
PHYSICAL REVIEW B 108, 245120 (2023)
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Semihydrogenated graphene (C2H) and semifluorinated graphene (C2F), both in the chair conformation,
were predicted by first-principles calculations to be ferromagnetic and antiferromagnetic. It is unclear what
is the underlying mechanism leading to such distinct magnetic orders of the two materials. We show that a
single-orbital tight-binding model of the graphene lattice up to the next-nearest-neighbor hopping term, with one
carbon sublattice coupled to a single active orbital of the adatoms (hydrogen for C2H, and fluorine for C2F),
supplemented by the Hubbard interactions on the carbon sites, correctly reproduces the distinct magnetic orders
of C2H and C2F. In terms of a fairly good approximation to the low-energy band of the nonmagnetic state, we
analytically elucidate how a finite next-nearest-neighbor hopping term makes the bandwidth of the low-energy
band of C2H much smaller than that of C2F. Competition between the reduction of the interaction energy and the
increase of the band energy then favors the ferromagnetic state for C2H and the antiferromagnetic state for C2F.
Implications of the mechanism, including electric field tuning of the bandwidth and application to elemental
analogs of graphene such as silicene, are analyzed.
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I. INTRODUCTION

Functionalization with adatoms provides a very versatile
approach of modulating the electronic properties of graphene.
By controlling the species, the concentration, and the spatial
arrangements of the adatoms, a large variety of functionalized
graphene with interesting properties have been studied both
theoretically and experimentally [1–18].

Among the vast possibilities explored in the literature, two
semifunctionalized graphene, C2H and C2F in the chair con-
formation (defined below), are of special interest. First, they
are periodic lattices and have the smallest unit cell among
all possible periodic functionalized graphene. As a result,
they have well-defined bulk properties compared to nonpe-
riodic functionalized samples, and they are usually easier to
prepare experimentally than periodic structures with larger
unit cells [19–22]. Second, unlike the fully functionalized
graphene that also have a small unit cell but are nonmag-
netic insulators [6–9], C2H and C2F have been predicted by
first-principles calculations to have ferromagnetic and antifer-
romagnetic ground states [23–30], respectively. As intrinsic
two-dimensional (2D) magnets, they may have plenty of ap-
plications in spintronics and electronics [23,24].

The mechanism leading to such distinct magnetic tenden-
cies of the two structurally identical materials is still far from
clear. The purpose of this work is to identify the underlying
mechanism by considering the minimal tight-binding descrip-
tion of the magnetic orders of the two materials.

Compared to first-principles calculations, the tight-binding
models are more computationally efficient, and it is easier to
obtain a clear physical picture from them for various physical
properties. Tight-binding models including only one pz orbital

on each carbon atom, and hopping terms between neighboring
sites have successfully accounted for a vast majority of the
low-energy properties of graphene [31]. Similar tight-binding
models supplemented by coupling with the outer shell orbitals
of the adatoms have also been proposed and used to study the
properties of functionalized graphene [27–29,32]. For exam-
ple, many works consider minimal tight-binding models with
only nearest-neighbor (NN) hopping terms among the carbon
atoms and adatoms [28,33–36].

It is unknown whether such a minimal tight-binding model
with only NN hopping terms can account for the distinct mag-
netic orders (ferromagnetic for C2H, versus antiferromagnetic
for C2F) of half-filled C2H and C2F. Here we show that it is of
crucial importance to retain the next-nearest-neighbor (2NN)
hopping term to robustly reproduce the distinct magnetic
orders of C2H and C2F. We show that, with a realistic nonzero
2NN hopping term, the ferromagnetic order of C2H and an-
tiferromagnetic order of C2F are robust against the variations
of the model parameters related to the adatoms. The reason, as
we will clarify, is that the 2NN hopping term together with the
opposite on-site energies of hydrogen for C2H and fluorine for
C2F lead to a much narrower low-energy band for C2H than
that for C2F. The implications of the mechanism, such as a
quasiflat band in C2H under a perpendicular electric field and
related effects in semifunctionalized 2D elemental analogs of
graphene, are also discussed.

II. MAGNETIC ORDERS AND THE MINIMAL MODEL

In the chair conformation of C2H and C2F that we focus on,
the lattice sites belonging to one sublattice (taken as the A sub-
lattice) of the graphene lattice are all functionalized, whereas
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FIG. 1. Top view of the lattices (in the chair conformation) and
magnetic orders of (a) C2H and (b) C2F. All the A sublattice sites
(below the round dots) of the graphene lattice have an adatom
(denoted as a round dot) chemisorbed on the top. The B sublat-
tice sites are not functionalized and contribute most significantly to
the magnetism. The upward or downward arrow on a B sublattice
site represents the orientation of the magnetic moment on this site.
The arrangements of the unshown minor magnetic moments on the
A sublattice sites and the adatoms follow the same pattern as that
shown for the B sublattice sites. In the ferromagnetic state of C2H,
as in the nonmagnetic state of both C2H and C2F, the unit cell is the
parallelogram subtended by the two primitive lattice vectors, a1 =
(

