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Dirac Kondo effect under magnetic catalysis

Koichi Hattori ,1,2,* Daiki Suenaga ,3,2,† Kei Suzuki ,4,‡ and Shigehiro Yasui 5,6,§

1Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou 310027, China
2Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047, Japan
3Strangeness Nuclear Physics Laboratory, RIKEN Nishina Center, Wako 351-0198, Japan

4Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai 319-1195, Japan
5International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University,

Higashi-Hiroshima, Hiroshima 739-8526, Japan
6Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521, Japan

(Received 6 December 2022; revised 28 July 2023; accepted 13 November 2023; published 5 December 2023)

We develop a mean-field theory of a novel Kondo effect emerging in systems without a Fermi surface, which
instead emerges under strong magnetic fields. We determine the magnitude of the Kondo condensate, which is a
particle pairing composed of conducting Dirac fermions and localized impurities. We focus on the competition
between the Kondo effect and the energy gap formation that stems from the pairing among the Dirac fermions
leading to the dynamical chiral symmetry breaking. We find that this competition induces a quantum critical
point. We also investigate finite-temperature effects. This system at vanishing fermion density can be studied
with Monte Carlo lattice simulations, which do not suffer from the sign problem.
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I. INTRODUCTION

Quantum systems under strong magnetic fields have at-
tracted much attention over the last century in various physical
systems (see, e.g., Refs. [1–6] for reviews). In the last decade,
even more, common interests have been developed with the
aid of advanced engineering of ultrarelativistic heavy-ion col-
lisions [7–11] and of Dirac/Weyl semimetals [12–15] as well
as the tremendous progress in the numerical lattice simula-
tions [16,17] (see also references therein). These situations
motivate us to study phases of matter under strong magnetic
fields. As we will discuss in detail, it has been pointed out that
strong magnetic fields catalyze particle pairing phenomena,
inducing nonpertubative modification of the ground state of
the system when the Landau quantization becomes sizable.

In this paper, we investigate an interacting system com-
posed of relativistic light fermions and nonrelativistic heavy
impurities under a strong magnetic field at vanishing fermion
density. Such relativistic fermions, governed by the Dirac
equation, appear not only as elementary particles in high-
energy physics but also in graphene and Dirac semimetals
in condensed-matter physics. Light and heavy fermions cor-
respond to conducting and localized states, respectively. The
conventional Kondo effect is absent at vanishing fermion den-
sity, whereas our system exhibits the Kondo effect and the
chiral symmetry breaking induced by strong external mag-
netic fields. We call the Kondo effect appearing in Dirac
fermion systems the Dirac Kondo effect. These phenomena
are induced by two pairing patterns: the Kondo condensate,
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pairing between the light fermion and the heavy impurity,
and the chiral condensate, pairing between the light fermion
and its antiparticle. In fact, each condensate is induced even
with infinitesimal attractive interactions between the pair. That
is, the growth of each condensate is an inevitable fate of
the system when a magnetic field increases and temperature
decreases. The common concept behind this statement is the
magnetic catalysis as first pointed out in the formation of the
chiral condensate [18–21] and refined in the formation of the
Kondo condensate [22].1

This system provides an interesting question arising from
the competition between the chiral and Kondo condensates,
which can drastically change the fate of the system. We will
find that one condensate interrupts the growth of the other
destructively, and there occurs a transition from the vacuum
completely dominated by the chiral condensate to that accom-
panied by the Kondo condensate. At zero temperature, these
two phases are divided by a quantum critical point at a certain
critical magnetic-field strength where the Kondo condensate
starts to grow. The chiral condensate no longer grows above
the critical point and saturates at a constant value.

