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Dissipative edge transport in disordered axion insulator films
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We investigate the role of disorder in the edge transport of axion insulator films. We predict by first-principles
calculations that even-number-layer MnBi2Te4 have gapped helical edge states. The random potential will
dramatically modify the edge spectral function to become gapless. However, such gapless helical state here
is fundamentally different from that in the quantum spin Hall insulator or topological Anderson insulator. We
further study the edge transport in this system by Landauer-Büttiker formalism, and find such gapless edge
state is dissipative and not immune to backscattering, which would explain the dissipative nonlocal transport
in the axion insulator state observed in six-septuple-layer MnBi2Te4 experimentally. Transport experiments
with floating leads are proposed to verify our theory on the dissipative helical edge channels. In particular,
the longitudinal resistance can be greatly reduced by adding an extra floating probe, even if it is not used. These
results will facilitate the observation of the long-sought topological magnetoelectric effect in axion insulators.
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I. INTRODUCTION

Topological phenomena have been one of the central topics
in condensed matter physics [1–4]. The interplay between
band topology and magnetism gives rise to a variety of ex-
otic quantum states [4–6]. A prime example is the quantum
anomalous Hall (QAH) effect with gapless chiral edge states
discovered in magnetic topological insulator (TI) films [5,7–
17]. Another interesting example is the axion insulator, which
is a three-dimensional magnetic TI with a nonzero quan-
tized Chern-Simons magnetoelectric coupling (axion θ = π )
protected by inversion symmetry I instead of time-reversal
symmetry � [5,18–23]. Such axion coupling leads to the
prediction of the topological magnetoelectric (TME) effect
[5], which is the hallmark of an axion insulator, but remains
unexplored due to difficulties in realizing the axion insulator
state.

The simplest scenario for the axion insulator state is
obtained in bulk TI with a surface gap induced by a hedge-
hog magnetization while preserving the bulk gap [5,24–26].
In the thin-film geometry, the above condition of hedge-
hog magnetization is simply fulfilled with an antiparallel
magnetization on the top and bottom surfaces, where the
absence of all surface state transport leads to a zero Hall
plateau: ρxy = 0, ρxx → ∞ and σxy = 0, σxx → 0 [25,27].
Such peculiar charge transports have been observed in a ferro-
magnetic (FM)-TI-FM heterostructure [28–31] and even-layer
MnBi2Te4 antiferromagnetic (AFM) TI [32], which were pre-
dicted to be an axion insulator state [25,33–38]. Theoretically,
the low-energy physics in two different systems are similar
and generate a topological θ response which is nonquantized
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due to the finite-size effect [25,26,39]. However, recent trans-
port and microwave imaging experiments find quite different
behaviors in these two systems, where gapless edge states do
not exist in the former [28,40] but do exist in the latter [41,42].
In particular, the edge transport in the MnBi2Te4 even layer
is shown to be dissipative [41]. Thus, it is important to trace
where such dissipative gapless edge states come from and
understand the origin of the discrepancy in these two systems,
which is vital for realizing the long-sought TME effect.

Here we study the role of disorder in the edge transport
of axion insulator films. By combining first-principles cal-
culations and analytic models, we show that six septuple
layers (SLs) of MnBi2Te4 studied in experiments [41,42] have
gapped helical edge states. A random potential will modify the
edge spectral function to become gapless. Such gapless edge
state is dissipative and not immune to backscattering, which
would explain the dissipative transport of the recent transport
and image experiments [41,42].

II. MODELS

A. Materials

We carry out first-principles calculations on MnBi2Te4

films. The material consists of van der Waals coupled SLs and
develops A-type AFM order with an out-of-plane easy axis be-
low the Néel temperature, which is ferromagnetic (FM) within
each SL, but AFM between adjacent SLs along the z axis. The
bulk state is an AFM TI with nontrivial Z2 index protected
by S = �τ1/2 [43], where τ1/2 is the half translation operator
along the z axis. The odd SL breaks I� and shows the QAH
effect [14,33–35], while the even SL with full compensated
magnetic layers conserves I� and exhibits zero-plateau QAH
[32]. We study the edge band structure of the even SL along
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FIG. 1. (a),(c) Band structure for four-SL and six-SL MnBi2Te4.
The dashed line indicates the Fermi level. The inset of (a) shows the
two-dimensional (2D) Brillouin zone, with high-symmetry k points
�(0,0), K (π, π ), and M(π ,0) labeled. The energy dispersion of the
semi-infinite film along edge �M is plotted for (b) four SL and (d) six
SL, respectively. The gapped edge states are clearly seen around the
� point as red lines dispersing in the 2D bulk gap.

