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with realistic Coulomb interaction
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We study the effect of various configurations of vacancies on the magnetic properties of graphene nanoflake
(GNF) with screened realistic long-range electron interaction [T. O. Wehling et al., Phys. Rev. Lett. 106, 236805
(2011)] within the functional renormalization group approach. In agreement with previous studies, the presence
of vacancies in GNF yields a strong enhancement of spin-density-wave (SDW) correlations. We show, however,
that only some part of the considered configurations of vacancies posses SDW ground state. The probability of
a system with a random configuration of vacancies to be in the SDW ground state increases with increase of
vacancy concentration. The disorder-averaged sublattice magnetization increases linearly with the concentration
of vacancies. The ratio of the sublattice magnetizations at the center and edges of GNF, averaged over various
realizations of disorder, depends only weakly on the number of vacancies. The effects of vacancies on the linear
conductance and charge properties of GNF are discussed.
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I. INTRODUCTION

Graphene nanoflakes (GNFs) are nanostructures formed
by a small piece of graphene sheet [1]. As in graphene,
both short-range (local) and long-range electron-electron
interactions play a crucial role in magnetic, charge, and elec-
tronic transport properties of graphene nanoflakes [2–15].
In particular, the interplay between local and long-range
electron correlations leads to the appearance of spin-density
wave (SDW) and charge-density wave (CDW) correlations
[2,5,9–11]. For realistic parameters of Coulomb interaction,
the pristine graphene and GNF without disorder appear to
be in the semimetal (SM) phase, which does not possess
charge or magnetic order [11,16]. This also applies to GNFs
of various sizes and boundary geometries [11].

At the same time, it has been established from both
experiments and theory that the disorder can lead to the
appearance of magnetism in graphene and graphene-based
nanostructures. It has been reported that for disorder cre-
ated by vacancies, local magnetic moments [17–21] and a
pronounced magnetic order [22–24] can appear. This vacancy-
induced magnetism has been studied in graphene and various
graphene nanostructures, including GNFs. In particular, the
phase transition to an antiferromagnetic state, driven by the
presence of vacancies or adatoms, has been investigated for
large graphene clusters with the realistic long-range Coulomb
interaction [25]. It is shown that the effects of the realistic
long-range interaction result in the appearance of magnetic
moments near adatoms, leading to an antiferromagnetic or-
dering of graphene clusters at low temperatures.

In the previous study of vacancies in large graphene clus-
ters with realistic Coulomb interaction, for each particular
cluster, one configuration with a random uniform distribution

of a fixed concentration of vacancies was considered [25]. At
the same time, finite size of GNFs leads to the appearance
of edge states which have properties different from those of
bulk states. For pristine GNFs, sites located near the edges
(or at the edges) develop a more pronounced magnetic order
or contribute to the formation of magnetic moments. Conse-
quently, one can expect that vacancies located at or close to
the edges of the system have a different impact on the state of
the system than vacancies located far from the edges. Due to
this, the average over various disorder configurations in GNF
systems may be especially important. Also, analyzing various
disorder configurations may yield information on the possible
range of magnetic properties, which can be produced by the
presence of defects or vacancies in GNF.

To analyze the properties of GNF, the functional renormal-
ization group (fRG) approach [26,27] which was previously
used to describe pristine GNF systems [11], was shown to be
a useful tool. The application of this method for exploring
the phase diagram of pristine GNF systems [11] demon-
strates agreement with sophisticated many-body numerical
approaches, such as the dynamical cluster approximation
(DCA), the dynamic mean-field theory (DMFT), and the
hybrid quantum Monte Carlo (QMC) simulations. This ap-
proach can be applied to study the effects of disorder, since it
allows relatively fast study of many different disorder config-
urations.

