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Nontrivial worldline winding in non-Hermitian quantum systems
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Amid the growing interest in non-Hermitian quantum systems, noninteracting models have received the
most attention. Here, through the stochastic series expansion quantum Monte Carlo method, we investigate
non-Hermitian physics in interacting quantum systems, e.g., various non-Hermitian quantum spin chains.
While calculations yield consistent numerical results under open boundary conditions, non-Hermitian quantum
systems under periodic boundary conditions observe an unusual concentration of imaginary-time worldlines over
nontrivial winding and require enhanced ergodicity between winding-number sectors for proper convergence.
Such nontrivial worldline winding is an emergent physical phenomenon that also exists in other non-Hermitian
models and analytical approaches. Alongside the non-Hermitian skin effect and point-gap spectroscopy, it
largely extends the identification and analysis of non-Hermitian topological phenomena to quantum systems with
interactions, finite temperatures, biorthogonal basis, and periodic boundary conditions in a controlled fashion.
Finally, we study the direct physical implications of such nontrivial worldline winding, which bring additional,
potentially quasi-long-range, contributions to the entanglement entropy.
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I. INTRODUCTION

Recent explorations of non-Hermitian quantum systems
have broadened the scope of condensed matter physics [1–24],
and rapidly spread to the field of higher-order non-Hermitian
systems [25–33] and exceptional points [34–47]. Originating
from effective models for open systems [48–56], dissipa-
tive optical systems [57–62], electric circuits [63–68], etc.,
non-Hermitian quantum systems display a wide range of in-
teresting physical properties open to theoretical studies and
experimental realizations. For example, the non-Hermitian
skin effect (NHSE) is a remarkable feature that predicts an
extensive number of eigenstates localized at the edges under
open boundary conditions (OBCs) as well as the breakdown
of the Bloch band theory [3,8,13,15,17,18,53].

Interestingly, the NHSE is also deeply associated with
the nontrivial point-gap topology of non-Hermitian quan-
tum systems; i.e., the winding number of the energy spectra
under periodic boundary conditions (PBCs) around the ref-
erence energy in the complex plane controls the occurrence
or absence of the NHSE [15,18] and reflects non-Hermitian
bulk-boundary correspondence [17,69,70]. Simultaneously,
the NHSE must accompany the departure of the energy spec-
tra under OBCs and PBCs [15,18]. However, the NHSE also
comes with its systematic limitations: It focuses on the right
eigenstates of noninteracting fermion systems under OBCs
and is thus inapplicable to finite temperatures, interactions,
periodic boundary conditions, and expectation values under
biorthogonal bases, which are common scenarios in con-
densed matter physics.

Beyond single-particle physics, researches on non-
Hermitian quantum systems with interactions have also been
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picking up paces lately and revealed many exotic many-body
properties [71–88]. Here, we take a quantum many-body
perspective into non-Hermitian physics by generalizing the
stochastic series expansion quantum Monte Carlo (SSE-
QMC) [89–92] method to certain non-Hermitian quantum
systems without the sign problem. The SSE-QMC method
stochastically samples imaginary-time operator sequences,
i.e., worldlines in (D + 1)-dimensional space-time, in the
Taylor-series expansion of the partition function; it is highly
efficient and easily implementable for some quantum spin
[93–98] and boson lattice models [98–101], albeit Hermitian
or not. We obtain consistent results on non-Hermitian quan-
tum many-body systems under OBCs. Under PBCs, however,
the worldlines are dominated by nontrivial winding-number
sectors and may obstruct convergence. To enhance ergodicity
and facilitate convergence, we introduce a simple remedy for
the SSE-QMC algorithm.

Importantly, like the NHSE, the nontrivial worldline wind-
ing may act as a defining character for non-Hermitian
point-gap topological phenomena. In noninteracting cases,
the nontrivial worldline winding corresponds to a nonzero
point-gap topological invariant around the reference point
EP = 0. However, unlike the NHSE [71], nontrivial worldline
winding is also applicable for interacting quantum systems
and finite temperatures; indeed, its emergence exhibits ex-
plicit interaction dependence. Also, the related phenomena are
reflected in physical observables corresponding to biorthog-
onal expectation values, including additional contributions
to the entanglement entropy that resemble quasi-long-range
entanglement. Furthermore, instead of a binary “yes or no”
answer, it offers a semiquantitative measure of the extent of
non-Hermitian topological physics at play. Finally, its PBC
promptly complements the NHSE under OBCs.

We organize the rest of this paper as follows: In the
next section, we briefly review the SSE-QMC technique
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(Sec. II A) and the non-Hermitian quantum physics (Sec. II B)
before examining SSE-QMC generalization and applicabil-
ity on non-Hermitian quantum systems (Sec. II C); then, in
Sec. II D, we discuss the results of non-Hermitian quantum
spin chains under OBCs as examples. In Sec. III A, we show
the difficulties that SSE-QMC calculations encounter for the
same non-Hermitian quantum spin chains yet under PBCs; for
the explanation, we discuss the nontrivial worldline winding
in a non-Hermitian toy model in Sec. III B. Correspondingly,
we propose a simple algorithmic technique to enhance er-
godicity in Sec. III C, which indeed restores the SSE-QMC
credibility for non-Hermitian quantum models under PBCs.
In Sec. III D, we give a systematic analysis of the nontrivial
worldline winding, whose conditions are consistent with the
point-gap topology, as well as finite-temperature and inter-
acting scenarios beyond the previous theoretical framework.
Section IV is attributed to physical implications of such
nontrivial worldline winding—additional contributions to the
entanglement entropy. We summarize and conclude the paper
in Sec. V, discussing potential generalizations such as general
algorithms, higher dimensions, diverse boundary conditions,
and other non-Hermitian topology.

II. SSE-QMC METHOD FOR NON-HERMITIAN
QUANTUM SYSTEMS

A. Review of the SSE-QMC method

The SSE-QMC method is a powerful tool for calculating
the physical quantities of quantum many-body systems. It is
based upon the Taylor expansion of the Boltzmann factor in
the partition function [90]:

Z = Tr{e−βĤ } =
∑

α

∞∑
n=0

βn

n!
〈α|(−Ĥ )n|α〉, (1)

where β is the inverse temperature, and {|α〉} is an orthogonal
basis; e.g., |α〉 = |Sz

1, Sz
2, . . . , Sz

N 〉 for a spin system with N
sites.

We can decompose the Hamiltonian Ĥ into

Ĥ = −
∑
a,b

Ĥa,b, (2)

where b labels different bonds (sites) within the lattice, and a
denotes different types of operators. Consequently, we reex-
press the partition function as

Z =
∑

α

∞∑
n=0

∑
Sn

βn

n!
〈α|

n∏
i=1

Ĥai,bi |α〉, (3)

where
∑

Sn
sums over different sequences of operators:

Sn = [a1, b1], [a2, b2], . . . , [an, bn]. (4)

In practice, we truncate the Taylor series at a sufficiently
large M so that M > n for the highest power with meaningful
contribution, achieved via thermalization before the actual
sampling. Instead of varying n, it is more convenient to con-
sider an operator sequence with a fixed length M, including
n nontrivial operators and M − n identity operators Ĥ0,0 = Î
[89]. Although the identity operators make no direct contribu-
tion, there are M!/(M − n)!n! number of ways of equivalent

insertions of such identity operators, a binomial factor we
must divide out for the partition function:

Z =
∑

α

∑
SM

βn(M − n)!

M!
〈α|

M∏
i=1

Ĥai,bi |α〉, (5)

where the operator sequence SM includes n nontrivial opera-
tors and M − n identity operators.

It is convenient to define a propagated state [89]

|αp〉 ∝
p∏

i=1

Ĥai,bi |α〉, (6)

which satisfies the no-branching condition; i.e., |αp〉 is always
proportional to one of the states in the chosen basis. Depend-
ing on whether the operator Ĥap,bp is diagonal or off-diagonal,
|αp〉 = Ĥap,bp |αp−1〉 may either equal |αp−1〉 or differ from
|αp−1〉 on the bp bond (site), e.g., due to spin flips. The
identity (operator) is also diagonal. The finite matrix elements
〈αp|Ĥap,bp |αp−1〉 of the operators, also called the vertices and
illustrated in Fig. 1(a), keep track of the configuration differ-
ences, if any, between two neighboring time slices p − 1 and
p [see examples in Fig. 1(a)].