√
3

2 , − 1
2 )a and a2 = (

√
3

2 , 1
2 )a. In the antiferromagnetic state of C2F,

the unit cell is taken as the part encircled by the dashed rectangle,
which is subtended by the primitive lattice vectors v1 = (

√
3, 0)a

and v2 = (0, 1)a.

the sites of the other sublattice (the B sublattice) are all un-
functionalized. In the nonmagnetic state, the unit cell consists
of two carbon atoms and one adatom, where each adatom
chemisorbs a carbon site of the A sublattice at the top position.
Figures 1(a) and 1(b) show separately the ferromagnetic and
antiferromagnetic orders predicted for C2H and C2F by first-
principles calculations [23,24]. The antiferromagnetic order
of Fig. 1(b) may be called collinear-like antiferromagnetic,
due to its apparent similarity to the collinear antiferromag-
netic order of LaOFeAs and BaFe2As2 [37,38]. Since the
unfunctionalized carbon sites have the largest moment and
contribute most significantly to the magnetism, we plot only
the moments on these unfunctionalized B sublattice sites. The
minor magnetic moments of the A sublattice sites and the
adatoms also follow the same pattern as the B sublattice sites,
even though their spin orientations may be different.

The fact that structurally identical C2H and C2F develop
qualitatively distinct magnetic tendencies is quite interesting.
It is unknown whether there is a simple physical picture
that underlies this qualitative distinction between the two
materials. Tight-binding models have been very successful
in explaining and predicting various properties of graphene
[31]. Tight-binding models have also been used to study the
functionalized graphene [27–29,32,36]. It is unknown what is
the minimal tight-binding description for the distinct magnetic
orders of C2H and C2F.

We consider a minimal tight-binding model with a single
orbital on each site of the lattice. The model, H = H0 + H1,
contains the band part H0 and the interaction part H1. The band

part of the model is

H0 = −t1
∑
〈i, j〉σ

(c†
iσ c jσ + H.c.) − t2

∑
〈〈i, j〉〉σ

(c†
iσ c jσ + H.c.)

+ εd

∑
mσ

d†
mσ dmσ + T

∑
〈m,i〉σ

(d†
mσ ciσ + H.c.). (1)

−t1 and −t2 are the hopping integrals for the NN and 2NN
hopping terms of the graphene lattice. εd represents the dif-
ference between the on-site energy of the adatom orbital
and the on-site energy of the carbon pz orbital (taken as
zero). T is the hopping integral between a carbon site of
the A sublattice and the adatom above it. H.c. denotes the
Hermitian conjugate of the term explicitly written out. σ =
↑ or ↓ denotes the electron spin.

For H1, we consider the on-site Hubbard interaction on the
carbon atoms,

H1 = U
∑

iα

(
n̂iα↑ − 1

2

)(
n̂iα↓ − 1

2

)
. (2)

U is the strength of the Hubbard interaction. The summation
over i runs over all unit cells of the lattice, and α runs over
the A and B sublattices. n̂iασ is the number operator for the
electron in the ith unit cell, α sublattice, and σ spin.

Tight-binding models of this kind have been proposed to
study the low-energy properties of functionalized graphene.
Many authors considered the model with t2 = 0 [28,33–36].
The main purpose of this work is to point out and explain the
crucial importance of the 2NN hopping term in accommodat-
ing the distinct magnetic orders of C2H and C2F. As we clarify
in what follows, an unexpected synergistic effect between the
2NN hopping term and the energy difference term causes
significant differences in the band structures of C2H and C2F.
A nonzero third-nearest-neighbor (3NN) hopping term, on
the other hand, does not change the qualitative results and
can be neglected in the minimal model. We emphasize that,
while the tight-binding parameters are empirical, they have
well-accepted estimated ranges that can provide decent fitting
to the low-energy part of the first-principles band structures
[33,34,39], and they have been used successfully to explain or
predict a great variety of experimental properties of graphene
materials [31–36,39].

For the NN hopping among the carbon sites, we will take
t1 = 2.6 eV [33]. For the 2NN hopping term, we will take
t2 = 0.19 eV, following the ratio of t2/t1 proposed by Hancock
and coauthors [39]. As we will show below, changing t2 to a
sightly different value does not change the conclusion of the
following analysis. For C2H, εd = 3 eV and T = 6.5 eV were
used by Gmitra and coauthors [33]. We have not found explicit
estimations of εd and T for C2F. Fluorine is known to be
the most electronegative element and form a strong covalent
bond with carbon [34], so we are certain to have εd < 0
and a large T . From the estimated parameters of Irmer and
coauthors for the cases of dilute fluorination (e.g., T = 6.1 eV
and εd = −3.3 eV for C98F) [34], it is reasonable to expect
that the T and |εd | for C2F should be no less than those for
C2H. A special set of parameter, which is very convenient for
revealing the difference between C2F and C2H, is by setting
T = 6.5 eV and εd = −3 eV for C2F, which are separately
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equal and opposite to that for C2H. We will use this parameter
set to clarify the difference between the two materials and
the significance of a nonzero t2. Afterwards, we show that the
conclusions are robust against variations of the parameters.

