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Orbital Hall effect in mesoscopic devices
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We investigate the orbital Hall effect through a mesoscopic device with momentum-space orbital texture
that is connected to four semi-infinite terminals embedded in the Landauer-Büttiker configuration for quantum
transport. We present analytical and numerical evidence that the orbital Hall current exhibits mesoscopic
fluctuations, which can be interpreted in the framework of random matrix theory (RMT) (as with spin Hall current
fluctuations). The mesoscopic fluctuations of orbital Hall current display two different amplitudes of 0.36 and
0.18 for weak and strong spin-orbit coupling, respectively. The amplitudes are obtained by analytical calculation
via RMT and are supported by numerical calculations based on the tight-binding model. Furthermore, the orbital
Hall current fluctuations lead to two relationships between the orbital Hall angle and conductivity. Finally, we
confront the two relations with experimental data of the orbital Hall angle, which shows good concordance
between theory and experiment.
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I. INTRODUCTION

The spin Hall effect (SHE) is one of the most promi-
nent phenomena observed in spintronics, which allows us to
convert a longitudinal charge current to a transversal spin
Hall current (SHC) [1–9]. Spin-orbit coupling (SOC) is the
key behind the SHE because it lets us control spin transport
properties without magnetic materials. Furthermore, the spin
Hall angle (SHA) is an important parameter that is commonly
used to quantify a material’s ability to convert charge-to-
spin currents. SHA is defined as the ratio between the SHC
and the charge current, and has been measured in various
heavy metals—that is, metals with strong SOC, such as Pt
[10] and W [11]—and in two-dimensional materials—such
as graphene [12,13].

Much attention has been given to the orbital Hall effect
(OHE), which is a phenomenon of orbitronics [14–42]. As
shown by Go et al. [18], we can convert a longitudinal charge
current to a transversal orbital Hall current (OHC) in cen-
trosymmetric systems with momentum-space orbital texture,
even when the orbital angular momentum is quenched in equi-
librium. A remarkable feature of OHE is that it is independent
of SOC, in contrast with SHE. Therefore, we can consider the
OHE to be more fundamental than the SHE [18,26]. Similar
to SHA, the orbital Hall angle (OHA) quantifies a material’s
ability to convert charge-to-orbital currents and was measured
in light metals as Ti [35,36] and Cr [37] (i.e., metals with weak
SOC) and heavy metals as W [36] and Pt [37].

As shown in the 1980s [43], the charge current through
the mesoscopic diffusive device in the linear regime at low
temperature exhibits mesoscopic fluctuations, which are the-
oretically interpreted within the framework of random matrix
theory (RMT) [44]. Therefore, in the early SHE experiments
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[3,4], interest in whether the SHC exhibits mesoscopic fluc-
tuations appeared. The mesoscopic fluctuations of SHC were
numerically demonstrated by Ref. [45] and confirmed analyt-
ically via RMT by Ref. [46]. However, the SHC fluctuations
(SHCF) have never been confirmed experimentally because
the SHC is only measured indirectly via the inverse spin
Hall effect [47–50]. The connection between SHCF and SHE
experiments was made by Refs. [51,52], which show that
the SHCF lead to a relationship between the maximum SHA
deviation �SH and dimensionless longitudinal conductivity
σ = Nle/L, where N , L, and le are the number of propagating
wave modes, longitudinal device length, and free electron
path, respectively, which is given by �SH × σ = 0.18. There-
fore, the question that arises in the early OHE experiments
is the following [34–37]: does the OHC exhibit mesoscopic
fluctuations?

In this paper, we study the OHE through a mesoscopic
device with momentum-space orbital texture that is con-
nected to four semi-infinite terminals that are embedded in
the Landauer-Büttiker configuration for quantum transport,
as shown in Fig. 1. Using analytical calculations via RMT
and numerical calculations based on the tight-binding model
for a square lattice with four orbitals, we report mesoscopic
fluctuations of OHC with different amplitudes for light and
heavy metals. Our findings are valid for ballistic chaotic and
mesoscopic diffusive devices in the limit when the mean dwell
time of the electrons is much longer than the time needed for
ergodic exploration of the phase space, τdwell � τerg. Further-
more, the OHC fluctuations (OHCF) lead to two relationships
between the maximum OHA deviation and dimensionless lon-
gitudinal conductivity. Finally, we confront the two relations
with experimental data of Refs. [35–37], and conclude on the
compatibility between theory and experiments.
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FIG. 1. OHE through a disordered mesoscopic device with
space-moment orbital texture (blue) connected to four semi-infinite
terminals subjected to voltages Vi. The SOC may or may not be
included in the mesoscopic device.

