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Influence of a realistic multiorbital band structure on conducting domain
walls in perovskite ferroelectrics
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Domain wall morphologies in ferroelectrics are believed to be largely shaped by electrostatic forces. Here,
we show that for conducting domain walls, the morphology also depends on the details of the charge-carrier
band structure. For concreteness, we focus on transition-metal perovskites like BaTiO3 and SrTiO3. These have
a triplet of t2g orbitals attached to the Ti atoms that form the conduction bands when electron doped. We solve
a set of coupled equations—Landau-Ginzburg-Devonshire (LGD) equations for the polarization, tight-binding
Schrödinger equations for the electron bands, and Gauss’ law for the electric potential—to obtain polarization
and electron density profiles as a function of electron density. We find that at low electron densities, the electron
gas is pinned to the surfaces of the ferroelectric by a Kittel-like domain structure. As the electron density
increases, the domain wall evolves smoothly through a zigzag head-to-head structure, eventually becoming a
flat head-to-head domain wall at high density. We find that the Kittel-like morphology is protected by orbital
asymmetry at low electron densities, while at large electron densities the high density of states of the multiorbital
band structure provides effective screening of depolarizing fields and flattens the domain wall relative to
single-orbital models. Finally, we show that in the zigzag phase, the electron gas develops tails that extend
away from the domain wall, in contrast to naïve expectations.
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I. INTRODUCTION

Domain wall formation is almost unavoidable in ferro-
electric materials because of the strong depolarizing electric
fields generated by the spontaneous polarization. In recent
years, focus has shifted away from the macroscopically av-
eraged impact of domains and toward individual domain
walls themselves [1]. This shift is motivated by successful
demonstrations that domain walls may act as reconfigurable
nanodevices, for example, memristors [2], nonvolatile mem-
ory [3], or logic units [4]. Key to these developments was the
observation that domain walls may be made conducting in a
number of ferroelectric materials [5].

Domain wall conductivity is the result of the two-
dimensional (2D) bound charge density σDW that is intrinsic
to boundaries separating domains with different polarizations,
P1 and P2, namely,

σDW = (P1 − P2) · n̂1, (1)

where n̂1 is the outward normal unit vector for domain 1.
Because domain walls typically form 2D sheets, electric
fields due to σDW tend to be long-range and disruptive to
ferroelectricity. In most cases, neutral domain walls, with
σDW = 0, are energetically preferred. However, if compensat-
ing charges—such as itinerant electrons or holes, or mobile
oxygen vacancies—are available, then they may collect at
charged domain walls and screen long-range fields [5], thus
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stabilizing the charged domain walls. When the compensating
charges are mobile, the domains form 2D conducting channels
that may be manipulated by, for example, external electric
fields [6–10].

There were a number of early theory papers that pro-
posed mechanisms for the formation of charged domain walls
[11–14], but the field only took off much later, following the
observation of conduction along head-to-head domain walls in
BiFeO3 [15–18]. Since then, charged domain walls have been
observed in several proper [10,19–21] and improper [7,22–25]
ferroelectrics. From theory considerations, it was argued that
without extrinsic influences, charged domain walls in proper
ferroelectrics are energetically unstable [26,27]; that is, the
energy to produce electron-hole pairs in sufficient numbers to
screen σDW is larger than the energy gained by forming the
domain wall. Extrinsic stabilizing elements include surfaces
that pin the polarization, donor or acceptor impurities, and an
external charge reservoir; the latter two of these mechanisms
reduce the energetic cost to form a compensating electron or
hole gas [28].

Two other issues that have been discussed at some length
are the width of, and net charge on, conducting domain walls.
Gureev et al. [26] and Sturman et al. [27] predicted that the
conducting domain wall width is roughly an order of magni-
tude longer than that of neutral domain walls and depends on
the electron or hole effective mass. Conceptually, this point
is important as it shows that the compensating electron or
hole gas is an equal partner to the polarization in determining
domain wall properties. The net domain wall charge is also
important as it determines the response of the domain wall to
an applied field [29]. Naïvely, one expects a positively charged
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domain wall to move in the direction of an applied field;
however, the situation can be more subtle and Chapman et al.
[30] found in their simulations that a flat head-to-head domain
wall moves oppositely to the applied electric field, yielding an
apparent negative dielectric response.

All of the theoretical calculations reported above assumed
that the domain wall has a flat 2D geometry, and a rather
different picture emerges when this assumption is relaxed. In
Ref. [31], it was shown that in a thin ferroelectric film, there
is a smooth evolution from lamellar “Kittel” domains—that
is, alternating domains with opposite polarization, separated
by neutral domain walls—at vanishing electron density, to a
single flat head-to-head domain wall at high electron densities.
At intermediate electron densities, one obtains zigzag domain
walls. This evolution, and in particular the zigzag morphology,
is driven primarily by imperfect electrostatic screening of the
domain wall charge. Similar considerations led Marton et al.
[32] to show that randomly distributed charged impurities will
also generate a zigzag domain wall.