Introducing the spin operator S(iα) = 1
2

∑
σσ ′ c†

iασ

(σ)σσ ′ciασ ′ , where we set h̄ = 1 for simplicity, the Hubbard
interaction may be written as

H1 = −2U
∑

iα

S(iα)
z S(iα)

z + N

4
U . (3)

σ = (σ1, σ2, σ3), σi (i = 1, 2, 3) are the Pauli matrices. N
is the number of unit cells contained in the lattice, in the
nonmagnetic state. i runs over the N unit cells. α = a or b
represents the two carbon sublattices. Discarding the constant
term NU

4 , and making the mean-field decoupling, we have

H1 � −2U
∑

iα

(
2
〈
S(iα)

z

〉
S(iα)

z − 〈
S(iα)

z

〉2)
. (4)

The ferromagnetic order of Fig. 1(a) corresponds to 〈S(iα)
z 〉 =

S(α)
z , independent of the index i. The antiferromagnetic order

of Fig. 1(b) found for C2F by Li and coauthors may be mod-
eled by a spatially modulated order parameter [24]〈

S(iα)
z

〉 = S(α)
z cos(Q · Ri ), (5)

where Ri is the coordinate of the ith unit cell, and the modu-
lation vector Q = (1, 0)Q with Q = 2π√

3a
.

III. MEAN-FIELD RESULTS OF THE MAGNETIC ORDER

We study the mean-field solutions for the half-filled
C2H and C2F at zero temperature. For a semifunctionalized
graphene with N unit cells (i.e., N formula units of C2H
or C2F) in the nonmagnetic state, there are 3N electrons in
the system, which stands as a constraint in making the self-
consistent calculations for the mean-field parameters [32].
For both C2H and C2F, we consider the ferromagnetic and
antiferromagnetic solutions defined in Fig. 1 in parallel. The
state with lower energy is then identified as the mean-field
ground state.

We fix t1 = 2.6 eV, first set (T , εd ) = (6.5 eV, 3 eV) for
C2H and (T , εd ) = (6.5 eV, −3 eV) for C2F, and study the
dependence of the mean-field results on t2. The convergence
in the self-consistent calculations is attained when the changes
in all four mean-field parameters nασ (α = a, b; σ =↑,↓) are
smaller than 10−6 [32].

There is no solid consensus on the value of the Hubbard
interaction U . Values ranging from as low as 2.1 eV [40]
to about 10 eV [41,42] can be found in the literature. It is,
however, generally recognized that while the correlation effect
is not strong enough to induce symmetry breaking transitions
in pristine graphene, it easily introduces magnetic order to
the rich variants of graphene (i.e., in the presence of defects,
vacancies, edges, etc.) [43–46]. Also, it is well known that the
self-consistent mean-field method tends to overestimate the
correlation effect and the ordering tendency [47,48]. Overall,
we should consider U of medium values, such as between
about 3 to about 6 eV, as realistic in our self-consistent mean-
field analysis.

FIG. 2. Differences between the mean-field energies EF (for the
ferromagnetic state) and EAF (for the antiferromagnetic state), per
formula unit (containing one carbon atom of the A sublattice, one
carbon atom of the B sublattice, and one adatom), as a function
of the interaction strength U . EF − EAF < 0 (EF − EAF > 0) means
the ferromagnetic (antiferromagnetic) state has lower energy, for the
corresponding parameter combinations shown on the figures. Cases
with EF − EAF = 0 for U = 1 or 2 eV correspond to nonmagnetic
solutions. t1 = 2.6 eV is fixed in all calculations. Other parameters
are as shown in the figures.

When we set t2 = 0, as shown in Fig. 2(a), C2F
and C2H have the same ground state for all interaction
strength, although they have opposite εd . When we set t2 =
0.19 eV, as shown in Fig. 2(b), C2H and C2F separately stabi-
lize to the ferromagnetic state and the antiferromagnetic state
for a wide range of U , roughly between 2 and 8 eV. As shown
in Figs. 2(c) and 2(d), the qualitative conclusion, namely that
C2H and C2F separately stabilize to the ferromagnetic state
and the antiferromagnetic state for medium values of U , is
robust to the variations in T and εd for C2F. From Figs. 2(e)
and 2(f), the conclusion is also robust to the variation of t2.
Overall, the tight-binding model defined by Eqs. (1) and (2)
with a finite 2NN hopping term correctly captures the distinct
magnetic tendencies of C2F and C2H.