We may sample the |αp〉 configurations in the (D + 1)-
dimensional space-time, uniquely determined by the initial
state |α〉 and the operator sequence SM , with which we can
trace |αp〉 along the imaginary-time direction, slice by slice
[see Fig. 1(b)]. Following Eq. (5), the Monte Carlo weight of
each configuration is

W (α, SM ) = βn(M − n)!

M!
〈α|

M∏
p=1

Ĥap,bp |α〉

= βn(M − n)!

M!

M∏
p=1

〈αp|Ĥap,bp |αp−1〉, (7)

where |α0〉 = |αM〉 = |α〉. As a result, we can evaluate the
expectation value of operator Â as

〈Â〉 =
∑

α,SM
A(α, SM )W (α, SM )∑
α,SM

W (α, SM )
, (8)

where A(α, SM ) is the matrix element of Â given the configu-
ration in |α〉 and SM . One important example is the expectation
value 〈Ĥa,b〉, where Ha,b(α, SM ) = na,b/β, and na,b is the num-
ber of Ĥa,b in the operator sequence SM .

There is one more essential requirement to make the SSE-
QMC method work: the sampling probabilities W (α, SM )
in Eq. (7) [W (α, SM )/

∑
α,SM

W (α, SM ) after normalization]
need to be positive semidefinite. Correspondingly, either the
matrix elements 〈αp|Ĥap,bp |αp−1〉 are positive semidefinite,
or the number of negative matrix elements in the operator
sequence is always even, so the overall product is still pos-
itive semidefinite [89]. If the negative probability cannot be
removed by any means, we encounter the sign problem [102]
and cannot carry out the calculations in a controlled way,
especially for large systems.

As the imaginary time propagates and we keep track of the
configuration changes, e.g., the spin-up positions intervened
by off-diagonal operators in a quantum spin model, we obtain
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(a) (b)

(c) w=1 w=0

FIG. 1. We illustrate key elements of the SSE-QMC method with
a quantum spin model under PBCs. (a) The vertices are finite matrix
elements of operators; diagonal operators (green rectangles) keep
the configurations intact from their lower legs at time slice p − 1
to upper legs at p, while off-diagonal operators (red rectangles) alter
the configurations, e.g., a spin swap. (b) We can obtain the config-
uration {|αp〉} from the initial state |α〉 and the operator sequence
SM ; the imaginary time p is vertical, and the lattice position b is
horizontal. The black (white) circle denotes a spin-up (spin-down)
site. (c) The worldlines following spin-up sites form closed loops that
wrap around the system. The worldlines on the left corresponding to
(b) possess a winding number w = 1 while the ones on the right show
w = 0. Nontrivial winding guarantees worldlines crossing bound-
aries (vertical dashed line) and influences the quantum entanglement
between subsystems, such as A (blue box) and Ā, as discussed in
Sec. IV.

a series of trajectories called the worldlines [see Fig. 1(c)].
The worldlines offer another representation of the configura-
tions and play a crucial role in efficient loop updates for the
SSE-QMC method [103].

Due to the presenting trace in the partition function, |α0〉 =
|αM〉, the worldlines in the SSE-QMC samples must obey
periodic boundary conditions in the imaginary-time direction
and form closed loops [Fig. 1(c)]. Meanwhile, the worldlines
can wrap around the system, and the net number of times they
wrap around is called the winding number w [103]. w can be
a finite integer in PBCs, while w should always be zero in
OBCs. One of this work’s key conclusions is the emergence
of nontrivial dominant worldline winding in non-Hermitian
quantum systems.

B. Review of non-Hermitian physics: Model, skin effect, and
gap topology

Non-Hermitian quantum systems are represented by non-
Hermitian Hamiltonians Ĥ �= Ĥ†, e.g., the well-known non-

Hermitian Su-Schrieffer-Heeger (SSH) model:

Ĥ = −
∑

i

{[1 − (−1)i�J]c†
i ci+1 + H.c.}

+ δ
∑

i

(c†
i ci+1 − c†

i+1ci ) − μ
∑

i

c†
i ci, (9)

where μ is the Fermi energy, δ introduces nonreciprocal hop-
ping and thus non-Hermiticity, and �J describes a staggered
hopping. For δ > 0 (δ < 0), the majority of the eigenstates
become exponentially localized at the left (right) boundary
under OBCs, a phenomenon known as the NHSE, in sharp
contrast to Hermitian counterparts where bulk eigenstates
dominate.

Given the complex spectrum, non-Hermitian quantum sys-
tems under PBCs may possess two types of energy gaps,
protecting different topology: point gaps and line gaps. A
point gap suggests that the spectrum does not cross a refer-
ence point EP, i.e., det(Ĥ − EP ) �= 0 [15]. Consequently, the
spectral winding number around EP,

W (EP ) =
∫ 2π

0

dk

2π i

d

dk
log det[Ĥ (k) − EP], (10)

remains topologically invariant under continuous variations
as long as the point gap remains. When the winding number
W (EP ) �= 0 is nonzero around EP, all line gaps across EP will
close [10,11,104] [see Fig. 2(c)]. In comparison, a line gap
suggests that the complex spectrum never crosses a reference
line [Fig. 2(b)], whose physics and topological consequences
are more analogous to gaps in Hermitian systems [Fig. 2(a)];
here, the spectrum is fully separable into disjoint parts along
such reference lines, and the winding number W (EP ) will be
zero.

Importantly, the presence of spectral loops under PBCs,
i.e., a nontrivial spectral winding number W (EP ) around ar-
bitrary EP, indicates the presence of the NHSE under OBCs
[15,18]. Therefore, according to the previous analysis on the
point gap around EP and the line gap across EP, the NHSE
emerges in non-Hermitian systems under OBCs following
the closure of line gaps under PBCs. On the other hand, an
existing line gap does not guarantee the NHSE’s absence,
as there may exist nontrivial spectral winding with respect
to other reference points EP [Fig. 2(b)]. We may alter our
reference point in the complex energy plane by varying the
Fermi energy μ so that EP = μ as we switch from an active
perspective to a passive one.

For example, the spectrum of the non-Hermitian SSH
model retains a nontrivial spectral winding with respect to
EP = 0 for |�J| < |δ|, forbidding a line gap through EP as
illustrated in Fig. 2(c); on the contrary, when |�J| > |δ|,
a line gap develops in the spectrum of the non-Hermitian
SSH model as shown in Fig. 2(b), and the spectral winding
with respect to EP = 0 vanishes. The transition happens at
|�J| = |δ| where the separate spectral loops meet and the
line gap collapses. Also, for a variable EP at |�J| > |δ|, we
may observe alternating point-gap topology and line gap, e.g.,
depending on the value of EP on the real axis [Fig. 2(b)]. Also,
similar to the insulator (gapped) and metal (gapless) phases
of Hermitian systems, non-Hermitian systems may exhibit
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(a)

Re E

Im E

EF
Re E

Im E

(b)

EP Re E

Im E

(c)

EP

FIG. 2. We show schematic illustrations of various types of spectral gaps in Hermitian and non-Hermitian quantum systems: (a) a gap
(red line) of the real-valued spectrum (blue) of a Hermitian system, and (b) the presence and (c) the absence of a line gap (red line) of the
complex-valued spectrum (blue) of a non-Hermitian quantum system. The NHSE emerges due to the nonzero spectral winding and point-gap
topology with respect to the reference point at EP = 0 (red dot) in (c) and at EP �= 0 (yellow and green dots) in (b).

distinctive entanglement-entropy behaviors with the existence
or absence of line gaps.