Here, we move beyond purely electrostatic considerations
and explore what happens when the compensating charge is
hosted by a realistic multiorbital band structure. Ref. [31]
assumed that σDW was compensated by itinerant electrons
with an isotropic effective mass. However, in transition-metal
perovskites, which have chemical formula ABO3, the con-
duction bands are formed from B-cation d orbitals with t2g

symmetry. This immediately raises two questions: how does
the band structure affect the shape of the domain walls, and
how does the domain wall shape affect the electron density in
the individual orbitals?

To address these questions, we adapt the model used in
Ref. [31] to include conduction bands derived from t2g or-
bitals. This model is based on perovskite bilayers in which
a 2D electron liquid (2DEL) forms spontaneously at the
interface between two otherwise-insulating perovskites. The
best-known example of this is the LaAlO3/SrTiO3 bilayer,
which becomes conducting when the LaAlO3 cap layer
exceeds a few monolayers in thickness [33,34] due to a
spontaneous electron transfer from the LaAlO3surface to the
SrTiO3 side of the interface [35]. These interfaces are interest-
ing for several reasons. First, SrTiO3can be made ferroelectric
by the substitution of Ca [36] or Ba [37] for Sr, or by the ap-
plication of strain [38,39]. Indeed, several groups have grown
ferroelectric SrTiO3interfaces [40–43] and, importantly, Tuvia
et al. [43] demonstrated hysteretic control of current through
their device. Second, the LaAlO3/SrTiO3system is tunable;
both the electron density and its spatial distribution can be
modified by gating, while the ferroelectric polarization can
be tuned by changing the chemical composition or strain.
Third, considerable effort has been made to control oxygen
defect formation during sample growth [44], so that most
of the 2DEL originates from the external charge reservoir,
namely the LaAlO3surface. Note, however, that although we
have chosen a specific model system, the results described
herein should apply broadly to electron-doped perovskite
ferroelectrics.

Section II describes the model and calculational approach
in detail. As in Ref. [31], we calculate the polarization,
electron density, and electric potential self-consistently by
solving a set of coupled equations: the LGD equations for the

FIG. 1. Illustration of the model bilayer. A ferroelectric substrate
(thickness Lz) forms a bilayer with a dielectric (thickness Lp). The
bilayer is sandwiched between capacitor plates. The dielectric is
insulating, while the ferroelectric is presumed to be electron-doped
by a combination of charge transfer from the dielectric and gating by
the capacitor plates. We assume translational invariance along the y
axis, and that the domain wall patterns have periodicity Lx in the x
direction.

polarization, the Schrödinger equation for the electron density,
and Gauss’ law for the potential. The novel feature of these
calculations is that the band structures are explicitly obtained
for three orbitals, dxy, dyz, and dxz, per unit cell via a tight-
binding Hamiltonian. Results of this model are reported in
Sec. III and a comparison to experiments is made in Sec. IV.
There, we focus on the effect of orbital anisotropy on the
self-consistently calculated domain wall structures, and on the
effect of domain wall structure on the orbital selectivity of
the resulting band structure. A summary and conclusions are
provided in Sec. V.

II. MODEL AND CALCULATIONS

As shown in Fig. 1, the model system comprises a bi-
layer, with a thin dielectric cap layer (thickness Lp) deposited
on a thicker ferroelectric substrate (thickness Lz). The en-
tire system is sandwiched between capacitor plates that are
maintained at a voltage �V . The system is motivated by
LaAlO3/SrTiO3bilayers, in which case the dielectric cap
layer represents the LaAlO3charge reservoir and the substrate
represents the SrTiO3film, which is presumed to be made
ferroelectric by doping or strain. The substrate shown in the
figure has lateral dimensions Lx × Ly, and we take periodic
boundary conditions along the x and y directions. In experi-
ments, the charge transfer from the reservoir can be modulated
by gating; rather than treat this explicitly, our calculations are
performed at fixed values of the 2D electron density, n2D. For
our calculations, then, the cap layer functions as a dielectric
that affects the solutions to Gauss’ law, but has no effect
either on the LGD or Schrödinger equations. It is known that
dielectric/ferroelectric bilayers, like that shown in Fig. 1, can
exhibit an enhanced, so-called negative, capacitance [45–48];
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this physics is present in the current calculations, but is not
directly relevant to our conclusions.

A. Polarization

The ferroelectric and the polar cap have total polarizations
at position r satisfying

Ptotal(r) = P(r) + Pback (r), (2)

where the ferroelectric polarization, P, arises from the fer-
roelectric distortion of the unit cell, and the background
polarization, Pback, comes from atomic distortions and nonfer-
roelectric phonons [49]. The background polarization is given
by

Pback (r) = ε0χ (z)E(r), (3)

where ε0 is the permittivity of free space, E is the electric field,
and χ (z) is the background dielectric susceptibility. We have

χ (z) =
{
χFE, 0 � z � Lz,

χD, Lz < z � Lz + Lp.
(4)

The ferroelectric polarization P is obtained by solving a
set of LGD equations under the assumption of translational
invariance along the y axis (cf. Fig. 1), so that the polarization
is a function of x and z only. Furthermore, we restrict the
polarization to lie in the x-z plane, so

P(r) = [Px(x, z), 0, Pz(x, z)]. (5)