IV. MICROSCOPIC MECHANISM IN TERMS
OF THE NONMAGNETIC BAND STRUCTURES

In this section, we elucidate the mechanism by which a fi-
nite 2NN hopping term separately stabilizes the ferromagnetic
state of C2H and the antiferromagnetic state of C2F. It turns
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out that the 2NN hopping term together with the opposite
on-site energies of hydrogen and fluorine make the bandwidth
of the low-energy band of C2H smaller than that of C2F.
The distinct magnetic orders of the two materials are then
understood in terms of a competition between the reduction
in the interaction energy and the increase in the band energy.
Then, we construct an approximate model for the low-energy
band. The low-energy band is half-filled in the nonmagnetic
state and is crucial to the magnetic transition. In terms of
the approximate model, we clarify analytically how a finite
t2 makes the bandwidth of the low-energy bands of the two
materials different. In light of the analytical analysis, we make
conjectures on the physical implications of the mechanism on
C2H, C2F, and several 2D elemental analogs of graphene with
a honeycomb lattice.

A. Nonmagnetic band structures

The band structures in the nonmagnetic state are deter-
mined by H0. Introducing the basis ψ

†
kσ = [d†

kσ , a†
kσ , b†

kσ ],
where d†

kσ , a†
kσ , and b†

kσ are separately the creation operators
for the orbitals on the adatom, the A sublattice site, and the B
sublattice site, we can write

H0 =
∑
kσ

ψ
†
kσ h0(k)ψkσ . (6)

The model Hamiltonian h0(k) is a 3 × 3 matrix

h0(k) =
⎛
⎝εd T 0

T ξ2(k) ξ1(k)
0 ξ ∗

1 (k) ξ2(k)

⎞
⎠, (7)

where

ξ1(k) = −t1(eik·δ1 + eik·δ2 + eik·δ3 ), (8)

ξ2(k) = −2t2[cos(k · a1) + cos(k · a2) + cos(k · a3)]. (9)

The new vectors in the above definitions are δ1 =
(−1, 0)a0, δ2 = ( 1

2 ,−
√

3
2 )a0, δ3 = ( 1

2 ,
√

3
2 )a0, and a3 = a2 −

a1 = (0, 1)a. a0 = a/
√

3 is the length of the NN carbon bond.
The eigenspectrum of Eq. (7) is exactly solvable. Shown in

Fig. 3 are the band structures of the noninteracting C2H and
C2F for t2 = 0 and t2 = 0.19 eV. We have taken T = 6.5 eV.
εd for C2H and C2F are separately taken as 3 and −3 eV. For
t2 = 0, as shown in Figs. 3(a) and 3(b), the bandwidths of the
low-energy middle band for C2H and C2F are identical. In
the presence of a small t2 = 0.19 eV, as shown in Figs. 3(c)
and 3(d), the bandwidth of the middle band of C2H (C2F) is
suppressed (increased). The contrast in the bandwidth of the
low-energy band for t2 = 0.19 eV is more clear in Figs. 3(e)
and 3(f). Changing slightly the value of t2 or the values of
T and εd for C2F does not change the notable differences
between the bandwidths of the low-energy bands of C2H
and C2F.

B. Correlation between band structures and magnetic order

For the half-filled systems that we focus on, the middle
band of the nonmagnetic band structures is half-filled and is
the low-energy band. The properties of the middle band are of

FIG. 3. Band structures of C2H and C2F in the nonmagnetic state
for U = 0. Parts (a) and (b) are for zero 2NN hopping, t2 = 0. Parts
(c) and (d) are for a nonzero 2NN hopping, t2 = 0.19 eV. Part (e)
[(f)] shows the exact and approximate dispersions for the low-energy
middle band of (c) [(d)]. The approximate dispersions, E (1) and E (2),
are defined in Sec. IV C. The horizontal dotted line in each figure lies
at the Fermi level. The high symmetry points of the 2D Brillouin zone
(BZ) are � = (0, 0), M = (1, 0) 2π√

3a
, and K = (

√
3

2 , 1
2 ) 4π

3a .

crucial importance to the magnetic tendency of the system at
finite U .

In itinerant magnetism, the ferromagnetic state stabi-
lizes by minimizing the on-site Coulomb repulsion between
opposite-spin electrons, at the expense of an increase in
the band energy [49]. So, the ferromagnetic state is usually
favored in narrow bands, because the minimization of the
interaction energy easily outweighs the increase of the band
energy. If the band is not narrow enough, the system may
make a compromise between the reduction of the interac-
tion energy and the gain of the band energy by forming the
antiferromagnetic state. Comparing the mean-field results of
Fig. 2(b) and the band structures of Figs. 3(c) and 3(d), this
picture seems to account for the distinct magnetic tendencies
of C2H and C2F.

To check whether the above general picture is applicable to
the present problem, we have calculated the band part (Eband)
and the interaction part (Eint) of the total energy, which are
separately defined as the average of H0 of Eq. (1) and H1 of
Eq. (4) with respect to the mean-field state. The interaction
part is simply

Eint = −2U
[(

S(a)
z

)2 + (
S(b)

z

)2]
. (10)
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Since |S(b)
z | 
 |S(a)

z |, and the low-energy band contains most
of the weight of the pz orbital of the B sublattice, the
low-energy band accounts for most of the reduction of the
interaction energy.

