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Emergent Dirac fermions provide the starting point for understanding the plethora of novel condensed matter
phases. The nature of the associated phases and phase transitions crucially depends on both the emergent
symmetries as well as the implementation of the microscopic ones on the low-energy Dirac fermions. Here,
we show that j = 3/2 electrons in spin-orbit coupled materials on honeycomb lattice can give rise to SU(8)
symmetric Dirac semimetals with symmetry implementation very different from that of graphene. This nontrivial
embedding of the microscopic symmetries in the low energy is reflected in the nature of phases proximate to the
Dirac semimetal. Such phases can arise from finite short-range electron-electron interactions. In particular, we
identify 24 such phases—divided into three classes—and their low-energy properties obtained by condensing
particle-number conserving fermion bilinears that break very different microscopic symmetries and/or are
topologically protected by symmetries. The latter includes interesting generalizations of quantum spin-Hall
phases. Remarkably some of the resultant phases still support a subset of gapless fermions—protected by a
subgroup of SU(8)—resulting in interesting density wave semimetals. Near the phase transitions to such density
wave semimetals, the surviving gapless fermions strongly interact with the bosonic order parameter field and
give rise to novel quantum critical points. Our study is applicable to a wide class of d1 and d3 transition metals
with strong spin-orbit coupling and predicts that such materials can harbor a very rich interplay of symmetries
and competing interactions in the intermediate correlation regime.
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I. INTRODUCTION

Massless Dirac fermions arise in a variety of condensed
matter systems [1,2]. Perhaps the most well-known is the
recently studied—both experimentally and theoretically—
example of monolayer graphene [3–11] where such Dirac
fermions arise as a low-energy limit of electrons hopping on
the honeycomb lattice. More generally such Dirac fermions
may arise in a variety of other two and three dimensional
lattices [1,12–14] relevant for several materials including or-
ganic semiconductors like α-(BEDT-TTF)2I3 [14–16], the
dx2−y2 -wave superconductor in cuprates [17–21], Dirac and
Weyl semimetals [22,23], and surface of 3D topological
insulators [24–29]. These low-energy Dirac fermions have in-
delible signatures in a plethora of low-energy experiments of
these candidate materials as is evident in the integer quantum
Hall effect [5,30] as well as other spectroscopic and transport
properties [9,31–35] of monolayer graphene, surface transport
of 3D topological insulators [36], or spectroscopy of d-wave
superconductors [17,18].

Dirac fermions also arise in a somewhat different context
as low-energy theories of certain quantum spin liquids (QSL).
Indeed in U(1) Dirac QSLs, low-energy fermionic spinons—
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minimally coupled to an emergent U(1) gauge field—have
free Dirac dispersion with enhanced symmetries at low en-
ergies within parton mean-field theories [37]. While in this
case of QED3, the fluctuations of the gauge field ultimately
lead to the destruction of the quasi-particles [37–44], the
proximate ordered phases can be obtained by condensing
appropriate spinon bilinears that gap out the Dirac spinons.
Also, such effective Dirac theories, with or without dynamic
gauge fields have also been recently discussed in context of
(2 + 1)-dimensional fermionic particle-vortex dualities em-
anating out of conjectures of Dirac composite fermions in
half-filled Landau level in quantum Hall systems [45].

An equally important question pertains to the nature of the
different phases obtained [46] upon gapping out the Dirac
fermions via short-ranged four-fermion interactions/other
bosonic fields or via external perturbations such as originating
from substrate effects in graphene [47]. For the former, a
typical effect of such interactions is to condense a fermion-
bilinear that dynamically generates mass for the gapless Dirac
fermions for a finite strength of the interaction. The nature
of the resultant gapped phases1 [37,46,48–50] as well as the
theory of the associated phase transition from the proximate
Dirac semimetal via Gross-Neveu-Yukawa [46,51–54] field
theories have received considerable attention in a wide array

1This phase can have other gapless mode such as Goldstone boson
if a continuous symmetry is broken.
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(a) (b)

FIG. 1. (a) Splitting of the d-orbitals due to crystal field and SOC. (b) Edge-sharing octahedra forming a honeycomb lattice. As elaborated
in the main text and in Appendix A 2, the honeycomb lattice lies in the [111] plane of the Cartesian coordinate system whose projections are
denoted by X, Y , and Z .

of condensed matter settings and allows for systematic under-
standing of novel quantum phase transitions including Landau
forbidden deconfined quantum criticality [55,56].

A central aspect of the above diverse physics is the im-
plementation of microscopic symmetries on the low-energy
Dirac fermions. These ultraviolet (UV) symmetries typically
consist of lattice symmetries, time reversal as well as possi-
ble spin-rotation symmetries of the electrons occupying the
underlying atomic orbitals. Material-dependent microscopic
energetics allow for different implementations of these UV
symmetries on the underlying low-energy Dirac fermions
opening up avenues to probe the Dirac semimetal [9] as well
as stabilize novel proximate phases. In regards to the latter,
masses that preserve microscopic symmetries, but gap out
the fermions, have recently provided crucial insights in the
development of the theory of symmetry-protected topological
phases (SPTs) [57,58]. In a large class of fermionic SPTs,
this has been made possible via the interplay of atomic spin-
orbit coupling [59] and electron correlations that allow for
such nontrivial implementation of usual condensed matter
symmetries on the low-energy degrees of freedom. Central
to our interest here is the possibility of realising a new class
of spin-orbitally coupled Dirac fermions such that the UV
symmetries are implemented in a novel way allowing for
new material platforms for the interplay of symmetries and
interactions. What, then, are the nature of the gapped phases
in these spin-orbit coupled two-dimensional Dirac materials?

In this paper, we present a new material-relevant platform
for realizing spin-orbit (SO)-assisted SU(8) Dirac fermions
in two spatial dimensions and discuss a plethora of rich
phases proximate to such a Dirac semimetal. Somewhat coun-
terintuitively, the underlying microscopics involving strong
spin-orbit coupling (SOC), octahedral crystal field effect on
d orbitals, and hopping pathways can lead to a large sym-
metry enhancement resulting in gapless Dirac semimetal for
noninteracting electrons with an emergent SU(8) symmetry at
low energy or infrared (IR). This can be realized, for example,
in systems containing transition metal ions with strong SOC
in d1 electronic configuration on a honeycomb lattice in an
edge-sharing octahedral motif [see Fig. 1(b)], which leads to a
quarter filled j = 3/2 atomic orbitals as low-energy electronic
degree of freedom. This lattice is fairly common in the context
of honeycomb Iridates as well as α-RuCl3 where the transition

metal ion has a d5 configuration leading to j = 1/2 moments
with possible relevance to Kitaev QSLs. A much more rel-
evant material in the same class, for the present purpose, is
ZrCl3 where Zr3+ is in a 4d1 configuration. Our calculations,
however, are quite general and show that generally interesting
low-energy physics can emerge in a relevant parameter regime
for d1 systems and its particle-hole conjugate d3, which we
expect will be synthesized in the near future.

The low-energy SU(8) Dirac fermions—described by a
free Dirac action of NF = 4 flavors of four-component Dirac
fermions (1)—obtained here fundamentally differ from a large
flavor/spin generalization of graphene in terms of the im-
plementation of lattice transformations which, due to strong
SOC, is intertwined with the spin rotations. This is reflected
in the low-energy theory via the transformation of the Dirac
modes under various lattice symmetries. A direct fallout of
this nontrivial symmetry implementation is observed in the
phases that are proximate to the SU(8) Dirac semimetal and
can be obtained from it for finite electron-electron interactions
and/or additional hopping perturbations via breaking of the
SU(8) symmetry by condensing various fermion bilinears.
In this work, we study the 64 particle-hole bilinears (i.e.,
bilinears that do not carry a net electronic charge) consisting
of the SU(8) singlet and the 63-dimensional adjoint multiplet.
This adjoint multiplet is further broken down into singlets,
doublets, and triplets by the UV symmetry group and corre-
sponds to different ordered phases. For the present symmetry
realization, we find that the 64 bilinears result in 24 different
phases proximate to the SU(8) Dirac semimetal.

Typically condensation of the bilinears gaps out the single-
fermion spectrum resulting in a broken symmetry phase with
a single-fermion gap. We show several examples of such
gapped broken symmetry insulators, typically with differ-
ent spin/charge modulations. In addition, this work shows
interesting instances where the condensate leaves intact a
subset of the gapless Dirac fermions which describe vari-
ous types of spin density wave semimetals. Notably, while
the bilinears necessarily break the IR symmetry of the free
Dirac theory– the SU(8) and parity or time reversal, they
may still be invariant under all or some microscopic/UV
symmetry transformations. Indeed, the classification of such
masses that are allowed by microscopic symmetries and gap
out the fermions, results in SPTs with gapped fermionic
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spectrum in the bulk and gapless edges whose low-energy
bulk theory is given by various Chern-Simons actions that
characterize the appropriate quantized Hall response of such
insulators. In the present context, we find several such
interaction-driven SPTs, variously dubbed as topological Mott
insulators [60,61] both in the presence and absence of time-
reversal symmetry. These include interesting generalizations
of the quantum spin-Hall phases as well as newer ones
such as the quantum spin-quadrupole Hall phase, with the
latter being odd under time reversal, unlike the former. A
more subtle version realized in the present case includes a
ferro spin-quadrupole ordered insulator with spin-octupole
filtered edge currents (Sec. VIII A 1) in addition to a ferro
spin-octupole ordered insulator with anomalous charge quan-
tum Hall effect (Sec. VIII A 2). These anomalous fermionic
masses, along with the conventional (microscopic) symmetry-
breaking ones—made possible by nontrivial implementation
of UV symmetries on the Dirac fermions—provide a rich
phase diagram for the phases and associated phase transitions
proximate to the SO coupled SU(8) Dirac semimetal.

The classification of the bilinears naturally opens the
floodgate of questions regarding the nature of concomitant
quantum transitions primarily out of the Dirac semimetal into
one of the 24 symmetry-broken phases. As mentioned above,
these transitions occur at a finite value of the short-range
four fermion interactions [Eq. (39)]. For continuous phase
transitions, the resultant Gross-Neveu-Yukawa type critical
theories are obtained by decoupling the four-fermion interac-
tion along a particular bilinear channel resulting in coupling
between the Dirac fermions with the bosonic order parameter
corresponding to the fermion bilinear which, in turn, gain dy-
namics on integrating out the higher energy fermions [1,62].
The properties of such critical points when the fermions are
gapped out across the transition can be understood within var-
ious renormalization group schemes such as 3 − ε expansions
[62] or large Nf expansions [54]. We shall encounter several
possible examples of such transitions and mention some of the
expected fallouts in respective places while the details will be
taken up elsewhere. A particular class of transition worth men-
tioning involves the possibility of gapping out only a subset of
fermions across the transition, typically resulting in density-
wave semimetals of various types. Such transitions between
two different semimetals serve as examples of (semi)metallic
criticality, which have been of recent interest [63,64].

A more subtle structure in the phase diagram arises in the
form of unnecessary phase transitions [65] or more precisely,
unnecessary multicritical points. These are observed in two
or more lattice triplets whose components are made up of
incompatible mass matrices (i.e., they do not mutually anti-
commute). For such a triplet, isolated points of gaplessness
(see Fig. 8) occur on a 2-sphere denoting the mass manifold
for the triplet. These isolated gapless points denote unneces-
sary multicritical points since any two generic gapped points
on this sphere can also be connected entirely by avoiding
these gapless isolated points and hence avoiding the transi-
tion altogether. Such unnecessary multicritical points can be
understood as a fallout of the particular embedding of the
microscopic symmetries in the emergent SU(8) (see Fig. 9).

Finally, the bilinears corresponding to different order pa-
rameters may carry fermionic modes at their topological

defects [48,61,66]. The simplest is the gapless chiral edge
fermions associated with the domain walls of the Integer
Chern insulator or the anomalous Hall insulator. These lead
to Chern-Simons terms in the action once the fermions are
integrated out in the gapped phase and account for the gapless
edge modes. In addition, we also find a slew of generalized
quantum spin-Hall insulators with edge/domain walls carry-
ing gapless fermion modes captured by mutual Chern-Simons
terms. The above analysis is easily extended to other topolog-
ical defects including vortices and skyrmions. In particular,
for the skyrmions of a triplet quantum spin-octupole order pa-
rameter, we find the corresponding skyrmions are bosonic and
carry four units of electronic charge. Thus condensing such
skyrmions naturally gives rise to a charge-4e superconductor.

Considering the length and the number of results that we
present in this work, we start with an overview of the results
that summarizes the work and helps the reader navigate the
text.

II. OVERVIEW OF THE RESULTS

The focus of our work is crystalline systems on a honey-
comb lattice formed out of edge-sharing octahedra [Fig. 1(b)]
where the electronically active transition metal ions, with
strong atomic SOC, sit at the centres of such octahedra. Such
structures are quite common and occur in a several stacked
SOC magnets of recent interest such as the honeycomb iri-
dates A2IrO3 (A=Na, Li) [67–69], and ruthenates α-RuCl3

[70–73]. In this work, we focus on such honeycomb system
where the j = 3/2 electronic orbitals [Fig. 1(a)] form the
low-energy manifold and in particular with a single electron
(d1 configuration) in the j = 3/2 orbitals. An example of such
a situation is α-ZrCl3 [74–76] where Cl− forms the edge shar-
ing octahedral network with a Zr3+– in d1 configuration—sits
and gives rise to a quarter filled j = 3/2 system. While the
fate of the low-energy electronic phase of ZrCl3 is still to
be settled [76,77], we expect that a large number of such
materials exist whose physics is governed by various regimes
of electronic correlations. Our analysis will be applicable to
the whole class of such materials with j = 3/2 orbitals in d1

(and d3, by particle-hole symmetry) configuration.

A. Spin-orbit coupled SU(8) Dirac semimetal

The material set-up consists of the honeycomb system with
electrons occupying the j = 3/2 atomic orbitals [Eq. (6)]
and at quarter filling (i.e., d1 configuration) as detailed in
Sec. III. The hopping Hamiltonian accounting for the electron
hopping via the ligands that form the octahedra [Eq. (9)],
introduced in Ref. [76], is—in an appropriately rotated local
basis [Eq. (17)]—nothing but four copies of nearest neighbor
hopping model on a honeycomb lattice in π flux at 1/4th
filling [Eq. (18)]. The four copies stem from the four j = 3/2
atomic orbitals, although the symmetry is enhanced to SU(4).
On solving this Hamiltonian we obtain two valleys [Eq. (21)]
of Dirac band-touching at the 1/4th filling (Fig. 4). Note that
these Dirac points, unlike graphene, are not at the Brillouin
zone (BZ) corners, but at locations inside the magnetic BZ as
shown in Fig. 4 with momenta given by Eq. (21).
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The low-energy theory takes the canonical Dirac form with
the (Euclidean) Lagrangian density [78]

L0 = vF

NF∑
f =1

χ̄ f (r)(−i/∂ )χ f (r) (1)

and the corresponding Hamiltonian is given by Eq. (23). Here,
/∂ ≡∑2

i=0 γi∂i with γ 0, γ 1 and γ 2 being 4 × 4 matrices [see
Eq. (27)] that generate an Euclidean Clifford algebra, i.e.,
{γμ, γν} = 2δμν and vF is the velocity of the Dirac fermions.
χ f denotes four-component Dirac fermions [Eq. (24)] with
NF = 4 flavors (i.e., f = 1, 2, . . . , NF ) with χ̄ f = iχ†

f γ0. The
four components of each χ f are given by

χ f στ , (2)

where σ = 1, 2 corresponds to the two bands that touch at the
Dirac points and τ = ± are the two Dirac valleys/nodes.

The free Dirac theory [Eq. (1)] has a very large internal
SU(2NF ) symmetry in addition to the usual symmetries of the
Dirac theory—emergent Lorentz transformation and continu-
ous translations as well as discrete charge conjugation, parity
(reflection in two dimension [79]) and time reversal. In the
present case, the emergent SU(8) symmetry is a combination
of the SU(4) flavor symmetry of the hopping model and the
emergent chiral SU(2) symmetry with the latter being similar
to spinless graphene [48].

This IR symmetry is, of course, emergent and much larger
than the microscopic/UV symmetries of the lattice theory.
In various candidate materials, different energy scales of the
atomic orbitals provide for different microscopic symmetry
groups which are then embedded within the larger IR sym-
metry group of the Dirac theory. Indeed, in the present case,
the strong SOC resulting in the j = 3/2 atomic orbitals result
in an implementation of the honeycomb lattice symmetries
on the resultant Dirac fermions, distinct from graphene. In
particular, in the present case, the effect of SOC is manifested
in the symmetry transformation of the χ spinors via mixing
of the SU(4) flavors under lattice transformation [Table V and
Eq. (38)]. This difference in embedding, coupled with the
difference in the location of the Dirac points, reflects in the
properties of the present SO-coupled Dirac semimetal and its
proximate phases that are much richer than a larger NF flavor
mono-layer graphene.

B. Phases proximate to the SU(8) Dirac semimetal

The emergent SU(8) and relativistic invariance of the low-
energy theory indicates that a large number of correlation
functions decay identically at long distances. These corre-
lation functions correspond to a wide set of very different
phases as far as the microscopic symmetry breaking is con-
cerned [37] and adding four-fermion interactions can lead to
spontaneously symmetry broken and/or symmetry-protected
topological phases proximate to the Dirac semimetal by fa-
voring one of the channels.

The Dirac semimetal is perturbatively stable to short-range
four-fermion interactions [Eq. (39)]. However, as the strength
of the four-fermion term is increased it can favor the conden-
sation of a particle-hole fermion bilinear [Eq. (40)]

〈χ̄ f στχ f ′σ ′τ ′ 〉 �= 0 (3)

that breaks the SU(8) symmetry spontaneously. There are 64
such bilinears divided into a SU(8) scalar

−i〈χ̄χ〉 (4)

and the 63-fold adjoint multiplet of SU(8) [also given in
Eq. (42)]

−i〈χ̄Paχ〉, a = 1, . . . , 63. (5)

and Pa being the SU(8) generators [Eq. (29)] obtained by
combining the 15 generators of flavor SU(4), �i [defined
below Eq. (10)], and three generators of chiral SU(2), ζ j

[Eq. (28)], along with their respective identities.
Mean-field decomposition (exact in the limit NF → ∞

[53,80]) of the four-fermion interactions into the bilinears
[Eq. (41)] generically lead to fully gapping of the Dirac
fermions resulting in a SU(8) symmetry broken insulator.
However, we also find situations where only a subset of
fermions are gapped out leading, typically to a density wave
semimetal with a lower [than SU(8)] symmetry (see below).

A natural question, then, pertains to the nature of such
phases obtained by fermion-bilinear condensation that lie
proximate to the Dirac semimetal. To answer this question, the
actual embedding of the microscopic/UV symmetries in the
emergent low-energy symmetries becomes important. We find
that the 64 masses, break up into 27 irreducible representa-
tions representing 24 different phases [Eqs. (47a)–(61f)]. The
microscopic symmetries only allow for singlet, doublet and
triple irreducible representations (Irreps), and the 24 phases
are made up of six singlets, five doublets, and sixteen triplets.

The 24 phases can be subdivided into three groups depend-
ing on the participation of the SU(4) flavor and the SU(2)
chiral sectors in the fermion bilinear [Eq. (40)] which dictate
their transformation properties under the microscopic symme-
tries. These are the following.

Group 1. Chiral masses. The chiral masses [Eqs. (47a)–
(47b)] are composed of SU(4) flavor singlets. These four bilin-
ears have a structure of −i〈χ̄ζ jχ〉, where j = 0, 1, 2, and 3,

and we have included the SU(8) scalar [Eq. (4)] corresponding
to the case of ζ 0. This singlet corresponds to (NF = 4) integer
Chern insulator (ICI) and is a SU(4) generalization of the Hal-
dane mass [58] as given by Eq. (68). The other three masses
[Eq. (72)] form a triplet under lattice symmetries that corre-
spond to three stripy charge-density-wave insulators (StCDW)
(Fig. 6). Notably, the presence of the π flux breaks up the
chiral masses as 4 = 1 ⊕ 3, as opposed to graphene where the
four chiral masses are decomposed as 4 = 1 ⊕ 1 ⊕ 2 corre-
sponding to NF = 2 integer Chern insulator, staggered charge
density waves and two Kekule orders respectively [48]. The
summary of these four masses is given in Table I and the
details are discussed in Sec. VI.

Group 2. Flavor masses. The flavor masses are composed
of chiral singlets. There are fifteen such bilinears of the form
−i〈χ̄� jχ〉 where j runs over the fifteen generators of SU(4)
(listed in Appendix C). Ten of them are time reversal (TR)
even [Eq. (48)] and transform into each other under an adjoint
representation of an SO(5) subgroup of the SU(4) flavor group
while the other five are TR odd [Eq. (49)] and transform
under a vector representation of the same SO(5). Under lattice
symmetries, the ten TR even masses break up into one singlet
and three triplets [Eqs. (58) and (59)] while the five TR odd
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TABLE I. The SU(4) invariant chiral phases. The microscopic symmetry elements mentioned in this and the subsequent tables are defined
in Table V. Also, the ζi are generators of the chiral SU(2) and �i are generators of flavor SU(4) which are defined in Eq. (28) and Appendix C,
respectively.

Broken
Microscopic Fermion

No. The Phase Irrep symmetries Bilinear Comments

1. Integer Chern Ao
2g C′

2, σd, TR −i〈χ̄χ〉 Fully gapped.
insulator (ICI). Charge Hall response

(Sec. VI A) given by NF = 4
CS theory [Eq. (69)]

2. Stripy Te
1g T1, T2, −i〈χ̄ζ1χ〉, Fully gapped.

charge density C3, S6, C′
2, σd −i〈χ̄ζ2χ〉, Stripy modulation

wave (StCDW). −i〈χ̄ζ3χ〉 of electronic charge
(Sec. VI B) density (Fig. 6)

masses break up into a doublet and a triplet [Eq. (60)]. All
these 15 flavor masses correspond to six generalized quantum
spin-Hall phases [57]. In particular, they result in four TR even
quantum spin-octupole Hall phases (Sec. VII A) and two TR
odd quantum spin-quadrupole Hall phases (Sec. VII B) with
the latter being an interesting analog of symmetry protected
topological phases without time-reversal symmetry. These
masses are summarized in Table II while the details are given
in Sec. VII.

Group 3. Mixed masses. The mixed masses are composed
of nontrivial combinations of flavor and chiral sectors. There
are forty-five such bilinears of the form −i〈χ̄� jζkχ〉 where
j(k) runs over the 15(3) SU(4) flavor [SU(2) chiral] genera-
tors. These masses, under lattice symmetries, are divided into
11 triplets, 4 doublets, and 4 singlets as shown in Eq. (61).
The nature of the resultant phases is quite rich and corre-
sponds to various types of dipolar, quadrupolar and octupolar
density waves that break both SU(4) flavor as well as lattice
symmetries. In particular, these masses describe four density
wave patterns for various types of spin-quadrupole and spin-
octupole order parameters. These are—(1) uniform (ferro)
order, (2) staggered (“Neel”) order (Fig. 10), (3) stripy order
(Fig. 6), and, (4) zigzag order (Fig. 11). Moreover, depend-
ing on the fate of the fermions in these phases, they are
divided into two classes: (a) insulators, where all the Dirac
fermions are gapped out (summarized in Table III), and (b)
semimetals, where a subset of Dirac fermions remain gapless
even after the condensation of the bilinear (summarized in
Table IV). We discuss them in detail in Sec. VIII. It is useful
to note that amongst the insulators, there are two singlets,
Ae

1g and Ao
2g (see Table III; Secs. VIII A 1 and VIII A 2)

that have nontrivial gapless edge modes. While the former
is time reversal even corresponds to an Ising ferro spin-
quadrupolar insulator with quantized spin-octupole filtered
edge modes that are captured by a nontrivial mutual CS term
[Eq. (106)], the latter is time reversal odd and represents an
anomalous Hall insulator with quantized charge Hall response
[Eq. (109)].

In Sec. IX that follows the main body of work presented in
Secs. III–VIII, we discuss the implications of the above results
in a broader context bringing forth the unique features and
opportunities brought out by the specific spin-orbit coupled

system discussed in this paper. Various technical details are
summarized in different appendices.

III. THE DIRAC THEORY FOR THE d1 SYSTEMS
ON HONEYCOMB LATTICE

The starting point of our analysis is the low-energy single
electron atomic orbitals of the d1 ion in an octahedral crystal
field with strong atomic SOC [76,81] as shown in Fig. 1(a). In
the absence of SOC, the single electron occupies the sixfold
degenerate t2g atomic orbitals |dXY , σ 〉, |dY Z , σ 〉 and |dZX , σ 〉
with σ =↑,↓ while the high energy eg orbitals remain empty
and are projected out. The SOC, projected on the t2g manifold
gives H

t2g

SOC = −λ l · s (λ > 0), where l = 1 is the effective
orbital angular momentum of the t2g orbitals [81,82] (see
Appendix A 1 for further details).

The strong SOC selects the low-energy orbitals by split-
ting the sixfold degeneracy into 4 ⊕ 2 which corresponds to
the lower j = 3/2 and higher j = 1/2 (j = l + s) orbitals
respectively with the splitting being 3λ/2 [82]. For the d1

configuration, the low-energy physics is therefore of a 1/4th
filled j = 3/2 orbitals [Fig. 1(a)] with single electron creation
operators at the lattice site are given by [76,81]

ψ† = (ψ†
1/2, ψ

†
−1/2, ψ

†
3/2, ψ

†
−3/2). (6)

The interplay of hopping and interaction of electrons oc-
cupying these four orbitals then determine the low-energy
electronic properties of the system.

A. The lattice and microscopic symmetries

Consider such j = 3/2 orbitals on a honeycomb geome-
try with edge-sharing octahedra. In this geometry, the active
atoms sit at the center of each octahedron and form the hon-
eycomb lattice. It is useful to consider the honeycomb lattice
to lie in a plane perpendicular to the Cartesian [111] direction
(details in Appendix A 2) such that the three nearest neighbor
bonds are parallel to the three Cartesian planes shown in
Fig. 1(b). Correspondingly we denote these bonds as x, y, and
z bonds if they are parallel to the Y Z , ZX , and XY planes
respectively, following the, by now popular nomenclature in
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TABLE II. The flavor phases.

Broken
Microscopic Fermion

No. The Phase Irrep symmetries Bilinear Comments

3. Singlet Ae
1g None −i〈χ̄�45χ〉 Fully Gapped.

Quantum Spin-octupole Hall response in
spin-octupole presence of electric field [Eq. (79)] via
Hall insulator. spin-octupole filtered edges
(Sec. VII A 1) protected by U(1)� ZT R

2 .

4. Triplet Te
1g T1, T2, −i〈χ̄�23χ〉, Fully gapped. Spin-octupole

Quantum C3, S6, −i〈χ̄�13χ〉, filtered edge currents.
spin-octupole C′

2, σd −i〈χ̄�12χ〉 The Skyrmion configurations of
Hall insulator. the triplet order parameter carry 4

(Inversion even) units of electronic charge. Such
(Sec. VII A 2) skyrmion condensation leads

to a novel 4e superconductor.

5. Triplet Te
1u T1, T2, −i〈χ̄�34χ〉, Noncompatible masses.

Quantum C3, S6, −i〈χ̄ (− 1
2 �14 −

√
3

2 �15)χ〉, Generally fully gapped

spin-octupole C′
2, σd, I −i〈χ̄ (−

√
3

2 �25 + 1
2 �24)χ〉. except for isolated points

Hall insulators. protected by symmetries.
(Inversion odd) Spin-octupole
(Sec. VII A 3) filtered edge.

