that even-
tually, in the limit of infinite double-well barrier, the phase
diagram resembles the one of the Ising model.

V. CONCLUSION

We demonstrated that the Rényi entropy can be used to
pinpoint and classify phase diagrams. In the chain of anhar-
monic oscillators studied here, we successfully identified its
quantum critical point and proved that the Rényi entropy, by
successfully counting the number of available states, can also
be used for the exploration of its finite-temperature phase
diagram.

The resulting phase diagram is exciting, because it shows
features very similar to the ones of hydrogen-rich materials. In
particular, it is worth commenting on the apparent similarity
between our 1D chain and the phase diagram of high-pressure
water ice across the VIII-VII-X phase transitions, a region of
its complex phase diagram that recently attracted significant
attention [85]. Phase VIII of water ice is a crystalline phase,
where a global network of hydrogen bonds is created. While
at low enough pressure (low density) the individual water
molecules still have some mobility, as they can rotate and
switch between six different configurations, phase VIII is a
proton-ordered phase, with an order parameter analogous to
our polarization parameter. After the phase boundary to ice
VII is crossed, protons can hop between neighboring oxy-
gen atoms. This is due to the increase of either temperature
or pressure, and it is again analogous to the order-disorder
crossover observed in our model. In realistic simulations
and experiments, this is a first-order thermodynamic phase
transition [7,27]. By further increasing the pressure and still
following our analogy, the transition from ice VII to ice X
can be interpreted as a quantum phase transition where quan-
tum fluctuations destroy the local moments, created by the
off-centered proton positions with respect to the two flanking
oxygen atoms. Therefore, phases VII and X are represented
by the disordered quantum critical phase and the para phase
of our model, respectively. Based on our analogy, a direct
transition from phase VIII to phase X is then expected at
low temperature. This analysis is, however, a very crude
simplification, and a full quantum mechanical treatment of
the realistic system should be carried out. With the method
developed and presented in this work, this is certainly within
our reach. Nevertheless, VIII-VII-X water ice is only one of
the practical realizations of the more general φ4 model. Our
Rényi entropy approach can thus be fruitfully applied to a
large variety of quantum critical systems.

We have shown that the Rényi entropy can be used to
detect local moment formation in many-body quantum sys-
tems. This owes to the fact that the Rényi entropy counts the
average number of occupied states in the system. As a result,
at sufficiently low temperature, the local moment formation
leads to an abrupt change in entropy, which can be seamlessly
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connected with the entropy divergence at the zero-temperature
QCP. Therefore, the Rényi entropy can be used to extensively
characterize temperature-dependent phase diagrams of quan-
tum systems, and its sensitiveness to emergent local symmetry
breakings makes it a precious tool to localize elusive phase
transitions that otherwise would be very hard to detect.
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APPENDIX A: NUMERICAL DETAILS

The value of the damping constant γ0 was fixed to γ0 =
0.005855 atomic units (a.u.). On the other hand, for the BO
Liouvillian, γ BO has been set to zero, because the BO forces
of our model are deterministic and γ0 �= 0 was enough to
thermalize the system. A typical simulation was split in blocks
of 10 000 time-propagation steps, and usually 140–400 blocks
were evaluated. The time step was calculated with the formula
�t = 0.25D/0.334 fs, with D defined in Eq. (18), and varied
from 0.250 to 0.375 fs. Final simulation times were therefore
ranging from 0.10 to 0.28 ns. These long simulation times
were needed in the vicinity of the QCP, due to symmetry
breaking, after which two distinct copies of the system got
trapped in distinct global minima. In this case the problem
was relieved by introducing a SWAP move (see Appendix B).
However, longer simulation times were still needed, to reach
low error estimates.

Temperature was varied from 50 to 1000 K. This resulted in
the range of β from 315 to 6313 hartree−1, where hartree is an
atomic unit of energy. The maximum number of beads used
was 50. For the numerical integration over the regularized
thermodynamic integration path we used ten integration steps.

APPENDIX B: ACCELERATING MD SAMPLING
WITH SWAP MOVE

As is often the case, the simulations based on PIMD can get
stuck in minima separated by barriers larger than the size of
thermal fluctuations. This is particularly true when calculating
the Rényi entropy in the models with broken symmetry, for
example in the double-well potential. In such case in the
regime with large barriers different replicas belonging to the
ensemble get stuck in either the same or different minima. In
order to get the correct estimation of entropy both configura-
tions must be sampled, which becomes exponentially slower
with the size of the barrier.