The band part of the model may be written generally as

H0 =
∑
kαβ

c†
kαhαβ (k)ckβ, (11)

where the wave vector k runs over the BZ, and α and β run
over the spin and orbital degrees of freedom of the unit cell.
Eband is defined as

NEband = 〈0|H0|0〉
=

∑
kαβ,γ

hαβ (k)U ∗
αγ (k)Uβγ (k)θ (EF − Eγ (k))

= Nuc

∑
γ

E (γ )
band. (12)

N is the number of formula units (each of which has a carbon
atom of the A sublattice, a carbon atom of the B sublattice,
and an adatom) in the lattice, Nuc is the number of unit cells.
N = Nuc for the ferromagnetic state, and N = 2Nuc for the
antiferromagnetic state. |0〉 is the mean-field state obtained
by the self-consistent calculation. Eγ (k) is the γ th eigenstate
of the mean-field Hamiltonian, whose eigenvector is stored
in the γ th column of the unitary matrix U (k). γ = 1, 2, . . . , 6
(γ = 1, 2, . . . , 12) for the ferromagnetic (the antiferromag-
netic) state. The eigenvalues increase with the index γ . EF is
the Fermi level in the mean-field band structures, determined
by the constraint that the lowest 3N mean-field states are
occupied. θ (x), which is the Heaviside function, is 1 for x > 0
and 0 otherwise.

In the nonmagnetic state, the low-energy middle band is
half-filled and the lowest band is fully occupied. It is interest-
ing to compare the separate contributions of these two bands
to Eband. For this purpose, we define E (middle)

band and E (low)
band to

represent the contributions of the middle band and the lowest
band. For the ferromagnetic state, we have E (middle)

band = E (3)
band

and E (low)
band = E (1)

band + E (2)
band. For the antiferromagnetic state,

we have E (middle)
band = (E (5)

band + E (6)
band)/2 and E (low)

band = (E (1)
band +

E (2)
band + E (3)

band + E (4)
band)/2.

As shown in Fig. 4(a), the stabilization of the ferromag-
netic state for C2H is dominated by the lowering of the
interaction energy. The band energy, as shown in Fig. 4(c),
comes as a compensation between E (middle)

band and E (low)
band . On the

other hand, for medium U , Eband follows the trend of E (middle)
band

more closely. So, together with the dominance of the middle
band in the interaction energy, the middle band plays the most
important role in stabilizing the ferromagnetic state of C2H.

From Fig. 4(b), the antiferromagnetic state stabilizes for
C2F because of the smaller increase in the band energy than
that for the ferromagnetic state. From Fig. 4(d), it is clear that
the larger increase of the band energy of the ferromagnetic
state for medium U comes from the contribution of the middle
band. So again, the middle band plays the most important role
in stabilizing the antiferromagnetic state of C2F.

Overall, the magnetic orders of C2H and C2F may be un-
derstood from the competition between the interaction energy

FIG. 4. (a) C2H and (b) C2F, differences in the band part (Eband),
interaction part (Eint), and the total mean-field ground-state energy
(Eband + Eint), between the ferromagnetic state and the antiferro-
magnetic state. In (b) at U = 2 eV, the antiferromagnetic state is
already stabilized but the ferromagnetic initial state still leads to a
nonmagnetic state, which explains why the results of Eband and Eint

for U = 2 eV show different behavior compared to those for larger
U . (c) C2H and (d) C2F, contributions of the lowest-energy band
[E (low)

band ] and the middle band [E (middle)
band ] to Eband.

and the band energy. The low-energy middle band of the
nonmagnetic band structures plays the decisive role in lead-
ing to the distinct magnetic orders of the two materials. The
2NN hopping term, which is responsible for the significant
difference between the bandwidths of the low-energy bands
of the two materials, is therefore of crucial importance for the
distinct magnetic orders of C2H and C2F.

C. Analytical analysis of the bandwidth of the low-energy
band based on an approximate dispersion

It is well known that the 2NN hopping term breaks the
particle-hole symmetry of the graphene band structures [31].
We would like to clarify how the 2NN hopping term together
with the opposite signs of the εd parameters for C2H and
C2F lead to the striking difference in the bandwidths of their
low-energy bands.

The three-orbital model of Eq. (7) for the nonmagnetic
state is exactly solvable. The exact results, however, are cum-
bersome for analytical analysis. An approximate dispersion
for the low-energy band that is both simple enough and also
sufficiently accurate is therefore highly desirable. Such an
approximation is possible because the low-energy band is
associated mainly with the pz orbital of the unfunctionalized B
sublattice carbon sites. This is not only verified from explicit
calculation of the density of states, but also physically trans-
parent since the strong covalent bonds between the pz orbital
of the A sublattice sites and the adatom orbital turn these
orbitals into high-energy levels. As a result, we may construct
an approximation centering around the unchemisorbed carbon
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orbital, and taking the influences of the other two orbitals into
account.