II. ORBITAL HALL EFFECT

We designed the OHE setup through a mesoscopic device
with orbital angular momentum and spin degrees of free-
dom that is connected to four semi-infinite terminals that are
submitted to voltages Vi, Fig. 1. From the Landauer-Büttiker
model, the OHC (SHC) through the ith terminal in the linear
regime at low temperature is

Io(s)
i,η = e2

h

∑
j

τ
o(s)
i j,η (Vi − Vj ), (1)

where the orbital (spin) transmission coefficient is calculated
from the transmission and reflection blocks of scattering ma-
trix S = [Si j]i, j=1,...,4:

τ
o(s)
i j,η = Tr

[
(Si j )

†Po(s)
η Si j

]
.

The matrix Po(s)
η = 1N ⊗ lη ⊗ σ 0 (1N ⊗ l0 ⊗ ση ) is a projec-

tor, where 1N is an identity matrix with dimension N × N . The
dimensionless integer N is the number of propagating wave
modes in the terminals, proportional to the terminal width (W )
and the Fermi vector (kF ) through the equation N = kFW/π .
The index η = {0, x, y, z}, l0 = (lη )2, σ 0 = (ση )2, and lη and
ση are orbital angular momentum and Pauli matrices, respec-
tively. Therefore, the charge current is defined by η = 0, while
OHC (SHC) is defined by η = {x, y, z}.

The pure OHC (SHC)

Io(s)
i,z = I�(↑)

i − I�(↓)
i , i = 3, 4

can be obtained by assuming that the charge current vanishes
in the transverse terminals,

Ic
i,0 = I�(↑)

i + I�(↓)
i = 0, i = 3, 4,

while the charge current is conserved in the longitudinal ter-
minals [5,46,53]:

Ic
1,0 = −Ic

2,0 = Ic.

By applying these conditions to Eq. (1), we obtain

Io(s)
i,η = e2

h

[(
τ

o(s)
i2,η − τ

o(s)
i1,η

)V
2

− τ
o(s)
i3,ηV3 + τ

o(s)
i4,ηV4

]
, (2)

for i = 3, 4, where V is a constant potential difference be-
tween longitudinal terminals, and V3,4 is the transversal
terminal voltage. The nature of the OHC in Eq. (2) is a
charge current moving through the orbital degrees of freedom
projected by Po

η . A detailed demonstration of Eq. (2) can be
found in Appendix A.

We consider a mesoscopic device (Fig. 1), which allows
us to analyze the OHE in the framework of RMT [44].
Without an external magnetic field applied, the mesoscopic
device preserves time-reversal symmetry. Therefore, the scat-
tering matrix is described by the circular orthogonal ensemble
(COE) when SOC is absent (light metals) and the circular
symplectic ensemble (CSE) when SOC is strong (heavy met-
als). Consequently, we can calculate the average and variance
of the OHC (2) by applying the method of Ref. [54]. The
calculation is valid for the ballistic chaotic and mesoscopic
diffusive devices in the limit when the mean dwell time of
the electrons is much longer than the time needed for ergodic
exploration of the phase space, τdwell � τerg [44,46].

Without loss of generality, we consider a mesoscopic de-
vice with four orbitals (i.e., s and p orbitals) and η = z. In this
case

lz =

⎡
⎢⎢⎣

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎤
⎥⎥⎦, σ z =

[
1 0
0 −1

]
,

and the scattering matrix has dimension 32N × 32N . To per-
form the average of Eq. (2), we must take the experimental
regime of interest, that is, when the sample has a large
thickness N � 1. Therefore, we can assume the central limit
theorem (CLT) [55] and expand Eq. (2) in the function of N
[44]. By applying the method of Ref. [54] in Eq. (2), we find〈

Io(s)
η

〉 = 0, (3)

for COE and CSE. The SHC average was previously calcu-
lated by Refs. [46,56,57]. Equation (3) implies a zero-mean
Gaussian distribution, meaning all relevant information can be
contained in OHC fluctuations. Therefore, we are interested in
the OHC deviation because although the mean of 1 is zero, its
mesoscopic fluctuations can be significant.

