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We systematically study the effects of higher-order interactions on the S = 3
2 , 1 orthogonal dimer chains using

exact diagonalization and density matrix renormalization group. Due to frustration and higher spin, there are rich
quantum phases, including three Haldane phases, two gapless phases, and several magnetically ordered phases.
To characterize these phases and their phase transitions, we study various physical quantities such as energy
gap, energy-level crossing, fidelity susceptibility, spin correlation, entanglement spectrum, and central charge.
According to our calculations, the biquadratic term can enhance the Haldane phase regions. In particular, we
numerically identify that a Haldane phase in S = 3

2 case is adiabatically connected to the exact AKLT (Affleck,
Kennedy, Lieb, and Tasaki) point when adding a bicubic term. Our study on the orthogonal dimer model, which
is a 1D version of the Shastry-Sutherland model, provides insights into understanding the possible S = 3

2 , 1
Haldane phases in quasi-1D and 2D frustrated magnetic materials.

DOI: 10.1103/PhysRevB.108.245104

I. INTRODUCTION

In 1983, Haldane classified the antiferromagnetic Heisen-
berg spin chains with integer and half-integer spin into two
distinct classes [1,2]. For the integer case, the ground state
which is called the Haldane phase has a finite excitation
gap and short-range antiferromagnetic spin-spin correlations
which decay exponentially with distance. Later, the exact
gapped state with integer spins was clearly revealed by the
so-called AKLT model proposed by Affleck, Kennedy, Lieb,
and Tasaki with the biquadratic interaction on a spin-1 an-
tiferromagnetic Heisenberg chain [3,4]. The ground state of
the Haldane chain model can be adiabatically connected to
the rigorous ground state of this AKLT model. For the AKLT
state, each spin-1 can be seen as a combination of two sym-
metrized spin- 1

2 , and each spin- 1
2 is connected by a singlet

bond with another spin- 1
2 on the nearest-neighbor sites. So,

in general, under open boundary conditions (OBCs), there are
two free spin- 1

2
′
s at the ends of the chain which form the edge

states and induce the degeneracy of the ground state. Further
research on topological properties reveals that the S = 1 Hal-
dane phase on the 1D chain is a bosonic symmetry-protected
topological phase, protected by time-reversal symmetry, D2

symmetry, and inversion symmetry [5–8]. In experiments,
the excitation energy gap and the edge state of the Haldane
phase have been confirmed by some quasi-one-dimensional
magnetic materials such as Ni(C2H8N2)2NO2(ClO4) (NENP)
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[9–11], Y2BaNiO5 [12–15], AgVP2S6 [16,17], and some
other materials [18,19]. Some studies on organic materi-
als found that triangulene can have high-spin ground states
[20–24]. As the building block, triangulenes can be connected
to form effective spin-1 chains with different lengths in which
the finite excitation gap and the edge states have also been
observed in experiments [22].

According to the proposal of Affleck et al., more general
exact AKLT states can be constructed if the spin magnitude S
and the coordinate number z satisfy z = 2S/n, where n is an
integer [3,4,25]. For S = 3

2 , we can construct an exact AKLT
state using a bilinear-biquadratic-bicubic Heisenberg model
on lattices with z = 3, such as an orthogonal dimer chain,
hexagonal lattice, star lattice, and square-octagon lattice. For
hexagonal lattice, Refs. [4,25] gave the exact ground state of
the spin- 3

2 AKLT model on this lattice and showed that the
spin-spin correlations of this spin- 3

2 AKLT state also decay
exponentially. Based on these facts, the authors conjectured
that the energy gap is also finite, although it is very difficult
to give a strict proof [4,25]. Motivated by the potential appli-
cation as a universal resource in measurement-based quantum
computation [26–29], the hexagonal AKLT model has been
further studied for many years [30–35] and most of the results
support the existence of a finite gap [30,31,33–35]. Although
the rigorous mathematical proof is still difficult to provide,
Refs. [34,35] independently demonstrated that the spectral
gap has a lower bound through a combination of mathemat-
ical analysis and numerical calculations. Different from the
spin-1 Haldane phase on the 1D chain, the AKLT phase on
a hexagonal lattice is a weak symmetry-protected topological
phase protected by SO(3) and translation symmetry [32,33].
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FIG. 1. (a) The lattice structure of orthogonal dimer chain. The
green solid lines and blue dashed lines represent the bonds of pla-
quettes (P) and dimers (D), respectively. The red dashed box shows
one unit cell. (b) Two-leg ladderlike lattice which is topologically
equivalent to the orthogonal dimer chain. We use this geometry to do
the Fourier transform of spin and quadrupolar correlations. (c) The
exact spin- 3

2 AKLT state on orthogonal dimer chain. In the AKLT
state, each S = 3

2 spin can be viewed as the combination of three
virtual S = 1

2 spins which are shown as orange points, and pairs
of S = 1

2 spins on neighboring sites form singlet bonds (blue lines
between orange points).

Meanwhile, for the ladder, star lattice, square-octagon lattice,
and other lattices with z = 3, there are also some studies on
the spin- 3

2 AKLT model [33,34,36].
Among these lattices with z = 3, the orthogonal dimer

chain is a frustrated lattice which may have rich phases and
can be well studied by the density-matrix renormalization
group (DMRG) method due to its quasi-1D geometry. In
addition, the orthogonal dimer chain is the 1D version of the
2D Shastry-Sutherland lattice [37–43], which can be used to
describe the magnetic properties of SrCu2(BO3)2 [44–49] and
some other materials [50–53]. Therefore, exploring a possi-
ble frustration-induced Haldane phase in such a lattice with
higher spins is a very interesting topic. By using nonlinear
sigma model technique and exact diagonalization (ED), Koga
and Kawakami found that there are (2S + 1) spin-gap phases
with different ratio of the intra- to the interdimer bilinear
interaction on the spin-S orthogonal dimer chain, which are
separated by first-order phase transitions [54]. They used va-
lence bond solid pictures to show one and two Haldane phases
for S = 1 and S = 3