By projecting the 3 × 3 model of Eq. (7) to the subspace of
the B sublattice [50,51], we get the following expression for
the dispersion of the low-energy band:

E = ξ2(k) + |ξ1(k)|2(E − εd )

(E − εd )[E − ξ2(k)] − T 2
. (13)

The first term on the right-hand side of the equation arises
from the coupling among the B sublattice sites through the
2NN hopping. The second term arises from the coupling of the
B sublattice sites with the A sublattice sites and the adatoms
through the NN hopping terms. Equation (13) defines an it-
eration function for the dispersion of the low-energy band.
However, this iteration function does not saturate as the itera-
tion number increases, possibly because the energy appears in
the denominator.

Equation (13) may be adapted to the following equation:

E = (E − εd )(E − ξ2)2 + T 2ξ2 + |ξ1|2εd

T 2 + |ξ1|2 . (14)

We have suppressed the k-dependence of ξ1(k) and ξ2(k).
Again, Eq. (14) defines an iterative relation. Since the energy
of the carbon pz orbital has been taken as zero, the lowest-
order approximation to Eq. (14) follows by setting the energy
E = E (0) = 0 on the right-hand side of Eq. (14), which gives

E (1) = εd |ξ1|2 + ξ2(T 2 − ξ2εd )

T 2 + |ξ1|2 . (15)

Substituting E = E (1) to the right-hand side of Eq. (14) gives
E (2), and so on. As shown in Figs. 3(e) and 3(f), E (1) already
provides a fairly good approximation to the low-energy bands
of Figs. 3(c) and 3(d). E (2) is almost indistinguishable from
the exact results. While higher-order iterations give better
and better approximations, we will use the simplest E (1) to
analytically study the influences of t2 on the bandwidth of the
low-energy band.

To begin the analysis, notice that E (1)(k) depends on the
wave vector through a combination f (k) defined as

f (k) = cos(k · a1) + cos(k · a2) + cos(k · a3), (16)

because

ξ2(k) = −2t2 f (k), (17)

|ξ1(k)|2 = 3t2 + 2t2 f (k). (18)

Therefore, we can write

E (1)(k) = A f 2 + B f + C

D f + D′ , (19)

where the constants are defined as

A = −4εdt2
2 ,

B = 2
(
εdt2

1 − t2T 2
)
,

C = 3εdt2
1 ,

D = 2t2
1 ,

D′ = T 2 + 3t2
1 . (20)

The function f (k) has its maximum 3 at the center (i.e., the
� point) of the BZ. It can be shown that f (k) attains its
minimum − 3

2 at the K points of the BZ.
From Fig. 3, the dispersion of the low-energy band is

monotonic in the range of f ∈ [− 3
2 , 3] for both t2 = 0 and

t2 = 0.19 eV. In terms of E (1)(k), we determine the range of
t2 for which the low-energy band is monotonic in f ∈ [− 3

2 , 3].
To judge the monotonicity of E (1), we study its derivative with
respect to f ,

dE (1)

df
= AD f 2 + 2AD′ f + BD′ − CD

(D f + D′)2
. (21)

Since the denominator is positive definite in f ∈ [− 3
2 , 3], the

monotonicity of E (1) is determined by the numerator of the
right-hand side of Eq. (21), which we define as

(D f + D′)2 dE (1)

df
= G( f ). (22)

For t2 = 0, G( f ) is a constant. The derivative, therefore, has
the same sign in the range f ∈ [− 3

2 , 3], so that the maximum
and minimum of the band are attained among K and �. For
t2 > 0, G( f ) is a quadratic function with a vertex at

−D′

D
= −3

2
− T 2

2t2
1

< −3

2
. (23)

Therefore, G( f ) is monotonic in the range of f ∈ [− 3
2 , 3]. If

G( f ) has the same sign at f = − 3
2 and 3, E (1) is monotonic

in f ∈ [− 3
2 , 3].

For εd > 0, which is relevant to C2H, we have G( f =
− 3

2 ) = G( f = 3) > 0 for t2 = 0. As we increase t2 > 0, we
have G( f = − 3

2 ) > G( f = 3), and G( f = 3) decreases. So,
the critical t2 beyond which E (1) is nonmonotonic in f ∈
[− 3

2 , 3] is determined by G( f = 3) = 0, which gives t2c, the
critical value of t2, as√(

3t2
1 + T 2

)2
T 4 + 48ε2

dt2
1 T 2

(
6t2

1 + T 2
) − (

3t2
1 + T 2

)
T 2

24εd
(
6t2

1 + T 2
) .