To facilitate the sampling, a SWAP move can be introduced,
especially if minima of the system are related by symmetry.
The SWAP move flips all the particles in one of the replicas

from one minimum to another. During the simulation this
move is proposed and accepted with the probability given by
the Boltzmann distribution. The main change in energy comes
from the boundary conditions connecting the two ensembles.
Note that the velocities can be rotated in any fashion, since the
norm of them stays unchanged.

Given the symmetry of the anharmonic chain, the SWAP

was done by multiplying all particle positions by −1. Using
this additional SWAP move was enough to preserve ergodicity
in our simulations. We believe that such a scheme can be
used also in systems with larger symmetries, such as higher-
dimensional chains of anharmonic oscillators.

APPENDIX C: METHOD TESTING

As a test of performance of our algorithm, we used a
system of two coupled harmonic oscillators. The model is
described by the Hamiltonian in Eq. (2), where the potential
is given by

V (q1, q2) = m1ω
2
1

2
q2

1 + m2ω
2
2

2
q2

2 − mω1ω2�q1q2. (C1)

The Hamiltonian is bounded from below only for |�| < 1
where there exists a global minimum at the point (x1, x2) =
(0, 0). Since the Hamiltonian comes as a quadratic form, the
coordinate system can be rotated in such a way that it actually
describes two noninteracting Harmonic oscillators,

y1 = cos δ q1 − sin δ q2,

y2 = sin δ q1 + cos δ q2, (C2)

with the angles expressed as [86]

ε = ω2
2 − ω2

1

2ω1ω2�
, (C3)

tan δ = ε

‖ε‖
√

ε2 + 1 − ε, (C4)

and the new frequencies given by ω̃2
i = ω2

i ± ω1ω2� tan δ.
Each of these oscillators has a well-known density matrix ρ0,
given by a Gaussian distribution [87]

ρ0(yi, y′
i; β ) =

√
2ξi − ψi

π
e−ξi (y2

i +y′2
i )+ψiyiy′

i , (C5)

with the new parameters ξi, ψi defined as

ξi = mω̃i
2h̄ coth(h̄ω̃iβ ), (C6)

ψi = mω̃i
h̄

1
sinh(h̄ω̃iβ ) . (C7)

The density matrix of the full system is therefore given by ρ =
ρ0(ω̃1, y1)ρ0(ω̃2, y2). In order to perform traces over original
degrees of freedom, q1,2, we perform back-rotation, by using
Eq. (C2). Now all the traces of all the powers of the density
matrix and of the reduced density matrix can be evaluated
analytically with multivariate Gaussian integrals.

For the full Rényi entropy of order α, we need to eval-
uate the trace of the density matrix to the integer power
α, ρα . It can be again expressed as a product of Gaus-
sian distributions, given by the tridiagonal quadratic forms
ρα

0 (yi; β ) = exp(−yT
i Aiyi/2) of dimension α × α. The new

vector yi contain coordinates yi belonging to separate replicas
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of a corresponding free mode, and the matrix coupling them is
given by a tridiagonal matrix, with terms 4ξi on the main diag-
onal and terms −ψi as sub- and supradiagonals. There are also
two additional −ψi terms added to the off-diagonal corners.
To proceed, we note that the multivariate Gaussian integral
of a quadratic form equals the inverse of the square root of
its determinant. Therefore, to evaluate the Rényi entropy of
the full complex it is enough to evaluate the two determinants
|Ai|, so that

Sα = 1

1 − α
log �i

[(
2ξi − ψi

π

) α
2 (2π )

α
2

|Ai| 1
2

]
. (C8)

For example, when α = 2 it is equal to

S2 = − log(tanh(h̄ω̃1β/2) tanh(h̄ω̃2β/2)), (C9)

demonstrating that indeed the system has a nondegenerate
ground state, since S2 = 0 in the limit of T = 0.