2 cases, respectively, which are also shown
in Figs. 2(b), 2(c), and 10(a) in this paper. References [55,56]
further showed the phase diagram with spin magnitude S = 1
after considering the effect of interchain bilinear interactions
which connect the orthogonal dimer chain model to the 2D
Shastry-Sutherland model. However, the lattice sizes of their
numerical calculations are limited to a small size due to the
exponential increasing of Hilbert space in ED calculation.
Larger system sizes are needed to extrapolate to the thermo-
dynamic limit using sophisticated numerical methods, such as
DMRG. Moreover, higher order exchange interactions, such
as biquadratic and bicubic interactions, are very sensitive for
determining the magnetic ground state in frustrated higher
spin systems. For the S = 3

2 case, the exact relations between
the Haldane phases with only a bilinear term and the exact
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FIG. 2. (a) Ground-state phase diagram of spin- 3
2 orthogonal

dimer chain with bilinear-biquadratic interaction. (b), (c) Two kinds
of Haldane phases in the S = 3

2 case. The physical spins at a, d
sublattices and effective Seff spins formed by b, c sublattices can
be decomposed into S = 1

2 spins represented by orange points, and
each bond connecting two neighboring S = 1

2 spins forms a singlet.
These two Haldane phases can be distinguished by the effective spins
formed by two spins at b and c sublattices. (d) and (e), respectively,
illustrate plaquette-I phase and plaquette-II phases. These two phases
are adiabatically connected to the direct product of two different
four-site singlet states on each plaquette. The numerics on the bond
show the real-space spin correlations in the decoupled limit with α =
0 and Q = 0, 1. (e) The dimer phase which is adiabatically connected
to the direct product of the two-site singlet state |�0〉 = 1

2 | − 3
2 , 3

2 〉 −
1
2 | − 1

2 , 1
2 〉 + 1

2 | 1
2 ,− 1

2 〉 − 1
2 | 3

2 , − 3
2 〉 whose real-space spin correla-

tion is also shown on the bonds.

AKLT state with biquadratic and bicubic terms still need
further studies.

In this paper, we study the S = 3
2 , 1 Heisenberg model on

quasi-one-dimensional orthogonal dimer chains with bilinear,
biquadratic, and even bicubic interactions. We use ED and
DMRG methods to determine the ground-state phase dia-
grams. From our calculations, we get rich phases and identify
three Haldane phase regions characterized by several physical
quantities, such as energy spectra and entanglement spectra.
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After introducing the bicubic interaction for the spin- 3
2 case,

we identify that the 3
2 -2- 3

2 Haldane in Fig. 2(a) can be adiabat-
ically connected to the rigorous AKLT point. We also identify
several magnetic and other nonmagnetic phases, whose prop-
erties are characterized by studying on correlations, magnetic
moments, and structure factors.

The rest of this paper is organized as follows. In Sec. II, we
introduce the model Hamiltonian and some physical quanti-
ties used to determine the phase boundaries and characterize
different phases. In Sec. III, we show the ground-state phase
diagram and the quantum phase transitions of the S = 3

2
bilinear-biquadratic model by calculating the energy spec-
tra, entanglement spectra, quadrupolar correlation, and some
other physical quantities. In addition, we further investigate
the effect of bicubic interaction and study the connections be-
tween Haldane phases and the exact AKLT point. In Sec. IV,
similar to the spin- 3

2 case, we use ED and DMRG to study
the phase diagram of the S = 1 bilinear-biquadratic model.
Finally, a summary and discussion on our results is given in
Sec. V.

II. MODEL AND METHOD

We study the S = 3
2 , 1 bilinear-biquadratic-bicubic model

on the orthogonal dimer chain which is shown in Fig. 1(a).
The Hamiltonian is defined as

H =
∑
〈i, j〉P

[JŜi · Ŝ j + Q(Ŝi · Ŝ j )
2 + C(Ŝi · Ŝ j )

3]

+α
∑
〈i, j〉D

[JŜi · Ŝ j + Q(Ŝi · Ŝ j )
2 + C(Ŝi · Ŝ j )

3],

where Ŝi is the spin-S (S = 3
2 , 1) operator at site i, P represents

plaquette, while D represents dimer, 〈i, j〉P and 〈i, j〉D denote
the sites on the bonds of plaquettes (P) and dimers (D), which
are shown as green solid and blue dashed lines in Fig. 1(a),
respectively. α controls the relative interaction strength on
these two kinds of bonds. J , Q, and C are bilinear, biquadratic,
and bicubic interactions, respectively. Similar to bilinear in-
teraction J , the biquadratic and bicubic interactions can also
be extracted from the Hubbard model, but with higher order
perturbation expansion [57,58]. Meanwhile, the biquadratic
interaction Q can also come from the spin-phonon coupling or
lattice distortion effect [59,60]. In the following calculations,
except for Secs. III B 4 and IV B 2, we set J = 1 as the energy
unit.

In this paper, we use ED and DMRG to study the ground-
state phase diagram of this model. By using ED, we obtain
the low-energy spectra on the finite-size lattices up to 16
sites, in which the low-energy level crossings can be seen as
signals of phase transitions. In the following ED calculations,
if not mentioned, the energy spectrum is only calculated in
the Mz = 0 sector, where Mz is the eigenvalue of total spin
angular momentum along the z component. The finite-size ED
result can also be used as guidance for the DMRG calculation
on larger-size lattices. Here, we use two kinds of DMRG in
our calculations. For the DMRG applied with spin rotational
symmetry, by keeping up to 4000 SU(2) states, all numeri-
cal results are accurate enough and the truncation errors are
smaller than 1 × 10−6. For the DMRG using the ITENSOR

package [61], we mainly apply it to study the effect of bicubic
interaction.

To identify the nature of different phases in the phase
diagram, we calculate two kinds of structure factors. The first
kind is the spin structure factor

S(q) = 1

N

∑
i, j

〈Ŝi · Ŝ j〉ei �q·(�ri−�r j ),

and the second one is the quadrupolar structure factor

Q(q) = 1

N

∑
i, j

〈Q̂i · Q̂ j〉ei �q·(�ri−�r j ),

where Q̂i is the quadrupolar operator and Q̂i · Q̂ j = 2(Ŝi ·
Ŝ j )2 + Ŝi · Ŝ j − 2Ŝ2

i Ŝ2
j/3 [62,63]. To do the Fourier transform

of these structure factors, we use two-leg ladderlike geometry
which is topologically equivalent to the original orthogonal
dimer chain, as can been seen in Fig. 1(b).