(24)

For 0 � t2 � t2c, G( f ) � 0 in f ∈ [− 3
2 , 3]. Correspondingly,

E (1) is a monotonically increasing function in f ∈ [− 3
2 , 3],

attaining its minimum at f = − 3
2 (i.e., at K) and maximum at

f = 3 (i.e., at �). For (t1, T, εd ) = (2.6 eV, 6.5 eV, 3 eV), we
have t2c � 0.252 eV.

For εd < 0, which is relevant to C2F, we have G( f =
− 3

2 ) = G( f = 3) < 0 for t2 = 0. As we increase t2 > 0,
we have G( f = − 3

2 ) < G( f = 3) and G( f = 3) increases.
Again, the critical t2 beyond which E (1) is nonmonotonic in
f ∈ [− 3

2 , 3] is determined by G( f = 3) = 0, which gives the
critical value of t2 in this case, t ′

2c, as√(
3t2

1 + T 2
)2

T 4 + 48ε2
dt2

1 T 2
(
6t2

1 + T 2
) + (

3t2
1 + T 2

)
T 2

−24εd
(
6t2

1 + T 2
) .

(25)

For 0 � t2 � t ′
2c, G( f ) � 0 in f ∈ [− 3

2 , 3]. Correspond-
ingly, E (1) is a monotonically decreasing function in
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f ∈ [− 3
2 , 3], attaining its maximum at f = − 3

2 (i.e., at
K) and minimum at f = 3 (i.e., at �). For (t1, T, εd ) =
(2.6 eV, 6.5 eV,−3 eV), we have t ′

2c � 1.139 eV.
Since clearly t2c < t ′

2c, we will focus on the parameter
ranges of 0 < t2 < t2c, which is wide enough to include the
physically relevant cases. Note that, for t2 � t2c, the exact
dispersions of the low-energy bands of C2H and C2F are
indeed both monotonic in f ∈ [− 3

2 , 3]. For slightly larger t2
(e.g., t2 = 0.3 eV), the low-energy band of C2H is no longer
monotonic in f ∈ [− 3

2 , 3]. However, the large contrast in the
bandwidths of the low-energy bands of the two materials
remains, and the qualitative tendency of the magnetic order,
namely that C2H and C2F separately favor the ferromagnetic
and antiferromagnetic states, is still correct.

According to the above analysis, for 0 < t2 � t2c, the ap-
proximate dispersion of the low-energy band always takes
its maximal and minimal values at the end points of the
section f ∈ [− 3

2 , 3], which are

E (1)

(
f = −3

2

)
= 3t2 − 9t2

2

T 2
εd ,

E (1)( f = 3) = − 6T 2

T 2 + 9t2
1

t2 + 9
(
t2
1 − 4t2

2

)
T 2 + 9t2

1

εd . (26)

The bandwidth is simply

� = |E (1)( f = − 3
2

) − E (1)( f = 3)|. (27)

For t2 = 0, the bandwidth is independent of the sign of εd .
For 0 < t2 � t2c, and also for t2 < t1/2, which is obeyed by
all realistic considerations, reversing the sign of εd clearly
changes the bandwidth. Explicitly, fixing the amplitudes of
all parameters, with 0 < t2 � t2c, positive εd relevant to C2H
gives a bandwidth smaller than that given by negative εd rel-
evant to C2F. Also notice that for realistic model parameters,
the coefficients of t2 in Eqs. (26) and (27) have magnitudes
larger than 1, whereas the coefficients of εd have magnitudes
smaller than 1. This character enhances the significance of the
2NN hopping term, compared to that of the energy difference
term, in determining the bandwidth of the low-energy band,
and it explains why a small t2 can make the bandwidth of the
low-energy band of C2H much smaller than that of C2F.

The above results may be applied to the bandwidths of
the spin-split low-energy bands in the ferromagnetic state.
Considering a fixed set of hopping parameters (including a
finite t2), the bandwidth of the low-energy band depends on
εd , which is the difference between the on-site energy of
the adatom orbital and the pz orbital of the unchemisorbed
B sublattice sites. In the ferromagnetic state, the mean-field
decoupling of Eq. (4) to the Hubbard interaction introduces
an additional spin-resolved on-site energy to the B sublattice
orbitals. For the ferromagnetic solutions of C2H and C2F,
the additional on-site energy for the lower spin-split band is
−2U |〈S(b)

z 〉|. This changes the energy difference from εd to
εd + 2U |〈S(b)

z 〉|. For C2H with εd = 3 eV, the mean-field cor-
rection enhances the difference of the on-site energies, which
tends to increase the bandwidth of the lower spin-split band.
Since this mechanism is less effective in the antiferromagnetic
state, because there are two B sublattice sites with opposite
spin orientations in the unit cell, we see that the band energy

of the lower spin-split low-energy band of the ferromagnetic
state tends to decrease compared to that of the antiferromag-
netic state [see E (middle)

band in Fig. 4(c)], and therefore it also
helps to stabilize the ferromagnetic state in C2H. For C2F
with εd = −3 eV, the correction has the opposite sign, which
tends to decrease the bandwidth of the lower spin-split band
for medium U . This provides another angle to see why the
ferromagnetic state is disfavored in C2F.