C. SSE-QMC applicability towards
non-Hermitian quantum systems

For a non-Hermitian Hamiltonian Ĥ �= Ĥ†, its right eigen-
states |�R

i 〉 and left eigenstates |�L
i 〉 corresponding to

eigenvalue Ei [105],

Ĥ
∣∣�R

i

〉 = Ei

∣∣�R
i

〉
,

Ĥ†
∣∣�L

i

〉 = E∗
i

∣∣�L
i

〉
, (11)

are different in general, and obey the biorthogonal conditions
〈�L

n |�R
m〉 = δmn, Î = ∑

n |�R
n 〉〈�L

n | instead.
Given a non-Hermitian Hamiltonian in a biorthogonal form

[105],

Ĥ =
∑

i

Ei

∣∣�R
i

〉〈
�L

i

∣∣, (12)

we note its partition function,

Z =
∑

n

e−βEn =
∑

n

e−βEn
〈
�L

n

∣∣∑
α

|α〉〈α∣∣�R
n

〉
=

∑
α

〈α|e−βĤ
∑

n

∣∣�R
n

〉〈
�L

n

∣∣α〉 =
∑

α

〈α|e−βĤ |α〉, (13)

retains the definition under an orthogonal basis {|α〉} in
Eq. (1). Therefore, the non-Hermiticity and biorthogonality of
non-Hermitian quantum systems do not pose direct obstacles
to the SSE-QMC method.

Similar to the Hermitian cases, we require the matrix
elements 〈αp|Ĥap,bp |αp−1〉 to be non-negative or the num-
ber of negative matrix elements to be even, so that the
overall sampling probability remains positive semidefinite
(sign-problem-free) in SSE-QMC calculations. Such require-
ments mainly depend on the model parameters and operators
rather than the Hermiticity. However, unlike the Hermitian
cases, where the partition function is always real and positive,
here, a positive-definite partition function is a requirement.
For certain non-Hermitian systems [104], e.g., Ĥ with PT
symmetry, the spectrum is either real or in complex-conjugate
pairs, and the corresponding partition function is guaranteed

to be real [106]:

Z = Tr

[∑
i

e−βEi|�R
i 〉〈�L

i |
]

=
∑

Ei∈real

e−βEi +
∑

Ei∈complex

(e−βEi + e−βE∗
i ). (14)

Therefore, although non-Hermitian quantum systems may
possess potentially complex spectra, the SSE-QMC method
is still viable as long as its matrix elements are sign-problem-
free. Like in the Hermitian cases, the SSE-QMC method is an
efficient and straightforward algorithm applicable to relatively
large systems and even higher dimensions.

We can also use the SSE-QMC method to study the
ground-state properties of non-Hermitian quantum many-
body systems. Here, we define the ground state as the
eigenstate (|�R

0 〉 and |�L
0 〉) with the lowest real part of its

eigenenergy. For a sufficiently low temperature (large β, e.g.,
β = 100 in units of common model parameters),

〈Â〉LR = Tr

[
Â

∑
i

e−βEi|�R
i 〉〈�L

i |
]/

Z ≈ 〈
�L

0

∣∣Â∣∣�R
0

〉
. (15)

D. Example: Non-Hermitian quantum spin chains

Without loss of generality, let us consider the following
non-Hermitian quantum spin chain of length N :

Ĥ =
∑

b

JzS
z
bSz

b+1 + [1 − (−1)b�J]
(
Sx

bSx
b+1 + Sy

bSy
b+1

)
+ iδ

(
Sx

bSy
b+1 − Sy

bSx
b+1

)
=

∑
b

JzS
z
bSz

b+1 + 1

2
[1 − (−1)b�J − δ]S+

b S−
b+1

+ 1

2
[1 − (−1)b�J + δ]S−

b S+
b+1, (16)

where Jz,�J, δ ∈ R are model parameters. Jz is an Ising-
type interaction, �J is a staggered XY interaction, and δ is
responsible for the overall non-Hermiticity of the model. For
OBCs, the summation of b runs between 1 and N − 1, while
we sum over b ∈ [1, N] and identify b = 1, N + 1 for PBCs.

245114-4



NONTRIVIAL WORLDLINE WINDING IN NON-HERMITIAN … PHYSICAL REVIEW B 108, 245114 (2023)

The model is PT symmetric, so we can feel free to use
SSE-QMC here.

To apply the SSE-QMC method, we decompose the Hamil-
tonian as

Ĥ = −
∑

b

Ĥ1,b − Ĥ2,b − Ĥ3,b,

Ĥ1,b = C − JzS
z
bSz

b+1,

Ĥ2,b = 1

2
[1 − �J (−1)b − δ]S+

b S−
b+1,

Ĥ3,b = 1

2
[1 − �J (−1)b + δ]S−

b S+
b+1,

(17)

where C = ε + Jz/4 is a constant that alters some matrix
elements while keeping the model physics invariant. We also
regard Ĥ2,b and Ĥ3,b as two separate off-diagonal operators.
Their coefficients differ when δ �= 0 and allow Ĥ to be non-
Hermitian. Correspondingly, the partition function takes the
following form:

Z =
∑
α,Sn

βn

n!
(−1)n2+n3〈α|

n∏
p=1

Ĥap,bp |α〉, (18)

where n2 and n3 are the number of Ĥ2,b and Ĥ3,b operators in
the operator sequence {[ap, bp]}, respectively. For a quantum
spin chain with an even number N of sites, the total number of
off-diagonal operators that shift a spin up by one lattice spac-
ing, n2 + n3, is always even irrespective of the configurations.
Thus, we can safely drop the (−1)n2+n3 factor. The nonzero
matrix elements of the nontrivial operators are

W11 = 〈↑↑ |Ĥ1,b| ↑↑〉 = ε,

W12 = 〈↓↓ |Ĥ1,b| ↓↓〉 = ε,

W13 = 〈↑↓ |Ĥ1,b| ↑↓〉 = ε + Jz/2,

W14 = 〈↓↑ |Ĥ1,b| ↓↑〉 = ε + Jz/2,

W2 = 〈↑↓ |Ĥ2,b| ↓↑〉 = 1
2 [1 − �J (−1)b − δ],

W3 = 〈↓↑ |Ĥ3,b| ↑↓〉 = 1
2 [1 − �J (−1)b + δ],

(19)

whose vertices are illustrated in Fig. 1(a). To meet the
positive-semidefinite requirement on such vertices, we should
make the model parameters satisfy 1 − |�J| − |δ| � 0 and
ε � max(0,−Jz/2). The resulting model is sign-problem-free
for the SSE-QMC method.

For a benchmark, we first calculate the energies of
non-Hermitian quantum spin chains under OBCs at a low tem-
perature, β = 100, with the SSE-QMC method and compare
with the ground-state energy via exact diagonalization (ED)
for relatively small systems N = 12. The ED results have also
confirmed that the models host real spectra, which pose no
problem for the SSE-QMC method. We summarize the results
for various δ and �J with a finite Jz = 0.5 in Fig. 3, showing
satisfactory consistency and that SSE-QMC works well on
non-Hermitian systems with interactions.

Interestingly, we can map the non-Hermitian quantum spin
chain in Eq. (16) to a non-Hermitian interacting fermion chain
through the Jordan-Wigner transformation [107]:

Sz
i = f †

i fi − 1
2 ,

FIG. 3. The energies of the non-Hermitian quantum spin chain
in Eq. (16) for various δ and �J under OBCs compare consistently
between ED ground states and SSE-QMC calculations at low tem-
perature, β = 100. Jz = 0.5 and N = 12.

S+
i S−

i+1 = f †
i fi+1, (20)

S−
i S+

i+1 = f †
i+1 fi,

where a spin-up (spin-down) site in the spin model corre-
sponds to an occupied (empty) site in the fermion model.
Likewise, the worldlines trace the fermions and form closed
loops in the fermion model. Therefore, the SSE-QMC method
also generalizes straightforwardly to non-Hermitian interact-
ing fermion systems.