In the usual way, the OHC variance is defined as

var
[
Io
i,η

] = 〈Io
i,η

2〉− 〈Io
i,η

〉2 = 〈Io
i,η

2〉
,

and by applying the method of Ref. [54], we obtain

var
[
Io
η

] =
(

e2V

h

)2

×
{ 2N (4N+1)

(8N+1)(8N+3) for COE
N (8N−1)

(16N−1)(16N−3) for CSE
, (4)

for i = 3, 4 and η = {x, y, z}. When the sample has a large
thickness N � 1, Eq. (4) goes to

var
[
Io
η

] =
(

e2V

h

)2

×
{

1
8 for COE
1

32 for CSE
, (5)

for i = 3, 4 and η = {x, y, z}. The OHC deviation is obtained
from the OHC variance as rms[Io

η ] = √var[Io
η ]. Then, we
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obtain

rms
[
Io
η

] = e2V

h
×

⎧⎪⎨
⎪⎩
√

1
8 ≈ 0.36 for COE√
1

32 ≈ 0.18 for CSE
, (6)

for η = {x, y, z}. Meanwhile, rms[Is
η] = 0 and 0.18 for COE

and CSE, respectively [46,56,57]. Equation (6) is the first
outcome of this paper, which indicates that the OHC exhibits
mesoscopic fluctuations, as with SHCF [45]. OHCF of light
metals (COE) are consistent with the interpretation that the
OHE is more fundamental than the SHE because it is inde-
pendent of SOC. Furthermore, when the SOC is increased,
the OHCF of light metals (COE) is decreased by a factor of
2 to the OHCF of heavy metals (CSE) because SOC breaks
the spin-rotation symmetry. In this case, OHCF and SHCF
exhibit the same mesoscopic fluctuation amplitude. A detailed
demonstration of Eqs. (3) and (4) can be found in Appendix B.

III. ORBITAL HALL ANGLE

Motivated by recent experiments of OHA [35–37] and by
the fact that the OHCF are unassailable experimentally, we use
Eq. (6) to obtain two relations that characterize the OHA. The
OHA is defined as the ratio between OHC and charge current:

�OH = Io

Ic
. (7)

To compute the average of Eq. (7), we assume the experimen-
tal regime N � 1. Therefore, we have to resort to the CLT and
expand (7) in the function of N [51,52]. The average of Eq. (7)
can be approximated by

〈�OH〉 =
〈

Io

Ic

〉
≈ 〈Io〉

〈Ic〉 . (8)

By substituting Eq. (3) in Eq. (8), we conclude that

〈�OH〉 = 0, (9)

for COE and CSE. An equivalent result was obtained for SHA
[51,52], 〈�SH〉 = 0. Although the average of OHA is null,
the OHA is expected to have large mesoscopic fluctuations
because of its direct dependence on the OHC. By following
the same methodology that was applied to Eqs. (6) and (8),
we can show that

rms[�OH] = rms[Io]

〈Ic〉 . (10)

From Eq. (10), we can infer the OHA deviation with the
knowledge of the OHC deviation and the charge current av-
erage. The former is given by Eq. (6), while the latter is
appropriately described by the relation [44,58,59]

〈Ic〉 = e2V

h
σ, (11)

where σ is the longitudinal dimensionless conductivity, σ =
Nle/L with L � le. By substituting Eqs. (6) and (11) in (10),
we can infer that the maximum OHA deviation is given by

�OH × σ =
{

0.36 for COE
0.18 for CSE

. (12)

FIG. 2. The figure shows the �OH(%) and �SH(%) as a function
of dimensionless conductivity σ . The circle symbol denotes experi-
mental data of OHA for Ti [35]. The square and triangle up symbols
denote experimental data of OHA for Ti and W [36], respectively.
The triangles down and diamonds symbols denote experimental data
of �LS(%) for Cr and Pt [37], respectively. The plus and times
symbols denote experimental data of SHA for Pt [10] and W [11],
respectively. The lines denote Eq. (12).

Equation (12) is the second main outcome of this paper. This
shows that the product between maximum OHA deviation
�OH and longitudinal dimensionless conductivity σ holds two
relationships, which only depend on if the mesoscopic device
is a light metal (COE) or a heavy metal (CSE), in contrast with
the maximum SHA deviation that holds one relation for heavy
metal �SH × σ = 0.18 [51,52].

IV. COMPARISON WITH EXPERIMENTS

To confirm the validity of Eq. (12), we compare it with the
recent experimental results of Refs. [35–37].

Figure 2 shows �OH(%) as a function of σ , where the
σ axis is conveniently normalized as σ = σexp(�−1 cm−1)/
104(�−1 cm−1). The lines are the relations for COE and CSE
of Eq. (12). The cyan area is the crossover region (intermedi-
ate SOC) between COE (weak SOC) and CSE (strong SOC).

The circular symbol denotes experimental data of OHA
from Ref. [35], which measured the OHE in a light metal
Ti. The light metal has weak SOC and, therefore, follows
the COE relation. The square and triangle up symbols denote
experimental data of OHA for a light metal Ti and a heavy
metal W, respectively, from Ref. [36]. Light metal Ti follows
the COE, while heavy metal W follows the crossover from
COE to CSE.