To determine the phase boundaries of different phases in
the phase diagram, we also calculate fidelity susceptibility

χF (x) = 2[1 − F (x)]

N (δx)2 , F (x) = |〈�0(x)|�0(x + δx)〉|.

The divergent tendency in fidelity susceptibility can also be
seen as a signal of quantum phase transition.

In the characterization of Haldane phase, the degeneracy of
ground-state energy induced by the edge states under OBCss
is an important feature. Meanwhile, for topological quantum
states, the low-lying entanglement spectrum of the bulk would
correspond to the low-energy spectrum on the edge [64,65].
Therefore, we also use entanglement spectrum to characterize
the Haldane phases.

We also study the entanglement entropy in gapless phase
region and at the quantum critical lines. For the quasi-one-
dimensional orthogonal dimer chain, in these gapless regions,
the low-energy gapless excitation can be described by the
conformal field theory (CFT) [66] and the entanglement en-
tropy Sl = −Tr[ρ̂l lnρ̂l ] under periodic boundary conditions
(PBCss) and OBCs will follow the Calabrese-Cardy formula
[67]

Sl = c

3
ln

[
Nc

π
sin

(
π l

Nc

)]
+ g, for PBCs,

Sl = c

6
ln

[
Nc

π
sin

(
π l

Nc

)]
+ g, for OBCs,

where Nc = N/4 is the total number of unit cells in the system,
l is the number of unit cells in the subsystem, ρ̂l is the reduced
density matrix of the subsystem, g is a model-dependent con-
stant, and c is the central charge.

III. S = 3
2 RESULTS

A. Bilinear model (Q = 0, C = 0)

First, we restudy the ground-state phase diagram of the
S = 3

2 bilinear model (Q = 0,C = 0) on the orthogonal dimer
chain. According to Ref. [54], using ED with small lat-
tice sizes, there are four distinct gapped phases, including
plaquette I, 3

2 -2- 3
2 Haldane, 3/2-1-3/2 Haldane and dimer

phases with tuning α, and the phase transitions between these
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FIG. 3. (a) The quadrupolar correlations 〈Q̂b · Q̂c〉 at Q = 0 in
spin S = 3

2 orthogonal dimer chain as functions of α. (b) The second-
order polynomial fitting shows that the phase transition between 3

2 -1-
3
2 Haldane and dimer phases indicated by the orange arrow is located
at α = 2.358(1) in the thermodynamic limit.

phases are all the first-order ones. Due to the commutation
relationship [(Ŝb + Ŝc)2, Ĥ ] = 0, (Ŝb + Ŝc)2 shares the same
eigenvectors with the Hamiltonian. And (Ŝb + Ŝc)2|ψ〉 =
Seff(Seff + 1)|ψ〉, where Seff is equal to 2 and 1 in the two
Haldane phases, respectively. Therefore, we label these two
Haldane phases as 3

2 -2- 3
2 and 3

2 -1- 3
2 Haldane phases, where

the middle index represents the effective spin-2 or -1 formed
by two physical spins at the b and c sublattices, as shown
in Figs. 2(b) and 2(c). When α is large, the system is in a
dimer phase whose ground state can be adiabatically con-
nected to the direct product of orthogonal dimers, and each
dimer shares the same wave function |�0〉 = 1

2 | − 3
2 , 3

2 〉 −
1
2 | − 1

2 , 1
2 〉 + 1

2 | 1
2 ,− 1

2 〉 − 1
2 | 3

2 ,− 3
2 〉, which can be seen in

Fig. 2(f). Similarly, when α is small, the plaquette-I phase
can be adiabatically connected to the direct product of the
four-site singlet state on isolated plaquettes, which will be
further discussed in Sec. III B 1.

By using DMRG, we recalculate the phase boundaries
with larger-size lattices. Due to the discontinuity of the first-
order transition, we use the abrupt change of quadrupolar
correlation to detect the phase transition points. As shown
in Fig. 3(a), there are three discontinuities in the quadrupolar
correlation 〈Q̂b · Q̂c〉 between site b and site c in the first unit
cell with the increase of α. For the phase transition between
3
2 -1- 3

2 Haldane and dimer phases, αc gradually decreases with
the increase of N (the number of sites in the lattice), which
can be seen in Fig. 3(b). The second-order polynomial fit-
ting of αc shows that the phase transition point is located at
αc = 2.358(1) in the thermodynamic limit. For the other two
phase transitions, the corresponding αc obtained on lattices
with N = 40 and 48 are almost the same. So, we can take the
transition points αc = 1.084(1) and 1.556(1) obtained on the
largest lattice size N = 48, which is shown in Fig. 3(a).

B. Bilinear-biquadratic model (Q �= 0, C = 0)

1. plaquette I, plaquette II, 3
2 -2- 3

2 Haldane

As shown in Fig. 2(a), there are other phases after adding
biquadratic interaction, in which the origin of plaquette I,
plaquette II, and 3

2 -2- 3
2 Haldane can be discussed from an

isolated plaquette limit with α = 0.
The energy spectrum of one plaquette with four lattice

sites is shown in Fig. 14(a) of Appendix A. When Q is zero,

four S = 3
2 spins form a unique singlet state with a finite

excitation gap. When Q � 0.34, there is another four-site
singlet state with a unique ground state and an excitation
gap. These two states are different singlet states with different
real-space spin correlations, as can be seen in Figs. 2(d) and
2(e) [also shown in Figs. 14(b) and 14(c)]. Between these two
singlet states, there is another state with multiple ground-state
degeneracy.