We take periodic boundary conditions along the x direction,
P(x + Lx, z) = P(x, z), and set the derivatives of P to zero at
the top and bottom surfaces of the ferroelectric,

∂Px

∂z
(x, 0) = ∂Px

∂z
(x, Lz ) = 0, (6)

∂Pz

∂z
(x, 0) = ∂Pz

∂z
(x, Lz ) = 0. (7)

The ferroelectric polarization is obtained from a fourth-
order LGD free energy,

FP =
∫ Lx

0
dx

∫ Lz

0
dz
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g11
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2
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z

}
− 1

ε0
D · P, (8)

where D = ε0E + P is an electric displacement that contains
contributions from the free electrons in the substrate and
capacitor plates, and from the background polarization. Our
free energy equation does not contain any terms related to
the strain or tilt, which are sometimes included. Most of the
parameters used in Eq. (8) are for SrTiO3, and are given in
Table I. The parameters a1 > 0 and a3 < 0 are chosen so
that the spontaneous polarization preferentially aligns with
the z axis; this allows us to avoid spurious solutions with the
polarization aligned parallel to the surfaces.

TABLE I. Table of model parameters. LGD parameters are taken
from Appendix A in Ref. [50] for SrTiO3, with the exception of a3,
which is chosen to produce a ferroelectric instability. Tight-binding
parameters are taken from Shubnikov-de Haas measurements [51].
The background susceptibilities χD and χFE are for LaAlO3 and
SrTiO3, respectively, while the lattice constant a is for SrTiO3.

Parameter Value Units

a1 2 × 108 C−2m2N
a3 −1.6 × 108 C−2m2N
b 5.88 × 109 C−4m4N
b′ −2.94 × 109 C−4m4N
g11 2 × 10−10 C−2m6N
g44 2 × 10−10 C−2m2N
χD 25 —
χFE 4.5 —

t0 0 meV
t‖ 236 meV
t⊥ 35 meV

a (Lattice Constant) 0.395 nm
� (Grid Spacing) 1 nm
Lx 28 nm
Ly 28 nm
Lz 46 nm
Lp 5 nm

Minimizing the free energy with respect to Px and Pz at
fixed D, we obtain

δF
δPx

= Px

[
a1 + 1

ε0
+ b|P|2 + b′P2

z

]
− g11

(
∂2Px

∂x2

)

− g44

(
∂2Px

∂z2

)
− 1

ε0
Dx = 0, (9)

and

δF
δPz

= Pz

[
a3 + 1

ε0
+ b|P|2 + b′P2

x

]
− g44

(
∂2Pz

∂x2

)

− g11

(
∂2Pz

∂z2

)
− 1

ε0
Dz = 0, (10)

which are solved for Px and Pz. In practice, these equations are
solved on a discrete grid, with grid spacing � = 1 nm.

B. Schrödinger equation

The free-electron density is obtained from a three-orbital
tight-binding Hamiltonian that includes degenerate dxy, dyz,
and dxz orbitals; in cubic SrTiO3or BaTiO3, these orbitals
belong to the Ti atoms and make the dominant contribution
to the conduction band. We include only nearest-neighbor
hopping, and keep only the largest hopping matrix elements.
Furthermore, we ignore spin-orbit or polarization-dependent
contributions that mix the different orbital symmetries. Our
resulting Hamiltonian H is therefore block diagonal in the or-
bital type α = xy, yz, xz. Translational invariance along the y
axis allows us to Fourier transform the Hamiltonian along that
dimension, so that we have a mixed representation (ix, k, iz ),
with (ix, iz ) specifying a spatial location in the x-z plane and k
representing the wave vector along the y axis.
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We write the matrix elements of the tight-binding Hamil-
tonian Hα as

Hα
IJ (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tα
0 − eφI + 2tα

y cos(ka), ix = jx, iz = jz,

tα
x , ix = jx ± 1, iz = jz,

tα
z , ix = jx, iz = jz ± 1,

0, otherwise,
(11)

where φI is the electric potential at lattice site I , −e is the elec-
tron charge, a is the lattice constant, and (ix, iz ) and ( jx, jz ) are
the x and z coordinates for lattice points I and J , respectively.
The parameters and tα

0 and tα
w, w = {x, y, z}, are the onsite and

nearest-neighbor-hopping matrix elements. We assume that
the unit cell has cubic symmetry, so that

t xy
0 = t xz

0 = t yz
0 = t0. (12)

Cubic symmetry dictates that there are only two distinct
nearest-neighbor hopping matrix elements,

t xy
x = t xy

y = t yz
y = t yz

z = t xz
x = t xz

z = −t‖, (13)

t xy
z = t yz

x = t xz
y = −t⊥. (14)

Values for the tight-binding parameters are given in Table I.
The hopping matrix elements in Hα

IJ (k) couple t2g orbitals
belonging to neighboring unit cells, separated by a lattice con-
stant a ≈ 4 Å. Diagonalization of the Hamiltonian matrices
is, by far, the slowest step in these calculations. To study
physically interesting system sizes, therefore, we coarse-grain
the Hamiltonian on a grid, with grid points spaced by � = 1
nm. The coarse-graining process preserves the low-energy
spectrum and is exact in the limit of low electron densities.
We denote the grid points in the x-z plane by m = (mx, mz )
and n = (nx, nz ). The coarse-grained Hamiltonian is then