The triangle down and diamond symbols of Fig. 2 denote
experimental data of spin-orbital Hall angle �LS(%) from
Ref. [37] for light metal Cr and heavy metal Pt, respectively.
They follow the COE relation, which is expected to be valid
for light metals and indicates a pure OHE. The experimental
data of conductivity (σ = 1/ρ) and spin-orbital Hall angle
(�LS) were taken from Fig. 9 of Ref. [37] for Cr [samples
Cr(9)/Tb(3)/Co(2) and Cr(9)/Gd(3)/Co(2)] and Pt [samples
Pt(5)/Co, Pt(5)/Co(2)/Gd(4), and Pt(5)/Co(2)/Tb(4)].
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Furthermore, the plus and times symbols denote experi-
mental data of �SH(%) for heavy metals Pt [10] and W [11],
respectively, which follows the CSE [51,52].

V. NUMERICAL RESULTS

In this section, we developed two independent numerical
calculations of OHCF (SHCF) to confirm Eq. (6) and conse-
quently Eq. (12). The first is based on the RMT, known as the
Mahaux-Weidenmüller approach [60], while the second is on
the nearest-neighbor tight-binding model [18,28].

A. Numerical scattering matrix model

To confirm the analytical results of Eq. (6), we develop
an independent numerical calculation based on the Mahaux-
Weidenmüller approach [60], a Hamiltonian approach to the
random scattering matrix. In this model, the random scattering
matrix of a mesoscopic ballistic chaotic device connected to
four terminals is given by [56,61]

S = 1 + 2iπW†(H − iπWW†)−1W (13)

with dimension 32N × 32N , which is described by COE (no
SOC) or CSE (with SOC) in the RMT formalism [44]. The
Hamiltonian of the mesoscopic device

H = H0 ⊗ σ 0

+ λ(H1 ⊗ lx ⊗ σ x + H2 ⊗ ly ⊗ σ y + H3 ⊗ lz ⊗ σ z )

has dimension 8M × 8M, while H0 and Hk are real sym-
metric matrices with dimensions 4M × 4M and M × M,
respectively. The SOC parameter λ ranges between 0 and 1,
and M is the number of energy levels in the mesoscopic de-
vice. The RMT regime is obtained when M � N [60], and the
Hamiltonian is described by the Gaussian orthogonal ensem-
ble if λ = 0 (no SOC) or the Gaussian symplectic ensemble
if λ = 1 (with SOC). Therefore, the Hamiltonian elements
follow a Gaussian distribution with zero means [56,61]〈

Hk
i j

〉 = 0

and variance

〈(
Hk

i j

)2〉 =
⎧⎪⎪⎨
⎪⎪⎩

2α2

M , k = 0 and i = j
α2

M , k = 0 and i 	= j
α2

4M , k 	= 0

,

where α = M�/π is a numerical parameter related to the
average spacing, �, and energy levels M. Furthermore, W =
(W1,W2,W3,W4) ⊗ l0 ⊗ σ 0 is a deterministic matrix with di-
mension 8M × 32N , which connects the M energy levels of
devices with N propagating wave modes in the terminals. The
coupling matrix Wp has dimension M × N and satisfies the
orthogonality constraint W †

p Wq = α
π
δi j and its elements are

given by [61]

(Wp)m,n =
√

2α

π (M + 1)
sin

[
m[(p − 1)N + n]π

M + 1

]
.

We developed a numerical calculation of RMT Eq. (13)
and substituted it in Eq. (2) to calculate the deviation of
OHC and SHC as a function of N and λ. Figure 3 shows

the numerical scattering matrix results for an ensemble with
10 000 realizations and M = 200.

Figures 3(a), 3(b), and 3(c) show the numerical calculation
data (symbols) for the deviation of OHC and SHC rms[Io(s)]
as a function of N for x, y, and z directions, respectively.
The dashed lines are obtained from Eq. (4) and agree with
numerical calculation data. Furthermore, the figures prove that
the directions are equivalents and that the results converge to
values of Eq. (6). More specifically, the deviation of OHC
converges to 0.36 when λ = 0 (COE) and 0.18 when λ = 1
(CSE), with an increase of N in accord with Eq. (6). Con-
versely, the deviation of SHC converges to 0.0 when λ = 0
(COE) and 0.18 when λ = 1 (CSE), with an increase of N in
accord with Ref. [45].

Finally, Fig. 3(d) shows the deviation of OHC and SHC as
a function of SOC parameter λ for N = 6, which indicates that
a crossover between COE and CSE increases λ from 0 to 1.
More specifically, there is OHC deviation crossover from 0.36
to 0.18 with an increase of λ, while there is SHC deviation
crossover from 0.0 to 0.18. Figure 3 confirms our analytical
results of Eqs. (4) and (6).