6. Triplet Te
2u T1, T2, −i〈χ̄�35χ〉, Similar to entry No. 5

Quantum C3, S6, −i〈χ̄ (
√

3
2 �24 + 1

2 �25)χ〉, of this table but with different

spin-octupole C′
2, σd, I −i〈χ̄ (

√
3

2 �14 − 1
2 �15)χ〉. spin-octupole current at the edges

Hall insulator protected by different set of symmetries.
(Inversion odd)
(Sec. VII A 3)

7. Doublet Eo
u C′

2, I, −i〈χ̄�4χ〉,−i〈χ̄�5χ〉 Fully gapped.
Quantum C3, S6, Vortices carry zero

spin-quadrupole Hall σd, TR modes with charge and
insulator. quadrupole quantum numbers.

(Sec. VII B)

8. Triplet To
2g T1, T2, −i〈χ̄�1χ〉, Fully gapped.

Quantum C3, S6, −i〈χ̄�2χ〉, Quadrupole filtered edge
spin-quadrupole Hall C′

2, σd, TR −i〈χ̄�3χ〉 modes protected by U(1)
insulator. symmetry. TR broken.

(Sec. VII B)

the context of the Kitaev spin model [83] on the honeycomb
lattice [84].

The honeycomb net has a triangular Bravais lattice and a
two-site unit cell with two sublattices, s = A, B as shown in
Fig. 2. Each point on the honeycomb lattice is labeled by
(u1, u2, s), where u1, u2 ∈ Z denote the position of the unit
cell via

r = u1b1 + u2b2 (7)

with b1 and b2 are unit lattice vectors shown in Fig. 2.
To understand the lattice symmetries, we take the ideal

honeycomb structure of α-ZrCl3 as a prototypical example
as it has all the representative symmetries. The point group
of the α-ZrCl3 lattice is D3d which has 12 elements. Keeping
in mind the geometry of the edge-sharing ligand octahedra
surrounding the active ion [Fig. 1(b)], the generators of the

lattice symmetries of the system are as follows and their action
on the lattice coordinates are given in Table V.

(i) T1, T2. Two-dimensional lattice translations of the
honeycomb lattice by b1 and b2 respectively.

(ii) C3. Rotations by angle 2π
3 about the center of a hon-

eycomb plaquette.
(iii) S6. Rotations about the center of a honeycomb

plaquette by angle π
3 followed by a reflection about the hon-

eycomb plane.
(iv) C′

2. Rotations by angle π about the axes lying on the
honeycomb plane and passing through two opposite vertices
of a honeycomb plaquette. There are three of such axes. One
of the C′

2 axes is parallel to the z bonds (see Fig. 2).
(v) σd . Reflections about planes which are perpendicular

to the honeycomb plane and bisect the angle between two
consecutive C′

2 axes. There are three such planes. One of the
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TABLE III. The mixed phases (insulators).

Broken
Microscopic Fermion

No. The Phase Irrep symmetries Bilinear Comments

9. Singlet Ae
1g None −i〈χ̄ (�3ζ1 − �1ζ3 − �2ζ2 )χ〉/√3 Fully gapped.

Spin-quadrupolar Octupole (�45)
ferro Hall filtered edge modes.
insulator.

(Sec. VIII A 1)

10. Singlet Ao
2g C′

2, σd,TR −i〈χ̄ (�12ζ1 − �23ζ3 + �13ζ2)χ〉/√3 Fully gapped.
Spin-octupolar Gapless edges carry

Anomalous ferro qunatized charge current
Hall Insulator. via CS term.
(Sec. VIII A 2)

11. Doublet Eo
u C′

2, σd, I, C3, S6 See Eq. (110) Fully gapped.
Spin-octupolar (2 doublets) TR and Eq. (111) Both doublets correspond
Néel insulator. to the same phase.
(Sec. VIII A 3) Vortices can carry

nontrivial quantum
number.

12. Triplet To
2g T1, T2, −i〈χ̄�45ζ1χ〉, Fully gapped.

Spin-octupolar C3, S6, C′
2, σd, −i〈χ̄�45ζ2χ〉,

stripy density wave TR −i〈χ̄�45ζ3χ〉
(StDW) insulator.

(Sec. VIII A 4)

13. Triplet Te
1u T1, T2, −i〈χ̄�5ζ1χ〉 Fully gapped,

Spin-quadrupolar C3, S6, C′
2, σd, I − i

2 〈χ̄ (−√
3�4 + �5)ζ3χ〉, Masses are

zigzag density wave − i
2 〈χ̄ (−√

3�4 − �5)ζ2χ〉 noncomaptible,
(ZDW) insulator. Gapless modes
(Sec. VIII A 5) for some special linear

combinations.

14. Triplet Te
2u T1, T2, −i〈χ̄�4ζ1χ〉, Similar to entry No. 13

Spin-quadrupolar C3, S6, C′
2, σd, I − i

2 〈χ̄ (
√

3�5 + �4)ζ3χ〉, in this table, but

ZDW insulator − i
2 〈χ̄ (

√
3�5 − �4)ζ2χ〉 different quadrupole

(Sec. VIII A 5) operators are
ordered.

15. Triplet To
1u T1, T2, See Both triplets correspond

Spin-octupolar (2 triplets) C3, S6, C′
2, σd, I, Eq. (124), (125) to the same phase.

ZDW insulator. TR Fully gapped,
(Sec. VIII A 6) Masses are noncompatible.

Gapless modes appear
for special linear
combinations.

16. Triplet To
2u T1, T2, See Similar to entry No. 15

Spin-octupolar (2 triplets) C3, S6, C′
2, σd, I, Eq. (132), (133) in this table, but

ZDW insulator TR different spin-octupole
(Sec. VIII A 6) operators are ordered.

planes is the perpendicular bisector of one of the z bonds in
Fig 2.

(vi) I. Inversion about the center of a honeycomb plaque-
tte.

In addition, the system also has time-reversal (TR) symme-
try T , with

T 2 = −1. (8)

In Appendix B, we provide the details of the transformation of
the t2g and the j = 3/2 orbitals under the above symmetries.

B. The tight binding Hamiltonian for indirect hopping

Starting with the hopping Hamiltonian for the t2g orbitals
and taking into account the indirect hopping amplitudes via
the ligand in the edge-sharing geometry [Fig. 1(b)], the
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TABLE IV. The mixed phases (semimetals).

Broken
Microscopic Fermion

No. The Phase Irrep symmetries Bilinear Comments

17. Singlet Ao
1u TR, I, σd See Eq. (134) Have semimetallic features.

Spin-octupolar Can give rise to integer
Néel semimetal. QH phase which is different
(Reflection odd) from the ICI phase.
(Sec. VIII B 1)

18. Singlet Ao
2u TR, I, C′

2 See Eq. (135) Similar to entry No.17
Spin-octupolar in this table, but different
Néel semimetal spin-octupole operator is ordered.

(Reflection even)
(Sec. VIII B 1)

19. Triplet To
1g T1, T2, −i〈χ̄ (−�13ζ3 − �23ζ2 )χ〉/√2 Masses are noncompatible,

Spin-octupolar C3, S6, C′
2, σd, −i〈χ̄ (�12ζ2 − �13ζ1)χ〉/√2 8 fermionic modes are

StDW semimetal TR −i〈χ̄ (�23ζ1 + �12ζ3)χ〉/√2 gapless, number of
(Sec. VIII B 2) gapless modes are same for

all linear combinations of
the masses within a given

triplet.

20. Triplet To
2g T1, T2, −i〈χ̄ (�13ζ3 − �23ζ2)χ〉/√2 Masses are noncompatible,

Spin-octupolar C3, S6, C′
2, σd, −i〈χ̄ (−�12ζ2 − �13ζ1)χ〉/√2 4 fermionic modes are always

StDW semimetal TR −i〈χ̄ (−�23ζ1 + �12ζ3)χ〉/√2 gapless,
(Sec. VIII B 2) this number changes depending

on the linear combinations of
the masses.

21. Triplet Te
2g T1, T2, −i〈χ̄ (−�1ζ2 + �2ζ3)χ〉/√2 Similar to entry No. 19

Spin-quadrupolar C3, S6, C′
2, σd, −i〈χ̄ (�3ζ2 + �2ζ1)χ〉/√2 in this table, but different

StDW semimetal. −i〈χ̄ (�3ζ3 + �1ζ1)χ〉/√2 spin-quadrupole operators
(Sec. VIII B 3) are ordered.

22. Triplet Te
1g T1, T2, −i〈χ̄ (−�1ζ2 − �2ζ3)χ〉/√2 Similar to entry No. 20

Spin-quadrupolar C3, S6, C′
2, σd −i〈χ̄ (−�3ζ2 + �2ζ1)χ〉/√2 in this table, but different

StDW semimetal −i〈χ̄ (�3ζ3 − �1ζ1)χ〉/√2 spin-octupole operators are ordered.
(Sec. VIII B 3)

23. Doublet Ee
g C′

2, σd, C3, S6 See Eq. (163) Some bands remain gapless.
spin-quadrupolar Can give rise to integer QH
ferro semimetal. phase different the ICI phase
(Sec. VIII B 4)

24. Doublet Eo
g C′

2, σd, C3, S6, See Eq. (167) Some bands remain gapless
Spin-octupolar TR

ferro semimetal.
(Sec. VIII B 5)

effective Hamiltonian is obtained by projecting it to the j =
3/2 manifold using Eq. (A3). This minimal hopping Hamilto-
nian for the j = 3/2 orbitals [Eq. (6)] is given by

H = − t√
3

∑
〈r,s;r′,s′〉

ψ†(r, s)U ss′
rr′ ψ (r′, s′) + H.c., (9)

where U ss′
rr′ are hopping amplitudes of overall strength t , on

nearest neighbor bonds (hence only between different sub-
lattices) that are given by 4 × 4 Hermitian matrices which
depend on the type (x, y or z, see Fig. 2) of the 〈r, s; r′, s′〉

bond [76] given by

U AB
rr′ ≡ Ux = −�1, if 〈r, A; r′, B〉 = x

≡ Uy = −�2, if 〈r, A; r′, B〉 = y

≡ Uz = −�3, if 〈r, A; r′, B〉 = z. (10)

Here, �i are sixteen 4 × 4 traceless Hermitian matrices with
�0 being the identity matrix and the rest being generators of
SU(4). They can be obtained by using j = 3/2 matrices as
shown in Appendix C.
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FIG. 2. The filled circles are points of A sublattice and the hollow
circles are of B sublattice. The gray shaded area shows the two points
of a single unit cell with b1 and b2 being unit lattice vectors [see
Eq. (A7)].

The three Uα(for α = x, y, z) matrices square up to identity
and mutually anticommute, i.e.,

U 2
α = I4 ≡ �0, {Uα,Uβ} = 2δαβ�0 ∀α, β = x, y, z.

(11)

Before proceeding to diagonalize Eq. (9) to obtain the
electron band structure, we identify the generic nature of the
electron dispersion.

1. The SU(4) symmetry and π flux

As a first step, it is useful to consider the phase picked up
by the electron on encircling any closed loop of the lattice.
Such loops are formed out of the honeycomb plaquette con-
sisting of six sites. The phase is given by the product of the
Uα matrices around a honeycomb plaquette and is generically
given by ∏

〈r,s;r′,s′〉∈�
U ss′

rr′ =
∑

i

Wi �i, (12)

where Wi are the respective coefficients that denote a generic
direction in the SU(4) space. In the above sum, i runs over the
16 indices of the �i matrices defined in Appendix C.

TABLE V. The action of the microscopic symmetries on the
j = 3/2 orbitals [Eq. (6)]. Note s̄ = B(A) for s = A(B). The US (S
represents some lattice symmetry) are 4 × 4 unitary matrices which
are given in Appendix B [Eqs. (B7)–(B11)].

r(u1, u2, s) → r′(u′
1, u′

2, s′) ψ (r) → ψ ′(r′)

T1 (u1, u2, s) → (u1 + 1, u2, s) ψ → UT1ψ

T2 (u1, u2, s) → (u1, u2 + 1, s) ψ → UT2ψ

C3 (u1, u2, s) → (u2 − 1, −u1 − u2 + δs,A, s) ψ → UC3ψ

S6 (u1, u2, s) → (u1 + u2 − δs,A, −u1, s̄) ψ → US6ψ

C′
2 (u1, u2, s) → (u2 − 1, u1 + 1, s) ψ → UC2ψ

σd (u1, u2, s) → (−u2, −u1, s̄) ψ → Uσdψ

I (u1, u2, s) → (−u1 − 1, −u2 + 1, s̄) ψ → UIψ

FIG. 3. Honeycomb lattice with π flux and the four-point mag-
netic unit cell in the gauge choice [Eq. (20)]: the dashed (continuous)
bonds have η(rrr S, rrr ′

S′ ) = −1(+1) [see Eq. (19)].

Crucially, however, it was noticed in Ref. [76] that the
explicit form of U matrices [Eq. (10)] give

∏
〈r,s;r′,s′〉∈�

U ss′
rr′ = −�0 (13)

such that no direction in SU(4) space is favored and the system
has an underlying SU(4) symmetry. This SU(4) symmetry can
be made manifest by suitable site-dependent unitary rotations
of the ψ fermions [see below, Eq. (17)] [76].

An equally important feature is the negative sign in
Eq. (13) which shows that such SU(4) fermions experience
a π flux through every hexagon. Thus the above problem of
d1 fermions is that of SU(4) symmetric fermions hopping on
a honeycomb lattice with π flux per plaquette. The nontrivial
effect of π flux at one-forth filling is already apparent by con-
sidering the simpler case of spinless fermions on honeycomb
lattice with π flux at quarter filling. This, as we discuss below,
leads to Dirac fermions at low energy whose properties are
quite different from those in graphene.

In the rest of this work, we uncover the interplay of SU(4)
symmetry and the π flux that, along with electron-electron
interactions, leads to rich low-energy electronic properties of
d1 systems.

2. SU(4) diagonalization and the local basis

Following Ref. [76], the SU(4) symmetry of the hopping
Hamiltonian in Eq. (9) can be made manifest by perform-
ing site-dependent (local) unitary transformations on the
fermions.

To obtain this manifestly SU(4) invariant basis, and also
due to the π flux, it is useful to consider a four site
magnetic unit cell as shown in Fig. 3. The four sites,
A1, A2, B1, and B2, in the magnetic unit cell comprise two
sites each of A and B sublattices of the underlying honeycomb
net. The lattice translation vectors for this magnetic unit cell,
as shown in Fig. 3, are given in terms of the underlying
honeycomb lattice primitive vectors as

R1 = b1 + b2; R2 = b1 − b2 (14)
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(a) (b)

FIG. 4. (a) Band structure for the Hamiltonian in Eq. (18) for the magnetic unit cell consisting of four sites (Fig. 3). Each band is fourfold
degenerate. For d1 system, the lowest four bands are occupied with the chemical potential crossing the two Dirac points as shown. (b) Position
of the two Dirac points [Eq. (21)] in the chosen gauge [Fig. 3 and Eq. (20)] in the magnetic Brillouin zone (in red). The primitive Brillouin
zone of the hexagonal lattice is also drawn in blue.

such that the sites with reference to the enlarged unit cell are
given by

rrr S = nxR1 + nyR2 + dS ≡ rrr + dS (15)

with S ∈ {A1, A2, B1, B2} denotes the four sites in the mag-
netic unit cell, dS are the position vectors of the S sublattice
site with respect to the B2 site (see Fig. 3) of the same mag-
netic unit cell, rrr labeled by integers nx and ny.

With this, we can now define new fermion annihilation
operators given by

φ( rrr S ) = [φ1(rrr S ), φ2(rrr S ), φ3(rrr S ), φ4(rrr S )]T (16)

as

φ(rrr S ) = G(rrr S )†ψ (rrr S ), (17)

where G(rrr S ) are 4 × 4 unitary matrices whose explicit forms
are given in Appendix D. Any many-body operator can be
expressed either in the φ basis or ψ . In this paper, we use the
terms “local basis” and “global basis” respectively to refer to
these two ways.

The Hamiltonian [Eq. (9)] written in the local basis is

H = − t√
3

∑
〈rrr S ,rrr ′

S′ 〉
η(rrr S, rrr ′

S′ )φ†(rrr S )φ(rrr ′
S′ ) + H.c., (18)

which is manifestly SU(4) invariant and η(rrr S, rrr ′
S′ ) = ±1 im-

plementing the π flux constraint of Eq. (13), via∏
〈rrr S ,rrr ′

S′ 〉∈�
η(rrr S, rrr ′

S′ ) = −1. (19)

Figure 3 shows a choice for η(rrr S, rrr ′
S′ ) which is given by

η(rrr S, rrr ′
S′ ) =

{−1 if S = B1, S′ = A2 and rrr ′ = rrr + R2

+1 (otherwise)
.

(20)

Obviously, there are many other choices for η(rrr S, rrr ′
S′ ) which

are related to each other through gauge transformations which
correspond to different signs of the G(rrr S ) matrices with re-
spect to the ones introduced in Appendix D. An alternate
choice for η(rrr S, rrr ′

S′ ) and indeed the magnetic unit cell is
shown in Fig. 15. For the rest of our calculation in the main
text, we choose η(rrr S, rrr ′

S′ ) as given by Eq. (20).

3. The band structure

Equation (18) represents four copies of nearest neighbor
hopping model on honeycomb lattice in presence of π flux.
A single copy of such model at half filling was studied in
Refs. [48,85]. However, we shall find that the underlying
SU(4) symmetry in the present case and the 1/4th filling
for d1 materials (see below) along with SOC open up a new
regime of possibilities for the resultant system at low energies.

To disentangle the role of the SU(4) and the π flux, it is
useful to consider a single flavor “spinless” version of Eq. (18)
with φ(rrr S ) being a single component fermion. This is worked
out in Appendices E and K. The resultant band structure is
shown in Fig. 4 and consists, for quarter filling, two linearly
dispersing band-touching points—Dirac cones—at

±Q = ±
[
π

6
,− π

2
√

3

]
. (21)

We label the two Dirac points (valleys) by the Ising variable
τ = ±. Similar Dirac points also occur at 3/4th filling by
particle-hole symmetry of the microscopic problem. Also note
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that there are four Dirac points at half filling [85] as is shown
in Fig. 4. In the rest of the discussion though we shall consider
exclusively the vicinity of quarter filling and the nature of the
low-energy Dirac fermions at the two valleys at ±Q given by
Eq. (21).

Turning back to the case of j = 3/2 orbitals in d1 con-
figuration [Eq. (18)], the band structure is now fourfold
degenerate due to the SU(4) symmetry such that the lower four
bands are completely filled with the chemical potential again
at the two Dirac cones given by Eq. (21). As remarked above,
the similar Dirac cones are also present for three-quarter fill-
ing and hence the rest of our discussion is also applicable to
materials with d3 electronic configuration.

At this point, we would like to take a small detour by dis-
cussing the above band structure in the global basis [Eq. (6)],
which provides interesting complementary insights into the
results that follow in the rest of this paper. This alternate
insight arises from the observation that while for a single
flavor π flux problem we are forced to use the magnetic unit
cell (Fig. 3), for the four flavor version relevant to d1 or d3

systems, it is possible to use the two-site primitive honeycomb
unit cell (Fig. 2) by diagonalizing the Hamiltonian in Eq. (9).
However, in this global basis neither the SU(4), nor the π flux
is manifest but are mixed together nontrivially. As a result,
while all the lattice symmetries (Table V), act in a linear
fashion, i. e., they are nonprojective despite the fact that each
hexagonal plaquette hosts a π flux as shown in Eq. (13), to
overcome the slightly more involved nature [arising explicit
mixing of the lattice symmetries and the SU(4) in the global
basis], we use the local basis for most of our discussion in
the rest of the main texts. Notwithstanding, the global basis
is useful to understand certain structures in our calculations
which we refer to at relevant places throughout the rest of
the paper. The considerations in the global basis are presented
in Appendix J. Briefly, Bloch diagonalizing the Hamiltonian
in global basis [Eq. (9)] obtains four bands arising from the
four j = 3/2 orbitals [Eq. (6)] and each twofold degenerate
due to inversion symmetry. The first set of bands touches the
second set of bands at four distinct points with Dirac cone
structure, see Fig. 14. With the quarter filling of the bands the
chemical potential is tuned to the Dirac points at the four Qg

vectors, �, M1, M2, and M3 termed as valleys, in the original
honeycomb Brillouin zone. This is to be contrasted with the
local basis where one obtains two valleys due to the doubling
of the unit cell, and the concomitant folding of the bands. One
of the central insights of the global basis is that under lattice
symmetries such as S6 (Table V), only three of the Dirac cones
sitting at the three M points (Fig. 14) mix amongst themselves
while the Dirac cone at the BZ center, i.e., at � point, remains
isolated. This naturally distinguishes the different valleys into
two groups—one containing only the � point cone and the
other containing the other three at the three nonequivalent
M points. As we shall see later, the above grouping is a
fallout of the fact that the microscopic lattice symmetries
get embedded in a larger low-energy IR space group (see
Sec. V) that allows up to three-dimensional representations
such that the above grouping is a block diagonalization of
a reducible representation, i.e., 4 = 1 ⊕ 3. This insight will
be important in understanding a subset of partially gapless
masses discussed in Sec. VIII B.

C. Low-energy Dirac theory

Turning back to the local basis [Eq. (16) and Fig. 4], for a
one-forth filling, the low-energy theory is obtained by expand-
ing the lattice fermions, φ(rrr S ), in terms of the soft modes,
around the two Dirac points, ±Q, as

φ f (rrr S ) ∼ W
(+)
Sσ

χ f σ+(rrr )eiQ·rrr + W
(−)
Sσ

χ f σ−(rrr )e−iQ·rrr , (22)

where χ f στ (x) are the soft modes in the continuum evaluated
at x = rrr with f = 1, . . . , 4 denote the SU(4) flavor index,
σ = 1, 2 is the particle or holelike band index and τ = ± is
the valley index coming from the two Dirac nodes at ±Q.
W

(±)
Sσ

are two 4 × 2 matrices (one at each valley, τ = ±) in the
(magnetic) unit-cell (S)-particle-hole (σ ) space. The details
are given in Appendix E.

In terms of the soft modes, the low-energy Hamiltonian
takes the canonical Dirac form in two spatial dimensions and
is given by

HD = −ivF

4∑
f =1

∫
d2x χ

†
f (x)(α1∂1 + α2∂2)χ f (x), (23)

where vF = tl√
2

is the fermi velocity, l is the length of each
side of the hexagon and ∂i = ∂/∂xi (i = 1, 2), with

χ f (x) = (χ f 1+, χ f 2+, χ f 1−, χ f 2−)T , (24)

a four-component spinor, one for each SU(4) flavor f =
1, 2, 3, 4, which can be further stacked up to form a 16-
component spinor, and

α1 = τ3σ1, α2 = τ0σ2 (25)

are the two Dirac matrices. Here τμ and σμ (μ = 0, 1, 2, 3) are
Pauli matrices that act in the valley space and band/particle-
hole space, respectively.

The corresponding Euclidean action is given by

S0 =
∫

d2xdτ L0, (26)

where L0 is given by Eq. (1) with NF = 4 and χ̄ f = iχ†
f γ0 and

γ0 = τ3σ3, γ1 = τ0σ2, γ2 = −τ3σ1 (27)

such that α1 = iγ0γ1 and α1 = iγ0γ2. Here γ0, γ1 and γ2 gen-
erate the Euclidean Clifford algebra that satisfy {γμ, γν} =
2δμν with μ, ν = 0, 1, 2 [78].

The above low-energy free Dirac theory has a much
larger symmetry compared to the microscopic system. Firstly,
Eq. (26) is invariant under SU(2) transformations on each
flavor of χ f generated by

{τ3σ0/2, τ1σ2/2, τ2σ2/2} ≡ {ζ1, ζ2, ζ3}/2. (28)

This denotes rotation in the valley and band space similar
to Dirac fermions in graphene [49] which we refer to as
chiral symmetry [48]. This, along with the manifest invariance
under the SU(4) flavor symmetry generated by �i (defined in
Appendix C), nominally gives rise to an internal symmetry of
SU(4) ⊗ SU(2). However, the emergent internal symmetry is
SU(8) which is generated by 63 traceless Hermitian matrices,
Pb, that are obtained as

Pb = �iζ j, (29)
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where on the LHS, b = 1, 2, . . . , 63 which are made up of
the fifteen SU(4) generators, �i, given in Appendix C and
three SU(2) generators, ζ j , defined in Eq. (28) along with the
identities in the two spaces �0 and ζ0, respectively.

Under the SU(8) generated by the 16 × 16 traceless Her-
mitian matrices, Pb, the spinors χ transform as

χ → exp(iξbPb)χ, (30)

where χ = (χT
1 , χT

2 , χT
3 , χT

4 )T is the 16-component spinor
with each χ f ( f = 1, 2, 3, 4) given by Eq. (24). This leads to
the conservation of the SU(8) flavor current

Jμ,b = −iχ̄γμPbχ, (31)

i.e., ∂μJμ,b = 0 ∀ b = 1, . . . , 63. This is to be contrasted with
SU(8) Dirac fermions realized in the π flux phase on a square
lattice [37] for fermionic spinons in a class of quantum spin-
liquids, where the resultant implementation of the symmetries
on the low-energy fermions are very different. Crucially, in
the present case, the nontrivial SOC of the underlying orbitals
results in the mixing of the spin and the real spaces, under
various lattice symmetries and time reversal which leads to
important observable consequences which are reflected in the
nature of the phases proximate to the semimetal, as we show
below. In addition, in the square lattice spin liquid problem,
the spinons couple to an emergent dynamic SU(2) gauge field
which is absent in the present case.

In addition to the above internal SU(8), the free Dirac
action of Eq. (26) has a usual set of emergent space-time
symmetries that include:

a. Emergent Lorentz symmetry generated by the three ma-
trices

γμν = − i

4
[γμ, γν] (32)

along with simultaneous rotations of the Euclidean space-time
coordinates. Under Lorentz transformation, the spinors trans-
form as χ → exp(i�μνγμν )χ . Note that γμ = εμνλγνλ where
μ, ν, λ = 0, 1, 2.

b. Continuous spatial translation symmetry under which
the soft modes at the two valleys transform as

Tcont
x0

:

{
χ+(x) → χ ′

+(x) = eiQ·x0 χ+(x − x0)

χ−(x) → χ ′
−(x) = e−iQ·x0 χ−(x − x0)

, (33)

where

χ±(x) = 1
2 (1 ± ζ1)χ (x) (34)

are the two spinors associated with the two valleys respec-
tively located at ±Q. Using Eq. (34), we can re-write the
free Dirac action [Eq. (26)] as S0 = S+

0 + S−
0 , where S±

0 =
vF
∫

d2xdτ χ̄±(x)(−i/∂ )χ±(x) are the actions at the two val-
leys.

c. Emergent CPT symmetries. The free Dirac action S0 is
also invariant under emergent charge conjugation(C), emer-
gent parity(P) and emergent time-reversal (T′) symmetries.
These symmetries act on the spinors in the following way:

C : χ (x, t ) → −iγ2γ0χ̄
T (x, t ), (35a)

P : χ (x1, x2, t ) → −iγ1χ (−x1, x2, t ), (35b)

T′ : χ (x, t ) → −iγ2Kχ (x,−t ), (35c)

with K being the complex conjugation operator. Here we
denote the emergent time-reversal by T′ to distinguish it from
the microscopic time-reversal operation defined in Eq. (38)
[which we denote with T in Eq. (8)].