In particular, the corresponding fermion chain is nonin-
teracting when Jz = 0. We note that the single-particle right
eigenstates of non-Hermitian free-fermion chains may exhibit
the NHSE, as shown in Fig. 4. However, the NHSE is absent
from the quantum many-body perspective, as forbidden by
the Pauli exclusion principle [71] and under the biorthogonal
basis. Indeed, we evaluate the density distribution of a single-
particle state by taking the difference between two many-body
densities with n f = N/2, N/2 − 1 fermions (Stot

z = 0,−1 un-
der the quantum spin representation) with or without the
target single-particle state, respectively. The results display no
NHSE and are consistent with the density expectation values
under the biorthogonal basis (see Fig. 4). Such consistency
also indicates that our SSE-QMC calculations are readily ap-
plicable to relatively large systems and low temperatures.

III. NONTRIVIAL WORLDLINE WINDING IN
NON-HERMITIAN QUANTUM SYSTEMS

A. QMC difficulty for non-Hermitian systems under PBCs

Unlike the OBC cases, however, the SSE-QMC calcula-
tions for non-Hermitian models under PBCs sometimes strike
obstacles and fail to converge to the benchmark values. For
example, we evaluate the ground-state energies of various
non-Hermitian quantum spin chains under PBCs, and the
divergences between SSE-QMC results and ED benchmarks
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FIG. 4. We can map a Jz = 0 quantum spin chain to a free-
fermion model through the Jordan-Wigner transformation. We
evaluate the density distribution of a target single-particle state via
(1) the modulus square of the right eigenstate |ψR〉 of the free-
fermion model, (2) the biorthogonal expectation value 〈ψL|c†

bcb|ψR〉
of the free-fermion model, and (3) the difference between densities of
the Stot

z = 0, −1 sectors in the SSE-QMC calculations at low temper-
ature, β = 100—these two sectors differ by the participation or the
absence of the single-particle state |ψR〉 (and 〈ψL|). The NHSE is
only present in the first case [71], and the latter two cases show con-
sistent expectation values under the biorthogonal basis and present
edge effects rather than the NHSE. We set δ = 0.5 and �J = 0.3 to
trigger the NHSE for N = 64 under OBCs.

are clearly beyond an uncertainty explanation (see Fig. 5).
Such deviation generally increases with the non-Hermitian
parameter δ and decreases with �J and Jz. We will first give

FIG. 5. While the SSE-QMC results with ε = 0 (hollow points)
deviate from the ED benchmark (solid curves) beyond uncertainties,
especially for larger non-Hermitian parameter δ, they fit well with
ε = 0.5 (black points). We consider non-Hermitian quantum spin
chains under PBCs with various δ, �J , and Jz. β = 100 and N = 12.

TABLE I. The number of samples, Nw , with worldline winding
number w and the number of updates N�w>0 (N�w<0) with increasing
(decreasing) w in a typical SSE-QMC trial show the limited (en-
hanced) ergodicity for ε = 0 (ε = 0.5). We consider a non-Hermitian
quantum spin chain with Jz = 0.1, �J = 0, δ = 0.3, β = 100, and
N = 10 under PBCs. For ε = 0, N�w>0 and N�w<0 are extremely
small, limiting the sample distribution Nw from reaching ergodic-
ity. In contrast, the transition between w is much more fluent for
ε = 0.5, leading to a sample distribution Nw concentrated around the
dominant winding number wopt �= 0.

ε = 0

w = 0 w = 1 w = 2 w = 3 w = 4 w = 5

Nw 578 903 871 64 444 285 491 571 172
N�w<0 0 0 0 0 0 0
N�w>0 1 1 1 1 1 2

w = 6 w = 7 w = 8 w = 9 w = 10 w = 11

Nw 553 020 496 057 1 710 886 313 890 2 732 0
N�w<0 1 1 6 2 1 0
N�w>0 2 6 2 1 0 0

ε = 0.5

w = 3 w = 4 w = 5 w = 6 w = 7 w = 8

Nw 767 5 663 28 225 107 078 287 879 572 401
N�w<0 8 96 630 2 899 9 516 22 820
N�w>0 114 744 3 280 10 601 24 412 40 677

w = 9 w = 10 w = 11 w = 12 w = 13 w = 14

Nw 825 230 879 035 679 295 385 448 163 468 51 300
N�w<0 39 274 49 521 44 386 28 973 13 948 4 835
N�w>0 49 566 43 286 27 412 12 809 4 287 1 045

a prompt answer on the origin of such difficulty; in later
sections, we will give more quantitative studies and discuss
its possible resolution and physical consequences.

In Sec. II A, we discussed the concept of worldlines
in (D + 1)-dimensional space-time and their corresponding
winding number w. Obviously, we have w = 0 in the cases
of OBCs; under PBCs, however, worldlines may possess non-
trivial winding numbers w �= 0, i.e., wrap around the system
along a periodic spatial direction for a finite number of net
times before returning to the initial spot as it evolves under
imaginary time. Indeed, the problem in SSE-QMC calcu-
lations for non-Hermitian quantum systems under PBCs is
associated with such global loops and winding numbers: (1)
the dominant worldline sector in the partition function, thus
in the SSE-QMC sampling, may shift to wopt �= 0, and (2)
the transitions between different winding-number sectors are
limited, breaking the ergodicity essential for convergence (see
Table I, for example).

B. Nontrivial worldline winding from
a non-Hermitian toy-model perspective

To illustrate such a nontrivial distribution of worldline
winding numbers in non-Hermitian quantum systems, we
consider the following non-Hermitian toy model on a one-
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dimensional (1D) periodic system (α ∈ R):

Ĥ = − ∂2

∂θ2
+ α

∂

∂θ
, (21)

whose eigenstates [108] and eigenenergies are

ψm(θ ) = exp(imθ ), Em = m2 + iαm, (22)

where m ∈ Z is the angular momentum.
Following the imaginary-time path-integral formalism, we

can derive the partition function as

Z =
∫

Dθ

N∏
j=1

〈θ j+1| exp(−�τH )|θ j〉

=
∫

Dθ

N∏
j=1

⎧⎨
⎩
∑
ml

exp
[
iml (θ j+1 − θ j ) − �τ

(
m2

l + iαml
)]⎫⎬⎭

=
∫

Dθ

N∏
j=1

⎧⎨
⎩

∑
nl

exp

[
− (θ j+1 − θ j + 2πnl − α �τ )2

4�τ

]⎫⎬
⎭,

(23)

where �τ = β/N is a small discrete step in the imaginary-
time direction, labeled by j, with θN+1 = θ1. We have
employed Poisson’s summation formula in the last line.

To tackle such a functional integral, we start from a typical
path,

θ j = mod

[
θ1 + 2πw

N
( j − 1) + δθ j, 2π

]
, (24)

where w is θ ′s winding number and δθ j are local fluctuations
that are essentially independent of w:

θ j+1 − θ j =
{

2πw
N , θ j + 2πw

N < 2π,

2πw
N − 2π, θ j + 2πw

N > 2π,
(25)

where θ goes across 2π from j to j + 1 for the second line.
Consequently, for �τ → 0, i.e., N → ∞, the summation over
n in Eq. (23) is dominated by n = 0 so that (θ j+1 − θ j +
2πn − α �τ )2 ≈ 0, unless θ goes across 2π from j to j + 1,
where n = 1 dominates. As a result, after keeping only the
contributing terms, we obtain

Z = f (β )
+∞∑

w=−∞

N∏
j=1

exp

{
− (2πw − αβ )2

4Nβ

}

= f (β )
+∞∑

w=−∞
exp

[
− (2πw − αβ )2

4β

]
,

(26)

where f (β ) is a function on the effects of δθ j fluctuations
independent of w.