Our findings have an impact on the heart of many-body
quantum physics. It is a general and central issue to determine
the ground state of a system with condensates. The ground
states can exhibit nonperturbative quantum phenomena such
as superconductivity [23–25] and the Kondo effect [26–33].
Relativistic counterparts are the spontaneous chiral symme-
try breaking [34–37], the color superconductivity [38–42],

1While the magnetic catalysis is conventionally meant for the chiral
condensate, the key concept, the dimensional reduction in the phase
space stemming from the Landau degeneracy, is found to be more
general and can lead to the realization of various pairing patterns in
analogy with the Fermi surface effect [23,24].
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and the newly proposed QCD Kondo effect [43,44] (see also
Refs. [45–63] for the developments in the QCD Kondo effect).
Relativistic systems can be also realized with graphene and
Dirac/Weyl semimetals that provide useful platforms in the
study of the magnetic catalysis [64–81] and the Kondo effect
[45,82–97] (see Refs. [14,98] for reviews).2

Despite the many foregoing studies, it should be stressed
that the competition of the Kondo condensate with other
condensates is yet elusive: The interplay appears both in
destructive and constructive manners. There is a destructive
competition between the Kondo effect and superconductivity
[45,99–110] (see also, e.g., Refs. [111–115] for experi-
ments). Two of the present authors have also discussed the
competition between the chiral symmetry breaking and the
QCD Kondo effect at finite baryon density [50] (see also
Refs. [57,62]). On the other hand, constructive interplay can
induce “heavy fermion” superconductivity [30,115–118]. It
is an interesting question how the Kondo condensate could
affect the critical point from the interplay between the chiral
condensate and the color superconductivity [42,119,120].

This paper is organized as follows. In Sec. II, we introduce
a model Lagrangian and construct an effective potential within
the mean-field approximation. Based on this, we discuss the
phase structure with respect to a magnetic-field strength at
zero temperature in Sec. III and finite-temperature effects at
Sec. IV. In Sec. V, we conclude the paper and discuss possi-
ble applications and perspectives. In Appendices, we provide
more detailed accounts of the model and analytic computa-
tions.

II. FORMULATION

Nonperturbative phenomena, such as the formation of
condensates, can be studied by the mean-field method (see
Refs. [121,122] for early works on the Kondo effect). In
Refs. [47,49], the QCD Kondo effect was investigated with
the mean-field approach applied to a four-point interaction
model analogous to the Nambu–Jona-Lasinio (NJL) model
(for applications, see Refs. [50,51,53,55–58,61–63]).

Referring to those studies, we extract the essence of the
chiral symmetry breaking and the Kondo effect in the Dirac
fermion systems in strong magnetic fields. For this purpose,
we use the following Lagrangian in the (3 + 1)-dimensional
spacetime (see Appendix A)

L = ψ̄ (i/∂‖ − ml )ψ + Gll

2N
[(ψ̄ψ )2 + (ψ̄ iγ5ψ )2]

+
∑
c=±

[
c�̄c

v i∂0�
c
v + Ghl

N

{(
ψ̄�c

v

)(
�̄c

vψ
)

+ (
ψ̄ iγ5�

c
v

)(
�̄c

v iγ5ψ
)}]

, (1)

where γ5 ≡ iγ 0γ 1γ 2γ 3. This Lagrangian contains four eigen-
modes of ψ for the spin-polarized light fermion and its
antifermion in the lowest Landau level (LLL), where ml is

2References [94,96] studied the Zeeman effect on the Kondo effect
at finite density, while we discuss the magnetic catalysis for the
Kondo effect at vanishing density.

the light-fermion mass. It has the index for the inner de-
grees of freedom such as the color for quarks (N = 3) and
the pseudospin in condensed matter, e.g., graphene (N = 2).
We assume that a magnetic field is applied in the third (z)
direction. Then, ψ has the kinetic term /∂‖ ≡ γ 0∂0 + γ 3∂3 and
is an eigenstate of the spin along the magnetic field due to
the Zeeman effect, i.e., iγ 1γ 2ψ = sgn(qlB)ψ with an electric
charge ql . Note that planar systems such as graphene can be
discussed with straightforward modifications of the present
formulation.