Completely analogous steps have to be done also for the
reduced density matrix. By integrating over q1 we obtain the
reduced density matrix of the second oscillator, defined as

ρ2(q2, q′
2; β ) = B exp

{
q2

2(�2 − �) + q2q′
2(2�2 + �)

+ q′2
2 (�2 − �)

}
, (C10)

where the new parameters are given through the prescriptions
below:

� = ξ1 sin2 δ + ξ2 cos2 δ, (C11)

� = ψ1 sin2 δ + ψ2 cos2 δ, (C12)

� = 2ξ1 − ψ1 − 2ξ2 + ψ2

2
√

2ξ1−ψ1

sin2 δ
+ 2ξ2−ψ2

cos2 δ

, (C13)

B = m

π h̄

√
πω̃1ω̃2 tanh(h̄ω̃1β/2) tanh(h̄ω̃2β/2)

(2ξ1 − ψ1) cos2 δ + (2ξ2 − ψ2) sin2 δ
. (C14)

Finally, to get the trace of any power of the reduced density
matrix, one can notice that the density matrix of integer power
α, ρα

2 (q2, q2 : β ), is again a Gaussian distribution, given by
the tridiagonal quadratic form exp(−qT

2 Aq2/2) of dimension
α × α. Now the vector q2 contains coordinates q2 belonging
to separate replicas. The matrix A has 4(�2 − �) on the main
diagonal and terms (2�2 + �) as sub- and supradiagonals.
There are also two additional (2�2 + �) terms added to the
off-diagonal corners. By using the same formula for the multi-
variate Gaussian integral of a quadratic form, we get the result
for the Rényi entropy of subsystem 2:

Sα
2 = 1

1 − α
log

[
Bα (2π )

α
2

|A| 1
2

)]
, (C15)

which in the case of α = 2 reduces to a much simpler expres-
sion,

S2
2 = − log

(
B2 π√

4(� − �2)2 − (2�2 + �)2

)
. (C16)

A similar expression can be found also for the first oscillator,
by everywhere replacing cos δ with sin δ and vice versa.

FIG. 9. Temperature distribution along the integration path eval-
uating the entropy of the harmonic oscillator with ω = 0.01, when
coupled to another with ω = 0.004, through � = 0.94868, defined
in Eq. (C1).

The system represents an ideal continuous model with
entanglement and can be used as a benchmarking model for
algorithms evaluating entanglement entropy. The level of en-
tanglement in this system can be very large and is diverging
upon approaching the limit of � = 1 [88]. In the following
tests we used the value that is very close to the critical point
� = 0.94868, but distant enough to preserve good conver-
gence of the MD algorithm.

First we used the model to confirm that the coupling to
the thermal bath is done correctly with the prescription in
Eq. (14). We tested the coupling to the thermal bath by
looking at the distribution kinetic energy, expressed as an
instantaneous temperature, along the trajectories for different
ensembles of coupled harmonic oscillators along the path in
Eq. (7), corresponding to the evaluation of the entropy of one
subsystem. In this case the friction changes from particle to
particle and for different values of the coupling constant. As
can be seen in Fig. 9, all trajectories are correctly thermalized,
validating the algorithm presented in Sec. II B. We then
compared numerical and analytical results for the entropy, and
tested the performance of the algorithm in evaluating higher
orders of the Rényi entropy. At higher orders of Rényi entropy
the test was performed by comparing the simulation with
the exact result for the Rényi mutual information. It can be
expressed as

Iα (1 : 2) = Sα
1 + Sα

2 − Sα, (C17)

where the lower index specifies which oscillator was chosen
as a subsystem in the evaluation of Rényi entropy of order
α. This quantity is useful because it cancels out the correla-
tions of the full system and really quantifies the correlations
between the particles. However, the quantity is really related
to the correlation only in the limit of α → 1, when it cannot
be negative. In the system of coupled harmonic oscillators
the mutual information of integer order is never negative and
follows a similar curve as α = 1. This suggests that it is
related to the actual correlation.

It can be seen from Fig. 10 that the method agrees
well with the theoretical result, with a small bias due to
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(a) (b)

FIG. 10. Evaluation of Rényi entropy of a harmonic oscillator
with ω = 0.01 and an oscillator with ω = 0.004 that are coupled
through � = 0.94868, defined in Eq. (C1). (a) Entropy at different
temperatures. (b) Rényi mutual information [see Eq. (C17)] of higher
orders α = 2, 3, 4. Numerical results (crosses) are compared to the
exact analytical results (line).

numerical integration. The method can cover a very large span
of temperatures, thanks to the choice of optimal integration
path. However, the bias increases slightly with temperature
[see Fig. 10(a)] and with increasing order α [see Fig. 10(b)].
The bias can be combated by rescaling the integration pa-
rameter λ, but for our purposes this is not needed, since in
this work we analyze low-temperature behavior of the second-
order Rényi entropy.