D. Microscopic symmetries in the low-energy theory

The enhanced IR symmetries provide important insights
into the low-energy physics including the properties of the
Dirac semimetal and associated quantum phase transitions
into proximate symmetry broken phases. The latter is deter-
mined by the underlying UV/microscopic symmetries. These
UV symmetries are embedded as a subgroup of the emergent
(larger) IR symmetry group and are implemented as a combi-
nation of the IR symmetry transformations (see, for example,
the discussion below Eq. (38) for the time-reversal symmetry).
This is particularly interesting in the present case where the
underlying SOC mixes the lattice and the j = 3/2 flavor space
such that the embedding of the microscopic symmetries in
the IR symmetry group can be rather intricate. It is, therefore,
useful to list the symmetry transformation of the low-energy
Dirac fermions, χ , under various microscopic symmetries
discussed above.

The total electronic charge is conserved in the microscopic
system. This U(1) electronic charge conservation leads to the
conservation of a current

Jcharge
μ = −iχ̄γμχ (36)

in the low-energy Dirac theory, i.e., ∂μJcharge
μ = 0.

On the other hand, the transformation of the low-energy
Dirac fermions, χ , under the discrete lattice symmetries (Ta-
ble V) as well as microscopic time reversal [Eq. (8)] have the
generic form (see Appendix F for details)

χ (x)
S−→ χ ′(x′) = (� f

S ⊗ �c
S

)
χ (S−1x), (37)

where S(= T1, T2, C3, S6, C′
2, σd , I) stands for the genera-

tors of the lattice symmetries listed in Table V and �
f
S,�c

S
both are 4 × 4 unitary matrices that act on the SU(4) flavor
space and the chiral space, respectively. The explicit form of
these matrices is given in Appendix F 2. A central aspect of
Eq. (37) is the fact that because of underlying SOC, both �

f
S

and �c
S are nontrivial matrices for all the lattice symmetries.

Finally, under the microscopic time-reversal symmetry
[Eq. (8)], we have

T : χ (x, t ) → χ ′(x, t ) = iγ 1 �13ζ2 K χ (x,−t ) (38)

such that T 2 = −I16 and thereby accounting for the Kramers’
degeneracy for the j = 3/2 orbitals. Notably, this transforma-
tion is proportional to a simultaneous emergent time reversal,
T′ [Eq. (35c)] combined with a SU(8) rotation by �13ζ2 and
a Lorentz boost.

IV. SHORT-RANGE INTERACTIONS

Having described the free low-energy theory for the elec-
trons and its enhanced IR symmetries, we now turn to the
effect of interactions on them. More precisely we consider
the effect of short-range four-fermion interactions. A generic
form of such interaction Hamiltonian obtained from an
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underlying multiorbital Hubbard-type model for the lattice
fermions is given by

Hint =
∫

d2xd2x′ Vi jkl (x − x′)χi(x)†χ j (x′)†χk (x)χl (x′)

+ · · · , (39)

where Vi jkl denotes potential (i, j, k, l collectively spans over
the different indices) and · · · corresponds to more irrelevant
higher fermion interactions. We assume that the interactions
are short-ranged in the sense Vi jkl is only appreciable for x
and x′ being proximate with a suitable UV regulation. Further,
we assume that the form of V is constrained enough that
at low energy it has the full SU(8) symmetry. Long-ranged
Coulomb interactions as well as on-site Hubbard repulsion,
for example, have such SU(8), symmetry. This immediately
means that even in the presence of these short-range interac-
tions, all the flavor currents Jμ,a [Eq. (31)], in addition to the
electronic current Jcharge

μ [Eq. (36)] remain conserved unless
spontaneously broken.

While short-range quartic interactions are perturbatively
irrelevant at the free Dirac fixed point [1,54], on cranking
them up they lead to phase transitions possibly gapping out
the fermions and associated spontaneous breaking of the sym-
metries of the free Dirac theory. In the rest of this paper, we
provide an understanding of the phases that are obtained by
condensing various fermion bilinears which do not carry a net
electronic charge, i.e., invariant under the U(1) described in
Eq. (36) and therefore have the form

�a = −i〈χ̄Maχ〉 �= 0, (40)

where Ma are 16 × 16 mass matrices such that γ0Ma anti-
commutes with both the Dirac matrices– α1 and α2—given by
Eq. (25). This leaves out another important class of fermion
bilinears symbolically of the form 〈χ χ〉 that describes differ-
ent types of superconductors which will be taken up elsewhere
[86].

For such a U(1) invariant massive phase, the mean-field
Hamiltonian is given by

SMF = S0 + Sm = −i
∫

d2rdτ χ̄ (r)[vF /∂ − �aMa]χ (r).

(41)

There are 64 such linearly independent Ma matrices that
can be broadly classified into two classes according to their
transformation properties under SU(8). The first class contains
a single SU(8) singlet given by Eq. (4) while the second class
corresponds to 63 SU(8) adjoint multiplet

−i〈χ̄Paχ〉, a = 1, . . . , 63. (42)

and Pa being the SU(8) generators [Eq. (29)].
The microscopic operators that characterize the same bro-

ken symmetry—hence can serve as valid order parameters for
appropriate symmetry broken phases—have the same trans-
formation properties as the bilinear and hence are proportional
to each other. In principle, the microscopic operators can also
get contributions from the conserved currents of the same
symmetry, but usually, such currents decay faster than the
bilinears, and hence at long distances, the correlation function

of the microscopic fields is determined by that of the field
theory bilinear [37].

The correspondence between the microscopic operators
and the low-energy fermion bilinears is obtained by com-
paring their symmetry transformations. In particular, the
transformation of the low-energy fermion bilinears under mi-
croscopic symmetries can be used to systematically uncover
the nature of the phases proximate to the Dirac semimetal.
Bilinears that are related by microscopic symmetries together
constitute a single phase. This leads to the classification of the
fermion masses in terms of broken microscopic symmetries
and/or anomalies. In the present case, we find that the 64
masses group together to give rise to 24 phases which we now
turn to understand in detail.

V. CLASSIFICATION OF THE FERMIONIC BILINEARS:
PHASES AND TRANSITIONS

This task of classifying the bilinears according to their
microscopic symmetries (and hence identifying the phases)
is much more involved compared to the same problem in
graphene [48] since the SOC mixes the j = 3/2 flavor and
the real spaces in a nontrivial way. As a result, the lattice
translations, T1, T2 (Table V) do not necessarily commute
with the point group symmetries such as C3, S6, C′

2, σd , I
(Table V) and microscopic time reversal T [Eq. (8)]. This is
clear by looking at the transformations of the Dirac spinor, χ ,
under the above lattice symmetries [Eq. (37) with the detailed
forms given by Eqs. (F21)–(F41)]. Hence we need to analyze
the action of the entire set of transformations generated by the
space group and microscopic time reversal on χ to understand
the transformation of the fermion bilinears in Eq. (40). The
resultant symmetry group, we dub as IR space group.

IR space group. To understand the structure of this IR space
group, we note that the j = 3/2 electron states transform
under a double group representation of D3d , which has 24
elements. Since the translations do not commute with point
group transformations, corresponding to any element (say, S)
of the double group of D3d , there are four elements in the IR
space group which can be constructed as (say) S, T1S,ST2
and T1ST2 by composing it with translations, T1 and T2
(Table V). So, the group of microscopic symmetries that act
on the spinors has 96 elements in total. These elements can
be divided into 20 conjugacy classes and hence there are 20
different irreducible representations of the IR space group.
Among these 20, only 10 has + ve character for 2π rotation.
Since the fermion bilinears are always invariant under a 2π

rotation, we consider only these irreps for the classification of
the masses.

Among these 10 irreps of the IR space group, four
are one-dimensional (A1g, A2g, A1u, A2u), two are two-
dimensional (Eg, Eu) and four irreps are three-dimensional
(T1g, T2g, T1u, T2u). Following conventional notation, the sub-
scripts 1(2) and g(u) denote that the irrep is even (odd) under
rotation, C′

2 and inversion, I, respectively (Table V). Further,
to incorporate microscopic time reversal, T [Eq. (8)], we will
add a superscript e(o) (e.g., A

e(o)
1u ) to denote the particular

irrep is even (odd) under time reversal. The details of these
irreps are given in Appendix G.
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The central question we now turn to investigate in the rest
of the paper are the nature of the phases obtained by condens-
ing the fermion bilinears 〈χ̄Paχ〉. Since this is decided by the
microscopic symmetries, we decompose the above bilinears
in terms of the irreducible representation of the microscopic
symmetries [37]. We find that these 64 bilinears break up
into 27 irreps of the space group among which there are six
one-dimensional representations, five two-dimensional repre-
sentations and sixteen three-dimensional representations. This
can be obtained as follows.

Starting with Eqs. (37) and (38), we can derive the ac-
tion of the microscopic symmetries on the members of the
64 fermion bilinears, which leads to the following structure.
Under the action of a lattice symmetry transformation [say S,
corresponding to Table V and Eq. (37)], a fermion bilinear of
the form χ̄Paχ [with Pa given by Eq. (29)] transforms as

−iχ̄Paχ = χ†γ0�iζ jχ
S−→ χ†

(
�

f †
S �i�

f
S

)⊗ (�c†
S γ0ζ j�

c
S )χ
(43)

and under the action of microscopic time reversal [Eqs. (8)
and (38)], we get

χ†γ0�iζ jχ
T−→ χ†(�13�

∗
i �13) ⊗ (τ1σ0 γ ∗

0 ζ ∗
j τ1σ0)χ. (44)

The above structure shows that the action of each symme-
try is implemented as a product of the transformations in the
flavor and chiral spaces, i.e., for lattice symmetries,

�i
S−→ �

f †
S �i�

f
S; γ0ζ j

S−→ �
c†
S γ0ζ j�

c
S (45)

and for time reversal,

�i
T−→ �13�

∗
i �13; γ0ζ j

T−→ τ1σ0 γ ∗
0 ζ ∗

j τ1σ0. (46)

However, due to the SOC, the real space transformations get
nontrivially coupled to the flavor space and this resultant
interlocking is reflected in the form of the transformation
matrices, particularly in Eq. (45) where the �

f
S reflects the

degree of interlocking between real and flavor spaces. In fact,
it is this nontrivial structure that distinguishes the spin-orbit
coupled Dirac fermions—the topic of the present work—with
multiflavor (larger NF ) generalization of graphene where such
SOC is usually neglected (except for the spin-Hall effect [57]
and related phases where SOC is essential).

Due to the direct product structure of the above trans-
formations, we can analyze the action of the microscopic
symmetries on the flavor and the chiral spaces separately
and then use Clebsch-Gordon decomposition, e.g., if the ma-
trix �i transforms in some irreducible representation (say,
D1) and γ0ζ j transforms in some other irrep (say, D2), then
the bilinear χ̄�iζ jχ transforms in the product representation
D1 ⊗ D2. This direct product representation is reducible in
general which then is reduced into a direct sum representation.

Table VI shows the �i matrices in the SU(4) flavor space
and their irreducible representations under the IR space-group
transformations as well as TR. The transformations of the γ0ζ j

[Eq. (28)] matrices in the SU(2) chiral space are written in
Table VII. Details of their symmetry transformations are given
in Appendix G.

The 64 fermion bilinears are subdivided into three groups
depending on the participation of the flavor, �i and the chiral

TABLE VI. Irreps of the matrices SU(4) in the flavor space.

Irrep �p T

Singlets Ae
1g �0 = 14 Even

Ao
2g �45 Odd

Doublet Ee
u {�4, �5} Even

Triplets Te
1g {�3, �1, −�2} Even

To
2g {�12, �23, �13} Odd

To
1u {�35,

√
3�14
2 − �15

2 ,
√

3�24
2 + �25

2 } Odd

To
2u {�34, −�14

2 −
√

3�15
2 ,

�24
2 −

√
3�25
2 } Odd

elements, ζ j , in the fermion bilinear [Eq. (40)] which, in
turn, dictate their transformation properties under the micro-
scopic symmetries. These are—(1) group 1: the chiral masses
composed of flavor singlets, (2) group 2: the flavor masses
composed of chiral singlets, and (3) group 3: the mixed
masses which are composed of nontrivial combinations of
both the flavor and chiral sectors. Here we list the masses in
the groups mentioned above. The following sections contain a
detailed discussion of their physics.

A. Group 1: The chiral masses

There are four masses of the form −i〈χ̄χ〉 and −i〈χ̄ζiχ〉
(i = 1, 2, 3) that are invariant under the SU(4) flavor symme-
try and charge conservation which are broken down by the
lattice symmetries and TR as 4 = 1 ⊕ 3, i.e.,

[
Ae

1g

]� ⊗ [Ao
2g

]ζ = Ao
2g, (47a)[

Ae
1g

]� ⊗ [Te
1g

]ζ = Te
1g, (47b)

where [· · · ]� and [· · · ]ζ denote the two irreducible represen-
tations taken from Tables VI and VII, respectively.

As mentioned in the overview (Table I), the singlet rep-
resents an Integer Chern insulator (ICI) phase, the triplet
corresponds to the three stripy charge density waves (CDW)
(Fig. 6). Since the flavor index plays no role, we can quanti-
tatively compare the spinless version of the present problem
(Appendix K) with spinless electrons in graphene [48,87]. In
the case of graphene, the irreducible representation splits up
into 4 = 1 ⊕ 1 ⊕ 2 where the two singlets represent the ICI
phase [58,88] and staggered (Néel) CDW, and the doublet
corresponds to the two Kekule patterns [48,87]. This is very
different from the present case and this provides a startling
example where the microscopic SOC changes the low-energy
symmetry implementation. We discuss these masses in more
detail in Sec. VI.

TABLE VII. Irreps for the matrices in the SU(2) chiral space.

Irrep γ0ζ j T

Singlet Ao
2g γ0 odd

Triplet Te
1g {γ0ζ1, γ0ζ2, γ0ζ3} even
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B. Group 2: The flavor masses

There are 15 masses of the form i〈χ̄� jχ〉, where � j are
the 15 generators of SU(4) as given by Eq. (C6) in Ap-
pendix C. Under microscopic symmetries, they break up into
six different irreps, i.e., 15 = 1 ⊕ 3 ⊕ 3 ⊕ 3 ⊕ 2 ⊕ 3 given by
Eqs. (58)–(60). As pointed out in the overview section (Ta-
ble II) these correspond to six generalized spin-Hall phases
that are summarized in Table II while the details are given in
Sec. VII.

In order to explore the nature of the resultant phases, it is
useful to understand in detail the mathematical structure of the
implementation of the various microscopic symmetries that
break up the 15 flavor masses further into different irreducible
representations. Starting with TR, ten of the flavor masses are
TR even and are of the form

−i〈χ̄� jχ〉, j = 12, 13, 14, 15, 23, 24, 25, 34, 35,

and 45. (48)

These transform into each other under an adjoint representa-
tion of an SO(5) subgroup [generated by themselves, Eq. (48)]
of the SU(4) flavor group.

The other five are TR odd and transform under a vector
representation of the same SO(5) and are given by

−i〈χ̄� jχ〉 with j = 1, 2, 3, 4 and 5. (49)

Next, the lattice inversion (Table V), I, breaks each of the
above two sets further. Out of the 10 adjoint ones [Eq. (48)],
four

−i〈χ̄� jχ〉 with j = 45, 12, 13, and 23 (50)

are even under inversion, I, while the other six

−i〈χ̄� jχ〉 with j = 14, 15, 24, 25, 34 and 35 (51)

are odd under it. For the five vector masses [Eq. (49)], two

−i〈χ̄� jχ〉 with j = 4 and 5 (52)

are inversion odd, while three

−i〈χ̄� jχ〉 with j = 1, 2, and 3 (53)

are even.
Each of the above four subsets [Eqs. (50)–(53)] is individ-

ually closed under a U(1) ⊗ SU(2) subgroup of the SO(5)
[Eq. (48)] that is generated respectively by

�45 (54)

and

{�12, �13, �23}. (55)

In particular, in the first subset [Eq. (50)], the first mass is
a U(1) ⊗ SU(2) singlet while the rest are only U(1) singlets
that transform as spin-1 under the SU(2). The three masses
in Eq. (53) are U(1) singlets and an SU(2) triplet, while the
two masses in Eq. (52) are SU(2) singlets and transform into
each other under the U(1). Finally the six masses in Eq. (51),
decompose into two SU(2) triplets:

{−i〈χ̄�14χ〉,−i〈χ̄�24χ〉,−i〈χ̄�34χ〉} (56)

and
{−i〈χ̄�15χ〉,−i〈χ̄�25χ〉,−i〈χ̄�35χ〉}. (57)

The three components of the first triplet mix with their cor-
responding components of the second triplet under the U(1)
generated by Eq. (54).

Now, considering the other lattice symmetries the above
four subsets [Eqs. (50)–(53)] break up further into the irreps
of the microscopic symmetry group as follows.

The four masses in Eq. (50) break up into a singlet and a
triplet as [

Ao
2g

]� ⊗ [Ao
2g

]ζ = Ae
1g, (58a)[

To
2g

]� ⊗ [Ao
2g

]ζ = Te
1g, (58b)

whose explicit forms are given in Eqs. (75) and (82) re-
spectively and correspond to two different kinds of quantum
spin-octupole phases discussed in Secs. VII A 1 and VII A 2.

The six inversion-odd masses [Eq. (51)], on the other hand,
break up into two triplets[

To
1u

]� ⊗ [Ao
2g

]ζ = Te
2u, (59a)[

To
2u

]� ⊗ [Ao
2g

]ζ = Te
1u. (59b)

given by a linear combination of the two triplets in Eqs. (56)
and (57) as given by Eqs. (86) and (87), respectively. These
too correspond to spin-octupole Hall phases, albeit with
interesting fine-tuned gapless points for a special combina-
tion of the three components of the triplets as discussed in
Sec. VII A 3.

The doublet and the triplets in Eqs. (52) and (53) remain
intact and result in [

Ee
u

]� ⊗ [Ao
2g

]ζ = Eo
u, (60a)[

Te
1g

]� ⊗ [Ao
2g

]ζ = To
2g, (60b)

with explicit forms being given by Eqs. (97) and (98), re-
spectively. These phases break time-reversal symmetry and
describe quantum spin-quadrupole Hall phases as described
in Sec. VII B.

C. Group 3: The mixed masses

Finally, the largest set of masses is obtained by taking the
direct product of the flavor multiplets and the chiral multi-
plets. There are 45 such masses of the form −i〈χ̄�iζ jχ〉,
where �i are the fifteen generators of flavor SU(4) (see
Appendix C) and j = 1, 2, and 3. Therefore these masses
transform into each other under transformations of the SU(4)
⊗ SU(2) subgroup of SU(8) of the free Dirac theory. Their
group decomposition to irreducible representations under the
microscopic symmetries is given by[

Ao
2g

]� ⊗ [Te
1g

]ζ = To
2g, (61a)[

Ee
u

]� ⊗ [Te
1g

]ζ = Te
1u ⊕ Te

2u, (61b)[
Te

1g

]� ⊗ [Te
1g

]ζ = Te
1g ⊕ Te

2g ⊕ Ee
g ⊕ Ae

1g, (61c)[
To

2g

]� ⊗ [Te
1g

]ζ = To
1g ⊕ To

2g ⊕ Eo
g ⊕ Ao

2g, (61d)[
To

1u

]� ⊗ [Te
1g

]ζ = To
1u ⊕ To

2u ⊕ Eo
u ⊕ Ao

1u, (61e)[
To

2u

]� ⊗ [Te
1g

]ζ = To
1u ⊕ To

2u ⊕ Eo
u ⊕ Ao

2u. (61f)
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The dimension of the representation depends nontrivially on
the details of the spin-orbital locking, which, in turn, is re-
flected in the nature of different density wave phases that these
masses lead to. These density wave phases mainly come in
two varieties. Out of the total of 45 mixed masses, 18 [marked
in black in Eq. (61)] generically have at least four gapless
fermionic modes protected by a subgroup of SU(8), often in
conjunction with lattice symmetries. Thus they describe dif-
ferent kinds of density wave Dirac semimetal (summarized in
Table IV). The rest 27 [marked in red in Eq. (61)] generically
consists of density wave insulators (summarized in Table III).
Two of the insulators, both singlets—Ae

1g and Ao
2g, have edge

modes whose signature is evident from appropriate Chern-
Simons terms.

Before delving into the details of the resultant phases in
this category in Sec. VIII, we summarize the general structure
of these masses and their classification here under various
microscopic symmetries leading up to the decomposition
in Eq. (61). To this end, starting with microscopic TR, T
[Eq. (8)], the 45 bilinears are divided into two classes with
15 TR even given by

{−i〈χ̄�iζ1χ〉,−i〈χ̄�iζ2χ〉,−i〈χ̄�iζ3χ〉}, (62)

where i = 1, 2, 3, 4, and 5 [same �i content as in Eq. (49)]
and 30 TR odd given by

{−i〈χ̄�iζ1χ〉,−i〈χ̄�iζ2χ〉,−i〈χ̄�iζ3χ〉} (63)

with the i indices being given in Eq. (48).
Each of these two sets, under lattice inversion, I (Table V),

break up into two subsets as odd and even under I. Out of the
set of 15 in Eq. (62), the six odd ones are given by

{−i〈χ̄�4ζiχ〉, −i〈χ̄�5ζiχ〉} (64)

while nine even ones are given by

{−i〈χ̄�1ζiχ〉, −i〈χ̄�2ζiχ〉, −i〈χ̄�3ζiχ〉}, (65)

where i = 1, 2, and3.
On the other hand, the set of 30 masses in Eq. (63) breaks

up into two subsets. One of the subsets contains twelve masses
that are even under I and is given by

{−i〈χ̄�45ζiχ〉, −i〈χ̄�12ζiχ〉, −i〈χ̄�23ζiχ〉,
− i〈χ̄�13ζiχ〉}. (66)

The other subset containing eighteen I odd masses is

{−i〈χ̄�14ζiχ〉,−i〈χ̄�15ζiχ〉,−i〈χ̄�24ζiχ〉,
− i〈χ̄�25ζiχ〉,−i〈χ̄�34ζiχ〉,−i〈χ̄�35ζiχ〉}. (67)

Further application of lattice symmetries (Appendix G)
break these up into singlets, doublets and triplets as follows.
The TR even and inversion odd subset [Eq. (64)] of six decom-
poses into two triplets given by Eq. (61b) which correspond to
two different zigzag spin-quadrupolar density wave insulators
given by Eq. (117). Similarly, the nine TR and inversion
even masses break up into two triplets, one doublet and one
singlet as given by Eq. (61c). They represent spin-quadrupole
density waves. While the singlet corresponds to an insulator
[Eq. (104)] with quantized spin-octupole filtered edge modes,
the rest [Eqs. (158), (160), and (163)] are partially gapless
semimetals.

The subset of 12 TR odd and inversion even masses
[Eq. (66)] break up into three triplets, one doublet and one
singlet under the action of the lattice symmetries [Eqs. (61a)
and (61d)]. The singlet (an anomalous Hall insulator) and one
of the triplets represent insulating ferro (uniform) [Eq. (107)]
and stripy [Eq. (114)] density wave ordering of spin-octupoles
respectively. The doublet [Eq. (167)] corresponds to ferro
spin-octupole semimatal and the other two triplets [Eqs. (150)
and (153)] correspond to different stripy spin-octupole density
wave semimetals.

Finally, the 18 TR and inversion odd masses, break up
under lattice symmetries into four triplets, two doublets and
two singlets given by Eqs. (61e) and (61f). Out of them,
the two singlets [Eqs. (134) and (135)] correspond to stag-
gered (“Néel”) spin-octupole density-wave semimetal. The
two doublets [Eqs. (110) and (111)] on the other hand, both
correspond to Néel spin-octupole density wave insulators. As
discussed below Eq. (111), they can be rotated into each other
via a U(1) transformation generated by �45 within the flavor
space. Given this fact and they break the same symmetries, the
two doublets correspond to the same phase and are not distinct
from each other. Similar arguments hold for the two sets of
triplets, each of which represents zigzag spin-octupole density
wave insulators. The two To

1u triplets [Eqs. (124) and (125)]
can be continuously connected without change of symmetry
and hence represent the same phase. Similarly the two To

2u
triplets [Eqs. (132) and (133)] give the same phase.

VI. GROUP 1: THE CHIRAL MASSES

There are four chiral masses that are given in Eqs. (47a)
and (47b). Their transformations under microscopic symme-
tries are given in Appendix G. In accordance with Eqs. (47a)
and (47b), these are divided into a singlet (TR and reflection
odd) and a triplet (TR and inversion even) under the space-
group symmetries while they are all singlets under the flavor
SU(4). Here we discuss the physics of these masses.

A. The SU(8) symmetric integer Chern insulator

The SU(8) singlet mass,

�ICI = −i〈χ̄χ〉, (68)

given by Eq. (47a) is odd under the action of T , C′
2 and σd.

This suggests that this mass is the analog of the Chern mass
for graphene [58,88] which shows the integer quantum Hall
effect and hence represents the ICI phase. Indeed, minimally
coupling the electrons in the massive Dirac action [Eq. (41)]
for the above Chern mass, �ICI to a U(1) probe gauge field,
Aμ, that couples to the electronic charge and integrating out
the gapped fermions, we get a U(1) Chern-Simons term with
the (Euclidean) Lagrangian density:

LCS = i
NF Sgn[�ICI]

4π
εμνλAμ∂νAλ, (69)

where NF = 4 is the number of SU(4) flavors (i.e., number
of four component Dirac fermion fields). Thus all the flavors
contribute the same amount to the charge Hall conductivity
resulting in, σxy = NF

e2

2π
[89].

245106-16



EMERGENT SU(8) DIRAC SEMIMETAL AND PROXIMATE … PHYSICAL REVIEW B 108, 245106 (2023)

FIG. 5. The mean field hopping model for the integer Chern insu-
lator. The second neighbor hoppings (in blue) are generated via the
spontaneous symmetry breaking and the hopping amplitudes along
the directions of the arrows (in local basis) are i = √−1. The same
hopping pattern also holds for the singlet spin-octupole Hall mass
leading to the octupolar Hall effect [Eq. (79)] except in that case the
hopping amplitude is given by i�45.

The nature of symmetry breaking can be analysed by con-
sidering the low-energy projection of the microscopic current
operators on the lattice [58,60]. In particular, starting with
the microscopic orbitals in the local basis, φ(rrr S ), given by
Eq. (17), the hopping operator on the next nearest neighbor
(NNN) bonds—say the blue bond in Fig. 5 from site B2 to
B1—is given by [58]

BB2B1 = φ†(rrr B1 )φ(rrr B2 ). (70)

The form in the global basis (in terms of the j = 3/2 orbitals)
can be easily obtained via Eq. (17) and using the forms of
G(rrr S ) given in Appendix D.

In the low-energy limit, Eq. (70) is equal to

BB2B1 = 1

2
√

3
χ̄ χ + · · · , (71)

where · · · represent higher order terms. Therefore for �ICI �=
0, we have an imaginary second neighbor hopping whose sign
structure is given by Fig. 5. This leads to finite bond current
such that the total gauge invariant loop current per hexagon
is indeed zero (mod 2π ). The loop currents, therefore, form
a Z2 order parameter proportional to the mass, �ICI. Such
Z2 order parameters allow domain walls as one-dimensional
topological defects in two-dimensional systems across which
the sign of the mass changes. As is evident from Eq. (69), the
edge modes have opposite chirality in the two cases and hence
the domain wall is associated with chiral gapless edge modes
that are exponentially localized along the domain wall [90].