The Lagrangian (1) also contains �+
v and �−

v for the
heavy-fermion and its antifermion fields introduced as impu-
rities. They stem from the original Dirac field � as �±

v ≡
e−i

/∂⊥
2mh e±imhv

μxμQ±� with /∂⊥ ≡ (γ μ − /vvμ)∂μ after the fac-
torization of the plane-wave components at the position xμ

and the projection by Q± = 1
2 (1 ± vμγμ) as explained in

Appendix A 3 . Here, the four-momentum is given as mhv
μ

with mh and vμ being the heavy-fermion mass and the four
velocity, respectively. In the rest flame of heavy fermions,
vμ = (1, 0, 0, 0), Q± = 1

2 (1 ± γ0) is the projection operator
to the particle and antiparticle components.3 Ghl > 0 and
Gll > 0 are the four-point coupling constants for the interac-
tions between the heavy and light fermions and between the
light fermions, respectively.

We analyze the Lagrangian (1) with the mean-field approx-
imation. Analogously to Ref. [58] in the (3+1)-dimensional
spacetime, the chiral and Kondo condensates are assumed to
be

〈ψ̄ψ〉LLL ≡ − N

Gll
M, 〈ψ̄�±

v 〉LLL ≡ N

Ghl
�, (2)

with the gaps M and �. By explicitly diagonalizing the mean-
field Lagrangian, we obtain the energy-momentum dispersion
relations of the four eigenmodes

E±(pz ) ≡ ± 1
2

(√
E2

pz
+ |2�|2 ± Epz

)
, (3a)

Ẽ±(pz ) ≡ ± 1
2

(√
E2

pz
+ |2�|2 ∓ Epz

)
, (3b)

where Epz ≡ √
p2

z + (ml + M )2. Straightforwardly, we obtain
the thermodynamic potential �(M,�) ≡ −T ln Z with tem-
perature T = 1/β and the partition function Z at the one-loop
level [129],

�(M,�) = N

[
M2

2Gll
+ |2�|2

2Ghl
+ �vac + �T

]
,

�vac(M,�) = −ρB

∑
Ei

∫ 


−


d pz

2π

1

2
|Ei|,

�T (M,�) = −ρB

∑
Ei

∫ ∞

−∞

d pz

2π

1

β
ln(1 + e−β|Ei|), (4)

3This treatment is similar to but slightly different from the con-
ventional framework of the heavy-quark effective theory (HQET)
[123–126] in high-enerygy physics, which is an effective field theory
for heavy quarks in QCD. In the conventional HQET, one retains
either �+

v or �−
v . On the other hand, in this work we retain both

of �+
v and �−

v to include the heavy fermion and antifermion in a
charge-conjugation invariant manner [127,128].
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where �vac/T are the contributions from the vacuum bubbles
and the thermal excitation, respectively, and ρB = |qlB|/(2π )
is the Landau degeneracy factor. The sum runs over the four
eigenmodes Ei = {E+, E−, Ẽ+, Ẽ−}. We are left with evaluat-
ing the one-dimensional momentum integral whose interval is
limited within the ultraviolet cutoff 
. All the dimensionful
quantities can be scaled by 
 because of the dimensional
reduction.

The thermodynamic potential (4) is inevitably unstable at
the origin M = 0 = � due to the dimensional reduction at
zero temperature, which implies that the system always favors
nonzero condensates. This can be confirmed with an analytic
expression of �vac as follows. We take the massless limit
(ml = 0) for a demonstration. One can simply perform the pz

integral and expand the result as

�vac(�) = − ρB

2π

(

2 + �2

(
1

2
+ ln

2


�

)
+ O(�4)

)
, (5)

where �2 = M2 + |2�|2. Stability at the origin is determined
by the sign of the quadratic terms in �. The quadratic term en-
hanced by a logarithmic factor ln 
/�, diverging as � → 0,
makes the potential convex upward at the origin for any cou-
pling strengths [18–21,130]. At finite temperature, the origin
can be a stable point since the thermal contribution �T yields
a term that can cancel the above-mentioned logarithmic term.