In this paper, we study how the disorder caused by the
presence of vacancies manifests itself in the magnetic, charge,
and transport properties of a GNF at zero temperature. We
consider the realistic parameters of electron-electron interac-
tions in graphene [28], which account for the screening of
the interaction by σ orbitals and have been determined by
accurate first-principles calculations. The difference between
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FIG. 1. Zigzag-edge GNF system with 96 atoms (gray dots) con-
nected to two leads (rectangles). The red (blue) dots correspond to
A (B) sublattices with positive (negative) mj = 〈nj,↑ − nj,↓〉; their
size is proportional to the on-site magnetization |mj |, which is
induced by the weak staggered magnetic field h = 0.0185t . The
open (dashed open) circles indicate the sites corresponding to
the max{|mj |} ≈ 0.043 (min{|mj |} ≈ 0.019). The relative staggered
magnetization S(0)

st ≈ 0.024.

the realistic screened Coulomb potential and the standard
1/r Coulomb potential leads to a significant shift in the critical
value of interaction for the SM-CDW phase transitions for
graphene [11,16].

Considering various realizations of disorder and extrapo-
lating the results to zero staggered magnetic field, we show
that, for the same number of vacancies, the GNF can be
either in the SM phase or in the SDW phase, depending
on the spatial distribution of vacancies. By averaging over
ensembles of independent configurations, we show that the
presence of vacancies leads to a strong enhancement of SDW
magnetic correlations. Associated with this enhancement,
linear increase of the disorder-averaged relative staggered
magnetization of the whole system (as well as staggered
magnetization at the center and edges of the GNF) with the
vacancy concentration is accompanied by the weakly non-
linear behavior of the conductance as a function of vacancy
concentration. At the same time, we find that vacancies do not
lead to the charge order of the system.

II. MODEL AND METHOD

The system under consideration is illustrated in Fig. 1.
It consists of a zigzag-edge GNF with Nat = 96 atoms con-
nected to two equivalent metallic leads. The total Hamiltonian
is H = HGNF + Hleads + HT. The first term describes the
isolated GNF,

HGNF =
∑

σ

∑

i∈A

εA
σ ni,σ +

∑

σ

∑

i∈B

εB
σ ni,σ

− t
∑

〈i j〉,σ
d†

i,σ d j,σ + 1

2

∑

i, j

Ui j (ni−1)(n j −1). (1)

Here, d†
i,σ (di,σ ) is a creation (annihilation) operator of an

electron at the lattice site i of A or B sublattice with a spin
index σ = ±1/2 (or σ =↑,↓), n j,σ = d†

j,σ d j,σ , and n j =
n j,↑ + n j,↓. The on-site energy parameters are chosen to be
εA(B)
σ = ±(δ − hσ ), the parameter δ and staggered magnetic

field h are introduced in order to explicitly break the spin and
sublattice symmetry of the GNF, t = 2.7 eV is the nearest-
neighbor hopping parameter, and summation in the third term
of Eq. (1) is taken over nearest neighbor sites. The last
term in Eq. (1) describes the electron-electron interactions
with the potential Ui j that includes both on-site U = Uii and
nonlocal Ui �= j contributions. For the parameters Ui j up to
the third-nearest-neighbors ri j � r03 = 2a (a = 0.142 nm is
graphene’s lattice constant) we use the realistic values for
graphene [28], which were determined within constrained
random phase approximation (cRPA) (see Table 1 of Ref. [28]
for the corresponding values of Ui j). This potential accounts
for the realistic screening of Coulomb potential by elec-
trons on σ orbitals, which, in particular, is essential for a
consistent description of the SM-SDW phase transition in
monolayer graphene [16]. At distances larger than the dis-
tance between third-nearest-neighbor lattice sites ri j > r03 the
realistic potential is approximated by Ui j = 1/(εeffri j ) with
effective dielectric permittivity εeff = 1/(U03r03) ≈ 1.41, as
in Ref. [16].