B. The SU(4) symmetric stripy charge density wave insulator

The three other SU(4) flavor invariant masses given by
Eq. (47b) form a triplet (Te

1g), which is even under TR sym-
metry, T as well as inversion, I, about the plaquette center.
These are given by

{−i〈χ̄ζ1χ〉,−i〈χ̄ζ2χ〉,−i〈χ̄ζ3χ〉}. (72)

FIG. 6. Stripy CDW for −i〈χ̄ζ1χ〉 �= 0. Here red circles and blue
dots represent opposite charge densities at the honeycomb sites.

They transform into each other under various lattice ro-
tations and reflections as a triplet as shown in Appendix G.
ζi (i = 1, 2, 3) of course generates an SU(2) [see Eq. (28)],
which is broken down by the lattice symmetries to a triplet for
the space group.

The three bilinears have the same symmetry as that of the
three stripy CDW order as shown in Fig. 6 for −i〈χ̄ζ1χ〉.
The other two can be obtained by C3 rotations. Indeed the
analysis of the above three fermion bilinears in the global
basis [Eq. (6)] confirms the symmetry analysis in identifying
the above stripy CDW masses. In particular, starting with
the electron operators in the global basis, i.e., ψ [Eq. (6)],
the projected charge density operators on different sublattices
have the following form:

: ψ†(rrr S )ψ (rrr S ) : =
{

−iχ̄ξ1χ For S = B2, A2

iχ̄ξ1χ For S = A1, B1
, (73)

where : O : denotes normal ordering. Integrating out the
gapped fermions in the presence of the mass does not lead
to a finite charge Hall response.

The three matrices γ0ζi (i = 1, 2, and 3) pairwise anti-
commute with each other such that the three stripy CDW
masses are compatible in the sense that the fermion gap does
not close as the three masses are rotated into each other under
the chiral SU(2) [see Eq. (28)] transformations generated by
eiθ n̂·ζ . This would suggest that the order parameter manifold is
a unit sphere, S2 similar to collinear magnetic ordering (with
one important difference that the present order parameter is
even under TR unlike magnetic order). The above SU(2) is,
however, broken down by the lattice symmetries which, in
terms of the order parameter, selects out symmetry-allowed
points on the sphere, S2. In particular, the leading order
anisotropy of the form

Laniso ∼ −w1�1�2�3 + w2
(
�4

1 + �4
2 + �4

3

)
(74)

is symmetry allowed (see Table XI) in the effective action
with �i being the amplitude for the three components of the
CDW [Eq. (72)]. This reduces the order parameter manifold
to discrete points on the sphere. The details of the ordering
depend on the signs of the couplings w1 and w2. Due to the
presence of the third-order invariant, the transition out of the
semimetal is expected to be first order.

We conclude the discussion of the chiral masses with two
points. First, it is useful to compare the four chiral masses with
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the case of spinless fermions on the honeycomb lattice with
π flux at one-quarter filling presented in Appendix K. The
presence of the π flux breaks up the chiral space as 4 = 1 ⊕ 3,
as opposed to graphene where the chiral space is decomposed
as 4 = 1 ⊕ 1 ⊕ 2. In the present case where the π flux is a
consequence of SOC, the above SU(4) singlet masses can be
thought of as four copies of the spinless case in Appendix K.
Second, while the three triplet stripy masses are compatible
with each other, i.e., the respective mass matrices mutually
anticommute, all of them are incompatible with the singlet
ICI mass since the corresponding matrices (Table VII) pair-
wise commute. This ensures a phase transition [48] between
the two phases which is accompanied by the change in the
nature of broken symmetry as well as the Chern-Simons level
[Eq. (69)] from NF = 4 (in the ICI) to NF = 0 (in the stripy
CDW).

VII. GROUP 2: THE FLAVOR MASSES

The 15 flavor masses of the form −i〈χ̄�iχ〉 are divided
into six irreducible representations by microscopic symme-
tries that are given by Eqs. (58)–(60). Each of these 15
masses individually breaks the flavor SU(4) down to U(1)
⊗ SO(4). However linear combinations of them can reduce
the symmetry further as we discuss below in the case of each
subgroup. A notable feature of these residual subgroups is that
the generators depend on the particular direction of the mass
matrix and hence are locally defined in the space of the order
parameters. This is exactly like the case of a collinear ferro-
magnet/antiferromagnet where the particular generator of the
residual U(1) depends on the direction of the ordering of the
magnetic moments in the spin-space. We shall study the nature
of these for each of the six phases separately, including the
action of the lattice symmetries—including the spontaneously
broken ones—as well as the nature of the residual symmetry
group.

Out of the 15 masses, the ten TR even ones [Eq. (48)] cor-
respond to four different types of spin-octupole Hall phases
while the five TR odd ones [Eq. (49)] represent two spin-
quadrupole Hall phases. We explain their features in turn.

A. Quantum spin-octupole Hall insulators

1. Ae
1g singlet mass

For the singlet [Eq. (58a)], the mass is given by the fermion
bilinear

Ae
1g : − i〈χ̄�45χ〉, (75)

which fully gaps out all the fermions. This breaks the SU(4)
flavor symmetry down to U(1) ⊗ SO(4) with the U(1) being
generated by �45 and SO(4) by six other �i’s that commute
with �45, i.e., {�1, �2, �3, �12, �23, �13}.

In the microscopic j = 3/2 basis (the transformation of
the � operators from the local to global basis is given in
Table VIII), the �45 operator is given by

�45 = − 4

3
√

3

(
JxJyJz + JyJzJx + JzJxJy − 15i

8

)
, (76)

where (Jx, Jy, Jz ) are the j = 3/2 spin operators in the global
basis (see Table VIII) such that �45 is a spin octupole.

Starting with the Euclidean Dirac action in the presence
of the mass term [Eq. (41)], we can diagonalize the spinors
χ in terms of the eigenstates of �45. The eigenstates consist
of two pairs of Kramers doublets. The two members of each
doublet have opposite eigenvalues of �45, i.e., ±1. Each of
the modes contributes to finite Hall edge current leading to
spin-octupole filtered Hall edge modes similar to the quantum
spin-Hall effect [57]. The two TR partners carry current in
the opposite direction and backscattering within each TR pair
is disallowed by TR symmetry—again just like quantum spin
Hall effect. However, the scattering between the oppositely
moving edge modes belonging to the two different Kramers
doublets is not allowed because they necessarily have opposite
eigenvalues of �45.

A more formal derivation of the resultant symmetry-
protected CS action is obtained by coupling probe
charge and spin-octupolar gauge fields to Eq. (41), i.e.,
considering

S[Ac, Ao] = −i
∫

d2rdτ χ̄ (r)[vF /D − ��45]χ (r), (77)

where

/D = γ μ
(
i∂μ − Ac,μ − �45Ao,μ

)
, (78)

where Ac and Ao are charge and spin-octupole probe gauge
fields, respectively. Then integrating out the fermions leads to
the mutual CS term given by

Smutual
CS = i

NF

2π
sgn(�)

∫
d3x εμνλAc,μ∂νAo,λ, (79)

which characterizes the quantum spin-octupolar Hall re-
sponse.

The lattice version of this mass can be analyzed in a
similar way as done for the ICI mass. For that, we consider
microscopic hopping operators on one of the NNN bonds and
project that to the low-energy sector. We again take the blue
bond in Fig. 5 from site B2 to B1 and write the following
hopping operator:

B
(45)
B2B1

= φ†(rrr B1 ) �45 φ(rrr B2 ). (80)

In term of the low-energy spinors, this has the following
form:

B
(45)
B2B1

= 1

2
√

3
χ̄ �45χ + · · · . (81)

Thus the imaginary part of this hopping operator is propor-
tional to the order parameter in this phase. This shows that
there are nonzero bond currents in this phase. The hopping
pattern on the other bonds are same as shown in Fig. 5 with
the hopping amplitudes being i�45 instead of i.

The lattice Hamiltonian can now be used to check for the
edge modes by obtaining the spectrum with open boundary
conditions. The spectrum on a cylinder for the zigzag and
armchair edges are shown in Fig. 7.

Not surprisingly, in Fig. 7, such edge modes are also ob-
served for both 3/4th filling as well as 1/2 filling. While the
case of 3/4th filling is expected to result from the micro-
scopic particle-hole transformation that maps 1/4 ↔ 3/4, the
physics of 1/2 filling would be interesting to understand in
future.
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(a)Zig-zag edge

(b)Armchair edge

FIG. 7. Spectrum for −iχ̄�45χ with zigzag and armchair edges.
Both of these plots show gapless states at one-forth filling (shown by
black dashed line). To get this spectrum, we consider a honeycomb
lattice with cylindrical geometry where the edges of the cylinder
have zigzag or armchairlike boundaries. Here kx is lattice momentum
along the periodic direction. We take 32 magnetic unit cells along the
length of the cylinder to perform this numerical calculation.

Similar to the ICI phase, the order parameter for the spin-
octupole Hall phase is a Z2 field and leads to gapless fermionic
modes associated with the domain walls of the order pa-
rameter. Note, however, that such a field is TR even and is
symmetric under all lattice transformations. Thus this mass
is naturally allowed by the microscopics. This is analogous
to the Kane-Mele mass [57] for graphene which is symmetry
allowed but is energetically suppressed due to the very small
value of the SOC in that case.

2. The Te
1g triplet masses

The TR even triplet in Eq. (58b) consists of three masses
of the form

Te
1g :

⎧⎪⎨
⎪⎩

−i 〈χ̄�12χ〉
−i 〈χ̄�13χ〉
−i 〈χ̄�23χ〉

, (82)

which fully gaps out the Dirac fermions. In terms of the j =
3/2 operators, the three mass matrices are given by

�αβ = 7εαβγ

3

(
Jγ − 4

7
J3
γ

)
, (83)

where α, β, γ = 1, 2, 3 with α �= β such that they are a
mixture of dipole and spin-octupole operators. Following
Eq. (41), the generic mass term is given by

−i(�1χ̄�23χ + �2χ̄�13χ + �3χ̄�12χ ), (84)

where �i (i = 1, 2, 3) are the weights for each of the three
components. Hence such masses lie on a 2-sphere with direc-
tional cosines given by cos θi = �i/

√
�2

1 + �2
2 + �2

3 where
the different points can be rotated into each other via the
SU(2) symmetry generated by Eq. (55). With reference to
Eq. (82), it is now clear that this SU(2) corresponds to the
continuous rotation amongst the three spin octupoles.

At each point on this mass sphere, the residual symmetry
is U(1) ⊗ SO(4). However, the particular generators of this
residual symmetry group depend on the location of the point
and are related to each other by the same SU(2) transforma-
tions [Eq. (55)]. For example, the generators of the residual
symmetry at the point [001] are given by

{�12, �3, �4, �5, �34, �35, �45}, (85)

where the first generator corresponds to the U(1) (which is
left-over of the SU(2) [Eq. (55)]) and the rest generate the
SO(4). The residual groups at other points on the mass sphere
are obtained via SU(2) rotations generated by Eq. (55).

The phase breaks the spin-octupole SU(2) symmetry
[Eq. (55)] spontaneously and results in quantum spin-octupole
Hall effect that is protected by U(1)� ZT R

2 and is similar
to the quantum Spin Hall phase obtained via spontaneously
broken spin-rotation symmetry discussed in Ref. [61] with
interesting differences (see below). The presence of nontrivial
spin-octupole filtered edge states is confirmed by calculating
the mutual Hall response similar to Eq. (77) for the singlet
case above which leads to the mutual Chern-Simons action
similar to Eq. (79).

The presence of the gapless edge-modes can also be
checked by going back to the mean-field Lattice Hamil-
tonian in presence of the lattice version of the mass (not
shown). The lattice version of the Hamiltonian corresponding
to the continuum bilinear −i〈χ̄�12χ〉 is the same as that for
the quantum spin-octupolar Hall mass given in Eq. (80) with
the hopping matrix (i.e., �45) replaced by �12.

An interesting fallout of the present implementation of the
symmetry is the fact that the three component spin-octupolar
order-parameter allows for skyrmion configurations. Follow-
ing the calculations of Refs. [61,66] (and references therein)
it is rather straightforward to show that such skyrmions
carry NF (= 4) units of electronic charge and are bosons.
Hence, condensation of such skyrmions within a framework
discussed in Ref. [61] would lead to a novel 4e supercon-
ductor with single electron excitations being gapped and the
magnetic flux is quantized in units of hc/4e [91]. This is
tantamount to the fractionalization [92] of the elementary
BCS hc/2e-vortex. The above mechanism to obtain a 4e
superconductor is rather novel and differs from the usual
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mechanism of BCS superconductivity, where such a 4e su-
perconductor is obtained by forming a 4-electron bound state
and condensing them. The novel superconductor here seems
to be a natural consequence of the SOC-mediated symmetry
implementation in quarter-filled j = 3/2 honeycomb lattices
that allow binding of 4e charges to the topological texture of
the spin-octupole order parameter.

3. The Te
1u and Te

2u triplet masses

The two inversion odd TR even triplets [Eq. (59)] are given
by

Te
1u :

⎧⎪⎪⎨
⎪⎪⎩

−i 〈χ̄�34χ〉
−i
〈
χ̄ �14+

√
3�15

2 χ
〉

−i
〈
χ̄ �24−

√
3�25

2 χ
〉 , (86)

Te
2u :

⎧⎪⎨
⎪⎩

−i 〈χ̄�35χ〉
−i
〈
χ̄

√
3�14−�15

2 χ
〉

−i
〈
χ̄

√
3�24+�25

2 χ
〉 . (87)

In terms of the j = 3/2 spin matrices, we have

�34 = 2

3

(
J3

z − 13

4
Jz

)
, (88a)

−1

2
�14 −

√
3

2
�15 = 2

3

(
J3

x − 13

4
Jx

)
, (88b)

−
√

3

2
�25 + 1

2
�24 = −2

3

(
J3

y − 13

4
Jy

)
, (88c)

for the three Te
1u masses and

�35 = 2

3
√

3

[(
J2

x Jz + JxJzJx + JzJ
2
x

)
− (J2

y Jz + JyJzJy + JzJ
2
y

)]
, (89a)

√
3

2
�24 + 1

2
�25 = 2

3
√

3

[(
J2

x Jy + JxJyJx + JyJ2
x

)
− (J2

z Jy + JzJyJz + JyJ2
z

)]
, (89b)

√
3

2
�14 − 1

2
�15 = 2

3
√

3

[(
J2

y Jx + JyJxJy + JxJ2
y

)
− (J2

z Jx + JzJxJz + JxJ2
z

)]
(89c)

for the Te
2u triplet. Hence these masses represent two different

sets of spin-octupole order. Note that while components of
the two triplets can be rotated into each other by a U(1)
rotation generated by �45, the two triplets represent different
phases since they have different transformations under lattice
reflection, C′

2.
The three masses in each of the triplets are incompatible,

i.e., the matrices (m1, m2, m3) in Eqs. (88a)–(88c) or (89a)–
(89c) do not mutually pairwise anticommute. This results
in an interesting structure for the residual symmetry in the
resultant massive phases. For a generic linear combination of
the three masses, similar to Eq. (84) but now for the Te

1u and
Te

2u triplets, i.e.,

−i(�1χ̄m1χ + �2χ̄m2χ + �3χ̄m3χ ), (90)

where m1, m2, m3 are the three matrices in Eq. (88) or (89), the
flavor SU(4) is broken down to U(1) ⊗ U(1) ⊗ U(1). However,
to get more insights, it is useful to diagonalize the bilinear in
Eq. (90) for a generic point on the unit sphere described by
the directional cosines �i/

√
�2

1 + �2
2 + �2

3 (middle panel of
Fig. 8) to obtain

−χ̄ ′Dχ ′, (91)

where χ ′ are the fermions in the diagonalized basis and

D =
(

a1σ3 0

0 a2σ3

)
⊗ ζ0 (92)

with a1, a2 are two real functions of �is, σ3 is the third Pauli
matrix, and ζ0 is the identity matrix that acts in the valley-band
space of the spinors, i.e., in the chiral SU(2) space [Eq. (28)].

In this diagonalized basis, it is easy to see that there are
three linearly independent matrices (other than the identity
matrix) that commute with the D matrix in Eq. (92). These
are this matrix D itself and(

σ3 0

0 0

)
⊗ ζ0,

(
0 0

0 σ3

)
⊗ ζ0. (93)

The above three matrices generate the residual U(1) ⊗
U(1) ⊗ U(1) symmetry on generic points on the sphere in the
middle panel of Fig. 8 like C and D. The first U(1) results
in conserved flavor (spin-octupole) currents along the NNN
bonds with a flow pattern similar to that shown in Fig. 5.
For such generic points, the fermions are fully gapped with
each gapped band being fourfold degenerate (spectrum (b) in
the top panel of Fig. 8). We can calculate the edge response,
which is given by a mutual CS action similar to Eq. (79).
These spin-octupole filtered edge modes are again protected
by the U(1)� ZT R

2 as in the case of Te
1g mass discussed above.

Interestingly on putting two of the �is to zero such as the
point A in Fig. 8 (middle panel), while the above conclu-
sions survive, the gapped bands have an enhanced eightfold
degeneracy [as shown in (a) of the top panel of Fig. 8] due
to enhanced residual flavor symmetry of U(1) ⊗ SO(4). From
the perspective of Eq. (92), the numbers a1 and a2 becomes
equal at these points such that we can further basis transform
D → (σ3 ⊗ σ0) ⊗ ζ0. Now there are six generators in addition
to D, that commute with the mass which is given by(

σi 0

0 σi

)
⊗ ζ0,

(
σi 0

0 −σi

)
⊗ ζ0. (94)

with i = 1, 2, 3. This generates SU(2)⊗ SU(2) ≡ SO(4) in
addition to the U(1) generated by D itself.

A much more interesting situation arises when one moves
from point C (or D) to point B (in the middle panel of Fig. 8)
which is characterized by

|�1| = |�2| = |�3|, (95)

and is one of the eight isolated special points.
At these points, a2 in Eq. (92) becomes zero. We have

assumed a1 > a2 without any loss of generality. As a result
four flavors of fermions belonging to the a2 block become
gapless while four others belonging to the a1 block remain
gapped. This leads to a partially gapped state. The resultant
spectrum is shown in (c) of the top panel in Fig. 8. It is clear
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FIG. 8. Figure shows the energy spectrum of low-energy fermions along the kx = ky line for different combinations of the masses in a
triplet. Any linear combination of the masses in a particular triplet can be represented on the surface of a unit sphere shown at the center. The
energy spectrum shown in the upper panel of this figure corresponds to the Te

1u triplets in Eqs. (86), (118) and the Te
2u triplets in Eqs. (87),

(120). The spectrum in (a), (b) and (c) in the upper panel correspond to the spectrum at the points A, C, and B on the sphere. Similarly, the
spectrum in the bottom panel corresponds to the To

1u and To
2u triplets in Eqs. (124), (125), (132), and (133). Here again, the spectrum in (d), (e),

and (f) correspond to the spectrum at the points A, C, and B on the sphere.

that at this special points when a2 = 0, in addition to D and
the two matrices given by Eq. (93), two additional matrices(

0 0

0 σ1

)
⊗ ζ0,

(
0 0

0 σ2

)
⊗ ζ0 (96)

also commute with the mass matrix at this special point. The
above two matrices along with the last one of Eq. (93) gen-
erate a SU(2) such that at these isolated points the symmetry
is given by U(1) ⊗ U(1) ⊗ SU(2) and it is this last SU(2)
which protects a subset of gapless Dirac fermions. On moving
away from these special points infinitesimally, the SU(2) is
broken down to U(1) as a2 �= 0 and this gaps out the remaining
fermions [spectrum (b) in the top panel of Fig. 8].

The existence of such isolated gapless points is surprising
and different from the usual incompatible masses such as the
chiral masses [48]. In the case of chiral masses (Sec. VI) in
moving from the CDW masses to the ICI mass, one encoun-
ters an unavoidable line of bulk gap closing corresponding
to a phase transition, across which the level of Chern-Simons

term change. However, in the present case one can conceive
two different classes of lines on the sphere joining the same
two gapped end-points (C and D) as shown on the sphere in
the middle panel of Fig. 8, one not passing through the special
point (the black path) and the other passing through the special
point, B (the red path).

For the second path, one would naively conclude that the
system goes through a phase transition via a critical point with
higher symmetry. The situation can be understood by going
back to the six inversion odd masses in Eq. (51) and reminding
ourselves that the six masses in Te

1u and Te
2u are mutually

incompatible and together form a reducible representation
[Eqs. (56) and (57)] of a U(1) ⊗ SU(2) subgroup of SO(5). A
generic linear combination of the six masses in this case can
be represented as points on the surface of a five-dimensional
sphere, S5, by extending Eq. (90) to all the six masses. On
this S5 due to the incompatibility, there are extended lower
dimensional regions of parameter space where the fermions
are partially gapless that separates the fully gapped regions
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FIG. 9. The six masses in Eq. (51) are mutually incompatible. A generic linear combination of such masses [similar to Eq. (90) extended
to the six masses] can be represented on a five-dimensional sphere S5, as shown in the left-hand figure which has extended gapless critical
hyperlines (in magenta) separating two different phases described by the two triplets Te

1u and Te
2u [Eqs. (56) and (57)]. The pink line on S5

represents a hypersurface on which the fermionic spectrum is gapless [Figs. 8(c) and 8(f)]. This hypersurface projects to the point B on S2 as
shown by the dotted lines. The images of the two paths from C to D are also shown in S5.

as schematically depicted in Fig. 9. Projection of the gap-
less regions from S5 to S2 for the above two triplets results
in the isolated special points. This is most easily seen by
sitting at one of the special partially gapless points on the
S2 for a particular triplet (say Te

1u) and performing the U(1)
⊗ SU(2) transformation generated by Eqs. (54) and (55) as
discussed above. The resultant mass necessarily involves the
other triplet, Te

2u and hence does not lie on the S2 anymore but
on the gapless manifold of S5. This is schematically shown
in Fig. 9. Thus the special point B is the projected image
of the gapless manifold on S5 to S2 and the two classes
of paths between C and D mentioned above have a natu-
ral interpretation on S5 where the black (red) path avoiding
(touching) the special isolated point corresponds to paths on
S5 that lies within a single gapped phase but avoids (touches)
the gapless manifold. Very importantly, the special point is
mandated to exist under the microscopic symmetries such that
a system tuned to pass through the special point B undergoes
an unnecessary phase transition [65]. In this sense, the special
points can be thought of as examples of symmetry enforced
unnecessary multicritical points.

B. Quantum spin-quadrupole Hall insulators

Turning to the five TR odd masses that form the Eo
u doublet

[Eq. (52)] and To
2g triplet [Eq. (53)], the respective masses are

given by

Eo
u :

{
−i〈χ̄�4χ〉
−i〈χ̄�5χ〉 (97)

and

To
2g :

⎧⎪⎨
⎪⎩

−i〈χ̄�1χ〉
−i〈χ̄�2χ〉
−i〈χ̄�3χ〉

. (98)

While the doublet (Table X) is odd under inversion symme-
try and does not break lattice translation, the triplet (Table XI)
is even under inversion, but breaks lattice translation. Trans-
formation under other lattice symmetries is given in respective
tables. Further in terms of the IR symmetries, each of the two
classes breaks SO(5) down to U(1) ⊗ SU(2) as mentioned
above [Eqs. (54) and (55)]—the doublet (triplet) is a U(1)
[SU(2)] singlet.

The two classes of masses fully gap out the fermionic
spectrum and break the SU(4) flavor symmetry. Notably, in
terms of the spin operators, we have

�4 = 1√
3

(
J2

x − J2
y

)
and �5 = J2

z − 5

4
(99)

for the doublet and

�1 = (JyJz + JzJy)/
√

3,

�2 = (JzJx + JxJz )/
√

3, (100)

�3 = (JyJx + JxJy)/
√

3,

for the triplet, all of which correspond to spin-quadrupoles. In
fact, as we show below, the two corresponds to different spin-
quadrupole Hall phase protected by U(1) symmetry. Such a
phase is an interesting generalization of the QSH phase as the
quadrupole Hall phase is TR odd, unlike the QSH phase. This
can be traced to the fact that unlike the spin-dipole and the
spin-octupole currents, the spin-quadrupole currents are odd
under TR.

The resultant nonzero Hall response can be obtained by
performing a calculation similar to Sec. VII. Sitting deep
inside the gapped phase with 〈−iχ̄�4χ〉 �= 0 (say), we can
introduce a spin-quadrupole probe gauge field Aq in addition
to a probe charge field, Ac, and integrating out the fermions
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results in a mutual CS action

Smutual
CS = i

NF

2π
sgn(�)

∫
d3x εμνλAc,μ∂νAq,λ, (101)

such that there is a spin-quadrupolar edge current (corre-
sponding to �4). As in the case of the previously discussed
spin-octupolar Hall phases, the presence of edge modes in the
case of this mass can be confirmed by taking a mean-field lat-
tice Hamiltonian and performing a band structure calculation
on a finite-sized lattice. Similar results can be obtained for the
triplet.

Focusing on the Eo
u doublet, we note that it breaks the

SU(4) flavor symmetry to U(1) ⊗ SO(4). For example, for
−i 〈χ̄�4χ〉 �= 0, the U(1) is generated by �4 and the SO(4) is
by {�12, �13, �15, �23, �25, �35}. Since the two-component
order parameter [Eq. (97)] lives on a circle it supports point
defects—vortices characterized by the winding number. More
precisely, consider the mass term

−i(�1χ̄�4χ + �2χ̄�5χ ) (102)

such that under the U(1) transformation generated by �45 for
an angle θ ,

� = �1 + i�2 → �eiθ . (103)

At the core of such a vortex, the TRS is restored, and hence
for a fat vortex with a sizable core one expects quadrupole-
filtered zero modes around the vortex core. Further following
each such unit vortex is expected to trap NF /2 quanta of
electronic charge [48,93]. The transition mediated by the pro-
liferation and condensation of such vortices are then expected
to be novel [48,94] and requires further understanding.

VIII. GROUP 3: THE MIXED MASSES

We now turn to the structure of the mixed masses which are
obtained by nontrivial contributions from both the flavor and
chiral sectors. The complex structure of the mass matrices and
the intricate locking of the spin and real space symmetry trans-
formations result in the rich properties of the resultant phases
which we now discuss in detail. There are 45 masses divided
into 19 irreducible representations summarized in Eq. (61) and
they give rise to 16 different phases. These are generic density
wave phases which can be divided into two subsets depending
on whether the fermions are generically fully gapped (insula-
tors) or partially gapped (semimetals). Two of the insulators,
have edge modes whose signature is evident from appropriate
Chern-Simons terms. In most of the insulators and semimet-
als, the components of some of the multiplets are incompatible
and hence they lead to gapless submanifold as the components
of the masses are tuned (similar to the spin-octupole flavor
triplet discussed in Sec. VII A 3).

A. Density wave insulators

There are 27 such mass terms divided into two sin-
glets (Ae

1g, Ao
2g), two doublets (2Eo

u), and seven triplets
(To

2g, Te
1u, Te

2u, 2To
1u, 2To

2u). While the singlets and three triplets
(To

2g, Te
1u, Te

2u) give rise to five distinct phases, the two dou-
blets and the other two triplets with a multiplicity of two,
i.e., (2To

1u, 2To
2u) only give rise to three distinct phases since

members of the same representation can be mixed without

breaking any further symmetries. Thus they give rise to a total
of eight distinct flavor density wave insulating phases—two
of which have edge modes.