III. ZERO-TEMPERATURE RESULTS

We first investigate the ground state at zero temperature.
We consider several cases classified by the relative magnitude
between Ghl and Gll in Eq. (1). When Ghl = Gll , the thermo-
dynamic potential (4) is invariant under a rotation in the M-�
plane in the chiral limit, i.e., the vanishing light-fermion mass
limit (ml = 0), and has a degenerate minimum on a circle at
�2 = constant. A finite ml breaks the rotational invariance.
As a result, the potential is tilted toward the M axis, and has a
minimum at a nonzero M and vanishing �. This is an analog
of the chiral condensate in the effective models of QCD with
the nonzero current quark mass (see, e.g., Ref. [37]). When
Ghl 
= Gll , there is no longer the degeneracy on the circle.
When Ghl < Gll , the tendency that M is favored over � is
enhanced due to the suppression of the potential energy along
the M axis for any ml . However, when Ghl > Gll , competition
appears between the suppression of the potential energy and
the tilting effect. This is a nontrivial case as we investigate in
detail below.

First, we consider a special case Ghl > Gll = 0 and elu-
cidate the effects of the light-fermion mass ml on the Kondo
effect. In the chiral limit, we find that there is no phase tran-
sition characterized by a singular behavior of �, as shown by
the dotted line in Fig. 1. On the other hand, when a nonzero ml

is switched on, the monotonic increase changes to a second-
order phase transition, as shown by the blue dashed line, at
a critical magnetic-field strength BcK . Thus, the light-fermion
mass plays an important role in the Kondo effect.

Next, we investigate the competition between the chiral
and Kondo condensates with nonzero Gll and Ghl . One can
find analytic solutions of the stationary conditions ∂�/∂M =
0 = ∂�/∂� as follows (see Appendix B for details). One
immediately notices a trivial solution � = 0 accompanied by

FIG. 1. Magnetic-field dependencies of Kondo condensate �

(blue) and chiral condensate M (red). The solid lines show the
full results with fixed parameters, ml/
 = 0.01, Gll


2 = 1.0, and
Ghl


2 = 3.0. The dotted and dashed lines show � with ml = Gll =
0 and with Gll = 0, respectively.

a nontrivial solution M 
= 0. This set is denoted as (M1,�1 =
0). One can find another set of solutions (M2,�2) as

M2 = mlGll

Ghl − Gll
, (6a)

�2 = 1

2

√√√√ 
2

sinh2
(

2π2

ρBGhl

) − m2
l G2

hl

(Ghl − Gll )2
. (6b)

Both the two sets, (M1,�1 = 0) and (M2,�2), satisfy the
stationary conditions for any values of the parameters as long
as Ghl > Gll .

We numerically investigated which, or any other set of so-
lutions, serves as the global minimum of the thermodynamic
potential �(M,�). The numerical results are shown with the
solid lines in Fig. 1. We find that, below a certain critical
magnetic-field strength Bc, the first solutions, (M1,�1 = 0),
are realized: The Kondo effect is prohibited by the existence
of the chiral condensate. By solving �2 = 0 in Eq. (6b), we
obtain the critical strength of magnetic field,

qlBc = 4π3

Ghl arcsinh
(



|Ghl −Gll |
ml Ghl

) ∼ 4π3ml


|Ghl − Gll | , (7)

where the rightmost side holds with a small value of |Ghl −
Gll |. The true vacuum switches over from (M1,�1 = 0) to
(M2,�2) at Bc, which is thus identified as a quantum critical
point. The analytic solution (6) shows a nontrivial behavior of
the condensates above Bc: The Kondo condensate grows up
as the magnetic field increases, while the chiral condensate
is forced to be a constant value (M2). This is an anomalous
saturation of the chiral condensate due to the formation of
the Kondo condensate. As in Fig. 1, a “plateau” of the chiral
condensate above Bc serves as a clear signal of the appearance
of the Kondo condensate at zero temperature.
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FIG. 2. Temperature dependencies of Kondo condensate � and
chiral condensate M at a fixed magnetic-field strength |ql B|/
2 =
1.5. The legends are the same as in Fig. 1. The red dashed line shows
M at Ghl = 0.