H̃α
mn(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−eφm − 2t̃α
x − 2t̃α

z − 2t̃α
y

−2tα
y

(
a2

�2

)
cos(k�), m = n,

−tα
x a2/�2, mx = nx ± 1, mz = nz,

−tα
z a2/�2, mx = nx, mz = nz ± 1,

0, otherwise,

(15)

where t̃α
w = tα

w(1 − a2/�2) and t0 = 0. We diagonalize this
matrix computationally to obtain the eigenenergies Eηkα and
eigenvectors Unη(kα), with band index η, for the free electrons
occupying each orbital type α and wave vector k.

We can then obtain the electron density at each grid point,

ne(nx, nz ) = 2

�3

∑
η,k,α

f (Emkα )|Umη(kα)|2, (16)

where the 2 comes from spin, �3 is the volume of a single
grid point, and f (ε) is the Fermi-Dirac function. We note that
calculations are performed at fixed electron density, which
means that the chemical potential μ must be obtained self-
consistently. We determine μ by requiring that the 2D electron
density is

n2D = 2

LxLy

∑
η,k,α

f (Eηkα ). (17)

To help stabilize the numerical calculations, we take tempera-
ture T = 10 K.

For purposes of comparison, we also present results for a
one-band isotropic model, identical to that used in Ref. [31].
In the isotropic model, the hopping matrix elements are t‖ =
t⊥ = h̄2/2ma2 = 244 meV, with m the bare electron mass and
a the lattice constant.

C. Electric potential

Given the electron density and polarization, we can cal-
culate the electric potential, φ(r) across the lattice using the
differential form of Gauss’ law,

−∇2φ = ρ(r)

ε0
, (18)

where ρ(r) is the sum of the free charge density ρ f (r) =
−ene(r), the bound charge density

ρb(r) = −∇ · P(r) − ∇ · Pback (r), (19)

and subject to the boundary conditions

φ(x, 0) = 0, (20)

φ(x, Lz + Lp) = �V. (21)

The electric field, E, is determined by

E(r) = − ∇φ(r). (22)

D. Numerical approach

In a single iterative loop, we first solve Eqs. (9) and (10)
to find Px and Pz for a fixed displacement D. We then nu-
merically diagonalize Eq. (15) to obtain the eigenvectors and
eigenenergies of the coarse-grained tight-binding Hamiltonian
for a fixed potential φ(mx, mz ). The chemical potential is then
determined from Eq. (17) for a fixed value of n2D, and the
local electron density is obtained from Eq. (16). Finally, we
solve Eqs. (18) and (22) for the electric potential and electric
field for fixed polarization and electron density. This cycle is
repeated until convergence is obtained.

In general, convergence is significantly more difficult to
achieve when free electrons are present in the lattice. We have
found that it is usually better to solve the LGD equations at
fixed D than fixed E; and we have used both Anderson mixing
and simple mixing of the polarization and electron density to
help with convergence.

III. RESULTS

A. Polarization and electron density

We have calculated the polarizations and electron densities
as a function of position for a range of n2D between 0 and 0.4
electrons per 2D unit cell. For reference, Hall measurements
typically report n2D ∼ 1–10 × 1013 cm−2 (0.016–0.16 per 2D
unit cell) for LaAlO3/SrTiO3bilayers [52], and n2D ∼ 3 ×
1014 cm−2 (0.5 per 2D unit cell) for GdTiO3/SrTiO3bilayers
[53]. Furthermore, we choose LGD parameters such that
the bulk polarization (neglecting depolarizing fields) is P0 =√−a3/b = 0.165 C/m2. This is large relative to the observed
polarization in Ca-doped SrTiO3 [54], but is consistent with
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FIG. 2. Polarization P(x, z) and electron density ne(x, z). Polarization results are shown for (a)–(f) the isotropic and (g)–(l) the three-orbital
anisotropic models for six values of the average 2D electron density, n2D. Arrows represent the orientation and magnitude of the polarization
vector, and the color represents the z component, Pz. The corresponding electron densities for (m)–(r) the isotropic and (s)–(x) the anisotropic
models are also shown. The two models are qualitatively similar, but have clear quantitative differences in the domain wall tilts and electron
spatial distributions.

compressively strained SrTiO3 [40]. We present results for
a fixed periodicity, Lx, of the domain wall pattern. This is
sufficient for us to explore the interplay between multiorbital
physics and domain-wall geometry. However, we expect the
optimal domain-wall periodicity to depend on both the thick-
ness of the film [55] and n2D [31].

Figure 2 shows results for both the anisotropic three-orbital
model and the isotropic one-band model (see Supplemental
Material [56] for complete results). When there are no free
electrons (n2D = 0), the polarization spontaneously breaks
up into oppositely polarized domains that are separated by
neutral domain walls with σDW = 0 [Figs. 2(a) and 2(g)].
These so-called Kittel domains minimize the depolarizing
field effects because the bound charge alternates sign along
the surfaces [Fig. 3(a)], and the electric fields are confined
to the surface region [Fig. 3(g)]. This leaves the bulk of the
ferroelectric isolated from the depolarizing fields.