B. Tight-binding model

As a second independent numerical calculation, we study a
mesoscopic diffusive device using a two-dimensional square
lattice device with a momentum-space orbital texture de-
signed as shown in Fig. 1, in which the nearest-neighbor
tight-binding model [18,28] models the lattice with four
orbitals (i.e., the s and p orbitals) on each atom. The Hamilto-
nian is given by [26]

H =
⎛
⎝ ∑

〈i, j〉αβσ

tiα, jβc†
iασ c jβσ + H.c.

⎞
⎠

+
∑
iασ

(Eiασ + εiασ )c†
iασ ciασ

+ λ
∑

iαβσδ

∑
γ

c†
iασ Lγ

αβSγ

σδciβδ, (14)

where {i, j}, {α, β}, and {σ, δ} are the unit-cell, orbital, and
spin indices, respectively, and γ = {x, y, z}. The first term
represents the nearest-neighbor interaction, where ciασ (c†

iασ )
denotes the annihilation (creation) operators and tiα, jβ denotes
hopping integrals. The second is the on-site energy Eiασ and
Anderson disorder term εiασ . The disorder is realized by an
electrostatic potential εi, which varies randomly from site
to site according to a uniform distribution in the interval
(−U,U ), where U is the disorder strength. The last is the
SOC, where λ is the SOC strength, 
L is the angular mo-
mentum, and 
S is the spin-1/2 operator for the electron. We
take the typical Hamiltonian parameters (in eV) Es = 3.2 and
Epx = Epy = Epz = −0.5 for on-site energies, and ts = 0.5,
tpσ = 0.5, tpπ = 0.2, and tsp = 0.5 for nearest-neighbor hop-
ping amplitudes [18,28]. In this tight-binding model, the sp
hopping tsp mediates the k-dependent hybridization between
px, py, and pz orbitals in eigenstates. That means that if tsp =
0, the orbital texture disappears; hence OHE disappears [18].
The two-dimensional square lattice device has a width and
length equal to W = L = 40a, where a is the square lattice
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FIG. 3. The deviation of OHC and SHC as a function of the thickness of device N for (a) x, (b) y, and (c) z directions. COE means λ = 0.0
and CSE means λ = 1.0, while the dashed lines denote Eq. (4). (d) The deviation of OHC and SHC as a function of SOC parameter λ for
N = 6. It shows a crossover between COE and CSE. The dashed lines denote Eq. (6).

constant. The numerical calculations were implemented in the
KWANT software [62]. We used 2000 disorder realization for
calculations in this subsection.

Figure 4(a) shows the band structure of the pristine sample,
λ = 0 and U = 0. The up band is the s-character band, while
down bands are p-character bands. To ensure we are in the
RMT regime N � 1, we use the energy range between 1.5 and

FIG. 4. (a) The band structure of the pristine sample, λ = 0 and
U = 0. (b) The one with U = 3 and λ = 0. (c), (d) The one with
U = 0 and (c) λ = 0.5 and (d) λ = 1.

2.5 to calculate OHC. Figure 4(b) shows band structure sub-
mitted to disorder strength U ≈ 3 with λ = 0, while Figs. 4(c)
and 4(d) show the one for SOC strength λ = 0.5 and 1 with
U = 0, respectively.

Let us start by analyzing the SHCF from Eq. (2) with η = z
to recover the results of Ref. [45] to confirm the validity of the
tight-banding model. Figure 5(a) shows the SHC average 〈Is〉
(in e2 V/h) as a function of disorder strength U for a fixed
Fermi energy E = 2.15 and different values of SOC strength
λ. As expected, for λ = 0, the SHC average is always null,
while for λ > 0, it decreases with increases of U .

The SHC deviation rms[Is] is shown in Fig. 5(b) as a func-
tion of U . The maximum SHC deviation is null for λ = 0.0
(COE) and increases with SOC strength λ = 0.2, 0.5, 1.0, and
1.75 and reaches the RMT regime of 0.18 (CSE). Figure 5(b)
shows a crossover between COE (rms[Is] = 0.0) and CSE
(rms[Is] = 0.18) in agreement with Fig. 3(d).