IV. FINITE-TEMPERATURE RESULTS

Finally, we investigate the phase diagram at finite tem-
perature. In Fig. 2, we show the numerical results for
the temperature dependence of the condensates, where the
magnetic-field strength and the heavy-light coupling are fixed
at |qlB|/
2 = 1.5 and Ghl


2 = 3.0, respectively. The Kondo
condensate at Gll = 0 and ml = 0 is shown by the blue
dotted line, where we find a phase transition at the critical
temperature TcK0. When we switch on a light-fermion mass
ml/
 = 0.01, as shown by the blue dashed line, we observe
that the magnitude of condensate is slightly suppressed, and
the critical temperature decreases to TcK . This suppression
effect by ml is consistent with our result at zero temperature.

Before discussing the competition, we check the sponta-
neous chiral symmetry breaking with nonzero Gll at Ghl = 0.
The chiral condensate M is shown by the red dashed line
in Fig. 2. The chiral condensate hardly changes within the
plot range of Fig. 2 but decreases at higher temperature. The

FIG. 4. Schematic phase diagram extracted from Fig. 3.

chiral condensate at nonzero ml shows a crossover transition,
and its pseudocritical temperature is located in the higher-
temperature region, not shown in the figure.

The numerical results including both nonzero Gll and Ghl

are shown by solid lines in Fig. 2. We find that the chiral and
Kondo condensates coexist at low temperature below Tc. Here,
the critical temperature Tc for the Kondo condensate decreases
from TcK due to the competition. As we increase temperature
across Tc, the Kondo condensate melts away and the chiral
condensate starts to increase abruptly at Tc since the chiral
condensate is released from the competition with the Kondo
condensate. Such a steep increase in the chiral condensate can
be indirect evidence of the Kondo condensate.

In Fig. 3, we show the condensate values on the T -B plane.
The plateau, which we have observed in the chiral condensate
M at zero temperature, also extends to nonzero temperature.
In addition, one can read off the orders of phase transitions:
While both condensates indicate second-order phase transi-
tions at zero temperature, switching on a nonzero temperature
leads to the first-order phase transitions. In Fig. 4, we show
a schematic phase diagram, where the first-order phase tran-
sition line at finite temperature is connected to the quantum
critical point at zero temperature.

FIG. 3. Magnetic-field and temperature dependencies of chiral condensate M (left) and Kondo condensate � (right).
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V. CONCLUSIONS

We have investigated the novel phase diagram of Dirac
fermions, which is characterized by the chiral and Kondo
condensates. We analytically found the critical magnetic field
Bc where the new quantum critical point emerges from the
competition between the two condensates. This competition
also gives rise to a saturation behavior of the chiral con-
densate above Bc at low temperature. At higher temperature,
the Kondo condensate melts away. This is the end of the
competition, which is signaled by a steep increase of the chiral
condensate.

For applications, our study can be applied to condensed-
matter systems as well as quark systems in high-energy
physics. Dirac fermions are known to be realized in a variety
of condensed-matter systems including graphene. The mag-
netic catalysis in spatial two dimensions has been discussed in
Refs. [18,19,67–69] and was further investigated with lattice
simulations for graphene in Refs. [78–80]. In addition, a flat
band emerges in twisted bilayer graphene with a magic angle
due to mixing between the Dirac cones from different layers
[131–135] and holds the SU (2) valley degeneracy. There-
fore, stacking this bilayer graphene and another monolayer
graphene with a Dirac band will create a platform for the
magnetic-field induced Kondo effect. Modeling the interlayer
interactions is a hot topic (see, e.g., Ref. [136]), which we
leave as a future work.

One of the relevant questions is the excitation spectrum
when the ground state varies with an increasing magnetic
field. It is interesting to investigate an extension of the so-
called Yu-Shiba-Rusinov state in superconductor [137–140]
(see also Refs. [104–110] and Ref. [45] for an analog in
QCD), the Nambu-Goldstone bosons, and non-Fermi liquid
behavior near quantum critical points [141–143] pursued with
the experimental progress (see, e.g., Refs. [144–147]). It is
important to investigate the critical exponents with possible
excitations. One can also study an extension to the multi-
channel Kondo effect [148], where a non-Fermi liquid system
can appear depending on the number of channels (see, e.g.,
Refs. [45,46,60,148,149]).