When α > 0, due to the finite gap protection, as shown
in Fig. 2(a), the ground states in small Q and large Q are
adiabatically connected to the direct product of corresponding
four-site singlet states in isolated plaquette limit. We name
these two different plaquette phases as plaquette I and pla-
quette II, respectively. As shown in Fig. 15 of Appendix A,
the real-space spin correlations of these two plaquette phases
agree well with the illustrations in Figs. 2(d) and 2(e). Both
for plaquette I and plaquette II, the spin correlations between
different plaquettes are relatively weak. The main difference
between these two plaquette phases is the spin correlation
in each plaquette. Especially, the spin correlations between
diagonal sites in each plaquette are positive for plaquette I but
negative for plaquette II.

For the case Q ∼ 0.3, there is massive degeneracy when
many plaquettes are decoupled, after adding a finite α, these
degenerate states will lift, and the system goes into a Haldane
phase due to the order-by-disorder mechanism. According to
our calculations, this phase is adiabatically connected to the
3
2 -2- 3

2 Haldane phase at Q = 0 without any gap closing.
The Haldane-type phase can be identified by looking at

the degeneracy of the energy spectrum under OBCs and
entanglement spectrum under PBCs. Therefore, to further
characterize the intermediate 3

2 -2- 3
2 Haldane phase and its

quantum phase transition, we show the energy spectrum and
entanglement spectrum along α = 1.0, Q > 0 vertical line,
shown in Figs. 4(a)–4(c). For the energy spectrum under
OBCs and entanglement spectrum under PBCs, there is a
region in the middle where the lowest spectrum levels with
quantum number S = 0 and S = 1 are (quasi)degenerate. In-
stead, for the energy spectrum under PBCs, the triplet gap
	T = E0(S = 1) − E0(S = 0) as the lowest energy gap is
finite in the corresponding region and has a maximum at
Q ∼ 0.4, which is shown in Fig. 4(a). These are consistent
with the valence bond solid picture of 3

2 -2- 3
2 Haldane shown

in Fig. 2(b). Under PBCs, all virtual S = 1
2 spins form a

singlet in pairs and the excitation from this ground state
needs to break the singlets which lead to a finite gap in the
energy spectrum. But in the open chain, the first spin at the
a sublattice or the last spin at the d sublattice has only one
neighboring effective S = 2 spin, which can be viewed as four
virtual S − 1

2 particles. These four virtual S − 1
2 particles form

two pairs of singlets at each side, leaving one virtual S − 1
2

particle at each edge unpaired, as can be seen in Fig. 2(b).
Two unpaired virtual S − 1

2 particles from two edge sites
contribute to the twofold degeneracy (with total spin angular
momentum S = 0 and 1) at Mz = 0 subspace of ground-state
energy under OBCs and entanglement spectrum under PBCs,
as shown in Figs. 4(b) and 4(c). Here we mention that the
commutation relationship [(Ŝb + Ŝc)2, Ĥ ] = 0 is no longer
established when Q �= 0. But the above analysis still holds and
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FIG. 4. (a) The finite-size triplet gap 	T = E0(S = 1) − E0(S =
0) of S = 3

2 bilinear-biquadratic model along α = 1.0 vertical line
in the α–Q plane [see Fig. 2(a)] under periodic boundary condition.
The inset is the second-order polynomial extrapolation of the phase
transition point Qc. (b) The energy spectrum under open boundary
condition (OBCs) as a function of Q. The lattice sites used here is
N = 16. (c) The entanglement spectrum with N = 24 under PBCs.
(d) The entanglement entropy at α = 1.0, Q = 0.671 where is at the
phase transition point between 3

2 -2- 3
2 Haldane and plaquette II. The

results obtained on different sizes of lattices and the corresponding
central charges c are displayed with different colors.

the 3
2 -2- 3

2 Haldane phase extends to a more broad α region
after adding biquadratic interaction.

Next, we study the quantum phase transitions among 3
2 -2- 3

2
Haldane, plaquette I, and plaquette II along α = 1 vertical
line in the α–Q plane. The phase transition from plaque-
tte I to 3

2 -2- 3
2 Haldane is a first-order one at around Qc =

0.016(1), which can be verified by the singlet gap closing
and reopening, which causes the discontinuity of correlation
functions. More details about how we get the phase transi-
tion points can be found in Appendix B. For the quantum
phase transition between 3

2 -2- 3
2 Haldane and plaquette II, the

triplet gap 	T = E0(S = 1) − E0(S = 0) will close in the
thermodynamic limit. As shown in Fig. 4(a), we identify
the corresponding Qc with numerically finding the position
of minimum triplet gap on different sizes of lattices, and
then using second-order polynomial extrapolation to get the
quantum critical point Qc ≈ 0.671 in thermodynamic limit.
Moreover, Fig. 4(d) shows the entanglement entropy Sl at
this critical point under PBCs, and the fitted central charge
c ≈ 1, which indicates that this critical point may belong to
the Wess-Zumino-Witten (WZW) SU(2)k=1 CFT [68–70].

2. Gapless phase

As shown in Fig. 2(a), with increasing α, the phase tran-
sition line between 3

2 -2- 3
2 Haldane and plaquette II turns into

a gapless phase region. And this is mainly identified based
on the study of lowest triplet gaps [	T = E0(S = 1) − E0

(S = 0)].
In the upper corner region of Fig. 2(a) (α � 2.0, Q �

1.5), the triplet gaps as the lowest energy gaps change little

FIG. 5. (a), (b) The triplet gap 	T obtained with different system
sizes under PBCs, and the parameter path is taken along α = 2.5
and α = 3.0 vertical line in the α–Q plane, respectively. The gapless
region gradually expands with increasing α. (c) The triplet gap 	T

along Q = 2.0 horizontal line in the α–Q plane. The insets of (a)–
(c) show the extrapolation of the triplet gap 	T with the lattice sizes.
(d) The spin structure factors S(q) at α = 2.5, Q = 1.8 alone qx from
0 to 2π in the Brillouin zone (BZ). The hollow symbols denote the
results at qy = 0 and solid symbols denote the results at qy = π . The
scaling behavior of spin structure factors S(π, π ) with system size N
are shown in the inset of (d).

with different biquadratic interaction Q. To determine phase
boundaries of this gapless region, we calculate the triplet
gaps 	T at different parameters under PBCs and extrapolate
the gaps with the inverse system sizes, which are shown in
Figs. 5(a)–5(c) and their insets. When the extrapolated gaps
are zero or negative, we believe that the triplet gaps 	T = 0
in the thermodynamic limit. Along the α = 2.5 vertical path
in the α–Q plane, the triplet gaps 	T vanish when 1.7 � Q �
1.85, while along α = 3.0 vertical path, the gapless region is
1.65 � Q � 1.95. Therefore, there is a finite gapless phase re-
gion at the upper right corner of the α–Q plane [see Fig. 2(a)]
and the region of this phase gradually expands with growing
α, as shown in Fig. 2(a).