1. Ising ferro spin-quadrupolar insulator

The TR even mass for the Ae
1g lattice singlet in Eq. (61c)

is given by

� = −i〈χ̄ (�3ζ1 − �1ζ3 − �2ζ2)χ〉/
√

3. (104)

While it is a lattice singlet, it breaks the flavor SU(4) down to
U(1) (generated by �45) and the chiral SU(2) down to Z2.

This mass corresponds to a uniform ferro ordering in the
spin-quadrupole density (in the global basis)

�1 + �2 + �3 = 1√
3

({Jx, Jy} + {Jy, Jz} + {Jz, Jx}), (105)

as can be explicitly checked starting with the underlying lat-
tice fermion bilinear similar to the case of CDW [Eq. (73)].
In addition, this singlet supports nonzero quantized spin-
octupolar Hall response somewhat similar to that of the Ae

1g
mass in Eq. (75). To understand this, we write an action
similar to that in Eq. (77) and integrate out the fermions. This
produces a mutual CS action of the form

Smutual
CS = i

NF

2

1

2π
sgn(�)

∫
d3xεμνλAc,μ∂νAo,λ. (106)

Here NF = 4 is the number of fermions flavors and Ac,μ,
Ao,μ are respectively electromagnetic and spin-octupole probe
gauge fields as used in Eq. (78). Thus this mass too produces
quantum spin-octupolar Hall response, but the CS level is
half compared to that for the mass in Eq. (75). The resultant
counter-propagating edge modes (not shown) can be obtained
for appropriate lattice models. These edge modes are pro-
tected by the microscopic time-reversal symmetry (T ). Hence
this corresponds to a gapped Ising ferro spin-quadrupolar
phase with counter-propagating spin-octupole filtered edge
modes.

2. Ising ferro spin-octupolar insulator

Similarly, the TR odd mass for the Ao
2g lattice singlet in

Eq. (61d) given by

�̃ = −i〈χ̄ (�12ζ1 − �23ζ3 + �13ζ2)χ〉/
√

3 (107)

corresponds to uniform ordering for the spin-octupole density
in

�12 − �13 + �23 = 7
3 (Jx + Jy + Jz ) − 4

3

(
J3

x + J3
y + J3

z

)
.

(108)

However, unlike the above ferro spin-quadrupolar order,
this breaks the flavor SU(4) down to SU(2) (generated by
{�4, �5, �45}) and is also odd under C′

2. The chiral SU(2)
on the other hand is broken down to Z2 similar to the ferro
spin-quadrupolar case.

The above singlet leads to nonzero quantum Hall response
in the presence of an external electromagnetic field. This can
again be understood by writing an action of the form as in
Eq. (41) in the presence of an electromagnetic gauge field Ac,μ

and integrating out the fermions. This produces an effective
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FIG. 10. Density pattern for the staggered spin-octupole density
waves corresponding to Eqs. (110) and (111). The red circles and
blue dots here represent opposite densities in the spin-octupole oper-
ators given by Eqs. (112) and (113).

action given by

SCS = i
NF

2

1

4π
sgn(�̃)

∫
d3xεμνλAc,μ∂νAc,λ. (109)

The CS level of this action is half compared to that for the ICI
mass [Eq. (69)] and hence represents a generalization of an
anomalous Hall insulator.

3. Staggered (“Néel”) spin-octupolar insulator

The four mixed masses that make up the two Eo
u doublets

in Eqs. (61e) and (61f) are respectively comprised of

− i

〈
χ̄

4�35ζ1 − (�15 − √
3�14)ζ3 − (

√
3�24 + �25)ζ2

2
√

6
χ

〉
,

− i

〈
χ̄

(�15 − √
3�14)ζ3 − (�25 + √

3�24)ζ2

2
√

2
χ

〉
, (110)

and

− i

〈
χ̄

4�34ζ1−(�14 + √
3�15)ζ3+(

√
3�25 − �24)ζ2

2
√

6
χ

〉
,

− i

〈
χ̄

−(�14 + √
3�15)ζ3 + (�24 − √

3�25)ζ2

2
√

2
χ

〉
.

(111)

The above four masses in the two doublets can be rotated
into each other using a U(1) symmetry generated by �45.
In particular, if m1(m′

1) and m2(m′
2) are the components of

Eqs. (110) and (111), then the linear combinations m±
1 =

m1 ± im′
1 and m±

2 = m2 ± im′
2 transform as one-dimensional

representations of the above U(1). Hence they describe the
same phase.

These masses describe a fully gapped two-sublattice
staggered ordering (as shown in Fig. 10) in the following spin-
octupole operator respectively (whose representation in terms
of spin operators are readily obtained using Appendix C)

2�35 + �15 − √
3�14

2
+

√
3�24 + �25

2
,

√
3�14 − �15

2
+

√
3�24 + �25

2
, (112)

and

2�34 + �14 + √
3�15

2
+ �24 − √

3�25

2
,

�14 + √
3�15

2
− �24 − √

3�25

2
. (113)

This can be checked starting with the appropriate lattice bilin-
ears similar to Eq. (116).

A remarkable difference of the above sublattice stag-
gered spin-octupolar orderings compared to Néel state in
SU(2) spin-rotation invariant graphene is that the latter are
given one-dimensional representations, Ao

1u, [48] under lattice
transformations while transform as a O(3) vector under spin
rotations. In the present case, due to SOC, we have doublets
that transform nontrivially under both SU(4) and lattice sym-
metries. In fact, this allows for nontrivial quantum numbers
for the vortices of the resultant doublet masses which forms
an interesting avenue to explore in the future.

4. Stripy spin-octupole density wave insulator

The three masses that form the To
2g triplet [in Eq. (61a)] are

given by

−i〈χ̄�45ζiχ〉 �= 0 (114)

with i = 1, 2, 3. Each mass in this triplet breaks down the
flavor SU(4) to U(1) ⊗ SU(2) and the chiral SU(2) to U(1).

The transformation properties of the triplet components
(see Table XI) under lattice symmetries is completely deter-
mined by ζi as �45 is a lattice singlet (see Tables VI and
VII). Thus they are very similar to the triplet mass in group
1 [Eq. (72)]. However, unlike the CDW, here the density
modulation occurs in the spin-octupole moment, i.e.,

�45 = − 4

3
√

3

(
JxJyJz + JyJzJx + JzJxJy − 15i

8

)
. (115)

Hence they are nothing but stripy spin-octupole density wave
as shown in Fig. 6 with the modulation being in the spin-
octupole density. This can be seen explicitly by looking at
the low-energy projection of the microscopic on-site spin-
octupole density operator. Similar to the CDW case [Eq. (73)],
here we have

: ψ†(rrr S )�45ψ (rrr S ) : =
{

−iχ̄�45ζ1χ For S = A2, B2

iχ̄�45ζ1χ For S = A1, B1
.

(116)

The two other members of the triplet describe stripy order
along the other two directions rotated by ±2π/3 with respect
to Fig. 6.

5. Zig-zag spin-quadrupole density wave insulator

Equation (61b) consists of six masses of the form

{−i〈χ̄�4ζiχ〉, −i〈χ̄�5ζiχ〉}, (117)

for i = 1, 2, and 3. Under the action of the lattice symme-
tries, these six masses form two triplets with representations
Te

1u and Te
2u which leads to two different types of spin-

quadrupole density wave phases [Eq. (99)] which we discuss
below.
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FIG. 11. Zigzag density wave pattern corresponding to the
masses of Eqs. (118), (120), (124), (125), (132), and (133). The
blue dots and the red circles represent opposite densities of spin
quadrupole operator �5.

a. Te
1u masses. The Te

1u masses are given by

−i〈χ̄�5ζ1χ〉,
− i

2
〈χ̄ (−

√
3�4 + �5)ζ3χ〉,

− i

2
〈χ̄ (−

√
3�4 − �5)ζ2χ〉. (118)

The relation between the first mass and the underlying j =
3/2 orbitals is given by

: ψ†(rrr S )�5ψ (rrr S ) : =
{

−iχ̄�5ζ1χ For S = A1, B2

iχ̄�5ζ1χ For S = B1, A2
.

(119)

Notice the difference in the sign for the different sublattices
compared to Eqs. (73) and (116). Unlike in these earlier
cases, Eq. (119) represents zigzag pattern of spin-quadrupolar
density wave as shown in Fig. 11, which corresponds to
spin-quadrupole order in �5. The other two masses are also
zigzag density waves of the 1

2 (
√

3�4 − �5), 1
2 (

√
3�4 + �5)

operators whose patterns are rotated by ±2π/3 with respect
to Fig. 11.

b. Te
2u masses. The masses in the Te

2u triplet are given by

−i〈χ̄�4ζ1χ〉,
− i

2
〈χ̄ (�4 +

√
3�5)ζ3χ〉,

− i

2
〈χ̄ (

√
3�5 − �4)ζ2χ〉. (120)

Similar to Te
1u triplet, these are also zigzag density waves but

of different spin-quadrupole operators, namely,

�4,
1

2
(
√

3�5 + �4),
1

2
(
√

3�5 − �4), (121)

respectively.
The members of both the above triplets are incompatible

and hence generically one expects gapless points when tuning
among different components of the masses similar to the Te

1u
and Te

2u masses in Eqs. (86) and (87). In fact, similar to that
case, we can consider labeling the linear combination of the
six masses in Eq. (117) as points on a five-dimensional sphere,
S5. The points on this S5 are closed under the action of

the U(1) ⊗ SU(2) subgroup generated by {�45, ζ1, ζ2, ζ3}.
Then arguments similar to those discussed for the Te

1u and Te
2u

masses (in Sec. VII A 3) hold in the present case.
The generic linear combination of the present two triplets

[given by a form similar to Eq. (90)] can then be parametrized
on a 2-sphere, S2 which can be thought as two different pro-
jections of the points on S5 and all the discussions of Figs. 8
and 9 and the associated discussion also apply to the present
case leading to unnecessary multicritical points.

6. Zigzag spin-octupole density wave insulator

The four triplets (two To
1u and two To

2u) in Eqs. (61e) and
(61f) correspond to two different types of spin-octupolar den-
sity wave patterns (of the type given by Fig. 11). This can be
shown by an analysis similar to that in Eq. (119). Note that
the two triplets in each of the representations break the same
symmetries and hence they are not counted as distinct phases.

Notably, each triplet is made up of noncompatible mem-
bers. Thus while the generic linear combination of the masses
[Eq. (90)] gap out all the fermions, there are special linear
combinations, similar to the zigzag spin-quadrupole density
waves [Eq. (117)] where fermions become gapless giving rise
to unnecessary multicritical points.

a. The To
1u triplets. Two such triplets given by Eqs. (61e)

and (61f) correspond to zigzag ordering in
√

3�14 − �15

2
−

√
3�24 + �25

2
,

�35 −
√

3�24 + �25

2
,

�35 +
√

3�14 − �15

2
, (122)

and
√

3�15 + �14

2
+

√
3�25 − �24

2
,

�34 + �24 − √
3�25

2
,

�34 −
√

3�15 + �14

2
(123)

respectively. The zigzag patterns for the first mass of both the
triplets are similar to the one shown in Fig. 11 while that for
the other two are obtained by rotating this pattern by ±2π/3.

The fermion bilinear corresponding to the two triplets is
given by

−i〈χ̄ ((�15 −
√

3�14)ζ2 + (
√

3�24 + �25)ζ3)χ〉/2
√

2,

−i〈χ̄ (−(
√

3�24 + �25)ζ1 − 2�35ζ2)χ〉/2
√

2,

−i〈χ̄ ((�15 −
√

3�14)ζ1 + 2�35ζ3)χ〉/2
√

2 (124)

for and

−i〈χ̄ ((−�24 +
√

3�25)ζ3 + (�14 +
√

3�15)ζ2)χ〉/2
√

2,

−i〈χ̄ ((−�24 +
√

3�25)ζ1 + 2�34ζ2)χ〉/2
√

2,

−i〈χ̄ (−(�14 +
√

3�15)ζ1 + 2�34ζ3)χ〉/2
√

2. (125)
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For a generic linear combination of the three masses [simi-
lar to Eq. (90)] for each of the two triplets, the degeneracy and
the magnitude of the fermionic gap change for different points
on the sphere, S2 (middle panel of Fig. 8), as members of each
triplet are incompatible. The fermionic spectrum correspond-
ing to the three points A, B, and C on the sphere in Fig. 8 are
shown in the bottom panel of the same figure. This clearly
shows the change in the degeneracy of each of the fermionic
bands as well as the change in the fermionic gap. For a general
point on S2 (e.g., points C,D on the sphere in Fig. 8), the
fermionic spectrum has eight bands, each of which is twofold
degenerate. However, for the points on the great circles ob-
tained by setting one of the �is to zero (blue circles on the
sphere in Fig 8 which includes the point A), the spectrum has
four bands and each of these is fourfold degenerate. Finally,
for the special eight isolated points given by Eq. (95) (such
as point B on the sphere in Fig. 8), the fermion gap closes
partially giving rise to four gapless fermionic modes while the
rest of the bands remain gapped and twofold degenerate.

The above pattern is best understood by performing a basis
transformation [similar in spirit to Eq. (91)] which allows
useful insights into the breaking of the SU(8) symmetry by
the above masses. We explicitly discuss this for the first triplet
given by Eq. (124). This basis transformation is defined by

χ ′′ = U ′′χ, (126)

where

U ′′ = �0 ⊗
(

σ0

iσ2

)
. (127)

The form of the Dirac Matrices in this new basis is
γ ′′

0 = �0τ0σ3, γ ′′
1 = �0τ0σ2, γ ′′

2 = −�0τ0σ1 such that
the SU(8) generators [P in Eq. (29)] that commute with the
Dirac matrices, in the transformed basis, must have the form

P′′ = �aτβσ0. (128)

The six masses in Eqs. (124) and (125), in this new basis have
the following form:

−iχ̄ ′′ γ ′′
0 (R ⊗ σ3) χ ′′, (129)

where R are 8 × 8 Hermitian matrices.
The residual subgroup of the SU(8) in presence of these

masses can be obtained from the set of 8 × 8 linearly indepen-
dent matrices that commute with R. As shown in Appendix H,
this yields the following.

(i) At generic points such as C, D on the sphere in Fig. 8,
the SU(8) symmetry breaks down to U(1) ⊗ [U(1) ⊗ U(1) ⊗
U(1)]2 and there are no zero modes [Fig. 8(e)].

(ii) For the points on the blue great circles (e.g., point A),
the SU(8) symmetry breaks down to U(1)⊗ [U(1) ⊗ SO(4)]
⊗ [U(1) ⊗ SO(4)] and there are no zero modes but because of
the larger residual symmetry, the gapped modes have a higher
degeneracy [Fig. 8(d)].

(iii) Finally, at the special points where all the �i have
equal magnitude (e.g., point B in Fig. 8), the SU(8) symmetry
is broken to U(1) ⊗ U(1) ⊗ U(1) ⊗ U(2) ⊗ SO(4). Thus the
isolated gapless points have higher symmetry compared to it’s
nearby points. This high symmetry preserves a zero block in
the R matrix [Eq. (H3)] and this protects the four gapless
fermion modes [Fig. 8(f)].

b. The To
2u triplets. We now discuss the two To

2u triplets.
The geometric order and the SU(8) symmetry breaking of
these masses are similar to the two To

1u triplets leading respec-
tively to zigzag ordering of

√
3�14 − �15

2
+

√
3�24 + �25

2
,

�35 +
√

3�24 + �25

2
, (130)

�35 −
√

3�14 − �15

2
,

and

�14 + √
3�15

2
+ �24 − √

3�25

2
,

�34 +
√

3�25 − �24

2
,

�34 −
√

3�15 + �14

2
, (131)

spin-octupole operators.
The corresponding masses are given by{〈

−iχ̄
−(�25 + √

3�24)ζ3 + (�15 − √
3�14)ζ2

2
√

2
χ

〉
,

〈
−iχ̄

−(�25 + √
3�24)ζ1 + 2�35ζ2

2
√

2
χ

〉
,

〈
−iχ̄

(
√

3�14 − �15)ζ1 + 2�35ζ3

2
√

2
χ

〉}
�= 0, (132)

for the To
2u triplet in Eq. (61e) and{〈
−iχ̄

(�24 − √
3�25)ζ3 + (�14 + √

3�15)ζ2

2
√

2
χ

〉
,

〈
−iχ̄

(−�24 + √
3�25)ζ1 − 2�34ζ2

2
√

2
χ

〉
,

〈
−iχ̄

(�14 + √
3�15)ζ1 + 2�34ζ3

2
√

2
χ

〉}
�= 0. (133)

for the To
2u triplet is given by Eq. (61f).

Similar to the To
1u triplets discussed above, the SU(8) sym-

metry breaking for these two triplets depend on the position
on the sphere described by the �is in Eq. (90). In fact, the
SU(8) symmetry breaking for these two triplets is the same as
that of the To

1u masses discussed before.
The existence of the isolated gapless points in all the

four above zigzag triplets can be understood as unnecessary
multicritical points as before [see discussion near Eq. (95)]
within the context of microscopic symmetries and represent
the nontrivial embedding of the underlying UV symmetries in
the enlarged IR symmetry group. Similar to the case of Te

1u
masses discussed above, the existence of such isolated points
can be understood as a projection of higher dimensional criti-
cal surface on the triplet sphere. Here, however, here we have
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to consider a 17-dimensional sphere, S17 arising from consid-
ering an 18-dimensional incompatible vector mass comprised
of the masses given by Eqs. (61e) and (61f). This is made up
of the four zigzag triplets along with two Eo

u doublets the Ao
1u

and Ao
2u singlets. Then, on projecting back to the S2 spheres

spanned by each zigzag triplet, the isolated points are obtained
as a projection of the gapless parts on S17.

B. Density wave semimetals

There are 18 density wave semimetals divided into four
triplets (Te

1g, To
1g, Te

2g, To
2g), two doublets (Ee

g, Eo
g) and two sin-

glets (Ao
1u, Ao

2u). The analogs of these semimetals are absent
in graphene [48]. These 18 density wave semimetals can be
divided up into two categories depending on the number of
gapless fermionic modes which, for the first set is at least
four and the second set is always eight. Insights into these
two sets is best obtained by using the global basis [Eq. (6)]
as discussed in Appendix J. As noted in Sec. III, in the global
basis, there are four doubly degenerate Dirac nodes at �, M1,
M2, M3 points in the Brillouin zone as shown in Fig. 14.
To reiterate the crucial aspect, the IR space group does not
mix the Dirac spinor at � point with the other three at the
M points, in other words, the former behaves as a “singlet”
and the latter behaves as a “triplet” as mentioned before. As
far as the irreducible masses go, this feature throws up the
two categories mentioned above: (1) irreducible masses that
vanish on for the spinor at the �-point and leave the Dirac
cone at � ungapped—these are dubbed �-Dirac semimetals
(�-DSM) guaranteeing at least four gapless Dirac modes
which do not depend on the mass parameters, and, (2) the
masses that couple the Dirac spinors at each Mi(i = 1, . . . , 3)
to that at the � point but the Dirac spinors at the M points do
not directly couple to each other and this guarantees the ex-
istence of eight zero modes– phases thus realized are dubbed
M-Dirac semimetals (M-DSM). Six masses that makeup two
triplets (Te

2g, To
1g) correspond to M-DSM that give rise to the

stripy spin-quadrupole and spin-octupole density waves. The
rest of the 12 masses are of �-DSM type. These consist of
two singlets, two doublets and two triplets. The two singlets
(Ao

1u, Ao
2u) give rise to staggered spin-octupole density waves,

the two doublets (Ee
g, Eo

g) make up, respectively, ferro spin-
quadrupole and spin-octupole density waves. The two triplets
(To

2g, Te
1g) form stripy spin-octupole and spin-quadrupole den-

sity waves, respectively. Finally, the number of gapless Dirac
nodes for the �-DSM can be greater than four for a spe-
cific linear combination of masses as discussed below. In
Appendix I 1, we note an interesting structure of the above
18 masses with respect to their transformation under SU(8).

1. Staggered (“Néel”) spin-octupole density wave semimetal

The two TR odd masses that form the Ao
1u and Ao

2u singlet
masses in Eqs. (61e) and (61f) respectively are given by

− i

〈
χ̄

(
�35ζ1√

3
− (

√
3�14 − �15)ζ3

2
√

3

+ (
√

3�24 + �25)ζ2

2
√

3

)
χ

〉
(134)

FIG. 12. Energy spectrum for the fermions along the kx = ky line
in presence of either of the singlet masses written in Eqs. (134) and
(135). Each of the gapless bands is twofold degenerate. So there are
four gapless fermion.

and

− i

〈
χ̄

(
�34ζ1√

3
+ (�14 + √

3�15)ζ3

2
√

3

+ (�24 − √
3�25)ζ2

2
√

3

)
χ

〉
. (135)

These represent spin-octupole ordering in

�35 +
√

3�14 − �15

2
−

√
3�24 − �25

2

= 2

3
√

3
[(JzJxJx + c.p)+(JyJzJz + c.p)+(JxJyJy + c.p)

− (JzJyJy + c.p) − (JyJxJx + c.p) − (JxJzJz + c.p)]
(136)

and

�34 − �14 + √
3�15

2
− �24 − √

3�25

2

= 2

3

(
J3

x + J3
y + J3

z

)− 13

6
(Jx + Jy + Jz ) (137)

respectively where “c.p” in Eq. (136) refers to all possible
cyclic permutations of the operators. The main difference be-
tween the two spin-octupolar orders is the fact that the former
is odd under reflection, σd (see Table IX) while the latter is
even under it. Both, however, are odd under inversion.

In either case, the fermionic dispersion is given by Fig. 12
with twelve of the fermionic modes are gapped while the other
four are gapless which can be understood from Eq. (144)
discussed below. Hence they represent two-sublattice stag-
gered spin-octupolar density wave semimetals of �-DSM type
where the symmetry breaking pattern is given by Fig. 10.

The gapless fermionic modes are protected by T I×
SU(2)IR, where T (I) is the microscopic time reversal (inver-
sion) as given by Table V and SU(2)IR is a subgroup of the
emergent SU(8) which is best understood via a basis transfor-
mation for the spinors as

χ̃ = Uχ, (138)

where U is a 16 × 16 unitary matrix given by Eq. (I1) of
Appendix I. This transformation relates the low-energy Dirac
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fermions in the local basis [Eq. (16)] with those in the global
basis [Eq. (6) and Appendix J].

The free Dirac Hamiltonian [Eq. (23)] in this new basis is
given by

HD = vF

∫
d2x χ̃†(iμ0�̃23∂x − iμ0�̃24∂y)χ̃ , (139)

where we have introduced two new set of 4 × 4 matrices, μi

and �̃i which mixes the flavor and chiral spaces nontrivially.
While the form of the �̃i matrices is the same as the �i

matrices defined in Appendix C, unlike the latter, they do not
exclusively act on the flavor space. The μi (for i = 1, · · · , 15)
matrices, on the other hand, are SU(4) Gell-Mann matrices
which are defined in Ref. [95] with μ0 = I4. The combination
of μi�̃ j then gives a new set of 256 linearly independent
16 × 16 matrices. Such a combined basis is essential to cap-
ture the essence of the mixed masses that we are dealing with,
which, in turn, stems from the underlying SOC. Equivalently
the free Dirac Lagrangian in this new basis is given by Eq. (1),
where

γ̃0 = −μ0�̃34, γ̃1 = −μ0�̃24, γ̃2 = μ0�̃23 (140)

are the new Dirac matrices.
In this new basis, the mass terms can be written as

−i〈 ¯̃χm̃χ̃〉, where m̃ is a 16 × 16 Hermitian matrix. More
explicitly, the Ao

1u [Eq. (134)] and Ao
2u [Eq. (135)] masses

in this new basis are given by

−i

〈
¯̃χ

(
μ8 − √

2μ15√
3

�̃5 − μ0 + √
6μ15 − 2μ3

2
√

3
�̃15

)
χ̃

〉
,

(141)

and

−i

〈
¯̃χ

(
− (

√
2μ15 − √

3μ3 + 2μ8)

3
�̃5

+ (−√
3μ0 + √

2μ15 + 2μ8)

2
√

3
�̃15

)
χ̃

〉
. (142)

The advantage of the new mixed basis is the fact that when
we decompose the 16-component spinor, χ̃ , into a stack of
four four-component ones as

χ̃ = (χ̃T
1 , χ̃T

2 , , χ̃T
3 , χ̃T

4

)T
, (143)

both the mass matrices in Eqs. (141) and (142) take the
generic form

m̃ =

⎛
⎜⎜⎝

04×4 04×12

012×4 #12×12

⎞
⎟⎟⎠, (144)

where 0m×n are m × n null matrices and #12×12 is some 12 ×
12-dimensional Hermitian matrix.

It is then clear that the mass matrix m̃ has a decoupled four-
dimensional zero block belonging to χ̃1 which gives rise to
the gapless modes. In fact, the Dirac action for the χ̃1 sector
is given by

Sχ̃1 = vF

∫
dτd2x ¯̃χ1(i�̃34∂t + i�̃24∂x − i�̃23∂y)χ̃1, (145)

which is similar to that of spinless graphene [48] and hence
there is an emergent chiral SU(2) which we call SU(2)IR. This
SU(2)IR is generated by

{�̃1, �̃5, �̃15}/2. (146)

which is actually a projection of the SU(2) generated by
{�4/2, �5/2, �45/2} into the χ̃1 sector. This SU(2)IR along
with T and I keeps the χ̃1 sector gapless.

It is interesting to consider the four fermion bilinear masses
that can open up a gap in this sector. They are given by

−i ¯̃χ1χ̃1, −i ¯̃χ1�̃15χ̃1, −i ¯̃χ1�̃5χ̃1, −i ¯̃χ1�̃1χ̃1. (147)

The first one is actually a SU(2)IR scalar, but, is odd
under T I and is actually a projection of a group-1, chiral
mass, namely, the ICI bilinear, −iχ̄χ [Eq. (68)] to the χ̃1

subspace and hence itself transforms under a Ao
2g singlet

under the microscopic symmetries. Hence this mass breaks
the T I symmetry (or alternatively C′

2 symmetry for the A0
1u

singlet) in the χ̃1 sector. The resultant massive bands for the
χ̃1 fermions have a nonzero Chern number while the already
gapped χ̃2, χ̃3, and χ̃4 remain topologically trivial. This is
unlike the ICI phase where all the bands have a nonzero
Chern number as is required in that case due to the fact that
the ICI mass, (unlike in the present case) is a SU(4) singlet.
Indeed, −i〈 ¯̃χ1χ̃1〉 �= 0 leads to a NF = 1 CS term of the form
in Eq. (69) leading to a single gapless edge mode carrying
electronic charge instead of four as in the case of ICI and
hence represents a different phase more akin to an anomalous
Hall phase.

The last three masses in Eq. (147) are T I singlets but
transform as a triplet under SU(2)IR and break it down to U(1)
subgroup. These masses are best thought as projections of the
group-2 and group-3 masses into the χ̃1 sector that are invari-
ant under T I that are simultaneously odd or even under both
T and I. In particular, both the Ae

1g masses in Eqs. (75) and
(104) project to the fourth mass term in Eq. (147). Also, each
of the three Eo

u doublets in Eqs. (97), (110), and (111) project
to the second and the third masses of Eq. (147). It is important
to note that while it may appear that the resultant phases may
have edge modes since they are obtained as a projection of a
mass which in unprojected form lead to symmetry-protected
topological phase, this is not the case, because the respective
symmetries are broken by Eq. (134) or (135).