The partition function in Eq. (26) characterizes the weights
and importance of different winding-number sectors, which
contain imaginary-time path-integral worldlines that wrap
around the [0, 2π ] interval a net w number of times. In an
ideal QMC sampling process, the larger the weight of a par-
ticular winding number w, the more frequently we should
sample the corresponding sector’s configurations. For the Her-
mitian case with α = 0, the partition function is dominated by

the w = 0 sector [103]. In particular, the weights for different
winding numbers converge at low temperatures (large β);
thus, calculations in a specific sector, e.g., w = 0 for typical
initializations, are as good as calculations that run through all
sectors [103]. However, for the non-Hermitian cases α �= 0,
the worldline configurations with nontrivial winding wopt =
αβ/2π have the largest weight. Moreover, the location of the
most probable sector moves farther away from w = 0 as β

increases. As a result, we need to ensure that all sectors, if not
the sectors around wopt = αβ/2π in particular, are appropri-
ately represented in the sampling and calculations.

However, such worldline winding numbers are essentially
topological quantities, and updates that alter winding are
scarce and rarely accepted in SSE-QMC calculations. Con-
sequently, we may encounter a problem with ergodicity: the
configurations are stuck near the initial w far away from wopt,
leading to incomprehensive sampling and, therefore, inaccu-
rate evaluations, as we demonstrated in Sec. III A and Table I.
For more ergodic SSE-QMC calculations, we may introduce
a remedy by enhancing the transition rates between different
worldline winding-number sectors, which we discuss next.

C. Enhanced ergodicity between winding-number sectors

To enhance the ergodicity between different winding-
number sectors, we dig into the proposed updates in the
directed loop update algorithm. The vertices are at the center
of the proposed updates to the worldlines. There are four
possible legs for the exit given an entrance leg into a vertex;
if the exit and entrance legs are identical, the proposed loop
experiences a bounce process [109]. Intuitively, we wish to
minimize or at least reduce the bounce probability to allow
the loop to propagate and proliferate and end up with more
global loops so that they may alter the winding number more
efficiently. However, we do not have many degrees of freedom
for maneuvering: parameters like N , β, Jz, δ, and �J are all
physically relevant. Fortunately, there are model-independent
parameters, such as ε, which we can tune to adjust the bounce
probability and enhance ergodicity without causing changes
in physics.

Without loss of generality, we consider vertex W3 with the
entrance leg in the lower left as an example, whose probability
of updated vertex with corresponding exit leg is

P(W3 → Wj ) = Wj

W11 + W13 + W3
, (27)

where W11, W13, and W3 are the (weights of) vertices associ-
ated with the exit legs in the upper right, the upper left, and
the lower left, respectively (the exit leg in the lower right has
no corresponding vertex and thus zero matrix element) [see
Fig. 1(a) and Eq. (19)]. In particular, the probability of the
bounce process, where the exit and entrance legs are identical
and the vertex remains unchanged, is

Pbounce = P(W3 → W3) = 1 − (−1)b�J + δ

[1 − (−1)b�J + δ] + 4ε + Jz
.

(28)

Therefore, we can reduce the bounce probability by
increasing ε.
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FIG. 6. The average bounce probabilities Pbounce in the SSE-
QMC loop updates (solid circles) and the semiquantitative analysis
(solid curves) consistently indicate the effect of a finite ε in lowering
Pbounce and, in turn, elevating the ratio R�w �=0 of winding-number-
altering updates (dashed lines) and thus the overall ergodicity in
the SSE-QMC processes. Optimal R�w �=0 reaches >8% for Pbounce

around ε ∈ [0.5, 1]. We consider non-Hermitian models for various
values of Jz, �J , and δ with β = 100 and N = 12 under PBCs.

More comprehensively, we may estimate the average
bounce probability semiquantitatively as follows. As we dis-
cussed in Sec. II A, we can relate the operator expectation
values 〈Ĥa,b〉 = 〈na,b〉/β with their (average) instances 〈na,b〉
appearing in the operator sequence SM . Therefore, we have

〈n1,b〉/β = 〈Ĥ1,b〉 = ε + Jz/4 − Jz
〈
Sz

bSz
b+1

〉
,

〈n2,b〉/β = 〈Ĥ2,b〉 = 1
2 (1 − δ − �J (−1)b)〈S+

b S−
b+1〉,

〈n3,b〉/β = 〈Ĥ3,b〉 = 1
2 (1 + δ − �J (−1)b)〈S−

b S+
b+1〉. (29)

Furthermore, we can divide 〈n1,b〉 of the diagonal operator
Ĥ1,b into that of its four vertices: 〈n11,b〉/ε = 〈n12,b〉/ε =
〈n13,b〉/(ε + Jz/2) = 〈n14,b〉/(ε + Jz/2) following Eq. (19).
As a result, we can roughly establish the ratio of each type of
vertices in SSE-QMC samples from the correlation functions:

〈n11,b〉
β

= 〈n12,b〉
β

= 2ε
(
ε + Jz/4 − Jz

〈
Sz

bSz
b+1

〉)
4ε + Jz

,

〈n13,b〉
β

= 〈n14,b〉
β

= (2ε + Jz )
(
ε + Jz/4 − Jz

〈
Sz

bSz
b+1

〉)
4ε + Jz

. (30)

Then, we can estimate the bounce probability

P̄bounce(i) =
∑

j

〈n j,b〉∑
j′ 〈n j′,b〉P(Wj → Wj ), (31)

by averaging over the vertices with respect to their weights in
Eqs. (29) and (30).

We summarize the bounce probability and the ratio R�w �=0

of worldline-winding-altering loops in directed loop updates
among the SSE-QMC calculations for varying ε in Fig. 6. The
semiquantitative bounce probability in Eq. (31) also presents
a reasonable estimation. For ε = 0, the bounce probability
is nearly 0.9, and R�w �=0 is nearly zero, hampering effective

FIG. 7. With finite ε = 0.5, the energies of the non-Hermitian
quantum spin chains (Jz = 0) from the SSE-QMC calculations at
low temperature β = 100 (square points) compare very well with
theoretical ground-state values (solid curves) obtained through the
Jordan-Wigner transformation for various δ, �J , and relatively large
systems N = 64 under PBCs.

transitions between different worldline winding-number sec-
tors; in comparison, the bounce probability drops below 0.4
for ε ∈ [0.5, 1.0], and subsequently, R�w �=0 approaches nearly
10%, providing enhanced ergodicity in SSE-QMC sampling.

Indeed, introducing a finite ε = 0.5 enhances ergodicity
under PBCs and yields consistent results in the SSE-QMC
calculations. As summarized in Fig. 5, the SSE-QMC results
on non-Hermitian quantum spin chains witness satisfactory
consistency with the ED benchmarks upon setting ε = 0.5,
with remarkable improvements over and contrast with the
ε = 0 results plagued by nontrivial worldline winding. Such
characteristic disparities in efficiency on changing winding
numbers are also apparent in Table I. The remedy also works
on relatively large non-Hermitian quantum systems, where,
with global and topological distinctions, the barrier between
different worldline winding sectors and the ergodicity issue is
intuitively more severe. For instance, we compare the SSE-
QMC results for Jz = 0 under PBCs with the non-Hermitian
free-fermion models upon the Jordan-Wigner transforma-
tion and obtain consistent results on relatively large systems
(N = 64) (see Fig. 7), suggesting the nontrivial worldline
winding no longer poses an apparent obstacle. We note that
such a remedy is not unique or exclusive, as there exist
other ways to enhance ergodicity between different winding-
number sectors, such as periodically proposing updates that
insert specific vertices leading to a new worldline with ±1
winding number.

D. Investigation on model conditions
for nontrivial worldline winding

Previously, in Sec. III B, we have shown in the toy model
that, unlike Hermitian models, the most dominant world-
line winding is no longer necessarily the w = 0 sector in
non-Hermitian quantum systems. Such nontrivial winding
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FIG. 8. The (normalized) distribution of worldline winding
numbers generally shifts from zero towards larger values as the non-
Hermitian parameter δ increases from zero. Inset: The Gaussian-fit
peak positions wopt of the winding-number distributions follow a
linear relation to δ. Here, we set Jz = 0 for free-fermion chains,
�J = 0 for a closed line gap, ε = 0.5 for enhanced ergodicity, and
β = 100, N = 64 under PBCs.

numbers may cause difficulty in ergodicity and deviations
in expectation values (Sec. III A). Here, through numerical
studies of various non-Hermitian quantum spin chains with
PBCs and enhanced ergodicity (Sec. III C), we keep track
of the worldline winding numbers w during our SSE-QMC
calculations and analyze the systematic conditions of such
nontrivial worldline winding. Importantly, the conditions of
nontrivial worldline winding coincide with nontrivial point-
gap topology for the reference point EP = 0.