the edge �M direction. The 2D band structure in Fig. 1 has
an inverted band gap at the � point, and there indeed exists
gapped helical edge state 	 in the insulating bulk. We notice
that the lower branch of the gapped edge state is covered by
the bulk valence bands. As we show below, it originates from
helical edge states of the quantum spin Hall (QSH) effect, but
with �-breaking due to magnetic ordering, where the gap is
opened at the Dirac point.

B. Effective model

The effective model for the low-energy physics of the even
SL can be written near the � point. We start from 3D Hamil-
tonian H3d(k) for AFM MnBi2Te4, which is the same as that
for �-invariant TI due to conserved S [33]. For the even SL,
S is broken and a term Hex describing the spatial alternating
exchange field enters into H3d(k). The confinement in the z
direction quantizes kz and leads to 2D subbands labeled by
the subband index n. The 2D subbands have band inversion
for film thickness � 4 SLs [33] and, without Hex, the system
is QSH with the low-energy physics determined by Dirac sur-
face states on the top and bottom surfaces [44,45]. The effect
of Hex is to introduce opposite Zeeman terms on these two
surfaces. Thus the effective model for the even SL described
by the massive Dirac surface states is given by [25,46,47]

H0(k) = ε0(k) + v(kyσx − kxσy)τz + m(k)τx + �σzτz, (1)

with the basis of |t ↑〉, |t ↓〉, |b ↑〉, and |b ↓〉, where t , b de-
note the top and bottom surfaces and ↑, ↓ represent spin-up
and -down states, respectively. The particle-hole asymmetry
ε0(k) is neglected for simplicity. σi and τi (i = x, y, z) are
Pauli matrices acting on the spin and layer, respectively. v

is the Dirac velocity, m(k) = m0 + m1(k2
x + k2

y ) describes the
tunneling effect between t and b surface states, and � is the
exchange field along the z axis introduced by the opposite
magnetic ordering on t and b.

Equation (1) correctly characterizes the gapped helical
edge state shown in Fig. 1. The energy gap for 2D bulk is

2
√

m2
0 + �2 at the � point. If � = 0, this model is similar to

the Bernevig-Hughes-Zhang model for HgTe quantum wells
[48] describing the QSH with m0m1 < 0, where there exists
a gapless helical edge state. Then, � further induces a gap to
the edge state. By projecting the Hamiltonian given by Eq. (1)
onto the edge states, the effective model for the 1D gapped
helical edge state is obtained analytically as H1d = vkx�z +
��x, where �i are Pauli matrices denoting pseudospin in the
basis of the left- and right-moving states. The edge state gap
2� is less than that of 2D bulk, consistent with Fig. 1. It is
worth mentioning that there also exist other gapped helical
edge states with higher energy than 	 in the 2D bulk gap, as
shown in Fig. 1(d), which are from the band inversion of extra
2D subbands with n > 1 in thick film, where n is the subband
index (see Supplemental Material [49]). In the following, we
investigate the edge transport determined by 	 in the presence
of disorder. Taking six SLs for a concrete example, we fit the
parameters v = 3.2 eV Å, m0 = −0.014 eV, m1 = 9.4 eV Å2,
and �z = 5 meV.

In general, the disorder will generate spatially random
perturbations to the pure Hamiltonian H0. Specifically, the
system mainly has random scalar potential HU = U (r) in-
duced by impurities in the materials. There also exists a
random exchange field along the z axis induced by the in-
homogeneous AFM ordering H� = �(r)σzτz. Here we are
interested in a system deep in AFM axion state and the fluctu-
ation of |�(r)| < |�|, thus the random �(r) just renormalizes
� to a reduced value in Eq. (1) and will not essentially affect
the edge transport. Therefore, we only need to consider HU ,
which is nonuniform and random in space but constant in
time.

III. ANALYSIS OF DISORDER

Now we will show that disorder will renormalize Eq. (1).
We extract the renormalized topological mass m0 and the
renormalized exchange field �, from the self-energy  of
the disorder-averaged effective medium. In numerical simu-
lations, we discretize H0(k) on a square lattice and take a
random on-site disorder potential U (r), uniformly distributed
in the interval (−U0,U0). We denote H0(k) as the lattice
Hamiltonian for Eq. (1).