2. Stripy spin-octupole density wave semimetal

There are two stripy spin-octupole phases, both TR odd
triplets with distinct lattice symmetries, which differ in the
nature of the spin-octupolar densities. These are given by To

1g
and To

2g irreps in Eq. (61d) which are respectively even and
odd under C′

2. They correspond to stripy pattern (similar to
Fig. 6) in the spin-octupole densities of

1√
2

(�13 + �23),
1√
2

(�12 + �13) and
1√
2

(�12 − �23)

(148)
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for the To
1g and

1√
2

(�13 − �23),
1√
2

(�12 − �13) and
1√
2

(�12 + �23)

(149)

for To
2g.

For all the masses of these two triplets, a certain num-
ber of fermionic modes are always gapless. However, due to
the difference in the symmetry representation, the number,
structure and stability of the remnant gapless fermions are
different. While a generic linear combination like Eq. (90) for
the To

1g mass always lead to eight gapless fermions, the number
of gapless modes for To

2g triplet varies. In this latter case,
generically there are four gapless modes. However, for special
linear combinations, this number increases to eight. Thus the
To

1g and the To
2g masses represent M-DSM and �-DSM types

of semimetals respectively. Since the structure of the remnant
gapless fermions affects the fate of the low-energy theory and
the nature of possible phase transitions, we discuss it in some
more detail for the two cases separately.

In both cases, however, the structure and the symmetry pro-
tection of the fermions that remain gapless are best understood
in the basis of χ̃ spinors introduced in Eq. (138).

a. The To
1g triplet. The three masses that form this triplet

are
− i〈χ̄ (−�13ζ3 − �23ζ2)χ〉/

√
2,

− i〈χ̄ (�12ζ2 − �13ζ1)χ〉/
√

2,

− i〈χ̄ (�23ζ1 + �12ζ3)χ〉/
√

2 (150)

that, in the χ̃ basis [Eq. (138)], become

i
√

2〈 ¯̃χμ2�̃5χ̃〉, −i
√

2〈 ¯̃χμ5�̃0χ̃〉, −i
√

2〈 ¯̃χμ9�̃5χ̃〉.
(151)

such that the mass matrices have the generic form

m̃ =

⎛
⎜⎜⎝

04×4 #4×12

#†
4×12 012×12

⎞
⎟⎟⎠. (152)

This generic structure should be contrasted with Eq. (144)
which gave rise to four gapless modes from the χ̃1 sector.
In the present case, Eq. (152) however gives rise to eight
gapless modes. This is because any matrix of the form given
in Eq. (152) always has eight zero eigenvalues. These gapless
modes are protected by C′

2 × SO(4) symmetry, where the
SO(4) is a subgroup of the SU(8) which acts nontrivially only
on the gapless fermions.

One can now consider gapping out these fermions. This can
be done by doing a similar analysis as done for the masses in
Eqs. (134) and (135). As an example, for the first mass in this
triplet, the χ̃3 and χ̃4 fermions are gapless. One can show that
there are 16 independent fermion bilinears that can gap out the
χ̃3 and χ̃4 fermions in this case and the fate of the resultant
phases can be analysed.

b. The To
2g triplet. The three masses in this triplet are

〈−iχ̄ (�13ζ3 − �23ζ2)χ〉/
√

2,

〈−iχ̄ (−�13ζ1 − �12ζ2)χ〉/
√

2,

〈−iχ̄ (−�23ζ1 + �12ζ3)χ〉/
√

2 (153)

FIG. 13. Gapless manifold for the triplet �-DSMs. Linear com-
binations of the form given in Eq. (90) for the triplet �-DSMs is
represented on the surface of a unit sphere. The three great circles
shown here are obtained by setting one of the �is to zero in Eq. (90).
For the triplet �-DSMs in Eqs. (153) and (160), on these great circles,
the number of gapless modes is eight as opposed to only four at other
points on the sphere.

that, in term of the χ̃ spinors (Eq. (138)), are given by

−i
√

2〈 ¯̃χμ14�̃5χ̃〉, i
√

2〈 ¯̃χμ12�̃0χ̃〉, −i
√

2〈 ¯̃χμ6�̃5χ̃〉.
(154)

such that a generic linear combination of the form in Eq. (90),
but in χ̃ basis, is given by −i ¯̃χm̃χ̃ where the mass matrix
has the generic form given by Eq. (144). Hence the χ̃1 sector
gives rise to four gapless fermion modes similar to the Néel
spin-octupole density wave semimetal [see the discussion
following Eq. (144)]. The rest of the discussion proceeds sim-
ilarly to that of Néel spin-octupole density wave semimetal.
However here the C′

2 is already broken and the ICI mass term
is generically allowed by symmetry.

In the present case, however, the #12×12 block has a further
rich structure that is immediately evident from writing the
mass matrix, m̃, explicitly

m̃ =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 −�3�̃15 −i�2

0 −�3�̃15 0 −i�1�̃5

0 i�2 i�1�̃5 0

⎞
⎟⎟⎟⎟⎠. (155)

It is clear that if one or two of the �i in Eq. (155) are
zero, then m̃ has extra four zero eigenvalues and hence total
eight fermionic modes are gapless in this case. This is shown
in Fig. 13, where we represent the linear combination of the
masses on the sphere as before. For the three great circles
(in Fig. 13) that lie in the three coordinate planes, there are
eight gapless modes present. For any other point, the number
of gapless modes is four.

3. Stripy spin-quadrupole density wave semimetal

There are two distinct stripy spin-quadrupolar density wave
semimetal phases both of which are TR even but have distinct
lattice symmetries. These are the two triplets given by Te

1g and
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Te
2g irreps in Eq. (61c). While the first triplet is even under C′

2
and corresponds to the stripy pattern (similar to Fig. 6) in the
spin-quadrupoles

1√
2

(�1 − �2),
1√
2

(�2 − �3) and
1√
2

(�1 − �3),

(156)

the second is inversion even and gives rise to stripy pattern in
a different set of spin-quadrupoles given by

1√
2

(�1 + �2),
1√
2

(�2 + �3) and
1√
2

(�1 + �3).

(157)

Each of these masses breaks the flavor SU(4) to SU(2).
For example, the residual SU(2) for the first mass in both the
triplets is generated by {�34, �35, �45}.

In spite of the opposite behavior under time reversal, T ,
the structure of these masses is very similar to the two triplets
in Eqs. (150) and (153) discussed above that represent stripy
spin-octupoalr density wave semimetals. The analysis of the
remnant gapless modes proceeds in the same way except for
the fact that now the Te

2g triplet always has eight gapless
fermionic modes and is a M-DSM type semimetal while the
Te

1g triplet is a �-DSM type semimetal which generically has
four gapless modes except at special combination of the mass
as shown in Fig. 13. Here we briefly summarize this structure
for completeness.

a. The Te
2g triplet. The three components of the Te

2g triplet
are given by

− i〈χ̄ (−�1ζ2 + �2ζ3)χ〉/
√

2,

− i〈χ̄ (�3ζ2 + �2ζ1)χ〉/
√

2,

− i〈χ̄ (�3ζ3 + �1ζ1)χ〉/
√

2 (158)

which in the χ̃ basis [Eq. (138)] is given by

−i
√

2〈 ¯̃χμ1�̃15χ̃〉, i
√

2〈 ¯̃χμ5�̃1χ̃〉, −i
√

2〈 ¯̃χμ10�̃15χ̃〉.
(159)

These masses have the same form as in Eq. (152) and hence
these give rise to eight gapless fermions. The gaplessness of
these modes is similarly protected via lattice symmetries and
various subgroups of SU(8).

b. The Te
1g triplet. The three masses of the Te

1g triplet are
given by

〈−iχ̄ (−�1ζ2 − �2ζ3)χ〉/
√

2,

〈−iχ̄ (−�3ζ2 + �2ζ1)χ〉/
√

2,

〈−iχ̄ (�3ζ3 − �1ζ1)χ〉/
√

2. (160)

In χ̃ basis, these masses have the form

i
√

2〈 ¯̃χμ13�̃15χ̃〉, i
√

2〈 ¯̃χμ11�̃1χ̃〉, i
√

2〈 ¯̃χμ7�̃15χ̃〉.
(161)

Any linear combination [Eq. (90)] of these masses can be
written as −i ¯̃χm̃χ̃ where again m̃ has the structure given by

Eq. (144), albeit with different entries, i.e.,

m̃ =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 −i�3�̃15 �2�̃1

0 i�3�̃15 0 �1�̃15

0 �2�̃1 �1�̃15 0

⎞
⎟⎟⎟⎟⎠. (162)

Therefore it gives rise to four gapless Dirac fermions except
for the three great circles where there are four additional
gapless modes due to additional zeros in the #12×12 sector
similar to Eq. (155).

4. Ferro spin-quadrupole semimetal

The Ee
g doublet in Eq. (61c) corresponds to uniform (ferro)

ordering of the spin-quadrupole densities in (�1 − �2)/
√

2
and (2�3 − �1 − �2)/

√
6. The corresponding two masses

are given by

〈−iχ̄ (−�1ζ3 + �2ζ2χ〉)/
√

2,

〈−iχ̄ (�1ζ3 + �2ζ2 + �3ζ1)χ〉/
√

6. (163)

These two masses do not fully gap out the fermions and
hence represent ferro spin-quadrupolar density wave semimet-
als. Moreover, depending on the linear combination of these
two masses, the number of gapless modes change due to the
change in the residual symmetry– similar to the case described
above by Eq. (155), but now on a circle, i.e., S1. This is
a fallout of the fact that the two masses are noncompatible.
Consider a generic linear combination of the two masses of
the form akin to Eq. (90), but now on a circle, i.e., −iχ̄m(ϑ )χ ,
where

m(ϑ ) = cos ϑ m1 + sin ϑ m2, (164)

and {m1, m2} represent the two mass matrices in Eq. (163) and
ϑ ∈ (0, 2π ]. For a generic value of ϑ , there are four gapless
modes in the spectrum and thus, this doublet is a �-DSM
type semimetal. The flavor SU(4) is broken down to U(1) at
these points. However, for special isolated values of ϑ = nπ

3
(with n = 0, 1, . . . , 5), there are eight gapless modes since the
flavor SU(4) is only broken down to SU(2). Thus the residual
symmetry is larger for the case where there are extra gapless
modes.

The appearance of the gapless modes for these masses are
better understood in the χ̃ basis introduced in Eq. (138). In
this basis, the masses in Eq. (163) are given by

〈−i ¯̃χ (−
√

3μ0 + μ15 +
√

2μ8)�̃1χ̃〉/
√

3,

〈−i ¯̃χ (μ0 +
√

3μ15 −
√

2μ3)�̃1χ̃〉/
√

3, (165)

such that the generic mass matrix in Eq. (164) is −i ¯̃χm̃(ϑ )χ̃ ,
where

m̃(ϑ ) =
√

2

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 2 sin ϑ√
3

0 0

0 0 sin ϑ√
3

−cos ϑ 0

0 0 0 −cos ϑ− sin ϑ√
3

⎞
⎟⎟⎟⎟⎠

⊗ �̃1. (166)

Thus the χ̃1 spinors defined in Eq. (143) are always gapless,
accounting for the four gapless fermions for generic ϑ . Also,
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for the special values of ϑ specified before, either the χ̃2, χ̃3

or the χ̃4 spinors also become gapless.
The gaplessness of the χ̃1 modes for generic values of

ϑ is protected by TR symmetry and the SU(2)IR subgroup
of the SU(8). For the special values of ϑ where there are
extra gapless modes, the residual symmetry also becomes
large compared to that for other values of ϑ . This is evident
because, as mentioned before, the flavor SU(4) breaks down
to U(1) at generic values of ϑ . But for the special values noted
above, it only breaks down to SU(2).

5. Ferro spin-octupole semimetal

The Eo
g doublet in Eq. (61d) represent uniform (ferro)

ordering in the spin-octupoles given by (�13 + �23)/
√

6
and (2�12 + �13 − �23)/3

√
2, respectively. These masses

are given by

〈−iχ̄ (�13ζ2 + �23ζ3)χ〉/
√

2,

〈−iχ̄ (2�12ζ1 − �13ζ2 + �23ζ3)χ〉/
√

6. (167)

Any linear combination of these masses of the form in
Eq. (164) breaks down the flavor SU(4) to SU(2) generated
by {�4, �5, �45}.

Similar to the ferro spin-quadrupole doublet in Eq. (163),
there are at least four gapless modes present for the masses
in this doublet. Thus this doublet is also a �-DSM type
semimetal. The number of these gapless modes again depends
on their linear combination because of the noncompatibility of
these masses and are best analysed in the χ̃ basis (Eq. (138)).
In this basis, the two masses in Eq. (167) are given by

〈−i ¯̃χ (2μ15 −
√

2μ8)�̃0χ̃〉/
√

3,

〈−i ¯̃χ (−2μ15 +
√

6μ3 − 2
√

2μ8)�̃0χ̃〉/3 (168)

such that the mass matrices have the generic form given by
Eq. (144). Hence the χ̃1 modes are always gapless. In ad-
dition, considering linear combinations as in Eq. (164), for
some special values of ϑ given by ϑ = (2n + 1)π

6 with n =
0, 1, . . . , 5, there are extra gapless modes whose existence
can be understood via an analysis similar to the ferro spin-
quadrupolar doublet in Eq. (163) discussed before. However,
unlike this previous case, this doublet breaks TR symmetry.
So, for generic values of ϑ , the χ̃1 spinors can be gapped out
by turning on the ICI mass which does not break any further
symmetries. Hence the leftover gapless modes are less robust
and can easily give way to a NF = 1 ICI phase.

IX. DISCUSSION AND OUTLOOK

In this paper, we have described a material context of
realising SU(8) Dirac fermions in the presence of strong SOC
in two-dimensional honeycomb lattices with quarter filled
j = 3/2 electronic orbitals. The resultant semimetal allows
for nontrivial implementation of the microscopic symmetries
at low energies that is reflected in the spontaneous symmetry
broken and SPT phases proximate to the Dirac semimetal.
The spontaneous symmetry-breaking phases reflect indeli-
ble signatures of the underlying strong SOC that intertwines
the real and spin spaces via the nature of their symmetry-
breaking while the SPTs represent interesting realizations of
edge physics. Of particular interest are a class of density-wave

semimetals where a subset of Dirac fermions remain gapless
and are protected by subgroups of the emergent SU(8).

All these phases can be accessed via finite electron-
electron interactions, which leads to a plethora of interaction-
driven transitions of the Gross-Neveu-Yukawa type [46,51–
54]. Indeed, the implementation of symmetries allows for
several unnecessary phase transitions [65] within a single
phase, in particular unnecessary multicritical points, arising
due to noncompatibility of fermion bilinears. A second class
of such transitions involves the spin-density wave semimetals
where a subset of gapless fermions survive on the symmetry-
broken side. Finally, the present classification of masses also
predicts a newer class of transitions involving the topolog-
ical defects of the order parameters. In particular, a triplet
quantum spin-octupole Hall order parameter allows skyrmion
defects that carry four units of electronic charge such that the
condensation of such bosonic skyrmions naturally leads to 4e
superconductivity.

The SU(8) Dirac semimetal thus provides for new phases
engendered by the symmetry implementation owing to the
SOC as well as offers opportunities to pose a more general
set of questions. What aspects of these results hold in a more
general setting? For example, in the case discussed here, the
problem is reduced to studying a honeycomb system with
π flux and an SU(4) global symmetry. What aspects of the
results will hold if a system realizes a π flux state with SU(N)
symmetry?

We address this question by constructing and studying a
model which realizes a π flux state with a global SU(2)
symmetry in Appendix L. We also find three groups of masses
(chiral, flavor, and mixed) in the SU(2) case. Not unexpect-
edly, we find that the chiral masses (see Appendix L 1) have
exactly similar structure 4 = 1 ⊕ 3 with an integer Chern in-
sulator and a triplet stripy density wave. The flavor masses
(Appendix L 1) also have a similar structure, with a single
triplet corresponding to a quantum dipolar Hall mass. The
SU(4) case discussed in the main text realizes other SU(4)
symmetry broken phases as the flavor space is larger, offering
more possibilities. In particular, some of the SU(4) flavor
masses offer the possibility of unnecessary multicitical points,
as mentioned above (owing their noncompatibility of the mass
components); the SU(2) flavor space of Appendix L 1 is not
large enough to realize such possibilities. The findings of
the main text and Appendix L taken together suggest that
the chiral masses have natural generalization to any SU(N)
flavor system that realizes a π flux through the honeycomb
plaquette. Moreover, every flavor mass found for an SU(N)
will have a counterpart for SU(N ′) (N ′ > N), with N ′ system
offering a larger class of broken symmetry ordered phases.
In this regard, it is useful to point out the importance of the
underlying honeycomb lattice. It is easy to conceive models
on a square lattice (in a fashion as done in Appendix L 3) that
uses SOC to produce a π flux per plaquette. The chiral masses
in that case will have a 4 = 1 ⊕ 1 ⊕ 2 structure, which is dis-
tinct from the 4 = 1 ⊕ 3 structure realized in the honeycomb
lattice. This will lead to different kinds of masses on a square
lattice [38,39,42,50,96] than the honeycomb lattice.

The true richness of the symmetry implementation arising
SOC is found in the mixed masses. One finds semimetallic
phases even in the SU(2) case (see Appendix L 3), and they
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have corresponding counterparts in SU(4) case discussed in
the main text. The SU(2) case also realizes both types of
semimetals (�-DSM and M-DSM). However, the SU(4) case
produces new phases such as the zigzag ordered phases, which
are not found in the case SU(2). Thus the larger flavor space
offers more interesting possibilities for realizing representa-
tions of the IR space group that entangle the chiral and flavor
spaces that obtain exotic phases.

We end our discussion with two particular issues regard-
ing the candidate d1 materials—(1) the subleading hopping
pathways and anisotropies in addition to the indirect hopping
model [Eq. (9)], and (2) the strong coupling insulating limit.
We discuss them in turn starting with the former. Equation (9)
disregards other hopping pathways like the direct overlap of
d-orbitals and/or lattice distortions such as the trigonal distor-
tion of the octahedral crystal field which are often relevant for
candidate materials with stacked honeycomb structures. Such
terms will generically explicitly break the SU(4) symmetry.
The effect of such terms, if small, can be systematically cap-
tured by starting with the SU(4) limit and treating them in
terms of the symmetry breaking they represent. In such cases,
our classification of masses provides the list of instabilities
of the Dirac semimetal, albeit with the explicit breaking of
SU(8) symmetry, but not lattice symmetries or microscopic
time reversal. Within our classification scheme, these, then,
have to belong to Ae

1g irrep and there are precisely two such
masses corresponding to ferro spin-quadrupole [Eq. (104)]
and spin-octupole Hall [Eq. (75)] phases, respectively. This
should be observable in candidate materials which realize
such perturbations. In addition, there may be a loss of three
fold rotation symmetry about the site due to unequal bond
lengths as suggested in Ref. [77] for ZrCl3. In this case, the
indirect hopping model [Eq. (9)] retains SU(4) symmetry on
changing the amplitude of one of the bonds (say z bonds in
Fig. 2) compared to the other two since the hopping matrix
structure [Eq. (10)] is preserved. Notably, the Dirac points
do not gap out without breaking further symmetries in this
case [76] in accordance with the generalized Lieb-Schultz-
Mattis-Affleck theorem [76,97–103]. This robustness of the
Dirac points to the breaking of threefold rotation symmetry
is different from graphene (and indeed the Dirac points at
the half-filled SU(4) case [85]) where making one of the
bond strengths different leads to the migration and eventual
pairwise annihilation of the Dirac points [104].

A second source of breaking of SU(8) symmetry of the
low-energy theory arises from generic four fermion interac-
tions of the type given in Eq. (39) that are allowed by micro-
scopic symmetries. They are given by the Lagrangian density
∼∑i, j gi j (χ̄Miχ ) · (χ̄M jχ ) with gi j �= gδi j and i, j are
summed over different irreps. Depending on the values of cou-
pling constants gi j , such terms would preferentially enhance
the possibility of one phase at the cost of another amongst
those listed above leading to a complex phase diagram with
interesting phase transitions between them. An exhaustive
enumeration of microscopic-symmetry-allowed short-range
four fermion terms requires a more careful analysis.

Finally, in this work, we have explored the intermediate
coupling regime of the SU(8) Dirac semimetal. The strong
coupling limit within a Hubbard model framework of the
above model has been recently investigated [76] and this leads

to SU(4) Heisenberg spin model for j = 3/2 spins. Such a
model, as argued in Ref. [76], necessarily has a nontrivial
ground state unless SU(4) and/or translation symmetry is
spontaneously broken. Indeed, a π flux Dirac spin-orbital liq-
uid state has been proposed [105,106] with strong numerical
evidence. Very interestingly such a π flux Dirac spin-orbital
liquid can be obtained in a rather straightforward way from
our approach via a parton decomposition of the electrons into
charge-carrying bosonic rotors and fermionic spinons [107]
and considering a state where the rotors are trivially gapped
such that the spinons inherit the Dirac spectrum of the elec-
trons. Several of the present classification of the masses then
can be considered instabilities of such a spin-orbital liquid.
This approach provides an interesting connection between
the electronic phases and the magnetic phases that are worth
exploring in the future.
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APPENDIX A: THE MICROSCOPIC DETAILS

1. The j = 3/2 orbitals

The t2g orbitals behave effectively as l = 1 states under
rotations with

|lZ = 0〉 = |dXY 〉, |lZ = ±1〉 = − 1√
2

(i|dXZ〉 ± |dY Z〉).

(A1)

So in the presence of SOC, these six degenerate (includ-
ing spin degeneracy) states split into four with total angular
momentum j = 3/2 and the other two with j = 1/2. The
j = 3/2 states in terms of the t2g states are given by

|3/2〉 = 1√
2

(−|dY Z ,↑〉 − i|dZX ,↑〉),

|1/2〉 = 1√
6

(−|dY Z ,↓〉 − i|dZX ,↓〉 + 2|dXY ,↑〉),

|−1/2〉 = 1√
6

(|dY Z ,↑〉 − i|dZX ,↑〉 + 2|dXY ,↓〉),

|−3/2〉 = 1√
2

(|dY Z ,↓〉 − i|dZX ,↓〉). (A2)
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In terms of the second quantized operators, the inverse
relations, when projected to the j = 3/2 orbitals are

�†
σ,x(r, s) = σ√

6
(ψ†

↑σ̄ (r, s) −
√

3ψ
†
↓σ (r, s)),

�†
σ,y(r, s) = i√

6
(ψ†

↑σ̄ (r, s) +
√

3ψ
†
↓σ (r, s)),

�†
σ,z(r, s) =

√
2

3
ψ

†
↑σ (r, s), (A3a)

where on the LHS, �†
σ,x(r, s), �†

σ,y(r, s), �†
σ,z(r, s) stand for

the creation operators for the |dY Z,σ 〉, |dZX , σ 〉, |dXY , σ 〉 or-
bitals respectively at the lattice sublattice site s of the unit cell
at r and σ =↑,↓ are spin indices. The ψ

†
↑σ and ψ

†
↓σ in the

RHS refer to the creations operators in the j = 3/2 orbitals as
[76]

(ψ†
↑↑, ψ

†
↑↓, ψ

†
↓↑, ψ

†
↓↓) = (ψ†

1/2, ψ
†
−1/2, ψ

†
3/2, ψ

†
−3/2), (A4)

where σ̄ =↓ (↑) for σ =↑ (↓).

2. The lattice

Similar to Kitaev materials [84], it is useful to consider
the honeycomb lattice to lie in the plane perpendicular to the
[111] direction of the global Cartesian coordinates (X,Y, Z )
[see Fig. 1(b)]. Therefore the two orthogonal directions in the
honeycomb plane are spanned by

x̂ = 1√
2

(−X̂ + Ŷ ), ŷ = 1√
6

(2Ẑ − X̂ − Ŷ ) (A5)

while

ẑ = 1√
3

(X̂ + Ŷ + Ẑ ) (A6)

is normal to the honeycomb plane. In this new coordinate
system, the x, y, and z bonds in these new coordinates are
shown in Fig. 2.

The lattice vectors (with reference to Fig. 2) are

b1 = 3l

2
x̂ +

√
3l

2
ŷ, b2 = 3l

2
x̂ −

√
3l

2
ŷ (A7)

APPENDIX B: THE MICROSCOPIC SYMMETRIES

The transformation of the t2g orbitals under lattice transla-
tion and TR are straightforward and are given by

T1(2) : �σ,α (r, s) → �σ,α (r′, s′),
T : �σ,α (r, s) → (

ισ
y
σσ ′
)
�σ ′,α (r, s),

(B1)

∀α = x, y, z and σ =↑,↓, where r′ = T1(2)[r] as discussed
in the main text.

For the point group symmetries listed in Table V, the trans-
formation of the t2g orbitals have a generic form of

S : �†
σ,α (r, s) → � ′†

σ,α (r, s) = [RS]βα�
†
σ,β (r′, s′), (B2)

where S are the point group symmetry generators listed in
Table V that takes (r′, s′) → (r, s) on the honeycomb lattice.
The form of the 3 × 3 matrices, RS for different symmetries

are

RC3 =

⎛
⎜⎝0 0 1

1 0 0

0 1 0

⎞
⎟⎠, RS6 =

⎛
⎜⎝0 1 0

0 0 1

1 0 0

⎞
⎟⎠,

RC′
2
=

⎛
⎜⎝0 1 0

1 0 0

0 0 1

⎞
⎟⎠, (B3)

while

RI = I3, Rσd = RC′
2
. (B4)

The transformation of the j = 3/2 orbitals [Eq. (6)] under
the action of the microscopic symmetries can be obtained
from the above relations. For TR, we have

ψ (r, s) → i�13 K ψ (r, s). (B5)

For the lattice symmetries (Table V), similar to Eq. (B2),
the transformation of ψ (r, s) have the following generic form

S : ψ
†
i (r, s) → ψ

′†
i (r, s) = [US] jiψ

†
j (r′, s′). (B6)

The US are 4 × 4 unitary matrices which for different
symmetries are

UT1 = UT2 = UI = I4, (B7)

UC3 = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 + i −1 − i −1−i√
3

−1+i√
3

1 − i −1 − i −1−i√
3

1−i√
3

−1+i√
3

1+i√
3

−1 − i 1 − i

1−i√
3

1+i√
3

−1 − i −1 + i

⎞
⎟⎟⎟⎟⎟⎟⎠, (B8)

US6 = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎝

1 + i −1 − i 1+i√
3

−1−i√
3

1 − i 1 − i −1+i√
3

−1+i√
3

1−i√
3

1−i√
3

1 − i 1 − i

1+i√
3

−1−i√
3

−1 − i 1 + i

⎞
⎟⎟⎟⎟⎟⎟⎠, (B9)

UC′
2
= 1√

2

⎛
⎜⎜⎜⎜⎝

0 −1 + i 0 0

1 + i 0 0 0

0 0 0 −1 − i

0 0 1 − i 0

⎞
⎟⎟⎟⎟⎠, (B10)

Uσd = UC′
2
. (B11)

APPENDIX C: RELATION BETWEEN THE j = 3/2
MATRICES AND THE � MATRICES GENERATING SU(4)

Following reference [108], we define a basis for the set of
four-dimensional Hermitian matrices using the SU(2) gener-
ators for spin-3/2. The three spin-3/2 matrices written in the
Jz eigenbasis are the following:

Jx =

⎛
⎜⎜⎜⎜⎜⎝

0 1
√

3
2 0

1 0 0
√

3
2√

3
2 0 0 0

0
√

3
2 0 0

⎞
⎟⎟⎟⎟⎟⎠, (C1)
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TABLE VIII. The values of ρi(rrr S ) = ±1 defined in Eq. (C13) are written in this table.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rrr = even rrr = odd

S = B2 S = A1 S = B1 S = A2 S = B2 S = A1 S = B1 S = A2

ρ0(rrr S ) +1 +1 +1 +1 +1 +1 +1 +1

ρ1(rrr S ) +1 −1 +1 +1 −1 +1 −1 −1

ρ2(rrr S ) +1 +1 −1 +1 −1 −1 +1 −1

ρ3(rrr S ) +1 −1 −1 +1 +1 −1 −1 +1

ρ4(rrr S ) +1 −1 +1 −1 +1 −1 +1 −1

ρ5(rrr S ) +1 −1 +1 −1 +1 −1 1 −1

ρ12(rrr S ) +1 −1 −1 +1 +1 −1 −1 +1

ρ13(rrr S ) +1 +1 −1 +1 −1 −1 +1 −1

ρ14(rrr S ) +1 +1 +1 −1 −1 −1 −1 +1

ρ15(rrr S ) +1 +1 +1 −1 −1 −1 −1 +1

ρ23(rrr S ) +1 −1 +1 +1 −1 +1 −1 −1

ρ24(rrr S ) +1 −1 −1 −1 −1 +1 +1 +1

ρ25(rrr S ) +1 −1 −1 −1 −1 +1 +1 +1

ρ34(rrr S ) +1 +1 −1 −1 +1 +1 −1 −1

ρ35(rrr S ) +1 +1 −1 −1 +1 +1 −1 −1

ρ45(rrr S ) +1 +1 +1 +1 +1 +1 +1 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Jy =

⎛
⎜⎜⎜⎜⎜⎝

0 −i i
√

3
2 0

i 0 0 − i
√

3
2

− i
√

3
2 0 0 0

0 i
√

3
2 0 0

⎞
⎟⎟⎟⎟⎟⎠, (C2)

Jz =

⎛
⎜⎜⎜⎜⎝

1
2 0 0 0

0 − 1
2 0 0

0 0 3
2 0

0 0 0 − 3
2

⎞
⎟⎟⎟⎟⎠. (C3)

Note that, instead of the standard practice, we have used a
different ordering of the Jz eigenbasis [see Eq. (6)] to write
these matrices which is evident from the form of the Jz matrix
in Eq. (C3). In our choice of basis, the hopping matrices of the
lattice Hamiltonian in Eq. (9) have a simpler form.