D. Immediate implications of the mechanism

The above analysis immediately leads to two interesting
conjectures. First, it is possible to make the low-energy band
of C2H narrower by tuning εd through a perpendicular electric
field. For fixed (t1, t2, T ) = (2.6 eV, 0.19 eV, 6.5 eV), and
ignoring the difference in the on-site energies of the A and
B sublattices resulting from the perpendicular electric field,
the bandwidth is reduced if we decrease εd from 3 eV. For
εd = 3 eV, as shown in Fig. 3(e), the low-energy band has
a bandwidth of about 637.5 meV. This bandwidth may be
reduced to about 12.9 meV for εd � 1.8175 eV. The order-
of-magnitude reduction in the bandwidth of the low-energy
band greatly enhances the correlation effect. It is intriguing
to explore possible correlated phases with novel topological
order in C2H with reduced bandwidth [52–55] if the spin-
orbit coupling is considered [10–12,33–36]. The tight-binding
theory could also be used to study the interplay of supercon-
ductivity and the magnetic order in the doped C2H and C2F
due to the Hubbard interaction U by the method of random
phase approximations [56,57]. These topics will constitute our
subjects for future study.

Second, it might be possible to tune C2H and C2F close
to or even cross the phase transition point between the ferro-
magnetic state and the antiferromagnetic state. For C2F, this is
achieved by reducing the bandwidth of the low-energy middle
band by increasing εd (i.e., decreasing −εd = |εd |) with a
perpendicular electric field. For C2H, this is achieved by in-
creasing the bandwidth of the low-energy band by increasing
εd > 0 with a perpendicular electric field.

As another implication, we notice that there are 2D el-
emental analogs of graphene, including silicene [58–63],
germanene [64–66], and stanene [67,68], which all have
honeycomb structures that are usually buckled. While the
structural buckling makes the physics more complicated
than graphene, it has been proved that similar single-
orbital tight-binding model may be used to describe the
low-energy properties of these 2D graphene analogs [69].
When considering the semihydrogenation or semifluorina-
tion of these materials [70–72], we suspect that similar
physics should play a role. First, in full analogy to the
semifunctionalized graphene, a finite 2NN hopping term
together with the energy difference term can lead to signif-
icant differences in the bandwidths of the low-energy bands
of semihydrogenated and semifluorinated graphene analog
materials, which may induce distinct magnetic tendencies
in them. There have been studies on the semihydrogenated
graphene analog materials, which commonly find ferromag-
netic semiconducting states [72–75]. The magnetic properties
of semifluorinated graphene analog materials are less ex-
plored. In a study by Wu et al. [76], stanene and germanene
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semifunctionalized by iodine are found to show ferromag-
netic order, but stanene and germanene semifunctionalized
by bromine or chlorine are found to show antiferromagnetic
order. Following this trend, it seems reasonable to expect an
antiferromagnetic tendency in semifluorinated graphene ana-
log materials. Second, electric field tuning of the bandwidth
should also be active in semihydrogenated and semifluo-
rinated graphene analog materials. Compared to the flat
graphene lattice, pristine graphene analog materials have a
buckled structure, and functionalization tends to enhance the
buckling [72–75]. Due to the buckling of the structure, a
perpendicular electric field can induce a tunable band gap
in the band structures of pristine graphene analog materi-
als [59,60,66]. For the semifunctionalized graphene analog
materials in a perpendicular electric field, two effects of com-
parable significance should play a role. The first effect is an
energy difference between the adatom orbital and the orbital
of the underlying pristine lattice. As with the semifunctional-
ized graphene, this effect tends to change the bandwidth of the
low-energy band. The second effect is an energy difference
between the two sublattices of the underlying lattice. While
this effect is also present in the semifunctionalized graphene,
it is more important and non-negligible in the semifunction-
alized graphene analog materials with much larger structural
buckling. The interplay of these two effects, and their im-
pacts on the magnetic behaviors and other properties of

semifunctionalized graphene analog materials, are intriguing
subjects for future studies.

V. SUMMARY

To consistently account for the ferromagnetic order of C2H
and the antiferromagnetic order of C2F, as we have illustrated,
it is crucial to consider a tight-binding model including the
2NN hopping term among the carbon orbitals. The combi-
nation of this term with the opposite on-site energies of the
adatoms for C2H and C2F leads to significantly different
bandwidths of the low-energy bands of the two materials,
which in turn accounts for their different magnetic tendencies.
The minimal tight-binding model, together with the mean-
field magnetic orders consistent with first-principles results,
may facilitate further studies of fundamental and application-
related properties of C2H and C2F. The implications of the
mechanism clarified, such as electric field tuning of the band-
widths and possible relevancy to several 2D elemental analogs
of graphene, are interesting topics for future studies.
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