We summarize the results for varying δ and fixed Jz =
�J = 0 and β = 100 in Fig. 8. The resulting models are
equivalent to free-fermion models with vanishing line gaps
following the Jordan-Wigner transformation. Like the gapless
non-Hermitian toy model in Eq. (21), the winding-number
distributions, normalized as a ratio rw = Nw/

∑
w Nw, display

a Gaussian-shaped pattern; notably, the fitted peak of the dis-
tribution sits at wopt = 0 for δ = 0 and gradually shifts to the
right (wopt > 0) as the non-Hermitian parameter δ—the am-
plitude difference between the right hopping Ĥ2,b and the left
hopping Ĥ3,b—increases. Such a linear relation is comparable
to Eq. (26) of the gapless toy model.

Then, we study the impact of different values of �J , and
summarize the evolution of the dominant worldline wind-
ing number wopt, i.e., the Gaussian-fit peak location in the
w distribution in Fig. 9. Interestingly, we observe wopt �= 0
if and only if |δ| > |�J|. This parameter space coincides
with the nontrivial point-gap topology winding around zero,
which guarantees that the non-Hermitian free-fermion chains
will display the NHSE under OBCs. On the contrary, when
|δ| < |�J|, we have wopt = 0 despite nonzero non-Hermitian
parameter δ. Here, the SSE-QMC method also needs a boost
from enhanced ergodicity for larger δ, especially when δ

surpasses �J , consistent with the performances in Fig. 5.

FIG. 9. The dominant worldline winding number wopt deviates
from zero as the non-Hermitian parameter δ surpasses the line-gap
parameter �J (dashed lines) and evolves monotonically afterward.
Jz = 0, β = 100, ε = 0.5, and N = 64 under PBCs. The parameter
space for nonzero (zero) wopt is consistent with the presence (ab-
sence) of non-Hermitian point-gap topology in the corresponding
noninteracting fermion models after the Jordan-Wigner transforma-
tion. Inset: The single-particle spectrum gives nontrivial (trivial)
point-gap winding around zero in the complex plane when the
non-Hermitian parameter δ (the line-gap parameter �J) dominates,
coinciding with the presence (absence) of nontrivial worldline wind-
ing wopt �= 0 (wopt = 0) under PBCs.

Such correspondence between nontrivial worldline winding
wopt and point-gap topology in the complex spectrum is more
apparent in Fig. 10, as we alter the reference energy EP by
including the term

Hμ = −μ
∑

i

Sz
i (32)

in our model Hamiltonian in Eq. (16), which corresponds
to the Fermi energy μ: −μ

∑
i c†

i ci after the Jordan-Wigner
transformation and does not hamper our SSE-QMC algorithm.
In full consistency with Fig. 9, whenever the reference energy
EP = μ falls within a winding spectral loop, we have a non-
trivial wopt �= 0. Such a loop also guarantees a vanishing line
gap with respect to the reference energy EP [110].

It is also interesting to examine the winding-number dis-
tributions for various system sizes N , which we illustrate in
Fig. 11. While the width of the distribution relies on N , the
dominant winding number wopt hardly spots any difference. In
large systems, such nontrivial winding consistently introduces
global worldlines that traverse the systems and give rise to
communications between regions far apart, potentially giving
rise to long-range quantum entanglement. On the other hand,
as we carefully inspect wopt versus δ for a finite �J = 0.3, the
contrast of zero versus finite wopt across the transition at δC =
�J becomes clearer for larger systems, making wopt a better
signature for nontrivial point-gap topology as discussed in
Fig. 9.
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FIG. 10. The dominant worldline winding number wopt becomes
nonzero when and only when the varying Fermi energy μ, and thus
the reference energy EP, leads to a nontrivial point-gap topology—a
surrounding loop in the spectrum, accompanied by the closure of the
line gap. The colored dots correspond to different reference points
EP for the point-gap topology and Fermi energies μ of the (Jordan-
Wigner-transformed) model. We set �J = 0.3 and δ = 0.2.

FIG. 11. The normalized distribution of worldline winding num-
bers indicates narrowing Gaussian-fit peaks, while the dominant
winding wopt remains almost unchanged, as the system size N in-
creases. Here, δ = 0.3 and �J = 0. Inset: The rise of nontrivial
worldline winding at and only at δ > �J = 0.3 becomes sharper for
larger systems N under PBCs. ε = 0.5, Jz = 0, and β = 100.

FIG. 12. As β increases, the distribution of worldline winding
numbers for �J = 0 broadens and shifts towards larger values. The
inset shows the Gaussian-fit peak positions wopt versus β at different
�J . In particular, similar to the non-Hermitian toy-model results in
Eq. (26), wopt depends linearly on β for �J = 0. We fix δ = 0.3,
Jz = 0, ε = 0.5, and N = 64 with PBCs.

Unlike the NHSE, which works only for single-particle
eigenstates at zero temperature and without interacting, the
nontrivial worldline winding is a quantum phenomenon that
straightforwardly generalizes to finite temperatures and in-
teracting systems. For example, we analyze the evolution of
worldline winding-number distributions in SSE-QMC sam-
ples of quantum spin chains for increasing β. The resulting
Gaussian-shaped distributions in Fig. 12 display broadening
widths and increasing peak winding number wopt for larger
β. In particular, wopt increases linearly with β for models
without the line gap �J . These features are consistent with
the toy-model results in Eq. (26) and also indicate that,
unlike Hermitian quantum systems, we cannot focus solely
on the w = 0 winding-number sector commonly used for
SSE-QMC initialization nor equate different winding-number
sectors in the low-temperature limit β → ∞, as we discussed
in Sec. III B.

Analysis based upon worldline winding also applies to
interacting fermion systems, equivalent to quantum spin
chains with nonzero Jz after the Jordan-Wigner transfor-
mation in Eq. (20). For instance, we study the worldline
winding-number distributions in the SSE-QMC calculations
for various δ and Jz and summarize the dominant wopt

in Fig. 13. In addition to the non-Hermitian parameter
δ, the interaction parameter Jz also visibly influences the
non-Hermitian topology. The wopt results are also con-
sistent with the (finite-size extrapolations of) many-body
spectrum-flow-based identifications [81,83], also plotted in
Fig. 13 as the dotted lines. However, such evaluations com-
monly require the full spectra and exponential computational
costs and thus are applicable only for smaller interacting
quantum systems (see Appendix A for detailed results).
We also note that identifying and analyzing such a non-
Hermitian quantum many-body system is beyond the NHSE,
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FIG. 13. The dominant worldline winding number wopt (color
scale) shows explicit dependence on the non-Hermitian parameter δ

as well as the interaction parameter Jz, therefore offering characteri-
zation of non-Hermitian point-gap topology for interacting quantum
systems. We set �J = 0.3, β = 100, ε = 0.5, and N = 64 with
PBCs. The dotted lines are the benchmark critical δC from the many-
body (single-particle for Jz = 0) spectrum [81,83] for various Jz and
smaller system sizes N = 10, 12, 14 due to elevated computational
cost.

which requires noninteracting eigenstates under OBCs un-
der the right single-particle eigenstate basis. Consequently,
the nontrivial worldline winding offers an efficient charac-
terization of non-Hermitian topology on interacting quantum
systems.

The nontrivial worldline winding number also extends
straightforwardly to non-Hermitian quantum systems without
translation symmetries. Finally, rather than offering a binary
“yes or no” verdict on the point-gap topology, the finite values
of wopt, if any, offer a more quantitative measure of the extent
of non-Hermitian topology at play. In summary, nontrivial
worldline winding offers a broader range of applicability for
studying and identifying nontrivial point-gap topology in non-
Hermitian quantum systems.