APPENDIX D: THE φ4 MODEL

The model with the potential in Eq. (16) is described by the
Hamiltonian

Ĥ (p̂, q̂) =
N∑
i

p̂2
i

2m
+

N∑
i

θ

2
(q̂i − q̂i+1)2 − mω2q̂2

i + λq̂4
i .

(D1)

Considering two particles, when θ < mω2/2 the classical
potential features four minima. Two global minima are

located at

qm
0 = qm

1 = ±
√

mω2

2λ
, (D2)

and two other minima correspond to

qm
0 = −qm

1 = ±
√

mω2

2λ
− θ

λ
, (D3)

which become imaginary, when θ > mω2/2. In Fig. 11 we
show some possible potential energy surfaces, for the case of
two particles. In this work, we have set θ = mω2 which leaves
only two minima as discussed in the main text. In doing so
we defined new parameters m′ = mλ and D = √

m′ω, leading
to the Hamiltonian of Eq. (16) with an imaginary coupling,
corresponding to the ferroelectric situation.

There exist many different parametrizations of the model.
For making comparison with previous results, we list the
mappings from our parametrization to some others. In
Refs. [20,23] the Hamiltonian is written in terms of param-
eters a, σ , and d , such that

Ĥ (p̂, q̂) =
N∑
i

p̂2
i

2mi
+

N∑
i

(
2d − a

2

)
q̂2

i + a

4
q̂4

i − σ q̂iq̂i+1.

(D4)

With a simple comparison we can see that then λ = a/4,

θ = σ , and ω =
√

3a
4m − 2 d

m . This Hamiltonian is particularly
useful for exploring the limit of the Ising model (a → ∞),
where particles are strongly localized to positions around −1
and 1. The mass causes them to tunnel and is analogous to the
strength of the transverse magnetic field in the Ising model.

When comparing our predictions for the critical coupling
D∗ with the work of Wang et al. [13], the following corre-
spondence is used. They show that the model can be recast to
depend on only two parameters, κ and ε. The two parameters
represented in the Hamiltonian formulation appear as

S[φ] = ε

N∑
i

[
p̂2

2κ
+ κ

2
(q̂i − q̂i+1)2 + 1

4
(q̂2

i − 1)2

]
, (D5)

and can be expressed in terms of our parameters as ω =
(ελ/m2)1/3 and κ = θ/2mω2. From our analysis we can see
that the last one controls the type of the transition and the
number of minima, while the first one controls the strength

FIG. 11. Classical potential as a function of parameter θ . For simplicity, only a classical potential of two particles is shown, with all the
other parameters fixed to one: m = ω = λ = 1.
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FIG. 12. ζ = 300/PT dependence of the peaks of the suscep-
tibility of the order parameter, introduced in Eq. (21). Red points
correspond to the susceptibility at 300 K and green points to the
susceptibility at 100 K. For comparison we show also the positions
of the peaks of the Rényi entropy in blue, for both temperatures and
two subsystem sizes. The linear interpolation shows that the peaks of
all the quantities drift as a function of ζ with the same rate.

of quantum effects. The larger the value of ε, the closer
we are to the classical limit. By making the restriction θ =
mω2, we choose the value κ ′ = 1/2 and vary only ε, in this

case ε′ = m2ω3/λ = √
m′D3, which we use to compare our

results.

APPENDIX E: SCALING IN ζ

We observed that the position of the peak of the Rényi
entropy strongly depends on the size of the imaginary-time
step ζ (Fig. 2). This dependence appears linear in ζ , which is
large, compared to the dependence of the partition function,
ζ 3, given by the Trotterization. To determine the full effect of
ζ on the phase diagram (Fig. 8), we further studied the scaling
of the susceptibility upon the discretization in imaginary time.
In Fig. 12 we show the position of the susceptibility peak for
different temperatures and imaginary-time steps. The maxi-
mum of the Rényi entropy is shown on the same plot. It can
be seen that, at these temperatures, the relative positions of
these maxima converge very early, while the absolute position
converges, linearly, as the position of the peak of the Rényi
entropy. Since we observed no temperature dependence on the
convergence rate, we expect this approximation to hold also
at slightly higher temperatures, covered in Fig. 8. Therefore,
the phase diagram in the limit of zero imaginary time can
be obtained by just recording the positions of the peaks at
sufficiently small imaginary-time steps and then shifting all
of them with the linear fit in Fig. 12.
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