The self-energy defined by (EF − H0 − )−1 = 〈(EF −
H )−1〉, with 〈·〉 the disorder average, is a 4 × 4 matrix
which we decompose into � matrices:  = 0 + 1σxτz +
2σyτz + 4τx + 5σzτz. Then the renormalized m̃0 and �̃

are given by

m̃0 = m0 + Re4, �̃ = � + Re5. (2)

The self-consistent Born approximation (SCBA) is employed
to capture the main feature of disorder [50], where  is given
by the self-consistent equation

 = U 2
0

3

( a

2π

)2
∫

BZ
d2k

1

ω − H0(k) − (ω) + i0+ . (3)
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FIG. 2. (a) DOS of 2D bulk for typical U0. (b) The real-space
distribution for local DOS at E = 0 in (c) and (d). (c),(d) The edge
spectral function A(k, ω) within SCBA of disorder strength U0 =
0.06 and U0 = 0.1 eV, respectively. A cylinder geometry is adopted
with periodic boundary condition along the x axis and open boundary
condition in the y axis with width Ly = 100a. The lattice constant of
the discretization a = 2 nm.

The self-energy is momentum independent, so there is no
renormalization to v and m1. The corrections to m0 and � are
approximately obtained as

m̃0 − m0 = −U 2
0 a2

12π

1

m1
ln

∣∣∣∣ m2
1�

4

m2
0 + �2 − E2

F

∣∣∣∣, (4a)

�̃ − � = U 2
0 a2

6π

� tanh−1 [Z (k)]√
v4 + 4v2m0m1 + 4m2

1

(
E2

F − m2
0

)
∣∣∣∣∣
�

0

,

(4b)

Z (k) = v2 + 2m0m1 + 2m2
1k2√

v4 + 4v2m0m1 + 4m2
1

(
E2

F − m2
0

) , (4c)

where � = π/a is the ultraviolet cutoff in momentum. Here
we only keep the most logarithmically divergent term in
Eq. (4a). The sign of m̃0 and m0 remains the same, as the
correction to m0 has the opposite sign to m1. Then the system
is always in the inverted region [51]. Similarly, the renor-
malized �̃ only decreases slightly. Therefore, the topological
property of the 2D bulk remains unchanged due to disorder,
which is evidenced in the density-of-state (DOS) calculation
in Fig. 2(a).

To get information about the edge excitations in the
disordered system, we further calculate the edge spectral
function A(k, ω) within SCBA in a cylinder geometry. The
self-energy is (ω, y) = (U 2

0 /3)(a/2π )
∫

dkxG(ω, kx; y, y),
with G(ω, kx; y, y) the Green’s function on the
cylinder, and the Dyson equation is G(kx; y1, y0) =∫

dyG0(kx; y1, y)(y)G(kx; y, y0) + G0(kx; y1, y0). In a
lattice

∫
dy → a

∑
i, we have G(kx )−1 = G0(kx )−1 − .

The spectral function A(kx, ω) = −(1/π )ImGR(kx, ω) is
plotted in Fig. 2 for different disorder strength U0. We can see

that the disorder broadens the quasiparticle spectral weight
and reduces the edge gap when U0 is relatively small. While
U0 exceeds a critical value Uc, the edge spectrum is gapless,
as shown in Fig. 2(d), and such gapless state indeed resides
at the sample boundary in Fig. 2(b). This explains the gapless
edge state observed in this system by microwave impedance
microscopy [42]. The edge gap closes earlier than the bulk
gap as U increases (see Supplemental Material [49]). We
point out that the gapless edge state here in the spectral
function is essentially different from that in the topological
Anderson insulator (TAI) [51–53]. In TAI, the gapless helical
edge state is induced by disorder-driven band inversion,
which is dissipationless and immune from backscattering as
protected by �. Here in the disordered axion insulator film,
the edge state is dissipative because �-breaking � induces
backscattering. This is the main result of this paper.