As n2D increases, the positive ends of the domains—that
is, the ends toward which the polarization points—shrink
and move inwards from the top and bottom surfaces of the
ferroelectric. The inward motion is apparent even for n2D =
0.1, where the polarization clearly points inwards everywhere
along the surfaces. As the positive domain ends shrink, the
vertical domain walls tilt to form “arms” that connect the do-
main ends. The tilts are noticeably smaller for the anisotropic
three-orbital model [Figs. 2(h) and 2(i)] than for the isotropic
single-orbital model [Figs. 2(b) and 2(c)] when n2D � 0.15.

By n2D = 0.2, the positive domain ends have shrunk to
become vertices of a single zigzag domain wall. This is true
for both the isotropic and anisotropic models [Figs. 2(d) and
2(j)]. Thereafter, the domain wall vertices move inwards from
the ferroelectric surfaces as n2D increases. When n2D > 0.2,
the difference between the isotropic and anisotropic models
is stark: the isotropic model retains a pronounced zigzag
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FIG. 3. Total charge density and electric field profiles for the anisotropic model. (a)–(f) The total (bound plus free) charge density is plotted
as a function of position for six values of n2D. To facilitate comparison with Fig. 2, we plot ρ(x, z)/e. (g)–(l) The electric field profiles are
shown for the same n2D values; arrows represent the magnitude and direction of the electric field, and the colormap shows the z component.
Note that we have removed regions near the top and bottom surfaces of the ferroelectric, where the charge densities and electric fields can be
large and overwhelm the plots.

structure up to n2D = 0.4 [Figs. 2(e) and 2(f)], while the
anisotropic model rapidly approaches a flat head-to-head
configuration [Figs. 2(k) and 2(l)]. We conclude that the mul-
tiorbital band structure has a strong quantitative effect on the
domain wall morphology.

For the most part, the conduction electrons are bound to the
positive domain ends at low electron densities (n2D � 0.2),
and progressively spread out along the domain wall as it
becomes flatter [Figs. 2(m)–2(x)]. At high electron densities
(n2D = 0.4) the domain walls are saturated with electrons, and
the excess spills over to the surfaces [Figs. 2(r) and 2(x)].
This doping-dependence is true for both the isotropic and
anisotropic models, and is expected from electrostatic consid-
erations alone [31]. It is commonly assumed that conducting
domain walls are overall charge neutral, which requires that
the compensating electron density match the bound charge
density. Figure 3 shows that this is largely true: the total
charge density (free plus bound) is generally two orders of
magnitude smaller than the free or bound charge density
alone. The residual domain wall charge is always positive in
our calculations. Interestingly, Fig. 3 shows that as a result
of the residual charge distribution, the electric field is largely
confined to the surfaces for n2D � 0.2 and to the domain walls
for n2D > 0.2.

Although itinerant electrons screen the bound charge ef-
fectively in both models, Fig. 2 shows that the electrons are
much more tightly bound to the surfaces and domain walls
for the anisotropic model. This can be attributed to two dif-
ferences between the models. First, the isotropic conduction
band is derived from a single orbital per unit cell, while the
anisotropic model has three t2g orbitals per unit cell, each
of which can accommodate electrons. As a result, the Fermi

energy is lower in the anistropic model for a given n2D. Elec-
trons in the anistropic model therefore have a lower kinetic
energy and are more tightly bound.

Second, in the isotropic model, the conduction band effec-
tive mass is isotropic and equal to the bare electron mass m;
in the anisotropic model, each t2g band has a heavy axis with
effective mass m∗

⊥ ∼ 10m, and two light axes with m∗
‖ ≈ m.

In the bulk, cubic symmetry is preserved for the anisotropic
model because the t2g bands are related by point group op-
erations of the cubic lattice. However, surfaces and domain
walls both break the cubic symmetry, and therefore the t2g

orbital degeneracy. This leads to a so-called orbital selectiv-
ity, in which one band may be preferentially occupied over
the others. In the next section, we discuss how these fea-
tures of the multiorbital band structure affect the domain wall
evolution.

B. Influence of the multiorbital band structure

Orbital selectivity has been discussed at length in the con-
text of nonferroelectric LaAlO3/SrTiO3bilayers [57–59]. In
these systems, the interface breaks the cubic symmetry of the
SrTiO3substrate; electrons with dxy character are heavy along
the z axis, perpendicular to the interface, and are therefore
easily pinned to the interface by even weak confining poten-
tials. The lowest energy bands therefore have dxy character
and extend only a few unit cells into the substrate. Conversely,
electrons with dxz or dyz character are an order of magnitude
lighter along the z axis and extend much farther into the bulk.