We also draw attention to the heavy-quark dynamics in ul-
trarelativistic heavy-ion collisions [10,150]. It is an interesting
question how the heavy-quark diffusion can be modified by
the strong correlation induced by the Kondo effect.

Numerical simulations on the lattice have provided useful
approaches to nonperturbative many-body phenomena. The
intertwined dynamics of the chiral symmetry breaking and
the Kondo effect may be simulated in strong magnetic fields.
Lattice QCD simulations elucidated the magnetic catalysis
in QCD with high precision (see, e.g., Refs. [17,151–156]),
and they can be also applied to the counterpart in solid-state
physics. The magnetically induced Kondo effect deserves
further study beyond the mean-field model calculation and
should be confirmed by direct measurements of the Kondo
condensate constructed from the correlation function of the
heavy and light fermions or by indirect ones through special
behaviors of the chiral condensate pointed out in this paper.
Recall also that the systems in a magnetic field and at fi-
nite density share analogous low-energy excitations stemming
from the degeneracy in the Landau levels and on the Fermi

surface. Therefore, the Monte Carlo simulation in magnetic
fields serves as a “dual” set-up for that at finite density, which
is highly restricted due to the sign problem.
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APPENDIX A: MODEL LAGRANGIAN

Here, we provide a detailed explanation of the model La-
grangian (1) used in the main text.

1. Light-fermion kinetic term

The kinetic and mass terms for the light fermions is given
by the Dirac Lagrangian in the (3 + 1)-dimensional spacetime

Ll ≡ ψ̄ (i /D − ml )ψ, (A1)

where /D ≡ γ μDμ with the Dirac (gamma) matrix γ μ defined
by the Clifford algebra [15,157]. We assume the Einstein
notation for the repeated Lorentz indices (μ = 0, 1, 2, 3). The
four-component Dirac spinor ψ is composed of the two spin
states of particles and antiparticles (holes). The covariant
derivative, Dμ = ∂μ + qlA

μ
ext, contains the gauge field for an

external magnetic field, and satisfies the commutation relation
[iD1, iD2] = iqlB with all the other vanishing combinations.
Here, without loss of generality, we assume a constant mag-
netic field in the third direction with the strength B.

We briefly explain how the Lagrangian (A1) reduces to that
given in Eq. (1) in the lowest Landau level (LLL). By the
use of the above commutation relation, one can introduce the
annihilation and creation operators

a, a† = i√
2|qlB| [D1 ± sgn(qlB)iD2], (A2)

where the upper and lower signs are for a and a†, respectively.
These operators satisfy [a, a†] = 1. One can lower and raise
the Landau levels with these operators exactly in the same
manner as for the harmonic oscillator.

The Dirac operator is identically cast into the form

i /D − ml = i/∂‖ − ml −
√

2|qlB|γ 1(aP+ + a†P−), (A3)

with the spin-projection operator

P± = 1
2 (1 ± isgn(qlB)γ 1γ 2). (A4)

In Eq. (A3), the subscript of /∂‖ means the parallel direction
along the magnetic field, i.e., /∂‖ ≡ γ 0∂0 + γ 3∂3. The LLL is
the ground state that is annihilated by the operator a and is
a spin eigenstate with the lower Zeeman energy projected by
P+. Therefore, the last term in Eq. (A3) vanishes for the LLL,
and we are left with the Lagrangian (1).

It is instructive to see the Landau levels explicitly. The
Klein-Gordon operator reads

(i /D + ml )(i /D − ml )ψ±
= −[

∂2
t − ∂2

z + (2a†a + 1 ∓ 1)|qlB| + m2
l

]
ψ±, (A5)
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where we defined the spin eigenstates ψ± = P±ψ . We read-
ily find the energy levels E2 = p2

z + (2n + 1 ± 1)|ql B| with
a non-negative integer n � 0 when the Klein-Gordon equa-
tion is satisfied by ψ±. Note that the dispersion relation for
the LLL, and thus the kinetic term in the Lagrangian (1), do
not depend on the magnetic-field strength B.