The dissipative nature could be understood from the effec-
tive theory for the edge state with action,

S =
∫

dtdxψ†[∂t − iv�z∂x + ��x + μ(x)]ψ, (5)

where μ(r) is the edge disorder potential with a zero mean.
Via a nonlocal transformation ψ = Q(x)ψ̃ , where Q(x) =
P exp[−i�z

∫ x
−∞ dx′μ(x′)/v], one can rewrite the action as

S =
∫

dtdxψ̃†(∂t − iv�z∂x + �Q†�xQ)ψ, (6)

where P stands for path ordering. The last term in Eq. (6) has
long-range correlation from the random string phase factor Q,
which is a relevant perturbation and describes backscattering.
This term is absent in the quantum Hall chiral edge states with
ν = 2 filling due to SU(2) symmetry [54,55]. Now we can see
that the transformed action describes a gapless helical edge
state with a backscattering term from random disorder.

IV. NUMERICS

The above analytic results can be corroborated numerically
by using the package KWANT [56]. The resistance is calculated
by the Landauer-Büttiker formalism with disorder-averaged
transmission amplitude. The device geometry with the stan-
dard Hall bar is illustrated in Fig. 3(a). The two-terminal
conductance G as a function of Fermi energy EF is shown
in Fig. 3(b). In the clean limit, G vanishes when EF is in the
edge gap and is finite, exhibiting oscillating behavior when EF

is in the 	 band, where the transmission resonance G = 2e2/h
is consistent with the gapped helical edge state. For finite
disorder, G is finite when EF is even in the edge gap (of the
clean limit) and gradually grows as EF increases. The disap-
pearance of conductance oscillation and G < 2e2/h when EF

is in the conducting edge band are the manifestation of the
dissipative nature of the edge state. G as a function of disorder
strength U0 at EF = 0 is plotted in Fig. 3(d). We can see G is
finite only with moderate U0. When U0 < Uc, G = 0 due to
the finite edge gap in the spectral function in Fig. 2, while
G vanishes for strong U0 due to the Anderson localization.
Furthermore, the dissipative edge transport leads to mono-
tonically decreasing G versus increasing device length Lx in
Fig. 3(c).

245116-3



LIU, QIAN, JIANG, AND WANG PHYSICAL REVIEW B 108, 245116 (2023)

FIG. 3. (a) Schematic drawing of a Hall bar device. (b) The two-
terminal longitudinal conductance G vs EF with different U0. (c) G vs
Lx at EF = 0 for different U0, where Ly = 100a. (d) G vs U0 at EF =
0. The device size in (b) and (d) is Lx × Ly = 200a × 100a. (e),(f)
The local and nonlocal resistance Ri j,kl in an eight-terminal device
as a function of EF with U0 = 0.1 eV. The device size in (e) and (f)
is Lx × Ly = 300a × 200a. Each data point is a result of averaging
over 500 disorder realizations.

The dissipative transport measured in the two terminals
does not allow us to distinguish experimentally between he-
lical edge channels and residual bulk conduction channels in
a convincing manner. An unambiguous way to reveal the exis-
tence of dissipative helical edge state transport in the system is
to use nonlocal electrical measurements. The edge states nec-
essarily lead to nonlocal transport, and such nonlocal transport
provides definitive evidence for the existence of chiral edge
states in the quantum Hall effect [57,58]. The nonlocal resis-
tance Ri j,kl is plotted in Figs. 3(e) and 3(f), which is defined as
the voltage between electrode k and l divided by the current
flowing through electrode i and j, i.e., Ri j,kl = Vkl/Ii j . All of
the nonlocal resistances are greater than the corresponding
quantized value for the dissipationless gapless helical edge
state in QSH, which further demonstrates that the edge trans-
port is dissipative here. The nonlocal resistances decrease and
finally vanish when EF further goes into the bulk, which is
different from the layer Hall effect [59]. Moreover, one inter-
esting feature in Fig. 3(f) is that R15,23 ≈ 4R45,kl , which agrees
with the recent transport experiment qualitatively [41]. We
emphasize that the transmission amplitude and resistance in
numerical simulation depend on the system size and position
of the electrodes, which is the key feature for dissipative edge
transport in this system.

V. EDGE TRANSPORT

We further propose a theory for the dissipative edge trans-
port within the general Landauer-Büttiker formalism [57,58],
where the current-voltage relationship is expressed as Ii =
(e2/h)

∑
j (TjiVi − Ti jVj ), where Vi is the voltage on the ith

electrode, Ii is the current flowing out of the ith electrode
into the sample, and Tji is the transmission probability from
the ith to the jth electrode. There is no net current (I j = 0)
on a voltage lead or floating probe j, and the total current is
conserved, namely,

∑
i Ii = 0. The current is zero when all the

potentials are equal, implying the sum rules
∑

i Tji = ∑
i Ti j .