The term Hleads describes 1D semi-infinite Fermi-
liquid leads which are assumed to be equivalent and are
modeled by

Hleads = −
∑

α=L,R

∞∑

k=0

∑

σ

[
μαc†

α,k,σ
cα,k,σ

+τ (c†
α,k+1,σ

cα,k,σ + H.c.)
]
, (2)

where c†
α,k,σ

(cα,k,σ ) is a creation (annihilation) operator for an
electron on the k lattice site of the left α = L or right α = R
lead, τ denotes nearest-neighbor hopping between the sites
of the leads and μα is the chemical potential. Finally, HT =
−∑

σ,α,iα
(Viα,αc†

α,0,σ diα,σ + H.c.) describes the hopping be-
tween GNF and the leads, where Vi,α is the coupling matrix
element between the ith site of the GFN and the last site of
the lead α, and summation is performed over sites iα that are
closest to the lead α. Note that the parameters of the leads
and the coupling matrix elements Vi,α only indirectly influ-
ence the GNF’s degrees of freedom through the hybridization
function [29,30] �α

i j (ε) = 2πVi,αV ∗
j,αρleads, where ρleads is the

local density of the states of the leads. We assume equal
GNF-leads couplings Vi,,α = V and consider the wide-band
limit approximation [29,31]. This leads to an energy inde-
pendent hybridization strength � [11], which absorbs all the
information about the noninteracting environment.

To model the effect of disorder caused by vacancies, we
randomly remove a fixed number of atoms Nvac from the
system shown in Fig. 1. Sites that are directly connected to
the leads are not removed. In order to maintain the half-filling
of the system, which in the presence of Nvac vacancies cor-
responds to N = Nat − Nvac electrons in the system, an equal
number of atoms is removed from each sublattice. To detect
the formation of SDW and CDW phases we calculate the
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relative staggered magnetization

S(Nvac )
st = (〈NA,↑〉 + 〈NB,↓〉 − 〈NA,↓〉 − 〈NB,↑〉)/N (3)

and the relative difference between the occupation of A and B
sublattices



(Nvac )
st = (〈NB,↑〉 + 〈NB,↓〉 − 〈NA,↑〉 − 〈NA,↓〉)/N, (4)

which can be considered as SDW and CDW order param-
eters, where 〈NA(B),σ 〉 = ∑

i∈A(B) 〈ni,σ 〉, 〈n j,σ 〉 is the average
occupation of a lattice site j for spin σ . Within the above
definitions, the maximal SDW (CDW) order parameter is
S(Nvac )

st = 1 (
(Nvac )
st = 1). In contrast, in the SM phase, Eqs. (3)

and (4) yield S(Nvac )
st = 0 and 


(Nvac )
st = 0, indicating the ab-

sence of magnetic and charge order.
We consider below the temperature T = 0. We also study

the linear conductance, which is given at T = 0 by Landauer
formula [5,32,33]

G(Nvac ) = 4�2G0

∑

i, j,σ

∣∣Gi j,σ (ω → 0+)
∣∣2

, (5)

where Gi j,σ (ω) is the Green’s function of electron moving
from site i to site j, and summation over site indexes is re-
stricted to sites of GNF which are connected to the left (right)
lead (see Fig. 1). Equation (5) is valid also in the presence
of the interaction due to vanishing vertex corrections in the
T = 0 limit [30,33], G0 = e2/h is the conductance quantum
per spin projection. Note that Eq. (5) assumes only local
hybridization processes [5]. At T = 0 we also have 〈nj,σ 〉 =∫

dωeiω0+G j j,σ (iω)/2π . As follows from Eqs. (3)–(5), S(Nvac )
st ,



(Nvac )
st , and G(Nvac ) are determined by the Green’s function

Gσ (iω). We calculate the Green’s function of the system by
using the functional renormalization group (fRG) method
[26,27] within the coupled ladder approximation [34,35] and
the reservoir frequency cutoff scheme [36]. The implemen-
tation of this method follows the same fRG procedure as in
Ref. [11] [see Eqs. (8)–(19) of that paper]. The leads contri-
bution to the Green’s function is given by �leads = −i� [11].

To obtain statistically converged results, we perform an
averaging over n random realizations of Nvac vacancies in the
GNF system defined as 〈X (Nvac )〉n = (1/n)

∑n
k=1 X (Nvac )

k , where
X (Nvac )

k is a value of X (Nvac ) ∈ {S(Nvac )
st ,


(Nvac )
st , G(Nvac )} obtained

for kth random disorder realization. In the following calcula-
tions we set � = 0.02t and δ = h.