In contrast, Fig. 5(c) shows SHC deviation rms[Is] as a
function of U for different SOC strength λ = 1.75, 1.85, and
2.0. In this limit of strong SOC, the SHC deviation becomes
independent of SOC strength λ, indicating the reach of the
RMT regime when the disorder strength is U ≈ 1.5. This dis-
order indicates that the device does satisfy that τdwell � τerg.
The results of Fig. 5 are in agreement with Ref. [45] and
numerical calculations via RMT shown in Fig. 3. After the
numerical results reach the RMT regime as a function of
disorder U , the disorder induces a metal-insulator transition
in the mesoscopic diffusive device, known as the Anderson
transition [44,58,59]. This explains why the numerical result
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FIG. 5. (a) The SHC average (in e2 V/h) as a function of disorder
strength U with different SOC strength λ for fixing Fermi energy
E = 2.15. (b) The SHC deviations as a function of U when the SOC
parameter λ is increased between 0.0 and 1.75. The figure shows a
crossover between COE (rms[Is] = 0.0) and CSE (rms[Is] = 0.18)
in agreement with Fig. 3(d). (c) The SHC deviations as a function
of U when the SOC parameter λ is increased between 1.75 and 2.0.
The rms[Is] is independent of λ and indicates the reach of the RMT
regime.

decreases for large disorder U and does not saturate for the
RMT regime. The mesoscopic diffusive device behaves as an
insulator for large enough disorders.

After recovering the results of SHCF, we are ready to
analyze the OHCF using Eq. (2). Figure 6(a) shows the OHC
average 〈Io〉 (in e2 V/h) as a function of U for E = 2.15
and different values of SOC parameter λ. When λ = 0, the
OHC average is not null and decreases with increases of U ,
in contrast with SHC average [Fig. 5(a)]. Furthermore, the
OHC average decreases with increases of λ, in agreement with
Ref. [18].

However, we are interested in the amplitude of OHCF. The
OHC deviation rms[Io] is shown in Fig. 6(b) as a function
of U . For null SOC strength, λ = 0, the maximum OHC
deviation reaches the RMT regime of 0.36, which confirms
Eq. (6) for light metals (COE) and agrees with the numerical

FIG. 6. The OHC average (in e2 V/h) as a function of disorder
strength U with different SOC strength λ for fixing Fermi energy
E = 2.15. (b) The OHC deviations as a function of U when the SOC
parameter λ is increased between 0.0, 0.2, and 0.05. The rms[Is] is
independent of λ and indicates the reach of the RMT regime. (c) The
OHC deviations as a function of U when the SOC parameter λ is in-
creased between 1.0 and 3.75. The figure shows a crossover between
COE (rms[Is] = 0.36) and CSE (rms[Is] = 0.18) in agreement with
Fig. 3(d). The dashed lines denote Eq. (6).

calculation via RMT shown in Fig. 3. If we increase the SOC
strength λ = 0.02 and 0.05, the maximum OHC deviation
remains 0.36.

Figure 6(c) shows the OHC deviation rms[Io] as a function
of U for strong SOC values. The maximum OHC deviation
crossover is from 0.36 (COE) to 0.18 (CSE), thus confirm-
ing Eq. (6) for heavy metals (CSE). Furthermore, this result
agrees with the numerical simulation via RMT shown in
Fig. 3(d). This behavior can help us understand why the ex-
perimental data are on the crossover region of Fig. 2. The
crossover region indicates that the SHE and OHE can happen
together, and their quantitative contributions cannot be disen-
tangled [37]. This also is consistent with the interpretation that
the OHC is efficiently converted to SHC [34].

To confirm the robustness of our results, we fixed the SOC
strength and changed the Fermi energy. Figures 7(a) and 7(b)
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FIG. 7. (a), (b) The OHC average (in e2 V/h) as a function of
disorder strength U with fixed SOC strength (a) λ = 0.0 and (b) λ =
3.75. (c) The SHC average (in e2 V/h) with λ = 1.85 for different
Fermi energy. Figures (d), (e), and (f) denote their respective devia-
tions as a function of U . The dashed lines denote Eq. (6).

show the OHC average as a function of U for λ = 0 and
3.75, respectively, while Fig. 7(c) shows the SHC average with
λ = 1.85 for different values of Fermi energy. Their respective
deviations are shown in Figs. 7(d), 7(e), and 7(f). For light
metal λ = 0 [Fig. 7(d)], the maximum OHC deviation reaches
the RMT regime of 0.36 (COE) independent of Fermi energy.
In contrast, for heavy metal λ = 3.75 [Fig. 7(e)], the one
reaches the RMT regime of 0.18 (CSE), which confirms that
OHC exhibits mesoscopic fluctuations with amplitudes given
by Eq. (6). Finally, Fig. 7(f) shows that the maximum SHC
deviation reaches 0.18 [45].