To further characterize this gapless phase, we also study the
structure factor at α = 2.5, Q = 1.8. As shown in Fig. 5(d),
the spin structure factors S(q) obtained on different sizes of
lattices have a singularity at (π, π ). As shown in the inset of
Fig. 5(d), the spin structure factor S(π, π ) at this parameter
increases as a function Nδ (δ ∼ 0.47), while the quadrupo-
lar structure factors show no singularity. That indicates the
existence of quasi-long-range spin correlation in this gapless
phase, similar to the Luttinger liquid phase in the S = 1

2
isotropic Heisenberg chain.

3. 3
2 -1- 3

2 Haldane

As shown in Fig. 2(a), the 3
2 -1- 3

2 Haldane phase region is
smaller compared to 3

2 -2- 3
2 Haldane phase. In this phase, when

Q = 0, the effective spin formed by two physical spins at b
and c sublattices is Seff = 1. Therefore, as shown in Fig. 2(c),
only one S = 1

2 virtual spin at each end site (a or d sublattice)
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FIG. 6. (a) The entanglement spectrum as a function of Q along
α = 2.0 obtained with N = 32 under PBCs. (b) The energy spectrum
along α = 2.0 obtained with N = 16 under OBCs. (c), (d) The ex-
trapolation of several lowest excitation gaps under OBCs at α = 2.0,
Q = 0.0 and 0.06, respectively.

participates in the singlet pair, leaving four unpaired S = 1/2
virtual spins under OBCs. At α = 2.0 and Q = 0, from the ex-
trapolation of excitation gaps under OBCs shown in Fig. 6(c),
the ground state has threefold degeneracy (total spin S = 0, 1,
2) at Mz = 0 subspace which correspond to combinations of
the four unpaired virtual S = 1/2 spins (with two at each end
site). For the entanglement spectrum under PBCs, as shown
in Fig. 6(a), three lowest spectrum levels under the subspace
of Mz = 0 are separated by a gap with higher spectra and
the total spins of these three spectrum levels are also S = 0,
1, and 2, respectively. With the increase of Q, as shown in
Figs. 6(b) and 6(d), it is interesting to see that the energy
spectrum under OBCs has a nondegenerate region for Q ∼
0.06. But the lowest three entanglement spectrum levels under
PBCs still seem to be degenerate, as shown in Fig. 6(a), and
no phase transition signals can be seen in the energy spectrum
under PBCs around this point, no matter what the system size
is in our calculation. Therefore, we believe that it is still the
3
2 -1- 3

2 Haldane phase in this region.
The quantum phase transitions between 3

2 -1- 3
2 Haldane

and dimer, 3
2 -2- 3

2 Haldane are all the first order with direct
ground-state level crossings of singlet states. More details
about these phase transitions can be seen in Appendix B.
With further growing Q, as shown in Figs. 6(a) and 6(b), it
enters the 3

2 -2- 3
2 Haldane phase whose lowest spectrum level

has twofold degeneracy (total spin S = 0 and 1) at Mz = 0
subspace both for the entanglement spectrum under PBCs and
energy spectrum under OBCs.

4. J = cosθ, Q = sinθ (α = 1.0)

Considering that the bilinear interaction J and biquadratic
interaction Q may be either antiferromagnetic or ferromag-
netic (FM) in the real materials [22,71,72], it is significant
to map out the full phase diagram under the competition
between bilinear and biquadratic interactions. Here, following
the study of the bilinear-biquadratic S = 1 spin chain [73–75],

plaquette I 

plaquette II 

3/2-2-3/2 
Haldane 

FM 

PPP I PPP II 

1.248π

0.813π
0.725π

0.188π

(b)

0.005π

0.478π(a) 0.458π

FIG. 7. (a) The low-energy spectrum as a function of θ/π which
is obtained by ED on 16-site lattice under PBCs. The inset shows
an enlarged drawing of the region labeled by a red dashed box in
(a). (b) The ground-state phase diagram of spin- 3

2 orthogonal dimer
chain with J = cosθ , Q = sinθ , and α = 1.0.

we set J = cosθ , Q = sinθ to study the full phase diagram,
while keeping α = 1.0, C = 0.

When 0 � θ < 0.353π (Q/J = 2.0), the phase transition
points between plaquette I, 3

2 -2- 3
2 Haldane, and plaquette II

are already shown in Fig. 2(a). Here, by converting Qc to θc,
we can easily obtain these two critical points in the phase
diagram shown in Fig. 7(b). For these three phases, the ground
states are all singlet states (S = 0) while for the FM phase
at around θ = π , the total spin of ground state is S = 3N/2,
where N is the number of sites in the lattice.

From the energy spectrum shown in Fig. 7(a), in between
plaquette II and FM, there are some regions (labeled by a red
dashed box) where the excitation gaps are relatively small. Af-
ter zooming in on these regions, we find three different phase
regions where the total spins of ground states are, respectively,
S = 15, 16, and 18 on the 16-site lattice under PBCs. To
identify the nature of these three phase regions, we add a small
pinning field (−HSz

1, H/J = 10−6) on the first site on the
left which breaks the lattice translational symmetry and U (1)
symmetry, and then calculate the average magnetic moment
m = 1

N

∑
i Sz

i . As shown in Fig. 8(a), in between plaquette II
(m = 0) and FM (m = 3/2), the curves of magnetic moment
per site have another two plateaus (m = 1 and 9/8) on the
eight-site lattice and an extra small plateau with m = 15/16
on the 16-site lattice, which is consistent with the low-energy
spectrum shown in Fig. 7(a). Figures 8(c) and 8(d) show the
expectation value of magnetic moment 〈Sz

i 〉 at each lattice site
after adding the pinning field. Both at θ = 2π/3 and 0.77π ,
〈Sz

i 〉 are always positive and less than 3/2 (fully polarized
case). Therefore, we name the phases with m = 1 and 9/8 as
partial polarized phase I (PPP I) and partial polarized phase II
(PPP II), respectively. In addition, between plaquette II and
PPP I, there is an extremely small parameter region which
corresponds to the m = 15/16 magnetic plateau on the 16-site
lattice and it is difficult to identify its phase boundaries in the
thermodynamic limit using DMRG. Here, we use a 32-site
lattice to get the phase transition points.