2. Heavy-fermion kinetic term

We also briefly summarize the derivation of the low-
energy heavy-fermion kinetic term in terms of the large-mass
expansion [126–128]. We decompose the heavy-fermion mo-
mentum as

pμ = mhv
μ + kμ, (A6)

where the four velocity, vμ = (v0, v), is normalized as
vμvμ = 1, and kμ is the residual momentum with a scale
much smaller than the heavy-fermion mass mh. We introduce
projection operators

Q± = 1
2 (1 ± /v), (A7)

with /v = γ μvμ. In the rest frame (v = 0), these operators
project out the particle and antiparticle states. The low-energy
excitation will be an eigenstate of Q± since the coupling be-
tween the particle and antiparticle states is highly suppressed
by the large mass.

One can organize a low-energy effective theory in terms
of the 1/mh expansion in such a way that there is no mix-
ing between the eigenstates of Q± [127,128]. To get the
leading-order term in the expansion, one can factorize the
heavy-fermion field � as

� = e−imhv
μxμei

/∂⊥
2mh �+

v + e+imhv
μxμei

/∂⊥
2mh �−

v

= e−imhv
μxμ

(
1 + i/∂⊥

2mh

)
�+

v

+ e+imhv
μxμ

(
1 + i/∂⊥

2mh

)
�−

v + O
(
m−2

h

)
. (A8)

In other words, one can define eigenstates of Q± as �±
v ≡

e−i
/∂⊥

2mh e±imhv
μxμQ±� that satisfy Q±�±

v = �±
v . The exponen-

tial factor works for the leading-order result with /∂⊥ ≡ (γ μ −
/vvμ)∂μ, and needs to be improved on an order-by-order basis
(see Refs. [127,128]). Multiplying the above expansion (A8)
by the Dirac operator, we obtain an expansion of the heavy-
fermion kinetic term

Lh ≡ �̄(i/∂ − mh)�

=
∑
c=±

c�̄c
v ( ivμ∂μ )�c

v + O
(
m−1

h

)
, (A9)

where we used identities

Q±Q± = Q±, Q±Q∓ = 0, Q±γ μQ± = ±vμQ±,

Q±γ μQ∓ = (γ μ − /vvμ)Q∓. (A10)

The rightmost side in Eq. (A9) is used in the Lagrangian (1)
as the low-energy heavy-fermion kinetic term.

3. Interaction Lagrangian

We examine a sequence of the terms generated from an
interaction Lagrangian that has the Lorentz and SU(N ) sym-
metries [43,47,49,158],

Lint = −G(ψ̄γ μT aψ )(�̄γμT a�), (A12)

where γ μ (μ = 0, 1, 2, 3) are the Dirac matrices, and T a (a =
1, 2, . . . , N2 − 1) are the generator matrices of the SU(N )
group. The light and heavy fermions, ψ and �, belong to
the fundamental representation of the SU(N ) symmetry. The
sums over μ and a are implicitly taken. Here, G > 0 is
the coupling constant. This is a simple analog of the NJL
interaction [34–37], where the interfermion interactions are
understood as the mimic of the gluon exchange interactions
between quarks in QCD.

The matrix structures in Eq. (A12) can be decomposed by
utilizing the Fierz transformations, i.e.,

(γ μ)αβ (γμ)γ δ = δαδδγβ + (iγ5)αδ (iγ5)γ β

− 1
2 (γ μ)αδ (γμ)γ β − 1

2 (γ μγ5)αδ (γμγ5)γ β,

(A13)

for the Dirac matrices and

(T a)i j (T
a)kl = N2 − 1

2N2
δilδk j − 1

N
(T a)il (T

a)k j, (A14)

for the SU(N ) generators. As we briefly discuss below (cf.
Refs. [47–49]), we identify the dominant terms, that are main-
tained in Eq. (1) in the main text, as the singlet channel δilδk j

in the SU(N ) generators. Then, we have a relation between
the coupling strengths, Ghl in Eq. (1) and G in Eq. (A12),
as Ghl/N = G(N2 − 1)/(2N2). As for the Dirac matrices, we
focus on the scalar δαδδγβ and pseudoscalar (iγ5)αδ (iγ5)γ β

terms, and potential realization of the vector and axial-
vector condensates in magnetic fields are not considered in
Eq. (1).