For a standard Hall bar with N current and voltage leads
[such as Fig. 3(a) with N = 8], the transmission matrix el-
ements for the dissipative helical state are given by Ti+1,i =
Ti,i+1 = κi (from the disorder-averaged I� symmetry) and
others = 0 (here we identify i = N + 1 with i = 1). These
states are not protected from backscattering and the transmis-
sion from one electrode to the next is not perfect, implying
κi < 1 [60], which is different from the dissipationless helical
edge states in QSH where κi = 1 [61]. In general, κi become
zero for an infinitely large sample because dissipation occurs
once the phase coherence is destroyed in the metallic leads
or the momentum is relaxed, κi ∼ e−�/lm , where � is the size
between adjacent leads, and lm is the mean free path which
is 1/2 of the localization length for the 1D state [62]. For
simplicity, we have assumed Ti j to be translational invariant,
namely, Ti+1,i = κ is i independent. The edge theory leads
to the two-terminal conductance G ∼ κe2/h ∝ e−Lx/lm , which
agrees with Fig. 3(c) quantitatively. Considering again the
nonlocal transport as in Fig. 3(f), one finds that R15,23 =
h/2κe2, R45,kl = h/8κe2, and the relation R15,23 = 4R45,kl . As
the temperature increases, the nonlocal resistance reduces due
to the contribution from bulk conduction by thermal activa-
tion, which is consistent with the experimental observations
[41].

The effect of decoherence between two real leads can be
modeled as an extra floating lead, in which dissipative gapless
helical states interact with infinitely many low-energy degrees
of freedom, completely losing their phase coherence [61].
κ is length dependent for the dissipative helical state in the
axion insulator film, while it is length independent (κ = 1)
for the dissipationless helical state in QSH. This leads to quite
different transport signatures between these two helical states.
For example, if we put extra pairs of floating probes [2′ and 8′
in Fig. 3(a)] in the standard two-terminal device with L � lm,

2 4 6 8 10
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FIG. 4. The longitudinal conductance vs number of floating leads
for (a) dissipative helical state in six-SL MnBi2Te4 with U0 =
0.12 eV and EF = 0, and (b) dissipationless helical state in QSH.
The system size is Lx × Ly = 600a × 100a.
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we can see that the longitudinal conductance increases (but
not necessarily monotonically) as the number of floating leads
increases for the dissipative helical state in Fig. 4(a) (see
Supplemental Material [49]), which is just the opposite for
QSH in Fig. 4(b). This is a rather sharp feature which is easy
to implement in experiments.

VI. DISCUSSIONS

The dissipative gapless helical edge state from disorder in
MnBi2Te4 films and its transport properties well explain the
recent transport and image experiments [41,42]. The nonlocal
resistance R37,21 is greater than R37,45, R37,56, and R37,18 in
experiment [41] since κ is length dependent; one possible
explanation is that the position of the electrodes is neither
equally spaced nor perfectly aligned, which is common in
experiments. Moreover, Eq. (1) also describes the low-energy
physics in the FM-TI-FM heterostructure with m0 ≈ 0 [28],
where the disorder will induce band inversion with a negative
renormalized m̃0. However, the disorder strength is expected
to be large and the exchange field is small in such a mag-
netically doped system [12]; thus the system is localized and
should not have any gapless edge states. Finally, high mag-
netic field drives MnBi2Te4 even layer into a Chern insulator
state with a full magnetization. The helical edge state from
antiparallel magnetization of the axion insulator evolves into
a chiral edge state from parallel magnetization of the Chern
insulator, while other higher-energy helical states become

quasihelical states with a larger edge gap due to stronger
exchange field, and the transport is only determined by the
dissipationless chiral edge channel.

In summary, disorder with moderate strength will dra-
matically modify the edge transport in axion insulator films,
which is a generic phenomenon. The dissipative edge states
could be probed by transport experiments with extra floating
leads. Thinner films of the axion insulator such as four-SL
MnBi2Te4 have a larger edge gap, as shown in Fig. 1(b); such
gapped state may persist even in the presence of disorder
and one can realize the long-sought TME effect in an axion
insulator without any gapless states.
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