With the above matrices, one can define the following five
Hermitian matrices:

�1 = 1√
3
{Jy, Jz}, (C4a)

�2 = 1√
3
{Jz, Jx}, (C4b)

�3 = 1√
3
{Jx, Jy}, (C4c)

�4 = 1√
3

(
J2

x − J2
y

)
, (C4d)

�5 = J2
z − 5

4
I4, (C4e)

with −�1�2�3�4�5 = I4 ≡ �0. The above five matrices
satisfy

{�α,�β} = 2δαβ (C5)

and therefore generate a (Euclidean) Clifford algebra [108].
The following ten operators

�αβ = 1

2ı
[�α,�β] (C6)

then generate SO(5) rotations. Eq. (C4) and Eq. (C6) together
define a basis for the four-dimensional Hermitian matrices
that generate SU(4).

The spin matrices can be written in terms of these �i as

Jx =
√

3

2
�15 − 1

2
(�23 − �14), (C7)

Jy = −
√

3

2
�25 + 1

2
(�13 + �24), (C8)

Jz = −�34 − 1

2
�12, (C9)

which generates an SU(2) subgroup of SU(4) with commuta-
tion relation

[Ji, Jj] = iεi jkJk . (C10)

We now consider two kinds of lattice operators defined
below

O
global
i (rrr S ) = ψ†(rrr S )�iψ (rrr S ) (C11)

and

Olocal
i (rrr S ) = φ†(rrr S )�iφ(rrr S ), (C12)
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Using the relation between the ψ and the φ operators given
in Eq. (17), we find that

Olocal
i (rrr S ) = ρi(rrr S )Oglobal

i (rrr S ), (C13)

where ρi(rrr S ) = ±1. In Table VIII, we write what ρi(rrr S ) are
for different S and rrr . In this table, we assume the form of rrr as
given in Eq. (15) which is

rrr = nxR1 + nyR2. (C14)

We say rrr = even (odd) if (nx + ny) is even (odd).

APPENDIX D: THE G(rrr S ) MATRICES
OF TRANSFORMATION TO MANIFESTLY

SU(4) INVARIANT LOCAL BASIS

The set of G(rrr S ) matrices that lead to the form of
η(rrr S, rrr ′

S′ ) is given in Eq. (20) is written below. Here we again
take rrr to be of the form as in Eq. (C14).

For (nx + ny) = even,

G(rrr B2 ) = (−1)
nx−ny

2 ,

G(rrr A1 ) = (−1)
nx−ny

2 Uy,

G(rrr B1 ) = (−1)
nx−ny

2 UzUy,

G(rrr A2 ) = (−1)
nx−ny

2 UxUzUy. (D1)

For (nx + ny) = odd,

G(rrr B2 ) = (−1)
nx−ny+1

2 UxUy,

G(rrr A1 ) = (−1)
nx−ny+1

2 (−Ux ),

G(rrr B1 ) = (−1)
nx−ny+1

2 (−UzUx ),

G(rrr A2 ) = (−1)
nx−ny+1

2 Uz. (D2)

Although we will be using this particular form, there are other
choices for the G(rrr S ) matrices which lead to same form for
the η(rrr S, rrr ′

S′ ).

APPENDIX E: LOW-ENERGY HAMILTONIAN

1. Band structure

To diagonalize the Hamiltonian given by Eq. (18), we
define Fourier space operators

φ f (k, S) = 1√
N

∑
rrr

eik·rrrφ f (rrr S ) (E1)

where N is the total number of magnetic unit-cells, f =
1, 2, 3, 4 are the four SU(4) flavors and k runs over the mag-
netic Brillouin zone (Fig. 4).

In terms of these Fourier space operators, the Hamiltonian
in Eq. (18) can now be written as

H = − t√
3

4∑
f =1

∑
k

∑
S,S′

φ f (k, S) [h(k)]SS′ φ f (k, S′), (E2)

where

h(k)

=

⎛
⎜⎜⎜⎜⎝

0 1 + e−ik·R2 0 e−ik·R1

1 + eik·R2 0 1 0

0 1 0 1 − eik·R2

eik·R1 0 1 − e−ik·R2 0

⎞
⎟⎟⎟⎟⎠.

(E3)

Diagonalizing the h(k) matrix, we get the band structure
shown in Fig. 4.

2. The low-energy Dirac Hamiltonian

At 1/4th filling, the valence band touches the conduction
band at two Dirac points in the BZ given by Eq. (21). To get
the low-energy Hamiltonian, we first write the φ(rrr S ) opera-
tors in terms of the soft modes φ f Sτ as

φ f (rrr S ) =
√

A
∑
τ=±1

eiτQ·rrrφ f Sτ (rrr ). (E4)

Here, rrr [defined in Eq. (15)] denotes position of a particular
magnetic unit cell and A is the area of a single magnetic unit
cell. The φ f Sτ (rrr ) operators are defined for each valley (τ =
±1 labels the valleys) as

φ f Sτ (rrr ) = 1√
A

∑
q

eiq·rrrφ f (τQ + q, S). (E5)

In the above summation, q runs over half of the magnetic
Brillouin zone for each τ such that the Dirac point τQ is
contained in that half. These φ f Sτ fields vary slowly over the
magnetic unit cells.

Now to get the low-energy Hamiltonian, we use the form
of φ(rrr S ) as in Eq. (E4) to rewrite the Hamiltonian in Eq. (18)
in terms of the φ f Sτ (rrr ) operators. We also use the following
expansion for φ f Sτ :

φ f Sτ (rrr + �δ) = φ f Sτ (rrr ) + �δ · ∇φ f Sτ (rrr ) + O(δ2). (E6)

Here, �δ can be some magnetic translation vector (R1 or R2).
The soft-mode continuum Hamiltonian is then obtained by
rewriting the Hamiltonian in Eq. (18) using the above expres-
sion and keeping terms that are linear in the derivative. The
final form of the Hamiltonian is given below in Eq. (E7):

H =
4∑

f =1

∑
τ=±1

∑
S,S′=A1,A2,B1,B2

∫
d2x φ

†
f Sτ

(x)
[
h(τ )

0 − iτhx∂x − iτhy∂y
]

SS′φ f S′τ (x), (E7)
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where

h(τ )
0 = − tl√

3

⎛
⎜⎜⎜⎝

0 1 + iτ 0 −iτ

1 − iτ 0 1 0

0 1 0 1 + iτ

iτ 0 1 − iτ 0

⎞
⎟⎟⎟⎠, hx = tl√

3

⎛
⎜⎜⎜⎜⎝

0 0 0 3

0 0 0 0

0 0 0 0

3 0 0 0

⎞
⎟⎟⎟⎟⎠, hy = tl√

3

⎛
⎜⎜⎜⎜⎝

0 −√
3 0 0

−√
3 0 0 0

0 0 0
√

3

0 0
√

3 0

⎞
⎟⎟⎟⎟⎠,

(E8)

where l is the length of each side of a hexagon of the honey-
comb lattice.

As because the system is at 1/4th filling, we need to further
project this Hamiltonian into the lowest two bands to get the
low-energy theory. For this, we take the eigenvectors corre-
sponding to the lowest two eigenvalues of h(τ )

0 and project
hx, hy into the subspace of these two eigenvectors. This way
of projecting the Hamiltonian is correct up to linear order in
derivatives, which is sufficient in this case since the Hamilto-
nian (E7) is also linear in derivatives.

With this, the final form of the low-energy Dirac Hamilto-
nian is the following:

HD = vF

4∑
f =1

∑
τ=±1

∫
d2x

2∑
α,β=1

χ
†
f ατ

(x)

×[−iτσx∂x − iσy∂y]αβχ f βτ (x). (E9)

Here, vF = tl√
2

and σx, σy, σz are the three Pauli matrices.
Also the operators χ f ατ (x) are defined as

χ f ατ (x) =
∑

S=A1,A2,B1,B2

W
(τ )†
Sα

φ f Sτ (x). (E10)

which is the inverse of Eq. (22) of the main text.
In the above equation,

W
(τ )†
Sα

=
2∑

β=1

[Wτ ]αβ[Tτ ]βS. (E11)

Here

Tτ =
⎛
⎝ iτ√

2
− 1−iτ√

6
0 1√

6

0 1√
6

1√
2

1+iτ√
6

⎞
⎠ (E12)

projects the annihilation operators to the lowest two bands.
The matrices

Wτ =
[
exp
(
−iτθ

σx

2

)
exp
(
−iτ

π

4

σz

2

)]
(E13)

with θ = cos−1( 1√
3

) are used to perform some extra unitary
rotations on the spinors to bring the Dirac Hamiltonian in its
canonical form.

APPENDIX F: SYMMETRY TRANSFORMATION
OF THE SOFT MODES

1. Action of lattice symmetry transformations
on φ(rrr S ) operators

The transformation properties of the soft modes χ (x) under
the action of lattice symmetries can be determined from that of

the original j = 3/2 operators ψ (r, s) as given in Eqs. (B5)–
(B11). Using these, the transformations of the φ(rrr S ) operators
are obtained as follows:

S : φ
†
f (rrr S ) → φ

′†
f (rrr S ) = [G(rrr S )† US G(rrr ′

S′ )] f ′ f φ
†
f ′ (rrr ′

S′ ).
(F1)

Here, the site at rrr ′
S′ goes to rrr S under the action of the lattice

symmetry S.
Using this, one can now derive the transformations of the

soft modes χ (x), which are defined in terms of the Fourier
transforms of the φ(rrr S ) operators [Eq. (E10)]. Below we
provide some details of the transformations of both the φ(rrr S )
and the χ (x) operators under the action of various lattice
symmetries. For φ(rrr S ), we write down how the operators in a
particular magnetic unit cell at rrr transform, where

rrr = nxR1 + nyR2 (F2)

with nx, ny being integers.
Transformation under translations T1 and T2. Under the

action of T1,

φ(rrr B2 ) → (−1)(nx+ny )
[
�

f
T1

]
φ( (rrr − R1 − R2)B1 ),

φ(rrr A1 ) → (−1)(nx+ny+1)[� f
T1

]
φ((rrr − R1)A2 ),

φ(rrr B1 ) → (−1)(nx+ny+1)
[
�

f
T1

]
φ(rrr B2 ),

φ(rrr A2 ) → (−1)(nx+ny+1)
[
�

f
T1

]
φ((rrr − R2)A1 ), (F3)

where

�
f
T1

= −i�23. (F4)

Similarly, under the action of T2,

φ(rrr B2 ) → (−1)(nx+ny )
[
�

f
T2

]
φ((rrr − R1)B1 ),

φ(rrr A1 ) → (−1)(nx+ny+1)
[
�

f
T2

]
φ((rrr − R1 + R2)A2 ),

φ(rrr B1 ) → (−1)(nx+ny+1)
[
�

f
T2

]
φ((rrr + R2)B2 ),

φ(rrr A2 ) → (−1)(nx+ny+1)
[
�

f
T2

]
φ(rrr A1 ), (F5)

where

�
f
T2

= i�13. (F6)

Transformation under C′
2. Under a C′

2 rotation,

φ(rrr B2 ) → (−1)nx
[
�

f
C′

2

]
φ(rrr ′

B2
),

φ(rrr A1 ) → (−1)nx
[
�

f
C′

2

]
φ((rrr ′ − R2)A1 ),

φ(rrr B1 ) → (−1)nx
[
�

f
C′

2

]
φ((rrr ′ − R2)B1 ),

φ(rrr A2 ) → (−1)nx+1
[
�

f
C′

2

]
φ(rrr ′

A2
). (F7)
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Here,

rrr ′ = nxR1 − nyR2 (F8)

and

�
f
C′

2
= i√

2
(�14 − �24). (F9)

Transformation under C3. Under the action of C3 rotation, transformation of the φ(rrr ) operators are given below.

Sublattice (nx + ny ) = even (nx + ny ) = odd

φ(rrr B2 ) → (−1)nx [� f
C3

] φ((C3[rrr ])B1 ) (−1)nx [� f
C3

] φ((C3[rrr ])B2 )
φ(rrr A1 ) → (−1)nx [� f

C3
] φ((C3[rrr ])A2 ) (−1)nx [� f

C3
] φ((C3[rrr ] − R2 )A1 )

φ(rrr B1 ) → (−1)nx+1[� f
C3

] φ((C3[rrr ] − R2 )B1 ) (−1)nx [� f
C3

] φ((C3[rrr ] − R2 )B2 )
φ(rrr A2 ) → (−1)nx+1[� f

C3
] φ((C3[rrr ] − R2 )A1 ) (−1)nx [� f

C3
] φ((C3[rrr ] − R1 − R2 )A2 )

Here

C3[rrr ] =
{−nx+ny

2 R1 − 3nx+ny

2 R2 if nx + ny = even
−nx+ny+1

2 R1 − 3nx+ny−1
2 R2 if nx + ny = odd

(F10)

and

�
f
C3

= 1
4 (�0 −

√
3�1 −

√
3�2 +

√
3�3 − i�12 − i�13 + i�23 + i

√
3�45). (F11)

Transformation under S6. Transformation of φ(rrr S ) operators under the action of S6 are as follows:

(nx + ny) = even (nx + ny) = odd

φ(rrrB2 (nx, ny)) → (−1)
nx+ny

2
[
�

f
S6

]
φ((S6[rrr])A1 ) (−1)

nx+ny+1
2
[
�

f
S6

]
φ((S6[rrr])A2 )

φ(rrrA1 (nx, ny)) → (−1)
nx+ny

2
[
�

f
S6

]
φ((S6[rrr])B1 ) (−1)

nx+ny+1
2
[
�

f
S6

]
φ((S6[rrr] + R1)B2 )

φ(rrrB1 (nx, ny)) → (−1)
nx+ny

2
[
�

f
S6

]
φ((S6[rrr])A2 ) (−1)

nx+ny+1
2
[
�

f
S6

]
φ((S6[rrr] + R1 − R2)A1 )

φ(rrrA2 (nx, ny)) → (−1)
nx+ny

2 +1
[
�

f
S6

]
φ((S6[rrr] − R2)B1 ) (−1)

nx+ny+1
2
[
�

f
S6

]
φ((S6[rrr] + R1 − R2)B2 )

(F12)

Here,

S6[rrr ] =
{ nx+ny

2 R1 − 3nx−ny

2 R2 if nx + ny = even
nx+ny−1

2 R1 − 3nx−ny−1
2 R2 if nx + ny = odd

(F13)

and

�
f
S6

= −1

4

(√
3�0 + �1 + �2 − �3 + i

√
3�12

+ i
√

3�13 − i
√

3�23 + i�45
)
. (F14)

Transformation under I. Under inversion,

φ(rrr B2 ) → (−1)nx+ny+1
[
�

f
I

]
φ((I[rrr])A2 ),

φ(rrr A1 ) → (−1)nx+ny
[
�

f
I

]
φ((I[rrr] − R2)B1 ),

φ(rrr B1 ) → (−1)nx+ny
[
�

f
I

]
φ((I[rrr] − R2)A1 ),

φ(rrr A2 ) → (−1)nx+ny
[
�

f
I

]
φ((I[rrr])B2 ), (F15)

where

I[rrr ] = −nxR1 − nyR2 (F16)

and

�
f
I = i�45. (F17)

Transformation under σd. Under the action of reflection,

φ(rrr B2 ) → (−1)ny
[
� f

σd

]
φ((σd[rrr])A2 ),

φ(rrr A1 ) → (−1)ny
[
� f

σd

]
φ((σd[rrr ])B1 ),

φ(rrr B1 ) → (−1)ny
[
� f

σd

]
φ((σd[rrr])A1 ),

φ(rrr A2 ) → (−1)ny
[
� f

σd

]
φ((σd[rrr])B2 ), (F18)

where

σd[rrr ] = −nxR1 + nyR2 (F19)

and

� f
σd

= i√
2

(�15 − �25). (F20)

2. Transformation of the χ(x) operators
under lattice symmetries

Under the microscopic time reversal, we have

T : χ (x) → (
�

f
T ⊗ �c

T

)
K χ (x), (F21)
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where

�
f
T = i�13, (F22)

�c
T = γ1ζ2, (F23)

and K represents complex conjugation.
Under the action of T1(2),

T1(2) : χ (x) → (
�

f
T1(2)

⊗ �c
T1(2)

)
χ (x), (F24)

where

�
f
T1

= −i�23, (F25)

�c
T1

= −iζ3, (F26)

and

�
f
T2

= i�13, (F27)

�c
T2

= −iζ2. (F28)

The superscripts f and c in �
f
T1

,�c
T1

stand for “flavor” and
“chiral” respectively since these matrices act on the SU(4)
flavor space and the chiral space.

Under the action of C′
2,

C′
2 : χ (x) → (

�
f
C′

2
⊗ �c

C′
2

)
χ (C2

′−1x), (F29)

where

�
f
C′

2
= i√

2
(�14 − �24), (F30)

�c
C′

2
= 1√

2
γ2(ζ3 − ζ2). (F31)

Under the action of C3, the soft modes transform in the
following way:

C3 : χ (x) → (
�

f
C3

⊗ �c
C3

)
χ (C3

−1x). (F32)

Here,

�
f
C3

= 1

4
(�0 −

√
3�1 −

√
3�2 +

√
3�3 − i�12

− i�13 + i�23 + i
√

3�45) (F33)

and

�c
C3

= 1

4
(−I4 + i

√
3γ0)(I4 + iζ1 + iζ2 + iζ3). (F34)

Under S6, the soft modes transform in the following way:

S6 : χ (x) → (
�

f
S6

⊗ �c
S6

)
χ
(
S6

−1x
)
. (F35)

Here,

�
f
S6

= −1

4
(
√

3�0 + �1 + �2 − �3 + i
√

3�12

+ i
√

3�13 − i
√

3�23 + i�45) (F36)

and

�c
S6

= 1

4
(
√

3I4 − iγ0)(I4 − iζ1 − iζ2 − iζ3) (F37)

Under the action of inversion,

I : χ (x) → (
�

f
I ⊗ �c

I

)
χ (−x), (F38)

TABLE IX. List of one-dimensional irreps of the IR space group.

Irrep Mass T1 T2 I C3 S6 C′
2 σd

A1g X → X X X X X X X
A2g X → X X X X X −X −X
A1u X → X X −X X −X X −X
A2u X → X X −X X −X −X X

where

�
f
I = i�45, (F39)

�c
I = iγ0. (F40)

Under the action of σd,

σd : χ (x) → (
� f

σd
⊗ �c

σd

)
χ (σd

−1x), (F41)

where

� f
σd

= i√
2

(�15 − �25), (F42)

�c
σd

= 1√
2
γ1(ζ2 − ζ3). (F43)

APPENDIX G: IRREDUCIBLE REPRESENTATIONS
OF THE IR SPACE GROUP

As mentioned in the main text, the IR space group has
total 96 elements and these can be divided into 20 conjugacy
classes. So, there are 20 irreducible representations of the
IR space group. Among these, 10 have +ve trace for 2π

rotations. In Tables IX–XI, we write down these irreducible
representations by showing how fermions bilinears in Eq. (40)
(which we symbolically denote as X1, X2, X3, etc.) transform.

APPENDIX H: DETERMINATION OF BROKEN
SYMMETRY GROUP

For the first To
1u triplet given by Eq. (124) in the main text,

at a generic point on the sphere in Fig. 8 such as C or D,
the corresponding R matrix [introduced in Eq. (129)], when
diagonalized, has the form

R =

⎛
⎜⎜⎝

a1σ3

a2σ3

a3σ3

a4σ3

⎞
⎟⎟⎠. (H1)

TABLE X. List of two-dimensional irreps of the IR space group.

Irrep Mass T1 T2 I C3 S6 C′
2 σd

Eg X1 → X1 X1 X1 − X1
2 +

√
3X2
2 − X1

2 −
√

3X2
2 −X1 −X1

X2 → X2 X2 X2 −
√

3X1
2 − X2

2

√
3X1
2 − X2

2 X2 X2

Eu X1 → X1 X1 −X1 − X1
2 +

√
3X2
2

X1
2 +

√
3X2
2 −X1 X1

X2 → X2 X2 −X2 −
√

3X1
2 − X2

2 −
√

3X1
2 + X2

2 X2 −X2
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TABLE XI. List of three-dimensional irreps of the IR space group.

Irrep mass T1 T2 I C3 S6 C′
2 σd

T1g X1 → −X1 −X1 X1 X3 −X2 X1 X1

X2 → X2 −X2 X2 −X1 −X3 −X3 −X3

X3 → −X3 X3 X3 −X2 X1 −X2 −X2

T2g X1 → −X1 −X1 X1 X3 −X2 −X1 −X1

X2 → X2 −X2 X2 −X1 −X3 X3 X3

X3 → −X3 X3 X3 −X2 X1 X2 X2

T1u X1 → −X1 −X1 −X1 X3 X2 X1 −X1

X2 → X2 −X2 −X2 −X1 X3 −X3 X3

X3 → −X3 X3 −X3 −X2 −X1 −X2 X2

T2u X1 → −X1 −X1 −X1 X3 X2 −X1 X1

X2 → X2 −X2 −X2 −X1 X3 X3 −X3

X3 → −X3 X3 −X3 −X2 −X1 X2 −X2

Here a1, . . . , a4 are four real numbers which are not equal to
each other. There are seven linearly independent matrices that
commute with R in the above equation. These are

⎛
⎜⎜⎝

σ0

−σ0

σ0

−σ0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

σ0

−σ0

0
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0
0

σ0

−σ0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0
σ3

0
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

σ3

0
0

0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0
0

σ3

0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0
0

0
σ3

⎞
⎟⎟⎠.

All these matrices commute with each other and hence these
generate a subgroup of SU(8) which contains seven mutually
commuting U(1) groups. Thus the SU(8) at a general point on
the sphere is broken down to [U(1)]7.

For the points on the three great circles obtained by setting
one of the �i to zero, the corresponding R matrix for the
masses look like

R =

⎛
⎜⎜⎝

a1σ3

a1σ3

a3σ3

a3σ3

⎞
⎟⎟⎠. (H2)

There are 15 linearly independent matrices that commute with
this R which form a U(1) ⊗ [U(1) ⊗ SO(4)]2 of the SU(8).

Finally, at the special eight points where all the �is have
equal magnitude such as point B on the sphere in Fig. 8, the
R matrix has the following form:

R =

⎛
⎜⎜⎝

a1σ3

a1σ3

a3σ3

0

⎞
⎟⎟⎠. (H3)

The SU(8) symmetry group at these points breaks down to
U(1) ⊗ SO(4) ⊗ U(1) ⊗ U(1) ⊗ U(2).

APPENDIX I: BASIS TRANSFORMATION FOR THE DENSITY WAVE SEMIMETALS

In Eq. (138), the 16 × 16 matrix U is given by Eq. (I1):

U = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 −i i 0 0 0

0 0 0 0 0 0 0 0 0 0 i 0 0 i 0 0

−i 0 0 0 0 0 0 i 0 0 0 0 0 0 0 0

0 −i 0 0 0 0 −i 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 i i 0 0 0

0 0 0 0 0 0 0 0 0 0 −i 0 0 i 0 0

i 0 0 0 0 0 0 i 0 0 0 0 0 0 0 0

0 i 0 0 0 0 −i 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −i 0 0 0 0 0 0 i

0 0 0 0 0 0 0 0 0 −i 0 0 0 0 −i 0

0 0 0 −i i 0 0 0 0 0 0 0 0 0 0 0

0 0 i 0 0 i 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 i 0 0 0 0 0 0 i

0 0 0 0 0 0 0 0 0 i 0 0 0 0 −i 0

0 0 0 i i 0 0 0 0 0 0 0 0 0 0 0

0 0 −i 0 0 i 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (I1)
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1. The structure of the density wave semimetal masses

In terms of internal symmetry transformations, the 18 den-
sity wave semimetals can be divided up into two categories
depending on whether the number of gapless fermionic modes
changes depending on the particular linear combination of the
mass term ∑

i

�iχ̄miχ, (I2)

where i sums over the appropriate number of components
depending on the dimension of the irreducible representation.
The first class where the number of gapless modes remains
unchanged for all values of �i consists of eight masses be-
longing to the two singlets (of �-DSM type) and two triplets
(of M-DSM type). They respectively make up the following.

(i) A0
1u and Ao

2u [Eqs. (134) and (135)]. Staggered spin-
octupole density wave semimetal.

(ii) To
1g [Eq. (150)]. Stripy spin-octupole density wave

semimetal
(iii) Te

2g [Eq. (158)]. Stripy spin-quadrupole density wave
semimetal.

The second class involves the rest of the ten masses (of
�-DSM type) whose number of gapless modes changes as one
tunes �i. These consist of two doublets and two triplets given
by the following.

(i) To
2g [Eq. (153)]. Stripy spin-octupolar density wave

semimetal.
(ii) Te

1g [Eq. (160)]. Stripy spin-quadrupolar density wave
semimetal.

(iii) Ee
g [Eq. (163)]. Ferro spin-quadrupole density wave

semimetal.
(iv) Eo

g [Eq. (167)]. Ferro spin-octupole density wave
semimetal.