Next, we want to determine the phase transition points
between PPP I, PPP II, FM, and plaquette I. Through DMRG
calculations on larger-size lattices, we find that with in-
creasing lattice size, the total spins of the ground states are
S = N , 9N/8, 3N/2, 0 in PPP I, PPP II, FM and plaquette
I, respectively. Especially, for FM, |3/2, 3/2, . . . , 3/2, 3/2〉,
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FIG. 8. (a) The average magnetic moment curve at different θ

under a small pinning field (= 10−6) on the first site from left. The
results are obtained by ED on lattices with N = 8 and 16 under
PBCs. (b) The second-order polynomial extrapolation of the phase
transition point θc between PPP I and PPP II. (c) and (d), respectively,
show the expectation value of magnetic moment 〈Sz

i 〉 at each lattice
site with θ = 2π/3 and 0.77π .

| − 3/2,−3/2, . . . ,−3/2,−3/2〉 are two degenerate ground
states and the corresponding ground-state energy is EFM =
27N

8 cos(θ ) + 243N
32 sin(θ ). So, we can take crossings between

the two lowest energies of E0(S = N ), E0(S = 9N/8), EFM,
and E0(S = 0) as the signals of phase transitions among these
four phases. As shown in Fig. 8(b), by the second-order
polynomial fitting, we identify that the phase transition point
between PPP I and PPP II is θc = 0.725π . For the transition
points between PPP II, FM, and plaquette I, which are nearly
independent on system sizes, we can get two accurate phase
transition points θc = 0.813π and θc = 1.248π using 16-site
lattice. In the phase diagram shown in Fig. 7(b), except for
the continuous quantum phase transition between the 3

2 -2- 3
2

Haldane phase and plaquette II phase, other phase transitions
are all first order.

C. Exact AKLT point (α = 1.0)

For the spin- 3
2 orthogonal dimer chain whose coordinate

number z = 3, the exact AKLT point is located at α = 1.0,
Q = 116/243, C = 16/243 [4]. As shown in Fig. 1(c), at
the exact solvable AKLT point, each spin- 3

2 on a site can
be seen as a combination of three virtual S − 1

2 particles
which, respectively, form a singlet with one of three neighbor
sites. Under PBCs, as shown in the inset of Fig. 9(a), the
lowest triplet gap 	T = E0(S = 1)–E0(S = 0) as the first-
excited gap changes little with increasing system size. The
second-order polynomial extrapolation shows that the low-
est excitation gap of this AKLT state under PBCs is 	T ∼
1.412 in the thermodynamic limit, which is much larger than
the lower bound of the spin- 3

2 AKLT state on a hexagonal
lattice and some other lattices with coordinate number z = 3
[34,35]. While under OBCs, as shown in the inset of Fig. 9(a),
two unpaired virtual S − 1

2 particles at the edge lead to the

FIG. 9. (a) The ground-state phase diagram in the Q–C plane
with α = 1.0, and the red star represents the exact AKLT point.
The inset shows the extrapolation of the first excitation gap at
exact AKLT point under PBCs and OBCs. (b) The low-energy
spectrum along C = 16/243 obtained by ED with N = 16 under
PBCs. (c) The fidelity susceptibility for different system sizes along
C = 16/243. The inset is the linear extrapolation of the phase
transition points between plaquette I and 3

2 -2- 3
2 Haldane at dif-

ferent C. (d) The second-order polynomial extrapolation of the
phase transition points between 3

2 -2- 3
2 Haldane and plaquette II at

different C.

twofold degenerate ground state at Mz = 0 subspace, and this
is quite similar to the 3

2 -2- 3
2 Haldane phase. Both of them

share the same edge state. Therefore, it would be interesting to
investigate the connection between 3

2 -2- 3
2 Haldane and the

AKLT point as well as the effect of bicubic interaction C.
As shown in Fig. 9, we study the phase diagram with

bilinear, biquadratic, and bicubic interactions while keeping
α = 1.0. Figure 9(b) shows the low-energy spectrum varying
with Q while keeping C = 16/243, and this result is obtained
on the 16-site lattice under PBCs. It can be seen that the singlet
gap rapidly decreases at Q ≈ 0.175, and this is a strong signal
of the first-order phase transition. With growing Q, the triplet
gap has a minimum at Q ≈ 0.9 which may also indicate the
existence of a phase transition. At the same time, as shown in
Fig. 9(c), there are three peaks in the fidelity susceptibility.
The second peak would not diverge in the thermodynamic
limit, and only the first and third peaks can be seen as the sig-
nals of phase transitions. By extrapolations shown in the inset
of Figs. 9(c) and 9(d), we obtain the phase transition points
using different C. It should be noted that at C = 0, the phase
transition points determined by the fidelity susceptibility are
consistent with that obtained by quadrupolar correlation and
energy spectra in Fig. 2(a) (C = 0). As shown in Fig. 9(a), no
new phases are induced by C and the phase diagram is still
divided into three phase regions: plaquette I, 3

2 -2- 3
2 Haldane,

and plaquette II with increasing Q. We find that the AKLT
point is located in the 3

2 -2- 3
2 Haldane phase region and the

exact AKLT state is in the same phase as the 3
2 -2- 3

2 Haldane
phase at C = 0.

245104-7



REN, WU, GONG, YAO, AND WU PHYSICAL REVIEW B 108, 245104 (2023)

FIG. 10. (a) The ground-state phase diagram of spin-1 orthog-
onal dimer chain with bilinear-biquadratic interaction. The valence
bond solid picture of 1-1-1 Haldane is shown in (a). The expectation
value of magnetic moment 〈Sz

i 〉 on each lattice site in the partial
polarized phase at α = 0.03, Q = 2.0 is also shown in the position
where the red arrow points. (b) The energy spectrum along Q = 2.0
with α � 0.1, which is obtained by ED on 16-site lattice under PBCs.
The result obtained on 12-site lattice under PBCs is also shown in the
inset of (b). (c), (d) The energy spectrum along α = 1.0 obtained on
lattices with N = 24 under PBCs and OBCs, respectively. The inset
in (c) shows the extrapolation of the first-excitation gaps at α = 1.0,
Q = 2.0 under PBCs and OBCs.