III. MAGNETIC PHASES IN THE PRESENCE
OF DISORDER

In this section, we analyze the response of the GNF sys-
tem to a magnetic field and show that for a fixed number of
vacancies Nvac, depending on their configuration, the system
belongs to either the SM or SDW ground state. We also per-
form subsequent average over various disorder configurations.

A. Spatial distribution of the magnetization
in the presence of vacancies

Let us first consider the results for the GNF system with-
out vacancies (Nvac = 0). According to Ref. [16], suspended
graphene with the realistic Coulomb potential is in the SM
phase, which corresponds to S(0)

st → 0 for h → 0. Figure 1

FIG. 2. The distribution of the relative magnetization m̃ j =
mj/m(0)

j (m(0)
j is the magnetization of the jth site for Nvac = 0;

see Fig. 1) in the system for Nvac = 2 for a given configuration
of vacancies. The size of the colored dots is proportional to m̃ j

and the color corresponds to (m̃ j − Imin )/(Imax − Imin ). Here Imax =
max{m̃ j} ≈ 8.8 and Imin = min{m̃ j} ≈ 1.2. The relative staggered
magnetization S(2)

st ≈ 2.4S(0)
st . The other system parameters are the

same as in Fig. 1.

shows the distribution of the magnetization mj = 〈n j,↑ − n j,↓〉
in the absence of vacancies, which reflects the distribution of
the magnetic response to a weak staggered magnetic field.
One can see that the sites on the edges are characterized by
larger response |mj |. Note that the GNF-leads hybridization
slightly suppresses the magnetization of the sites which are in
a direct contact with the leads. In particular, for this reason,
the sites that have the highest |mj | (marked by open circles)
are located on the edges, which do not have a connection to
the leads. In contrast, the central sites of the GNF show the
lowest magnetic response.

The distribution of the magnetization of one random con-
figuration with Nvac = 2 is presented in Fig. 2. Compared to
the case without vacancies (see Fig. 1), the magnetization
of the sites around the vacancies is strongly enhanced. As a
result, the relative staggered magnetization S(2)

st for Nvac = 2
is substantially higher than in the case without vacancies S(0)

st ,
S(2)

st ≈ 2.4S(0)
st . We found qualitatively the same effects of va-

cancies on the distribution of the magnetization and relative
staggered magnetization for systems with Nvac � 8.

B. The disorder configurations, possessing SDW and SM state

To determine the ground state of the GNF system in the
presence of vacancies we analyze magnetic field dependences
of the relative staggered magnetization S(Nvac )

st (h) for different
random configurations of Nvac (Nvac = 2, 4, 6, 8) vacancies in
the system. Considering the S(Nvac )

st in the limit of zero mag-
netic field h → 0, in this case, allows one to strictly separate
the SM (S(Nvac )

st → 0) and SDW (S(Nvac )
st �= 0) phases.

For each considered Nvac, we find that there are two dis-
tinct behaviors of S(Nvac )

st (h) that are possible depending on
the position of vacancies in the system. The first type of
behavior is characterized by S(Nvac )

st → 0 and relative staggered
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FIG. 3. Examples of the magnetic-field h dependence of the rel-
ative staggered magnetization S(Nvac )

st for disorder realizations, for
which S(Nvac )

st vanishes (upper panel) or remains finite (lower panel)
in the limit h → 0, corresponding to the SM or SDW state. The inset
in the lower panel displays the results of the fRG approach with the
counterterm for the systems shown in the main part of the figure.