VI. CONCLUSIONS

We have demonstrated that the OHC exhibits mesoscopic
fluctuations. The OHCF displays two amplitudes of 0.36 and
0.18 for light (COE) and heavy (CSE) metals [Eq. (6)], respec-
tively, in contrast to the SHCF, which displays one amplitude
of 0.18 for heavy metals (CSE). From the view of RMT, there
is a crossover from COE to CSE when the SOC is increased,
as shown in Fig. 3(d). In other words, we have a pure OHE
when the amplitude is 0.36 (COE), and we can have OHE
and SHE happen together when the amplitude is 0.18 (CSE),
as shown in Fig. 2. Furthermore, the OHCF leads to two
relationships between the maximum OHA deviation and the
dimensionless conductivity σ given by Eq. (12). The two
relationships are in agreement with the experimental data of
Refs. [35–37], (Fig. 2).

The results are calculated analytically via RMT and sup-
ported by numerical calculations based on the tight-binding
model. They are valid for ballistic chaotic and mesoscopic
diffusive devices in the limit when the mean dwell time of

the electrons is much longer than the time needed for ergodic
exploration of the phase space, τdwell � τerg.

This paper brings a perspective on OHE and may help to
give a deeper understanding of the effect. Furthermore, similar
to what happens with SHCF [52,57,63], we expect that OHCF
in topological insulators [22,23] follow the same amplitudes
of Eq. (6) when N � 1. The presented methodology can be
extended to other effects, such as the spin Nernst effect [64],
giving rise to a set of relationships, such as Eq. (12).
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APPENDIX A: LANDAUER-BÜTTIKER MODEL

From the Landauer-Büttiker model, the transversal orbital
(spin) Hall current OHC (SHC) through the ith terminal in the
linear regime at low temperature is

Io(s)
i,η = e2

h

∑
j

τ
o(s)
i j,η (Vi − Vj ), (A1)

where the orbital (spin) transmission coefficient is calculated
from the transmission and reflection blocks of the scattering
matrix:

τ
o(s)
i j,η = Tr

[
(Si j )

†Po(s)
η Si j

]
, S =

⎡
⎢⎢⎣

r11 t12 t13 t14

t21 r22 t23 t24

t31 t32 r33 t34

t41 t42 t43 r44

⎤
⎥⎥⎦.

(A2)

The scattering matrix S has dimension 32N × 32N , while its
blocks Si j have dimension 8N × 8N , where N is the num-
ber of propagating wave modes in the terminals. The matrix
Po(s)

η = 1N ⊗ lη ⊗ σ 0 (1N ⊗ l0 ⊗ ση ) is an orbital (spin) pro-
jector with dimension 8N × 8N , and 1N is an identity matrix
N × N . The index η = {0, x, y, z}, while

l0 = (lη )2, and σ 0 = (ση )2.

The lη matrix is the orbital angular momentum matrices

lx =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎤
⎥⎥⎦,

ly =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

⎤
⎥⎥⎦,

lz =

⎡
⎢⎢⎣

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎤
⎥⎥⎦, (A3)
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and ση is Pauli matrices

σ x =
[

0 1
1 0

]
, σ y =

[
0 −i
i 0

]
, σ z =

[
1 0
0 −1

]
. (A4)

The charge current Ic
i,0 is defined by η = 0, while OHC

(SHC) Io(s)
i,η is defined by η = {x, y, z}. The mesoscopic device

is connected to four semi-infinite terminals submitted to volt-
ages Vi (Fig. 1). From Eq. (A1), the charge current and OHC
(SHC) can be written as

Io(s)
1,η = e2

h

[
τ

o(s)
12,η(V1 − V2) + τ

o(s)
13,η(V1 − V3) + τ

o(s)
14,η(V1 − V4)

]
,

(A5)

Io(s)
2,η = e2

h

[
τ

o(s)
21,η(V2 − V1) + τ

o(s)
23,η(V2 − V3) + τ

o(s)
24,η(V2 − V4)

]
,

(A6)

Io(s)
3,η = e2

h

[
τ

o(s)
31,η(V3 − V1) + τ

o(s)
32,η(V3 − V2) + τ

o(s)
34,η(V3 − V4)

]
,

(A7)

Io(s)
4,η = e2

h

[
τ

o(s)
41,η(V4 − V1) + τ

o(s)
42,η(V4 − V2) + τ

o(s)
43,η(V4 − V3)

]
.