A similar, although more nuanced, situation rises for the
ferroelectric case. Figure 4 shows orbitally resolved electron
densities along a pair of cuts through the ferroelectric films
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FIG. 4. Electron densities plotted for different orbitals types
along fixed x and z values. The first column is a plot of the z
component of the polarization [as in Figs. 2(h)–2(l)]. The black lines
show the cuts along which the electron densities are plotted. Columns
2 and 3 show the electron densities for each orbital type along z = 23
nm and x = 14 nm, respectively.

for a range of n2D. When n2D = 0.1 [Figs. 4(a)–4(c)], we
see that electrons are confined to the positive ends of the
Kittel domains, where they partially compensate the bound
charge [Fig. 4(c)]. As in the nonferroelectric case, there is a
noticeable orbital selectivity, with the dxy bands more highly
occupied and more tightly bound to the interface. This is
reflected in the band structure (Fig. 5), which shows that at
n2D = 0.1 the lowest-energy dxy bands (there is a degenerate
pair) lie ∼10 meV below a dense spectrum of dxy, dyz, and dxz

bands. These two lowest-energy bands correspond to the sur-
face states responsible for the orbital selectivity in Fig. 4(c).

We propose that these surface states, which are unique to
the anisotropic model, help stabilize the Kittel-like domain-
wall structure against tilting for n2D < 0.2. The key idea is
that the positive domain ends necessarily shrink as the domain
walls tilt away from vertical (cf. Fig. 2). As the domain ends
shrink, the surface electrons are confined to a smaller volume,
which raises their kinetic energy. There is thus an energetic
cost for the domain walls to tilt. This becomes less relevant as
n2D increases because the potential confining the electrons to
the surfaces becomes increasingly screened, which lowers the
cost to tilt the domain walls. While it is difficult to establish
cause-and-effect, we propose that the dxy surface states are the
key difference between the isotropic and anisotropic models
that differentiates the rate of domain-wall tilt at low n2D.
At sufficiently high electron densities, en2D = 0.20 ≈ P0, the

FIG. 5. Band structure of the anisotropic model. Results are
shown for (a), (c), (e) n2D = 0.1 and (b), (d), (f) n2D = 0.3. The red
dashed horizontal line indicates the chemical potential.

screening is sufficient that the surface electrons escape and the
domain wall takes on a zigzag structure that is similar to that
of the isotropic model.

Indeed, the dxy surface states are nearly gone by n2D = 0.2
[Figs. 4(d)–4(f)]. There is a small excess of dyz electrons
along the diagonal arms of the domain walls; however, orbital
selectivity is largely irrelevant once n2D � 0.2 [Figs. 4(d)–
4(l)]. This is evident in the band structure for n2D = 0.3,
where the lowest-energy bands for each orbital type are nearly
degenerate [Figs. 5(b), 5(d) and 5(f)]. We attribute the weak
orbital selectivity along the domain walls to the large domain
wall width, of order 10 nm, and shallow confining potential,
of order 30 meV at n2D = 0.2 and smaller at higher n2D. In
contrast, electrons that spill over to the surfaces at large n2D

have nearly complete dxy character [Figs. 4(i) and 4(l)].
As remarked above, the largest differences in the domain

wall morphologies between the isotropic and anisotropic mod-
els occur for n2D > 0.2 [cf. Fig. 2]. Here, the domain walls
retain their zigzag structure for the isotropic model but quickly
become flat for the anisotropic one. We believe the difference
is simply that the anisotropic model, with three orbitals per
unit cell, has a much larger density of states and screens
depolarizing electric fields more effectively than the isotropic
model. In the limit of perfect screening, the domain wall
should be perfectly flat.

C. Domain wall neutrality

We return to the issue of domain-wall charge neutrality. As
mentioned above, Fig. 3 shows that the cores of the domain
walls have a net positive residual charge, which is at most
a few percent of the bound or free charge density. Closer
inspection, however, reveals that the residual charge density
does not fall to zero away from the domain walls, but that there
is a weak background charge density spread throughout the
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ferroelectric substrate. This is especially obvious in Fig. 4(f),
where the electron density has a long tail that extends away
from the domain wall.

To make sense of this, it is useful to compare our 2D
solutions for P(x, z) with the simple 1D structure of a flat
head-to-head domain wall, for which the polarization is
approximately

Pz(z) = −Psurf tanh

(
z − z0

d

)
, (23)

where z0 is the domain wall location, d is a length scale
that depends on LGD parameters and the electron effective
mass [27], and where Psurf is the asymptotic value of the
polarization at the surface of the ferroelectric film. The 2D
bound charge density on the domain wall is σDW = 2Psurf . To
a good approximation,

Psurf =
{

1
2 en2D, en2D < 2P0,

P0, en2D > 2P0,
(24)

where P0 is the saturated bulk polarization from the LGD
equation in the absence of depolarizing fields, namely,

P0 =
√−a3

b
. (25)

The first of the two expressions in Eq. (24) is obtained by
insisting that the domain wall accommodate all of the itinerant
electrons and be charge-neutral, so that σDW = en2D. The sec-
ond expression in Eq. (24) applies when the electron density
exceeds what can be accommodated on the domain wall. In
this case, the polarization saturates at P0, the wall accom-
modates a 2D electron density nDW = 2P0/e < n2D, and the
excess electrons spill over to the surfaces of the ferroelectric.
[Equation (24) ignores the fact that the surface electrons will
generally modify the surface polarization.] For both cases
in Eq. (24), the interior of the ferroelectric film is overall
charge-neutral.