magnetization decreasing nonlinearly with decreasing h (see
examples in the upper panel of Fig. 3), which corresponds
to the SM state of the system. Apart from this, there are
configurations which have linear dependencies of the relative
staggered magnetization on h and for which the self-energy
diverges at small h during the fRG flow and the sublat-
tice magnetization, extrapolated to the limit h → 0 does not
vanish (see examples in the lower panel of Fig. 3). This is
an indication of the SDW state, which is inaccessible for our
fRG approach for small magnetic fields. To verify that these
configurations correspond to SDW order, which is charac-
terized by a nonzero staggered magnetization, we have also
applied the counterterm extension of the fRG approach, cor-
responding to auxiliary magnetic field h̃ = 0.03t , switched
off linearly with cut-off parameter  starting from the scale
c = h̃ (see Ref. [11] for the details). This technique allows
us to overcome the divergence of the self-energies and reach
the limit h → 0 (see the inset in the lower panel of Fig. 3).
We find that in this approach for small h, the magnetiza-
tion also exhibits a strictly linear magnetic field dependence

FIG. 4. Bar graph representation of the distribution of SM
(black) and SDW (red) phases for various even values of Nvac.

and converges to a nonzero value in the limit h → 0, which
confirms the SDW ground state. It should be noted that the
counterterm technique, while giving the correct physical state,
slightly overestimates the magnetization compared to the one
obtained from the linear fit of the corresponding dependences
shown in the main part of Fig. 3. For this reason, we do not
use this technique for quantitative analysis in our study.

Although for any fixed Nvac one can find configurations
that belong to either the SM or SDW phase; the quantitative
distribution between these two phases is strongly dependent
on Nvac. To show this, we considered S(Nvac )

st (h) dependencies
for 150 random configurations for each Nvac = 2, 4, 6, 8, and
attributed each configuration either to the SM state or to
the SDW state. The resulting distribution between the SM
and SDW phases is shown in Fig. 4. For Nvac = 2, the SM
state dominates over the SDW state, which means that it is
more likely to find a random system with this number of
vacancies in the SM state. However, already for Nvac = 4, the
situation changes and the SDW state becomes more prefer-
able (in a probabilistic sense). With increasing of Nvac, this
difference becomes even more pronounced and for Nvac =
8 the realization of the SDW state has the highly superior
probability.

IV. CHARACTERISTIC EFFECTS OF DISORDER

To estimate the overall effect of the vacancies, we gen-
erate n different random configurations of the system with
Nvac vacancies and calculate average values 〈X (Nvac )〉n over
these configurations (samples), where X ∈ {Sst,
st, G}. To
consider the limit of h → 0, 〈X (Nvac )〉n are calculated for
five different values of the magnetic field from h = hm to
h = 0.2hm with the step 0.2hm, where hm = 0.0185t is the
highest magnetic field used in the present study. The typical
dependence of the disorder-averaged relative staggered mag-
netization 〈S(Nvac )

st 〉n on the number of samples n (n � 150) is
plotted in Fig. 5 for h�hm and Nvac � 8. The averaging over
a small number of samples (n � 50) produces relatively large
fluctuations of 〈S(Nvac )

st 〉n. These fluctuations are caused by the
difference in the relative staggered magnetizations of different
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FIG. 5. Upper four curves: The disorder-averaged relative staggered magnetization 〈S(Nvac )
st 〉n with respect to S(0)

st (h = hm) as a function of
the number of independent samples n (n � 150) for h = hm and various Nvac (see labels at the dependencies). Lowest four dependencies show
the data for Nvac = 2, n� 50 and the magnetic fields h = 0.8hm, 0.6hm, 0.4hm, and 0.2hm (from the upper to the lower curve).

configurations. However, one can see that for sufficiently large
n (n � 100), 〈S(Nvac )

st 〉n is almost independent of n. Similarly,
we find that for n � 100 the disorder-averaged linear conduc-
tance 〈G(Nvac )〉n also exhibits only weak fluctuations and the
disorder-averaged relative difference between the occupation
number of the sublattices 〈
(Nvac )

st 〉n is almost independent of n.
It is important to note that for a subset of considered configu-
rations, due to strong SDW correlations, the electron-electron
interaction vertices (as well as the self-energy) exhibit diver-
gences in the region of small magnetic fields, 0 < h � 0.4hm.
This tendency becomes more pronounced as Nvac increases.
For these configurations, we extract X (Nvac ) values for small
magnetic fields by extrapolating fRG data obtained for higher
ones.