IV. S = 1 RESULTS

In this section, we study the ground-state phase diagram of
the S = 1 bilinear-biquadratic model on the orthogonal dimer
chain.

A. Bilinear model (Q = 0)

Similar to the spin- 3
2 case, we start from a restudy of the

bilinear model (Q = 0). The phase diagram includes three
distinct gapped phases: plaquette, 1-1-1 Haldane, and dimer,
with the increase of α, and the phase transitions are all first
order. For the 1-1-1 Haldane phase, as shown in the inset
of Fig. 10(a), the physical spins of b and c sublattices form
an effective spin-1, resulting in a similar valence bond solid
picture and edge state as the Haldane phase of spin-1 chain.
The dimer phase can be adiabatically connected to the di-
rect product of the two-site singlet state |�0〉 = 1√

3
| − 1, 1〉 −

1√
3
|0, 0〉 + 1√

3
|1,−1〉. The plaquette phase can be adiabati-

cally connected to the direct product of the four-site singlet
state in an isolated plaquette limit with α = 0, which will be
further discussed in Sec. IV B 1.

By using DMRG with up to 48 sites under PBCs, we recal-
culate the phase transition points between these three phases.
As shown in Fig. 18(a) of Appendix B, the quadrupolar cor-
relation 〈Q̂b · Q̂c〉 shows two abrupt changes which indicate
the first-order phase transitions. The phase transition points
are located at αc1 = 1.135(5) and αc2 = 1.815(5), which are
shown in the horizontal axis of Fig. 10(a) and in Fig. 18(a) of
Appendix B.

B. Bilinear-biquadratic model (Q �= 0)

1. α–Q phase diagram

After considering the biquadratic interaction Q, as shown
in Fig. 10(a), besides plaquette, 1-1-1 Haldane, and dimer
phases, there are also a partial polarized phase and a critical
gapless phase with dominant quadrupolar correlation at �k =
(±2π/3, π ). In the phase diagram, the phase transition from
1-1-1 Haldane to the critical gapless phase is a Berezinskii-
Kosterlitz-Thouless (BKT) phase transition, while from 1-1-1
Haldane to plaquette and dimer, the phase transitions are both
the first-order which are determined by the discontinues in
〈Q̂b · Q̂c〉 shown in Fig. 18 of Appendix B.

As shown in Fig. 16(a) of Appendix A, in the low-energy
spectra of a plaquette, there is an energy-level closing at Q =
1.0 which separates a plaquette singlet state and a four-site
quintuplet state (S = 2). The effect of adding a small α to
these two states differs greatly. When Q < 1.0, protected by
the finite gap, the ground state can be adiabatically connected
to the direct product of four-site singlets, which is a plaquette
phase. When Q > 1.0, the quintuplet state of a plaquette has
fivefold degeneracy distributed in Mz = 0, ±1, and ±2 sub-
space. Many decoupled plaquettes at α = 0 will contribute to
the highly degenerate ground state. After adding α, the system
goes into a very narrow region of magnetic phase shown in
Fig. 10(a). As shown in Fig. 10(b), there are many low-energy
spectrum levels with quite small excitation gaps in this phase.
Due to the absence of k = (±2π/3, π ) in the Brillouin zone
of the lattice with N = 16, this lattice size cannot correctly
catch the critical k = (±2π/3, π ) quadrupolar phase at larger
α, which leads to some fictitious level closings near α ∼ 0.04
in Fig. 10(b). To show the detail of the magnetic order, we
also add a small pinning field (= 10−6) on the first site at
α = 0.03, Q = 2.0 and calculate the expectation value of
magnetic moment 〈Sz

i 〉 on each lattice site, which is shown
in the inset of Fig. 10(a) and indicates a partial polarized
phase.

As shown in Fig. 10(a), at larger Q, there is another phase
above 1-1-1 Haldane. To identify this phase, we calculate the
real-space spin correlation and find that 〈Ŝb · Ŝc〉 keeps at -1 in
this phase and 1-1-1 Haldane along α = 1 vertical line in the
α–Q plane, which indicates that the two physical spins at b and
c sublattices form an effective spin-1. So in these two phase
regions, the orthogonal dimer chain can be effectively seen
as a spin-1 trimer chain and the low-energy spectrum as well
as the phase diagram would be close to the uniform spin-1
chain. For S = 1 spin chain, at Q/J = 1, there is a BKT phase
transition between Haldane phase and a gapless phase with
dominant k = ±2π/3 quasi-long-range quadrupolar correla-
tions [74–76]. Similarly, the phase at larger Q in an orthogonal
dimer chain may also be a gapless phase with quadrupolar
correlations.