A similar analysis of Psurf can be made for the 2D case
at �V = 0. We start by writing the expression for the total
charge in the ferroelectric substrate as

Qtotal = −e
∫

d3r n(r) −
∫

d3r ∇ · P(r)

= −enDWLxLy −
∮

dA P · n̂, (26)

where n̂ is the outward normal vector from the substrate. The
integrals are over the interior volume of the ferroelectric, and
therefore do not include the surface charges (free and bound).
The 2D electron density nDW includes both the itinerant elec-
trons bound to the domain walls and the dilute electron gas
that extends away from the domain walls.

Keeping in mind that there are both top and bottom sur-
faces and that, except at n2D = 0, the polarization points
inwards everywhere along these surfaces, we can generalize
the previous definition to obtain the average (inwards) surface
polarization,

Psurf = − 1

2LxLy

∮
dA P · n̂. (27)

FIG. 6. The maximum polarization Pmax, the average surface po-
larization Psurf , and the straight line P = 1

2 en2D are plotted versus n2D

for the anisotropic model.

Then, as before, overall neutrality of the substrate (i.e.,
Qtotal = 0) requires Psurf = 1

2 enDW. Note, however, that unlike
for the flat domain wall, there is no expectation that Psurf is
also the maximum value of the polarization.

Figure 6 shows a plot of Psurf from Eq. (27) versus n2D.
For comparison, we also plot 1

2 en2D, which is the predicted
value of Psurf when all electrons are accommodated by the
domain wall. These two agree very well when n2D � 0.3, but
deviate when electrons spill over to the surfaces at n2D = 0.4.
In this regard, the physics of the domain wall patterns shown
in Fig. 2, are consistent with Eq. (24), which was obtained for
the simple 1D case.

Figure 6 also shows Pmax, the maximum magnitude of the
polarization within the substrate. Unlike in the 1D case, this is
independent of n2D at low electron densities, and is essentially
equal to the value P0 = 0.165 C/m2 that one obtains from
Eq. (25) for the model parameters in Table I. Furthermore,
one can see from Fig. 2 that, for n2D � 0.2, the maximum
polarization occurs near the center of the ferroelectric, rather
than at the surfaces.

It is only when the domain walls are nearly flat, i.e., n2D >

0.2, that we regain the behavior of the 1D case: that is, the
polarization is a maximum at the surfaces, so Pmax = Psurf .
Interestingly, when n2D = 0.4 our calculations predict that the
polarization is enhanced at the surfaces, namely Psurf > P0.
Similar results were found previously in 1D models [30], and
can be attributed to the electrons that spill over to the surfaces
at high electron densities. These generate electric fields that
must be screened by polarization gradients. This is an intrigu-
ing mechanism for generating surface-enhanced polarization;
however, we caution that there are also short-range electron-
lattice interactions that are neglected in our LGD model that
will tend to suppress the polarization.

In summary, we have identified two distinct regimes in
this section. The first corresponds to electron densities n2D �
2P0/e, and is likely relevant for most electron-doped ferro-
electrics. In this regime 1D (flat) and 2D (zigzag) domain
walls are quite different. In particular, in the 2D case the
maximum polarization does not depend on the requirement
for charge neutrality in the ferroelectric, but is simply equal to
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FIG. 7. Voltage-dependence of the polarization and electron density for n2D = 0.15. Results are for (a)–(e) the z-component of the
polarization and (g)–(k) the electron densities.

P0. However, like the 1D case, the average surface polarization
is limited by overall charge neutrality requirements, and to a
good approximation satisfies Psurf = 1

2 en2D.
The second regime corresponds to electron densities n2D �

2P0/e, and may be relevant to oxide interfaces with weakly
ferroelectric substrates—for example Ca-doped or Ba-doped
SrTiO3with P0 ∼ 0.03 C/m2—and en2D ∼ 0.1 C/m2. In this
case, domain walls approach the ideal flat head-to-head struc-
ture and can be largely understood within approximate 1D
models.

D. Dependence on bias voltage

In Secs. III A and III C, we showed that the domain walls
are approximately neutral, but have a positive residual charge
density that is two orders of magnitude smaller than the bound
charge density σDW alone. While small, this residual charge
is important as it allows the wall to be manipulated by an
external field. This field is provided by a bias voltage, �V ,
applied between the capacitor plates shown in Fig. 1, with
�V > 0 implying that the top plate is at a higher potential.

Figure 7 shows the polarization and total free charge as a
function of bias voltage for the case n2D = 0.15. We observe
that the domain wall moves toward regions of lower potential,
as might be expected given its net positive charge. This is con-
sistent with the voltage dependence found for zigzag domain
walls in the isotropic model [31], but is the opposite of what
was obtained previously for head-to-head domain walls with
an ideal flat geometry (i.e. with translational invariance in the
x and y directions), which were found to move against the ap-
plied voltage [30]. The discrepancy between two predictions
remains to be explained.