IV. CONSEQUENCE OF NONTRIVIAL WORLDLINE
WINDING: NON-HERMITIAN ENTANGLEMENT

ENTROPY

A. Entanglement entropy in non-Hermitian quantum systems

The nontrivial worldline winding also has immediate phys-
ical consequences. For example, such nontrivial winding
guarantees worldlines’ inevitable passages across bound-
aries and thus global presence [Fig. 1(c)], introducing
extra entanglement between the regions, even those far
apart. We expect these effects to manifest in the real-
space entanglement entropy of non-Hermitian quantum sys-
tems. In particular, we focus on the Rényi (entanglement)
entropy [111]:

S(n)
A = 1

1 − n
ln

(
Tr ρ̂n

A

)
, (33)

where ρ̂A is the (reduced) density matrix of subsystem A.
Hereafter, we focus on the second (n = 2) Rényi entropy S(2)

A
[112–115].

However, the definitions of entanglement entropy in
non-Hermitian quantum systems remain ambiguous. A sim-
ple generalization from the Hermitian case suggests S(2)

A =
− ln(Tr ρ̂2

A) [116]; however, ρ̂A is no longer Hermitian, nor
is it positive semidefinite or even real valued, and the re-
sulting S(2)

A is complex defined, making its meaning as an
entanglement measure obscure. On the other hand, the for-
malism S̃(2)

A = − ln(Tr |ρ̂A|2) = − ln[Tr(ρ̂†
Aρ̂A)] guarantees a

positive-semidefinite entropy, yet the absolute value is a dras-
tic, nonanalytic process. For clarity, we will present results
following both definitions, and for each definition, check out
the differences �S,

�S = S(2)
A,PBC − S(2)

A,OBC, (34)

between S(2)
A,PBC under PBCs and S(2)

A,OBC under OBCs with
trivial winding w = 0, and locate the non-Hermitian en-
tanglement entropy contributions accompanying nontrivial
worldline winding and, in turn, nontrivial point-gap topology
around zero reference energy.

Previously, there have been studies on phase transitions in
non-Hermitian quantum systems with entanglement entropy
as an indicator: Tu et al. [117] and Chang et al. [118] studied
the entanglement entropies under different definitions and
revealed the nonunitary conformal field theory with nega-
tive central charge c < 0, as well as the crossover between
c > 0 and c < 0, in non-Hermitian systems. Chen et al.
[119] showed the different scaling behavior of von Neumann
entropy at |�J| > |δ| and |�J| < |δ| in the non-Hermitian
SSH model (Sec. II B), and a negative central charge at the
crossover at the critical points |�J| = |δ|; a similar con-
cept of edge entanglement entropy, Sedge = SOBC − 1

2 SPBC ,
detected the many-body edge states and related phase transi-
tions [71,119]. Guo et al. [120] discovered the log(L) scaling
of the von Neumann entanglement entropy with its coefficient
related to the Fermi-point topology, which is also consistent
with our conclusions. In the following section, we will analyze
the difference �S between the Rényi entropies under PBCs
and OBCs in direct connection with the nontrivial worldline
winding wopt and the corresponding non-Hermitian point-gap
topology.

B. Non-Hermitian entanglement entropy
in free-fermion systems

Here, we focus on non-Hermitian 1D free-fermion models,
equivalent to non-Hermitian quantum spin chains with Jz = 0.
The Hamiltonians take a quadratic form:

Ĥ =
∑
i, j

c†
i Hi jc j =

∑
n

εn

∣∣ψR
n

〉〈
ψL

n

∣∣, (35)

where ci (c†
i ) is the fermion annihilation (creation) operator at

site i, and |ψR
n 〉 and 〈ψL

n | are the single-particle biorthogonal
basis obtainable from H′s decomposition. For free fermions,
we can obtain the single-particle (reduced) density opera-
tor ρ̂A for region A from the correlation matrix Ci j = 〈c†

i c j〉
[112,113], where i, j ∈ A, and subsequently, the second Rényi
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FIG. 14. The (real parts of the) differences Re(�S) (triangles)
between the second Rényi entropy of non-Hermitian free-fermion
ground states under PBCs and OBCs exhibit apparent relevance with
the dominant winding number wopt (circles), and thus the point-gap
topology, for (a) �J = 0.1, (b) �J = 0.2, and (c) �J = 0.3, respec-
tively. (d) Following the alternative Rényi entropy definitions S̃(2)

A ,
we obtain similar conclusions on �S̃ between PBCs and OBCs for
various �J . The dashed lines denote δ = ±�J where the transitions
locate. N = 64.

entropy,

S(2)
A = −

∑
n

ln
[
ξ 2

n + (1 − ξn)2
]
,

(36)
S̃(2)

A = −
∑

n

ln
[|ξn|2 + (1 − |ξn|)2

]
,

where ξn are the eigenvalues of the density operator (corre-
lation matrix). To suppress the potential impacts of the edge
physics [71], we define A as the central region between the
(N/4)th site and (3N/4)th site on a chain of length N .

The resulting differences between entanglement entropy
under PBCs [121] and OBCs are summarized in Fig. 14. For
various �J , we observe consistently vanishing differences
�S and �S̃ for −�J < δ < �J , where the non-Hermitian
quantum systems’ worldline winding and the point-gap topol-
ogy are trivial. Interestingly, positive values of �S and
�S̃ emerge for |δ| > �J , indicating additional entanglement
contributions from nontrivial worldlines with nonzero wopt.
Drastic changes in �S and �S̃ occur in between, which
may help locate the topological transitions. Similar studies of
non-Hermitian entanglement entropy also apply to quantum
systems with interactions and finite temperatures.

We also analyze the finite-size scaling of the Rényi entropy
difference �S in Fig. 15. For non-Hermitian quantum systems
without nontrivial worldline winding and point-gap topology,
�S tends to zero in the thermodynamic limit as expected.
However, in the presence of nontrivial worldline winding,
�S possesses a nonzero value and a rising tendency in the
N → ∞ limit, consistent with the results and further assert-
ing the conclusions in Fig. 14. Notably, such entanglement
entropy from nontrivial worldline winding follows a logarith-
mic scaling with respect to the system size N , resembling
quasi-long-range entanglement under the area law with a log-
arithmic correction in gapless quantum systems [122]. While

FIG. 15. The finite-size scaling of the Rényi entropy differ-
ence �S = S(2)

A,PBC − S(2)
A,OBC suggests that the real part of �S (cyan

squares) scales away from zero in the thermodynamic limit N →
∞ in the presence of nontrivial point-gap topology (δ > �J). In
contrast, the real part of �S (blue squares) with trivial point-gap
topology (δ < �J) and the imaginary part of �S (green triangles)
stays at zero as N increases. For clarity, we show only the largest
imaginary-part amplitude of �S among various δ and �J = 0.3.
Jz = 0. Inset: The entanglement entropy from nontrivial worldline
winding follows a logarithmic scaling: �S ∝ log(N ).

such behavior is qualitatively consistent with our intuition,
as the global worldlines persist to large systems (Fig. 11)
and introduce additional entanglement between regions, even
far-apart ones [123], more quantitative arguments of the en-
tanglement contribution remain an open question.

V. DISCUSSION

In summary, we have uncovered the emergent dominance
of nontrivial worldline winding in non-Hermitian quantum
systems under PBCs, even with interactions, finite tempera-
tures, and various system sizes, which may possess essential
impacts on the worldline winding and topology. Empirically,
the emergence is in line with, and thus offers a broader
and more quantitative measure for, the non-Hermitian point-
gap topology. Unlike the NHSE associated with the right
eigenstates, the nontrivial worldline winding exhibits its phys-
ical effects as biorthogonal observables, including additional
non-Hermitian entanglement entropy. We note that the corre-
spondences between nontrivial worldline winding, point-gap
topology, and the potentially quasi-long-range entanglement
entropy contributions, though intuitive and reasonable due
to their simultaneous global natures, are our hypothesis and
established either numerically or based upon toy models. An
interesting future direction is to derive more rigorous theoret-
ical connections.