(A8)

Assuming that the charge current is conserved in the longitu-
dinal terminals, Ic

1,0 = −Ic
2,0 = Ic, we obtain from Eqs. (A5)

and (A6) the longitudinal charge current [5,46,53]:

2Ic = e2V

h

[
1

2
(8N − τ11,0 − τ22,0 + τ21,0 + τ12,0)

+ V3

V
(τ23,0 − τ13,0) + V4

V
(τ24,0 − τ14,0)

]
(A9)

where it was considered that V1 = V/2 and V2 = −V/2, V
being a constant, and

∑4
j=1 τ

o(s)
i j,η = 4Nδη0. The OHC (SHC)

is obtained from Eqs. (A7) and (A8), and then

Io(s)
i,η = e2V

h

[
1

2

(
τ

o(s)
i2,η − τ

o(s)
i1,η

)− τ
o(s)
i3,η

V3

V
+ τ

o(s)
i4,η

V4

V

]
, (A10)

for i = 3, 4 and η = {x, y, z}. Equation (A10) is Eq. (2).
Finally, we assume that the charge current vanishes in the
transverse terminals Ic

3,0 = Ic
4,0 = 0. Then, from Eqs. (A7) and

(A8) we obtain

Vi

V
= 1

2

τi j,0(τ j2,0 − τ j1,0) + (τi2,0 − τi1,0)(4N − τ j j,0)

(τ43,0τ34,0) − (4N − τ33,0)(4N − τ44,0)
,

(A11)

for i, j = 3, 4 with i 	= j.

APPENDIX B: RANDOM MATRIX THEORY

Applying the method of Ref. [54] to Eq. (A2), we found
for the COE (no SOI) and CSE (with SOI) that the averages
of orbital transmission coefficients are〈

τ o
i j,η

〉
COE = δη0

4N (2N + δi j )

8N + 1
, (B1)

〈
τ o

i j,η

〉
CSE = δη0

4N (4N + δi j )

16N − 1
. (B2)

For the second moment of orbital transmission coefficients,

〈
τ o

i j,ητ
o
kl,μ

〉
COE = 4

N (8N + 1)(8N + 3)

(
2(4N + 1)δη0δμ0[2N4 + N3(δkl + δi j )]

+ (4N + 1){N2[δη0δμ0(δi jδkl + δilδ jk ) + δikδ jlδημ] + Nδil jkδημδη0}
− N3[δη0δμ0(δ jk + δ jl + δil ) + δikδημ] − Nδilk jδημδη0

− N2δη0

[
δμ0(δ jlk + δil j ) + 1

2
δημ(δik j + δilk + δikl + δi jkl )

])
, (B3)

〈
τ o

i j,ητ
o
kl,μ

〉
CSE = 1

N (16N − 1)(16N − 3)
(2(8N − 1){δη0δμ0[16N4 + 4N3(δkl + δi j ) + N2(δi jδkl + δilδ jk )]

+ N2δikδ jlδημ} + 4N3[δη0δμ0(δ jk + δ jl + δil ) + δikδημ] + Nδημδη0[δilk j + (8N − 1)δil jk]

+ N2δη0[2δμ0(δ jlk + δil j ) + δημ(δik j + δilk + δikl + δi jkl )]), (B4)

where η,μ = {0, x, y, z}. In contrast, the averages of spin transmission coefficients are 〈τ s
i j,η〉COE = 0 and 〈τ s

i j,η〉CSE = 〈τ o
i j,η〉CSE,

and for the second moments they are 〈τ o
i j,ητ

o
kl,μ〉COE = 0 and 〈τ s

i j,ητ
s
kl,μ〉CSE = 〈τ o

i j,ητ
o
kl,μ〉CSE.

Taking Eqs. (B1) and (B2) into account, we conclude that the average of OHC (SHC) [Eq. (2)] is null,

〈
Io(s)
i,η

〉 = e2V

h

[
1

2

(〈
τ o

i2,η

〉− 〈τ o
i1,η

〉)− 〈τ o
i3,η

〉 〈V3〉
V

+ 〈τ o
i4,η〉

〈V4〉
V

]
= 0, (B5)

for COE and CSE, which proves Eq. (3). The transversal potentials V3,4 are orbital independent because they depend only on
τi j,0. Thus, they do not have correlation with τ o

i j,η [see Eq. (A11)]. Furthermore, applying Eqs. (B1)–(B4) to Eq. (A11), we obtain
that 〈V3,4〉 = 0.
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Finally, the variance of OHC is defined as

var
[
Io
i,η

] = 〈Io
i,η

2〉− 〈Io
i,η

〉2 = 〈Io
i,η

2〉
.

Using Eqs. (B3) and (B4), we can obtain that

var
[
Io
i,η

] =
(

e2V

h

)2

×
{ 2N (4N+1)

(8N+1)(8N+3) for COE

N (8N−1)
(16N−1)(16N−3) for CSE

, (B6)

for i = 3, 4 and η = {x, y, z}. Equation (B6) proves Eq. (4) of the main text.
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