For the first class, leaving out the two singlets the six
masses in the To

1g and Te
2g representations form a reducible

representation of a SO(4) subgroup of the low-energy SU(8).
This SO(4)(≡ SU(2)⊗ SU(2)) subgroup is generated by the
following six generators:

g+
1 = 1

2 (μ6�̃15 − μ7�̃5), (I3a)

g+
2 = 1

2 (μ14�̃15 − μ13�̃5) (I3b)

g+
3 = 1

2μ11(�̃1 − �̃0), (I3c)

g−
1 = 1

2 (−μ6�̃15 − μ7�̃5), (I3d)

g−
2 = 1

2 (−μ14�̃15 − μ13�̃5), (I3e)

g−
3 = 1

2μ11(�̃1 + �̃0). (I3f)

The g+
i and g−

i separately satisfy su(2) algebra which we
call as su(2)+ and su(2)− respectively. Also, these two su(2)s
commute with each other, i.e., [g+

i , g−
j ] = 0 ∀i, j. Now we

form the following linear combinations of the masses in the
To

1g and Te
2g triplets:

m+
i = (Te

2g

)
i − (To

1g

)
i, (I4a)

m−
i = (Te

2g

)
i + (To

1g

)
i, (I4b)

for i = 1, 2, 3. Here (To
1g)i, (Te

2g)i are the masses in the triplets
To

1g and Te
2g. The m+

i (m−
i ) masses transform in spin-1 (spin-0)

representation under the action of su(2)+ and in spin-0 (spin-
1) representation under su(2)−. Thus the six masses in the two
triplets transform in (1,1) representation under the action of
the SO(4).

It is interesting to note that the m+
i masses go to m−

i
under the action of the microscopic time-reversal (TR). Thus
TR symmetry enforces the two representations of SO(4)
to mix resulting in the two triplets resulting in the TR
even and odd spin-quadrupole and spin-octupole phases,
respectively.

For the second group, the ten masses making up the two
doublets (Ee

g, Eo
g) and two triplets (Te

1g, To
2g) mix among them-

selves and actually form a (2,2) representation of the SO(4) in
Eq. (I3a). This is easy to see by writing the 10 masses in two
subgroups each consisting of five masses as

m̃+
i = (Te

1g

)
i − (To

2g

)
i ∀ i = 1, 2, 3, (I5a)

m̃+
4 = (Ee

g

)
1 − (Eo

g

)
1, (I5b)

m̃+
5 = (Ee

g

)
2 − (Eo

g

)
2, (I5c)

and

m̃−
i = (Te

1g

)
i
+ (To

2g

)
i

∀ i = 1, 2, 3, (I6a)

m̃−
4 = (Ee

g

)
1 + (Eo

g

)
1, (I6b)

m̃−
5 = (Ee

g

)
2 + (Eo

g

)
2. (I6c)

The first (second) subgroup of masses, m̃+
i (m̃−

i ) transforms as
a spin-2(0) representation under su(2)+ and in spin-0 (spin-2)
representation under su(2)−.

APPENDIX J: ANALYSIS IN THE GLOBAL BASIS

As mentioned in the main text, Bloch diagonalizing the
Hamiltonian in global basis [Eq. (9)] obtains four bands aris-
ing from the four j = 3/2 orbitals [Eq. (6)] and each twofold
degenerate due to inversion symmetry. The first set of bands
touches the second set of bands at four distinct points with
a Dirac cone structure, see Fig. 14. With 1/4th filling of the
bands, the chemical potential is tuned to the Dirac points at
the four Qg vectors, �, M1, M2, M3 termed as valleys, in the
original honeycomb lattice Brillouin zone.

Following an approach similar to that adopted in the main
text, the IR physics can be obtained by expanding in terms
of the four Dirac modes at quarter filling; one obtains four
flavors of two component Dirac fermions χg;ν (x) where ν(=
�, M1, M2, M3) refers to the four valleys (Fig. 14). Combining
them together, we get the 16-component Dirac spinor

χg(x) = (χT
g� (x), χT

gM1
(x), χT

gM2
(x), χT

gM3
(x)
)T

(J1)

in the global basis. This should be contrasted with the 16-
component spinor in the local basis obtained by stacking the
four 4-component spinors in Eq. (24). The low-energy action
in the global basis reads

Lg = vF χ̄g(−i/∂ )χg (J2)

repeated are summed over the spatial directions. The gamma
matrices in the global basis are

γ 0
g = M0003, γ 1

g = M0002, γ 2
g = −M0001 (J3)
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FIG. 14. Brillouin zone and band structure in the global basis. Each of the four bands indicated in a different color are twofold degenerate.
At quarter filling, distinct Dirac cones appear at four points (valleys) �, M1, M2, and M3. The light blue plane indicates the chemical potential
at quarter-filling.

with

Mμνρτ = σμσνσρστ , μ, ν, ρ, τ ∈ {0, 1, 2, 3}, (J4)

where σμ are the Pauli matrices σ0 = 12×2, σ1 = σx, σ2 = σy,
and σ3 = σz. The Dirac action obtained from Eq. (J2) has an
emergent global SU(8) symmetry, much like in the local basis.
However, the crucial point is that the SU(4) symmetry of the
transformed microscopic Hamiltonian in the local basis does
not directly manifest in the Dirac Lagrangian Eq. (J2). This is
the reason why we choose to represent the relevant matrices

Mμνστ using the products of Pauli matrices as in Eq. (J4), as
there is no natural choice of flavor and chiral spaces in the
global basis. Despite the burden of this additional notation,
we will see that the global formulation provides key insights,
particularly the semimetallic phases obtained in the main text.

The Dirac action obtained from Eq. (J2) is invariant un-
der the space group symmetry operations S, the global basis
spinors transform as χg(x) → �Sχg(S−1x). The matrices ma-
trices �S are obtained as (analogous to that discussed in
Appendix F 2)

�C3
= 1

16
(−M0000 − i

√
3M0003 + i

√
3M0010 − 3M0013 +

√
3M0120 + 3iM0123 + M0130 + i

√
3M0133 + i

√
3M0220

− 3M0223 + iM0230 −
√

3M0233 − M0300 − i
√

3M0303 + i
√

3M0310 − 3M0313 +
√

3M1020

+ 3iM1023 − M1030 − i
√

3M1033 + M1100 + i
√

3M1103 + i
√

3M1110 − 3M1113 − iM1200

+
√

3M1203 +
√

3M1210 + 3iM1213 −
√

3M1320 − 3iM1323 + M1330 + i
√

3M1333 − i
√

3M2020

+ 3M2023 + iM2030 −
√

3M2033 + iM2100 −
√

3M2103 −
√

3M2110 − 3iM2113 + M2200

+ i
√

3M2203 + i
√

3M2210 − 3M2213 + i
√

3M2320 − 3M2323 − iM2330 +
√

3M2333 − M3000

− i
√

3M3003 + i
√

3M3010 − 3M3013 −
√

3M3120 − 3iM3123 − M3130 − i
√

3M3133 − i
√

3M3220

+ 3M3223 − iM3230 +
√

3M3233 − M3300 − i
√

3M3303 + i
√

3M3310 − 3M3313
)
,

�σd = −1

2
i(M0322 − M1122 − M2222 + M3022), �C′

2
= 1

2
i(M0331 + M1131 + M2231 + M3031), �I = −M3313,

�S6
= 1

16
(3M0000 − i

√
3M0003 + i

√
3M0010 + M0013 +

√
3M0120 − iM0123 − 3M0130 + i

√
3M0133
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+ i
√

3M0220 + M0223 − 3iM0230 −
√

3M0233 + 3M0300 − i
√

3M0303 + i
√

3M0310 + M0313 +
√

3M1020

− iM1023 + 3M1030 − i
√

3M1033 − 3M1100 + i
√

3M1103 + i
√

3M1110 + M1113 + 3iM1200

+
√

3M1203 +
√

3M1210 − iM1213 −
√

3M1320 + iM1323 − 3M1330 + i
√

3M1333 − i
√

3M2020

− M2023 − 3iM2030 −
√

3M2033 − 3iM2100 −
√

3M2103 −
√

3M2110 + iM2113 − 3M2200

+ i
√

3M2203 + i
√

3M2210 + M2213 + i
√

3M2320 + M2323 + 3iM2330 +
√

3M2333 + 3M3000

− i
√

3M3003 + i
√

3M3010 + M3013 −
√

3M3120 + iM3123 + 3M3130 − i
√

3M3133 − i
√

3M3220

− M3223 + 3iM3230 +
√

3M3233 + 3M3300 − i
√

3M3303 + i
√

3M3310 + M3313),

�T1
= M0300, �T2

= M3000 �T = iM0032. (J5)

An important feature here is that χg transforms under the
action of S such that the space of spinors χg� is an invariant
subspace, i.e., symmetry transformations do not mix χg� with
any other χgν, ν ∈ {M1, M2, M3}.

We now see that any fermion bilinear of the form

−iχ̄gγ
0
g Mμνρ3χg (J6)

described by a mass matrix Mμνρ3, μ, ν, ρ ∈ {0, 1, 2, 3}
which anticommutes with γ 1

g and γ 2
g , gaps out the Dirac

fermions. The 64 masses can be classified by the irreducible
representations of the space group using the fact that the
masses Mμνρ3 transform adjointly under the action of the
operations Eq. (J5). On carrying out the classification of mass
terms according to the irreducible representations of the space
group, the analysis based on the global basis produces identi-
cal results as those in Tables I to IV.

The global basis offers illuminating insights into un-
derstanding the phases, particularly the semimetallic ones.
Central to this is the fact that symmetry operations S do not
mix χg� with any other χgν, ν ∈ {M1, M2, M3}. Thus a spinor
can be decomposed into

χg = P�χg︸︷︷︸
χg�

+ (1 − P� )χg︸ ︷︷ ︸
χgM

, (J7)

where the operator P� projects a general spinor to the valley
�. The space of spinors χg� carries some irreps Da (in the
fundamental representation) of the space group labeled by
index a. Similarly, the space of spinors χgM (spinors belonging
to valleys M1, M1, M1) may be decomposed into space group
irreps Db labeled by b. Also, the adjoint representation on the
space of masses is decomposed into irreps Dc labeled by c.
We can now study the structure of the masses in one of the
representations Dc, by exploring which product representa-
tions DP∗ ⊗ Dc ⊗ DQ, where P, Q ∈ {a, b} contain a singlet
representation. Several interesting possibilities arise, of which
two are crucially important.

(1) An irreducible mass matrix Mc (c labels the irrep Dc

in the adjoint representation) is such that there is no identity
representation in the decomposable tensor product representa-
tion Da′∗ ⊗ Dc ⊗ Da for all a, a′ representations carried by the
χg� space. Further, there is atleast one identity representation
in Db′∗ ⊗ Dc ⊗ Db, where b, b′ are irreps of the χgM space.
In such a scenario, the mass Mc acts like a “zero matrix” on

spinors χg� and has the following structure:

Mc
�-DSM =

⎛
⎜⎜⎝

� M1 M2 M2

� 04×4 04×4 04×4 04×4

M1 04×4 � � �
M2 04×4 � � �
M3 04×4 � � �

⎞
⎟⎟⎠, (J8)

where � ≡ nonzero entry. This guarantees that the Dirac
cones at � are ungapped, leading to a semimetallic phase,
and we dub such a phase as “Gamma-Dirac semimetal (�-
DSM)”. Examples of such semimetals are entries No. 17, 18,
20, 22, 23, and 24 in Table IV. As discussed in the main text,
additional gapless modes may be possible if such masses arise
in a doublet or triplet representation when the coefficients of
the mass matrices satisfy special criteria [see, for example,
Eq. (155)].

(2) The second interesting possibility for the mass Mc is
such that while there is no identity representation in Da′∗ ⊗
Dc ⊗ Da (a, a′ are representations in χg�-space) or Db′∗ ⊗
Dc ⊗ Db (b, b′ are representations in χgM-space), but there is
at least one identity representation in Da′∗ ⊗ Dc ⊗ Db. This
implies that the mass Mc mixes χg� with χgM , but since mixing
between spinors at � is forbidden as is the mixing between
spinors between the M valleys, the remaining possibility is
that of mixing between spinors at � with those of M leading
to the mass matrix structured as

Mc
M-DSM =

⎛
⎜⎜⎝

� M1 M2 M2

� 04×4 � � �
M1 � 04×4 04×4 04×4

M2 � 04×4 04×4 04×4

M3 � 04×4 04×4 04×4

⎞
⎟⎟⎠, (J9)

This type of mass matrix has an emergent sublattice symmetry
where

U †
SLMc

M−DSMUSL = −Mc
M−DSM (J10)

with

USL =

⎛
⎜⎜⎝

� M1 M2 M2

� 14×4 04×4 04×4 04×4

M1 04×4 −14×4 04×4 04×4

M2 04×4 04×4 −14×4 04×4

M3 04×4 04×4 04×4 −14×4

⎞
⎟⎟⎠ (J11)
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2a1

2a2

FIG. 15. Honeycomb lattice with π flux. (Left) Unit cell consisting of eight sites adopted for the analysis. Fermions hop to nearest
neighbors where red links shown have a hopping amplitude with a negative sign. (Right) Band structure showing four bands, each of which is
twofold degenerate. The light blue plane shows the quarter-filled chemical potential.

which guarantees that there are at least 8 zero eigenvalues
leading to (at least) 8 gapless modes for any such mass. Note
that the gapless modes will be a linear combination of spinors
from all the valleys and, in particular will depend on the
nonzero entries denoted by �. Such semimetals are dubbed
“M-Dirac semimetals (M-DSM).” In Table IV, the entries 19
and 21 are of this type.

APPENDIX K: SPINLESS FERMIONS ON A HONEYCOMB
LATTICE WITH π-FLUX AT 1/4TH FILLING

In this section, we revisit the physics of spinless fermions
hopping on a honeycomb lattice with a π flux through each
of the honeycomb plaquettes. We adopt the unit cell shown
in Fig. 15, and choose a more convenient gauge for obtain-
ing the π flux (this enables an efficient implementation of
lattice symmetries). We obtain four bands, each of which is
twofold degenerate. At quarter filling, we obtain two Dirac
cones located at the � point of the hexagonal Brillouin zone
as shown in Fig. 14. The low-energy physics is described by a
four-component spinor χπ with a Lagrangian density similar
to Eq. (J2) with,

γ 0
π = M03, γ 1

π = −M02, γ 2
π = M01, (K1)

where

Mμν = σμσν (K2)

and σμ are Pauli matrices defined just below Eq. (J4). The
system has an emergent global SU(2) symmetry generated by
Mi0, i ∈ {1, 2, 3} which is the analog of the chiral symmetry
discussed near Eq. (28).

A fermion bilinear of the form

−iχ̄πγ 0
π Mμ3χπ (K3)

described by a mass matrix Mμ3, μ ∈ {0, 1, 2, 3} which anti-
commutes with γ 1

π and γ 2
π , gaps out the Dirac fermions. The

space of these mass matrices can be reduced in the irreps of
the space group, resulting the phases described below.

1. Integer Chern insulator

This mass transforms as a one-dimensional irrep, breaking
time-reversal and reflection symmetries of the lattice while
preserving all the proper rotational symmetries of the hexag-
onal lattice

A2g
o

1 M03

resulting in a mass term

�ICI = −i〈χ̄πχπ 〉. (K4)

It is clear that the SU(4) symmetric ICI found in Eq. (68) is a
“larger dimensional” realization of such a phase with a larger
value of the Chern-Simons level.

2. Stripy density waves

The remainder of the three masses organize as a triplet
under the space group symmetries, preserving time reversal
but breaking rotational and translational symmetries.

T1g
e

1 1√
2
M13 + 1√

6
M23 − 1√

3
M33

2 − 1√
2
M13 + 1√

6
M23 − 1√

3
M33

3
√

2
3 M23 + 1√

3
M33
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The three components of the masses correspond to the
fermion bilinears

− i

〈
χ̄π

(
1√
2

M10 + 1√
6

M20 − 1√
3

M30

)
χπ

〉
,

− i

〈
χ̄π

(
− 1√

2
M10 + 1√

6
M20 − 1√

3
M30

)
χπ

〉
,

− i

〈
χ̄π

(√
2

3
M20 + 1√

3
M30

)
χπ

〉
(K5)

any one of which produces a stripy density wave similar to
that shown in Fig. 6. The mass matrices that appear here
are orthogonal linear combinations of the chiral symmetry
generators discussed just below Eq. (K1). Indeed, it is evident
that the chiral masses shown in Eq. (72) correspond to this
case.

APPENDIX L: A MODEL WITH j = 1/2 SPINS

In this section, we construct a model on a honeycomb
lattice where the spin-orbit coupling is realized in a j = 1/2
system, i.e., as a system with spin-1/2 degrees of freedom.
Although this model is not directly motivated by a material
system, it is nevertheless useful to study, in a simpler set-
ting, the conceptual underpinnings of how spin-orbit coupling
produces interesting new phenomena. The model is defined
using Fig. 2 where each lattice site has two j = 1/2 orbitals.
The hopping Hamiltonian is same as that in Eq. (9), with the
key difference that Urr′ = {τx, τy, τz} (τi here are the Pauli
matrices acting on the j-1/2 space) respectively when rr′ is the
x, y, z type link shown in Fig. 2. This system has the following
microscopic symmetries among those listed in Table V and
time reversal:

(1) lattice translations as in T1 and T2,
(2) C3 rotations,
(3) σd dihedral reflection,
(4) time reversal T , with T 2 = −1.
The interesting aspect of this model is that by carrying out

transformations similar to those discussed in Appendix D, one
can arrive at a system with a π flux through each honeycomb
plaquette, and a global SU(2) flavor symmetry. In other words,
this model is the “SU(2) version” of the SU(4) model dis-
cussed in the main text.

We continue to discuss this model in the global basis. The
band structure of this model is identical to that shown in
Fig. 14, the difference being that each band is nondegenerate.
At quarter filling, the physics can be described by four Dirac
cones, one each located at �, M1, M2, M3. We get a Dirac
action similar to Eq. (J2), with χg as in Eq. (J1) where χgν ,
ν ∈ {�, M1, M2, and M3} are two-component spinors. The
Dirac gamma matrices are

γ 0
g = M003, γ 1

g = M002, γ 2
g = −M001 (L1)

and

Mμνρ = σμσνστ , (L2)

where Pauli matrices σμ are described just below Eq. (J4)

The symmetry transformations are described by

�C3 = 1

8
(M000 + i

√
3M003 − M010 − i

√
3M013

+ iM020 −
√

3M023 + M030 + i
√

3M033 − M100

− i
√

3M103 + M110 + i
√

3M113 + iM120

−
√

3M123 + M130 + i
√

3M133 − iM200

+
√

3M203 − iM210 +
√

3M213 + M220

+ i
√

3M223 + iM230 −
√

3M233 + M300

+ i
√

3M303 + M310 + i
√

3M313 − iM320

+
√

3M323 + M330 + i
√

3M333),

�σd = 1

2
(−M032 + M112 + M222 − M302),

�T1 = M300,

�T2 = M030,

�T = iM002. (L3)

Again, we see that the spinors χg� [see Eq. (J7)] form an
invariant subspace under the action of the symmetries above.
One, therefore, expects to obtain semimetallic phases when
the mass matrices of the type Mμν3, μ, ν ∈ {0, 1, 2, 3} that
gap out [see Eq. (J6)] the Dirac Lagrangian Eq. (J2) defined
by Eq. (L1) are resolved into irreducible components. Below
we briefly describe seven irreducible masses and the resulting
phases obtained by such an analysis.

1. Chiral masses

a. Integer Chern insulator

C3 σd T1 T2 T
√

✗
√ √

✗

Ao

1 M003

This mass is SU(2) symmetric and produces a fully gapped
state. Viewed on the lattice, it produces spin-independent sec-
ond neighbor hoppings akin to the Haldane honeycomb model
as in Fig. 5 with an effective Chern-Simons action described
by Eq. (69).
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b. Stripy density wave phase

C3 σd T1 T2 T

✗ ✗ ✗ ✗
√

Te

1 M123

2 −M203

3 −M323

This is again an SU(2) invariant mass that results in a stripy
density wave similar to the SU(4) invariant case found in
Eq. (72).

The two cases described above exhaust the chiral masses.

2. SU(2) Flavor masses

a. Quantum dipolar Hall mass

C3 σd T1 T2 T

✗ ✗ ✗ ✗
√

Te

1 M213

2 −M233

3 −M023

This mass produces spin-dependent second neighbor hop-
ping that produces a uniform SU(2) flux in a second-neighbor
triangle, gapping out the system. The phase with this mass
is described by a mutual Chern-Simons theory like Eq. (79)
resulting in dipole-filtered edge states and is analogous to the
phase discussed in Sec. VII A 2.

3. Mixed masses

a. Ferromagnetic insulator

C3 σd T1 T2 T
√

✗
√ √

✗

Ao

1 M033√
3

+ M303√
3

+ M333√
3

This mass manifests as a uniform magnetic field in the
direction perpendicular to the honeycomb and fully gap out
the Dirac fermions. The analogous state correponding to this
in the SU(4) case is discussed in Sec. VIII A 2.

b. Ferromagnetic semimetal: �-Dirac semimetal

C3 σd T1 T2 T

✗ ✗
√ √

✗

Eo

1 M033√
2

− M333√
2

2 M033√
6

−
√

2
3 M303 + M333√

6

The doublet mass produces a local magnetic field in the
plane of the honeycomb lattice and the components rotate
into each other under lattice symmetries; this phase is analo-
gous to the ferro spin-octupolar semimetallic phase discussed
in Sec. VIII B 5. For any generic linear combination of the
masses, the Dirac cone at the � point remains ungapped, while
for special linear combinations of the two masses, there is one
additional gapless mode as discussed in Sec. VIII B 5. This is
a semimetallic phase of �-DSM type.

c. Stripy spin density wave semimetal: M-Dirac semimetal

C3 σd T1 T2 T

✗ ✗ ✗ ✗ ✗

To

1 M113√
2

− M223√
2

2 − M103√
2

− M133√
2

3 − M013√
2

− M313√
2

This mass produces a spin density wave of the stripy kind
similar to that discussed in Eq. (150). Interestingly, this pro-
duces a semimetallic phase of the M-DSM kind, precisely as
discussed for the SU(4) case in Eq. (150).
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d. Stripy spin density wave semimetal: �-Dirac semimetal

C3 σd T1 T2 T

✗ ✗ ✗ ✗ ✗

Tu
o

1 M113√
2

+ M223√
2

2 M133√
2

− M103√
2

3 M313√
2

− M013√
2

This is a triplet mass that produces a stripy magnetic field;
the key difference between the one just discussed above, is
that this possesses an isolated Dirac cone, where a single
Dirac cone at � is always left ungapped. This is similar to
the SU(4) case discussed in Eq. (153) that produces a stripy
spin-octupolar density wave. For the SU(2) case one has a
stripy density wave. Again, just as in the case discussed in
Eq. (153), there are special linear combinations of the masses
that obtain additional gapless modes.

[1] O. Vafek and A. Vishwanath, Annu. Rev. Condens. Matter
Phys. 5, 83 (2014).

[2] M. Goerbig and G. Montambaux, Dirac fermions in condensed
matter and beyond, in Dirac Matter, edited by B. Duplantier,
V. Rivasseau, and J.-N. Fuchs (Springer International Publish-
ing, Cham, 2017), pp. 25–53.

[3] P. R. Wallace, Phys. Rev. 71, 622 (1947).
[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.

Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, Nature
(London) 438, 197 (2005).

[5] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature
(London) 438, 201 (2005).

[6] A. K. Geim, Science 324, 1530 (2009).
[7] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[8] M. O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011).
[9] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod.

Phys. 83, 407 (2011).
[10] K. S. Novoselov, Rev. Mod. Phys. 83, 837 (2011).
[11] A. K. Geim, Rev. Mod. Phys. 83, 851 (2011).
[12] T. Wehling, A. Black-Schaffer, and A. Balatsky, Adv. Phys.

63, 1 (2014).
[13] S. M. Young and C. L. Kane, Phys. Rev. Lett. 115, 126803

(2015).
[14] M. Hirata, A. Kobayashi, C. Berthier, and K. Kanoda, Rep.

Prog. Phys. 84, 036502 (2021).
[15] A. Kobayashi, S. Katayama, Y. Suzumura, and H. Fukuyama,

J. Phys. Soc. Jpn. 76, 034711 (2007).
[16] M. O. Goerbig, J.-N. Fuchs, G. Montambaux, and F. Piéchon,

Phys. Rev. B 78, 045415 (2008).
[17] D. A. Wollman, D. J. Van Harlingen, J. Giapintzakis, and

D. M. Ginsberg, Phys. Rev. Lett. 74, 797 (1995).
[18] J. Kirtley, C. Tsuei, J. Sun, C. Chi, L. S. Yu-Jahnes, A.

Gupta, M. Rupp, and M. Ketchen, Nature (London) 373, 225
(1995).

[19] G. Volovik, JETP Lett. 58, 469 (1993).
[20] Y. Wang and A. H. MacDonald, Phys. Rev. B 52, R3876

(1995).
[21] L. Balents, M. P. Fisher, and C. Nayak, Int. J. Mod. Phys. B

12, 1033 (1998).
[22] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov,

Phys. Rev. B 83, 205101 (2011).

[23] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele,
and A. M. Rappe, Phys. Rev. Lett. 108, 140405 (2012).

[24] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306(R)
(2007).

[25] R. Roy, Phys. Rev. B 79, 195322 (2009).
[26] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803

(2007).
[27] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[28] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[29] Y. Chen, J. G. Analytis, J.-H. Chu, Z. Liu, S.-K. Mo, X.-L.

Qi, H. Zhang, D. Lu, X. Dai, Z. Fang et al., Science 325, 178
(2009).

[30] D. Pacile, J. Meyer, Ç. Ö. Girit, and A. Zettl, Appl. Phys. Lett.
92, 133107 (2008).

[31] G. Li, A. Luican, and E. Y. Andrei, Phys. Rev. Lett. 102,
176804 (2009).

[32] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J.
Booth, T. Stauber, N. M. Peres, and A. K. Geim, Science 320,
1308 (2008).

[33] Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim,
H. L. Stormer, and D. N. Basov, Nat. Phys. 4, 532 (2008).

[34] N. Levy, S. Burke, K. Meaker, M. Panlasigui, A. Zettl, F.
Guinea, A. C. Neto, and M. F. Crommie, Science 329, 544
(2010).

[35] J. G. Checkelsky, L. Li, and N. P. Ong, Phys. Rev. B 79,
115434 (2009).

[36] J. H. Bardarson and J. E. Moore, Rep. Prog. Phys. 76, 056501
(2013).

[37] M. Hermele, T. Senthil, and M. P. A. Fisher, Phys. Rev. B 72,
104404 (2005).

[38] I. Affleck and J. B. Marston, Phys. Rev. B 37, 3774 (1988).
[39] J. B. Marston and I. Affleck, Phys. Rev. B 39, 11538 (1989).
[40] W. Rantner and X.-G. Wen, Phys. Rev. Lett. 86, 3871 (2001).
[41] X.-G. Wen, Phys. Rev. B 65, 165113 (2002).
[42] M. Hermele, T. Senthil, M. P. A. Fisher, P. A. Lee, N. Nagaosa,

and X.-G. Wen, Phys. Rev. B 70, 214437 (2004).
[43] M. Franz and Z. Tešanović, Phys. Rev. Lett. 87, 257003
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