In the QMC calculations for non-Hermitian quantum sys-
tems, such nontrivial worldline winding, together with the
barrier between different winding-number sectors, may ham-
per the ergodicity and proper convergence. For non-Hermitian
quantum spin chains, we propose a simple algorithmic rem-
edy to enhance ergodicity between different winding-number
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FIG. 16. The complex spectra of the overall energy Eh f of the non-Hermitian quantum system in Eq. (16) in the main text evolve with the
flux φ, as illustrated by various colors. At the critical point of a topological transition, such as (b) δ = �J = 0.3, Jz = 0, and (e) δ = 0.35,
�J = 0.3, Jz = 1, where two Eh f touch at φ = π , changing the loop topology and the winding number concerning reference energies, say, E ,
at the bottleneck. We have �J = 0.3 and N = 10 in all these panels.

sectors. We note that the nontrivial worldline winding is
a general phenomenon with clear-cut physical significance
and undoubtedly beyond the SSE-QMC formalism, even if
we have mainly discussed the worldlines in the SSE-QMC
method and used SSE-QMC results for illustrations. Indeed,
we have showcased and analyzed the presence of nontrivial
worldline winding in the non-Hermitian toy model with the
path-integral approach and the non-Hermitian free-fermion
models with the exact solutions under the single-particle
bases. It will be interesting to investigate analogous worldline
winding physics in other QMC and non-QMC algorithms.

Finally, we have focused on non-Hermitian quantum sys-
tems in one dimension and the simplest point-gap topology.
We note the fascinating possibilities at higher dimensions,
with rich categories of non-Hermitian topological phenom-
ena at the research frontier and diverse boundary conditions
for worldline windings and braidings. Recently, the NHSE
in higher dimensions and its interplay with boundary condi-
tions has attracted much attention [28–33,124–129]. However,
numerical difficulties in non-Hermitian Hamiltonians, e.g.,
boundary sensitivity and instability [17,130,131], may ham-
per studies and progress, especially in higher dimensions.
Nontrivial worldline winding offers a physically intuitive per-
spective and better numerical stability under PBCs on such
problems. The efficiency and compatibility of the SSE-QMC
method in higher dimensions also offer practical research

facilities in non-Hermitian quantum systems with interactions
and finite temperatures.
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APPENDIX A: SPECTRUM-FLOW-BASED
IDENTIFICATION FOR NON-HERMITIAN

TOPOLOGICAL PHYSICS

In Sec. III D in the main text, we studied the dominant
worldline winding numbers of non-Hermitian quantum sys-
tems in the presence of finite interaction Jz, such as the results
in Fig. 13 in the main text. To establish their connections with
the non-Hermitian topology in such interacting systems Ĥ ,
we evaluate the winding number of the many-body spectrum
following Refs. [81,83]:

W (E ) :=
∮ 2π

0

dφ

2π i

d

dφ
log det[Ĥ (φ) − E ], (A1)
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where E is a reference energy. φ ∈ [0, 2π ) denotes the bound-
ary condition and the effective flux through the loop of the
system under PBCs.

For instance, the complex spectra flow of the overall energy
Eh f for non-Hermitian quantum systems in Eq. (16) (at half
filling in the fermion representation after the Jordan-Wigner
transformation) in the main text is shown in Fig. 16. As φ

changes and is denoted by different colors, the many-body
eigenenergies Eh f move in the complex plane. Their trajecto-
ries form loops, offering a clear-cut signature for topological
transitions as the loops merge or separate and the winding
number changes for selected reference energies, e.g., the
point where loops touch on the complex Eh f plane. Also,
such a merge or separation of loops in the complex plane of
many-body eigenenergies, i.e., whether the ground state and
excited states touch or not, is consistent with the absence or
presence of line gaps through the reference energy EP = 0
in the single-particle picture, which dominates the dominant
worldline winding number in the absence of Jz.

In particular, for Jz = 0 that maps to a noninteracting
non-Hermitian fermion chain, we locate the transition at
δ = �J = 0.3 [Figs. 16(a)–16(c)], consistent with the single-
particle analysis in the presence of a competing line gap
�J . Furthermore, we generalize the many-body spectrum
flows to cases with finite interaction Jz > 0, e.g., Jz = 0.1
[Figs. 16(d)–16(f)], where the single-particle analysis no
longer applies. We also observe that the separate loops at
smaller |δ| merge together at larger |δ|, yet the transition
where the loops touch occurs at |δ| > |�J| with finite in-
teraction Jz > 0. We note that the evaluation of Eq. (A1)
requires repeated matrix operations of many-body Hamiltoni-
ans, whose cost increases exponentially with the system size,
limiting its applicability to small systems.

For N = 10, 12, 14, fixed �J = 0.3, and various values of
Jz, we track the many-body spectra flows and determine the
phase boundaries in δ, as the dotted lines in Fig. 13 in the
main text. The results are consistent with the appearance of the
nontrivial SSE-QMC worldline winding we have described in
the main text.

APPENDIX B: BOUNDARY CONDITION AND
ENTANGLEMENT ENTROPY OF CORRESPONDING SPIN

AND FERMION CHAINS

While we employ PBCs for the spin chain in the main
text, the boundary condition of the corresponding fermion
chain following the Jordan-Wigner transformation needs to be
treated carefully [107]:

S+
N S−

1 = −K f †
N f1,

K = exp

[
iπ

N∑
i=1

f †
i fi

]
= (−1)Nf , (B1)

where Nf is the total number of fermions. As a result, for a
spin chain with Sz

tot = 0 and PBCs, the boundary condition of
the corresponding fermion chain at half filling is antiperiodic
for N = 4m and periodic for N = 4m + 2, m ∈ Z. Alterna-
tively, for a fermion chain with PBCs, the corresponding spin
chain should obey the antiperiodic boundary conditions (AP-
BCs) for N = 4m.

FIG. 17. The (real parts of the) differences Re(�S) (triangles)
between the second Rényi entropy of non-Hermitian free-fermion
ground states under APBCs and OBCs exhibit apparent relevance
with the dominant winding number wopt (circles), and thus the point-
gap topology, for (a) �J = 0.1, (b) �J = 0.2, and (c) �J = 0.3,
respectively. (d) Following the alternative Rényi entropy definitions
S̃(2)

A , we obtain similar conclusions on �S̃ between APBCs and
OBCs for various �J . The dashed lines denote δ = ±�J where the
transitions locate. N = 64.

In the main text, we have shown the results on the dif-
ferences �S of the second Rényi entropy between PBC and
OBC spin chains (i.e., APBC and OBC fermion chains) at
N = 64. Here, we show in Fig. 17 the difference between
APBC and OBC spin chains (i.e., PBC and OBC fermion
chains) at the same system size. Despite some differences at

FIG. 18. The finite-size scaling of the Rényi entropy differ-
ence �S = S(2)

A,APBC − S(2)
A,OBC suggests that the real part of �S (cyan

squares) scales away from zero in the thermodynamic limit N →
∞ in the presence of nontrivial point-gap topology (δ > �J). In
contrast, the real part of �S (blue squares) with trivial point-gap
topology (δ < �J) and the imaginary part of �S (green trian-
gles) generally scale to zero. For clarity, we show only the largest
imaginary-part amplitude of �S among various δ and �J = 0.3.
Jz = 0. Inset: The entanglement entropy from nontrivial worldline
winding follows a logarithmic scaling: �S ∝ log(N ).
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the phase transitions |�J| = |δ|, the overall behavior of the
entanglement entropy is consistent with the trivial or nontriv-
ial worldline winding for both PBCs and APBCs. Similarly,
we show the finite-size scaling of the difference of Rényi en-
tropy �S between APBC and OBC spin chains in Fig. 18. We
note the quasi-long-range entanglement corresponding to the

logarithmic entanglement-entropy scaling in the presence of
nontrivial point-gap topology, the vanishing line gap, and the
nontrivial worldline winding appear irrespective of whether
we consider PBCs or APBCs; however, the imaginary part of
�S scales to zero under APBCs, rather than strictly being zero
under PBCs.
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