IV. DISCUSSION

Here, we discuss the relevance of our calculations to
recent experiments. The system described in this work is

modeled on the well-known LaAlO3/SrTiO3bilayers, with the
SrTiO3made ferroelectric. However, to make a direct com-
parison to existing experiments, we must note that there is
an intrinsic voltage drop across the LaAlO3layer that is not
treated explicitly in our calculations. This voltage drop results
from both the polarity of the LaAlO3unit cell, as it is typically
grown, and of the electron transfer to the SrTiO3interface. To
make a precise statement, one needs to know details of the
donor states on the LaAlO3surface. However, it is reasonable
to guess that the intrinsic bias voltage, �V0, is a substantial
fraction of the LaAlO3band gap, i.e. of order �V0 ∼ −2 V.

As we see from Fig. 7, a negative bias voltage draws
electrons toward the top surface and tends to polarize the
substrate upwards. There remains, however, a thin layer im-
mediately adjacent to the interface with nearly vanishing
polarization. In our model, therefore, the native state of
LaAlO3/SrTiO3interfaces is one in which the interface is not
representative of the bulk. We emphasize that this picture
applies when en2D < 2P0; for larger electron densities, some
electrons will spill over from the domain wall to the interface
and create a permanent conducting layer there.

The results in Fig. 7 are likely relevant to cases where fer-
roelectricity is induced by strain. In Ref. [40], compressively
strained interfaces had electron densities en2D � 0.16 C/m2,
while density functional theory (DFT) predicted a substrate
polarization P0 = 0.18 C/m2, which places this system in
the range en2D < 2P0. While no direct measurements of the
polarization were made, density functional calculations found
that it points away from the interface, into the substrate. This
is different from what we find. However, the calculations
in Ref. [40] were limited to 5 unit cells of SrTiO3and are
therefore unable to capture domain wall structures like those
shown in Fig. 7. Our results suggest that the compressively
strained LaAlO3/SrTiO3system deserves further experimental
study.
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The experiments of Tuvia et al. [43] are also interesting
because they showed strong hysteresis in the sheet resistance
in their device as a function of gate voltage. In this case, the
SrTiO3substrate was made ferroelectric by Ca-doping, which
produced a polarization of order 0.03 C/m2, and relatively low
carrier densities with en2D ∼ 0.02 C/m2. These experiments
are therefore also in the regime en2D < 2P0, and should there-
fore show similar physics as in Fig. 7. A complication is that
the polarization axis for Ca-doped SrTiO3lies along the 〈110〉
cubic axes, so that head-to-head domain walls will form at
45◦ angles relative to the cubic crystalline axes. Indeed, Tuvia
et al. observed evidence of 1D conducting channels along the
〈110〉 directions, which they attributed to structural domain
walls associated with octahedral tilts. We suggest that these
might, in fact, be charged domain walls.

Although the model used in this work is motivated by oxide
interfaces, the physics is general. Indeed, zigzag head-to-head
or tail-to-tail domain walls have been experimentally observed
in established ferroelectrics, such as strained BaTiO3 [60].
As found here and in previous simulations [31,32], zigzag
charged domain walls are expected to arise naturally in the
presence of compensating charges. Based on the results shown
here, we expect that zigzag domain walls will have a lower
itinerant carrier density than the straight walls, and that the
itinerant carrier density should be largest at the vertices of
the zigzag domain walls. This is in-line with predictions from
Eliseev et al. [61] regarding tilted charged domain walls.

V. CONCLUSION

In this work, we explored the domain wall structure for
an electron-doped ferroelectric film. Our simulations were for
thin (46-nm-thick) films, so that both surface and bulk effects
played a role on the domain structure. We focused specifically
on transition-metal perokvskites, such as BaTiO3 or SrTiO3,
for which the conduction bands are formed from a triplet of t2g

orbitals. By solving coupled LGD and Schrödinger equations,

we were able to explore the role of the multiorbital structure in
determining both the domain-wall shape and the conduction-
band structure.

We found that the general trend with increasing electron
density n2D is essentially the same as reported in Ref. [31].
When n2D = 0, the ferroelectric breaks up into Kittel domains,
separated by neutral 180◦ domain walls. At low electron den-
sities, the Kittel domain structure is preserved, with electrons
migrating to the positive ends of the domains at the top and
bottom surfaces of the film. With increasing n2D, the domain
structure evolves continuously through a zigzag head-to-head
structure, and finally to a flat charged domain wall.

The main novel feature of the current work is that the
zigzag domain wall is less stable in the multiorbital case than
in a single-orbital case. At low n2D, we find that charged
domain wall arms form at higher electron densities than in
the single-orbital case. We attribute this to an orbital selec-
tivity that tightly confines electrons with dxy symmetry to the
surfaces, and prevents them from migrating to the connecting
arms. Since charged domain walls require a compensating
electron gas, the formation of arms via tilting is suppressed
at low n2D. At high n2D, the domain wall evolves much more
quickly toward a flat geometry in the multiorbital case than
in the single-orbital case. We attribute this to the high density
of states in the multiorbital case, which enhances screening
of the depolarizing fields. Notably, there is no evidence of
significant orbital selectivity along the domain walls. Overall,
the zigzag morphology occupies a smaller range of n2D values
in the multiorbital case.
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