Figure 5 also shows 〈S(Nvac=2)
st 〉n at sufficiently large n

for various magnetic fields. The obtained dependencies are
qualitatively similar to those obtained at h = hm, up to the
decrease of magnetization, related to the decrease of magnetic
field. It is important to note that the disorder-averaged relative
staggered magnetization shows stable convergence to almost
constant values for n � 100 for all considered magnetic fields.
For the other vacancy concentrations considered, the results
are qualitatively similar to the ones presented in Fig. 5. In gen-
eral, for a fixed Nvac, we find that n � 100 configurations are
sufficient to achieve a regime in which the disorder-averaged
values have only small deviations from each other.

We estimate the characteristic disorder-averaged values in
the presence of Nvac vacancies in the system by 〈X (Nvac )〉 =
〈X (Nvac )〉150. Results for 〈X (Nvac )(h)〉 for different numbers of
vacancies Nvac are presented in Fig. 6. One can see that linear
extrapolation of the characteristic disorder-averaged relative
staggered magnetization 〈S(Nvac )

st 〉 to h = 0 gives nonzero val-
ues for all considered Nvac. In contrast, we do not find
appreciable charge density wave order in the limit h → 0
(i.e., 〈
(Nvac )

st 〉 ≈ 0 for h → 0; see the lower panel of Fig. 6),
despite the symmetry breaking field δ = h is included in the
calculation. The characteristic disorder-averaged linear con-
ductance 〈G(Nvac )〉 shown in Fig. 6 is nonlinear and displays
the quadratic dependence on h. We estimate the values of

〈G(Nvac )〉 for h = 0 by quadratic extrapolation of the data
for h > 0.

To reveal effects related to the geometry of the GNF edges,
we also consider a GNF system with armchair edges consist-
ing of Nat = 114 atoms in absence of vacancies. The position
of the corresponding system with respect to the leads is iden-
tical to the one shown in Fig. 1. The results in this case for
〈X (Nvac )(h)〉 for Nvac = 2 are shown in Fig. 6 (see the dashed
lines). One can see that both 〈S(Nvac )

st (h)〉 and 〈
(Nvac )
st (h)〉

dependencies are relatively close to the ones obtained for
the zigzag-edge geometry case. As expected, the linear con-
ductance is found to be more sensitive to changes in edge
geometry and as a consequence the characteristic disorder-
averaged linear conductance 〈G(Nvac )〉 significantly deviates
from the corresponding data for the GNF system with zigzag
edges. However, we note that the presence of vacancies in this
case also leads to clear suppression of the linear conductance.
In general, one can see that the geometry of the edges does
not lead to a qualitative change of the vacancy effects (at least
for small vacancy concentrations).

To also analyze the effects of the spatial inhomogeneity
of the magnetization due to the presence of the edges, we
consider the relative staggered magnetizations associated with
the sites located at the edges S(Nvac )

e,st and in the center S(Nvac )
c,st of

the GNF system

S(Nvac )
e(c),st = N−1

e(c)

∑

j∈e(c)

|〈n j,↑〉 − 〈n j,↓〉|, (6)

where Ne(s) is the number of edge (central) atoms in the
GNF system (in the absence of vacancies Ne = 42 and Nc =
6) and the summation in Eq. (6) is restricted to the edge
(central) sites of the GNF. The corresponding relative
staggered magnetization averaged over n random configura-
tions are given by 〈S(Nvac )

e(c),st〉n = (1/n)
∑n

k=1 S(Nvac )
e(c),st (k), where

S(Nvac )
e(c),st (k) is the value of S(Nvac )

e(c),st for kth random disorder
realization. We find that the disorder-averaged staggered mag-
netization corresponding to the edge sites is much stronger
than that for the central sites. For all considered vacancy
concentrations, the characteristic disorder-averaged staggered
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FIG. 6. The characteristic disorder-averaged relative staggered
magnetization 〈S(Nvac )