We note that the above singlet channel is the most dom-
inant one in the large N limit [47–49], where the mean-field
approximation can be justified.4 The other channel, that is, the
adjoint representation from the second term on the right-hand
side of Eq. (A14), is suppressed in comparison to the singlet
channel in the large N limit.

In addition to the “particle-antiparticle” channel (ψ�′�̄
and �̄�̄′ψ types) in Eq. (1), one can get the “particle-
particle” channels (ψ t�� and �t�tψ types) from Eq. (A12)
as interactions between the light and heavy fermions (see,
e.g., Ref. [159] for similar discussions in case of light-light
fermion interactions). Here �, �t (the transpose of �), �′, and
�̄′ = γ0�

′†γ0 (the complex conjugate of �′) are appropriate
combinations of the Dirac matrices resulting from the Fierz
transformations. These terms are also suppressed in the large
N limit.

4See, e.g., Refs. [121,122] for early works on the large N limit
applied to the Kondo effect and Ref. [33] for generalities.
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APPENDIX B: SOLUTIONS FOR GAP EQUATIONS

From Eq. (4) in the main text, the stationary conditions
∂�/∂M = 0 = ∂�/∂� lead to the gap equations

M

Gll
+ M + ml

2π
ρB ln � = 0,

�

Ghl
+ �

2π
ρB ln � = 0, (B1)

where

� = (M + ml )2 + 4|�|2
(
 +

√
(M + ml )2 + 4|�|2 + 
2)2

. (B2)

By solving these gap equations, we can determine M and �.

1. Without competition

We briefly investigate special cases where Ghl = 0 or
Gll = 0. According to the discussion around Eq. (5), we
find nonzero solutions for the gap equations at any coupling
strengths. When Ghl = 0 in the Lagrangian (1), the gap equa-
tion becomes the first form in Eq. (B1) with � = 0. In the
chiral limit ml = 0, we find an analytic solution (M > 0),

M = 


sinh
(

π
ρBGll

) → 2
e− π
ρBGll , (B3)

which approaches the rightmost side for a small value of Gll .
The chiral symmetry is always broken under a strong mag-
netic field and a nonzero coupling constant by the mechanism
of magnetic catalysis [18–21].

On the other hand, when Gll = 0 in the Lagrangian (1), the
gap equation becomes the second form of Eq. (B1) with M =
0. In the chiral limit, we find an analytic solution (� > 0),

� = 


2 sinh
(

π
ρBGhl

) → 
e− π
ρBGhl , (B4)

which approaches the rightmost side for a small value
of Ghl . This solution clearly indicates the occurrence of
the Kondo effect by a strong magnetic field. The novel
magnetically induced Kondo effect was previously suggested
also by a renormalization-group (RG) analysis [22] and fur-
ther analyzed by a conformal-field theory approach [52].
Our mean-field solution (B4) is consistent with the emergent
scale in the previous RG analysis [22] and determines the
magnitude of the Kondo condensate for the first time. The
magnetic-field dependence of � at Gll


2 = 1.0 is shown with
the blue dotted line in Fig. 1.

2. With competition

We also obtain analytic solutions in the presence of the
competition between the Kondo effect and the magnetic catal-
ysis with nonzero Ghl and Gll . We immediately notice that the
gap equations (B1) have a trivial solution � = 0. In this case,
M takes a nontrivial solution which is an extension of Eq. (B3)
with a nonzero ml . We call these solutions (M1,�1 = 0).
By eliminating ln � in Eq. (B1), one can find another set of
solutions that we call (M2,�2) and show in Eq. (6).
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