st 〉 (upper panel), linear conductance
〈G(Nvac )〉/G(0) (middle panel), and the relative difference between the
occupation of the sublattices 〈
(Nvac )

st 〉 (lower panel) as a function
of magnetic field h for various Nvac. The lines in the upper and
lower (or middle) panel are linear (or quadratic) fits to the fRG
data (circles), the cross symbols represent values obtained by
extrapolation to h = 0. G(0) is the value of the linear conductance
for Nvac = h = 0. The dashed lines show the results corresponding
to the hexagonal GNF system with armchair edges (Nat = 114). The
horizontal bars show the standard errors of the mean (SEM) of the
disorder-averaging procedure.

magnetization 〈S(Nvac )
st 〉, which takes into account the con-

tributions from all sites of the system, lies between the
characteristic magnetizations 〈S(Nvac )

e,st 〉 and 〈S(Nvac )
c,st 〉, 〈S(Nvac )

e(c),st〉 =
〈S(Nvac )

e(c),st〉150.
The corresponding results for the characteristic disorder-

averaged relative staggered magnetization 〈S(Nvac )
st 〉 and

FIG. 7. The disorder-averaged staggered magnetization in the
whole nanoflake 〈S(Nvac )

st 〉 (circles) and that at the central (edge) sites
〈S(Nvac )

c(e),st〉 [upward (downward) triangles] for h → 0 as a function of
Nvac. Inset: The disorder-averaged linear conductance 〈G(Nvac )〉/G(0)

for h → 0 as a function of Nvac (the error bars represent the standard
error of the fit of the data shown in the middle panel of Fig. 6).
The line in the main plot (inset) is a linear (quadratic) fit to the fRG
data and G(0) ≈ 6×10−4G0 is the value of the linear conductance for
Nvac = h = 0.

〈S(Nvac )
e(c),st〉 in the limit h → 0 are presented in Fig. 7. It can

be seen that 〈S(Nvac )
st 〉 increases approximately linearly with

Nvac. Both the disorder-averaged sublattice magnetization in
the center and at the edges increase approximately propor-
tional to each other with an increase in the concentration of
vacancies Nvac, with the disorder-averaged ratio 〈R(Nvac )〉 =
〈S(Nvac )

e,st /S(Nvac )
c,st 〉150 � 1.5, which weakly depends on the con-

centration of vacancies.
In Fig. 7, we also show the dependence of the characteristic

disorder-averaged linear conductance 〈G(Nvac )〉 on the number
of vacancies Nvac. One can see that the conductance shows
only a weak nonlinear (quadratic) dependence on Nvac and
thus, approximately linearly decreases with increasing num-
ber of vacancies. For Nvac= 8, the conductance is suppressed
by disorder significantly (to 〈G(Nvac )〉 ≈ 0.16G(0)) compared
to the conductance G(0) for the system without vacancies. The
decrease of the linear conductance correlates with the increase
of the relative staggered magnetization (a similar correlation
was previously noted for GNFs without vacancies [11]).

V. CONCLUSIONS

The presence of vacancies in the GNF with screened
realistic long-range electron interactions strongly modifies
its magnetic and transport properties: (i) while GNFs with
no vacancies are nonmagnetic for the realistic Coulomb
interactions, the presence of vacancies yields to a strong en-
hancement of the magnetic correlations, which can be strong
enough for GNF to be in the SDW state; (ii) the probability
of GNF with a random configuration of vacancies to be in the
SDW (SM) ground state gradually increases (decreases) with
increase of vacancy concentration; (iii) the linear conductance
shows a weak nonlinear dependence on the vacancy concen-
tration and decreases with its increase.
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The functional renormalization group approach used in the
present study allows for a clear recognition and characteri-
zation of the magnetic/charge phases of GNF systems with
vacancies. These capabilities are combined together with the
ability to relatively quickly scan through large sets of arbitrary
configurations with realistic long-range Coulomb interaction.
In this sense, the extension of this method to more compli-
cated models of disorder and other graphene nanosystems,
such as graphene nanotubes with disorder, seems quite fea-
sible and is of considerable interest.
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