To confirm this conjecture, we calculate the spin and
quadrupolar structure factors on lattices up to 60 sites under
PBCs, and show the results of α = 1.0, Q = 2.0 in Figs. 11(a)
and 11(b). Both the spin and quadrupolar structure factors
have singularities at (±2π/3, π ). As shown in Fig. 11(c),
with increasing lnN , Q(2π/3, π ) at Q = 2.0 is larger and
increases faster than that at Q = 1.0, while the situation
for S(2π/3, π ) reverses. So, at Q = 2.0, it has dominant
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FIG. 11. (a) The spin structure factors S(q) and (b) quadrupolar
structure factors Q(q) at α = 1.0, Q = 2.0. In (a) and (b), the hol-
low symbols denote the results at qy = 0 and solid symbols denote
the results at qy = π . (c) The spin structure factor S(2π/3, π ) and
quadrupolar structure factor Q(2π/3, π ) at different Q vary with
lnN . The blue hollow symbols and the red solid symbols represent
Q(2π/3, π ) and S(2π/3, π ), respectively. The diamond symbols and
cycle symbols represent the results obtained at α = 1.0, Q = 1.0 and
Q = 2.0, respectively. (d) Extrapolation of the central charge ob-
tained at α = 1.0, Q = 2.0 under PBCs and OBCs. The inset shows
the entanglement entropy Sl obtained on 72-site lattice. The central
charge under OBCs are obtained by fitting Sl where l is multiple of
three due to the �k = (±2π/3, π ) quadrupolar correlations.

�k = (±2π/3, π ) quadrupolar correlations. In the meanwhile,
we show the low-energy spectra of this phase in Figs. 10(c)
and 10(d). Here, we choose the lattice size to be the multiple
of 12 to contain (±2π/3, π ) in the Brillouin zone. Under both
PBCs and OBCs, the total spin of the first-excited state is
S = 2 and the energy gap is extrapolated to almost zero in the
thermodynamic limit, as can be seen in the inset of Fig. 10(c).
Based on these results, we identify that the phase above the
1-1-1 Haldane in Fig. 10(a) is a critical phase with dominant
quadrupolar correlation at �k = (±2π/3, π ). We also show
the central charge of this gapless phase in Fig. 11(d). After
breaking the translation symmetry under OBCs, as shown in
the inset of Fig. 11(d), the entanglement entropy Sl shows a
period of 3 due to the �k = (±2π/3, π ) quadrupolar correla-
tions in this phase. So, the central charges under OBCs are
obtained by fitting the entropy Sl where l is multiple of three.
The number of data used in the fitting would be less than that
obtained under PBCs with the same lattice size, which may
induce stronger finite-size effect on the central charge fitted
under OBCs. As shown in Fig. 11(d), the central charges at
α = 1.0, Q = 2.0 are extrapolated to c ≈ 2 both under PBCs
and OBCs, which is also similar with the critical quadrupolar
phase on spin-1 chain [74,75].

Next, we want to find the phase transition point between
this critical quadrupolar phase and 1-1-1 Haldane. A direct
idea is that it may also be a BKT phase transition and
located at Q = 1.0, like the S = 1 spin chain. We first cal-
culate the fidelity susceptibility under PBCs and extrapolate
the corresponding Qc of the peaks with the lattice size. The

FIG. 12. (a) Fidelity susceptibility varies with Q along α = 1.0
obtained by DMRG on different lattice sizes. The inset of (a) shows
the second-order polynomial extrapolation of Qc. (b) The energy gap
E0(S = 2)–E0(S = 1) between the lowest quintuplet state (S = 2)
and the lowest triplet state (S = 1) varies with Q along α = 1.0, and
the energy gap E0(S = 2)–E0(S = 1) along α = 3.0 is also shown in
the inset of (b).

extrapolated Qc is smaller than 1 as shown in the inset of
Fig. 12(a). However, fidelity susceptibility is difficult to ob-
tain the exact BKT phase transition point in the J1-J2 chain
and some other models [77]. The same problem may also be
encountered in the orthogonal dimer chain. In contrast, using
energy-level crossing to determine the phase transition point
can have a smaller finite-size effect and obtain more accurate
results [43,78–80]. As shown in Figs. 10(c) and 10(d), the
lowest triplet state (S = 1) and the lowest quintuplet state
(S = 2) crosses at Q = 1.0. Similar crossings can also be seen
in the low-energy spectra of the spin-1 chain at the phase
transition point (Q / J = 1) between the Haldane phase and
the critical quadrupolar phase [74–76]. By calculating the
lowest energy in the sectors with total spin S = 1 and 2 under
PBCs, we show E0(S = 2) − E0(S = 1) varies little with Q
along α = 1.0 line in Fig. 12(b). The lowest triplet state al-
ways crosses with the lowest quintuplet state at Q = 1.0 with
different lattice sizes. That indicates that the phase transition
point should be Q = 1.0, α = 1.0. As shown in the inset of
Fig. 12(b), for α = 3.0, the energy-level crossing also occurs
at Q = 1.0 with different lattice sizes. Therefore, we believe
that the phase boundary of 1-1-1 Haldane and the critical
quadrupolar phase is a horizontal line at Q = 1.0 as shown
in Fig. 10(a).

2. J = cosθ, Q = sinθ (α = 1.0)

To show the full competition between bilinear and bi-
quadratic interactions, we also set J = cosθ , Q = sinθ to
study the full phase diagram along α = 1.0. Except for pla-
quette, 1-1-1 Haldane, and the critical quadrupolar phase,
there is another FM phase sandwiched by the critical
quadrupolar phase and plaquette. The phase boundaries of this
FM phase are exactly the same for all system sizes. From the
energy spectrum shown in Fig. 13(a), we identify the phase
transition points between these three phases are located at
θc = 0.5π and 1.25π . And the full phase diagram is shown
in Fig. 13(b).

V. SUMMARY AND DISCUSSION

By using ED and DMRG methods, we study the phase di-
agram of S = 3

2 , 1 bilinear-biquadratic Heisenberg model on
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plaquette 

  1-1-1
Haldane FM 

0.029π

1.25π

0.25π

0.5π(b)

CQ 

(a)

FIG. 13. (a) The low-energy spectrum as a function of θ/π

which is obtained by ED on 16-site lattice under PBCs. (b) The
ground-state phase diagram of spin-1 orthogonal dimer chain with
J = cosθ , Q = sinθ , and α = 1.0.

the orthogonal dimer chain. For the spin- 3
2 case, we identify

two Haldane phases, 3
2 -2- 3

2 Haldane and 3
2 -1- 3

2 Haldane. The
region of the 3

2 -2- 3
2 Haldane can be expanded to a larger region

by the biquadratic interaction Q. After considering the bicubic
interaction, this 3

2 -2- 3
2 Haldane can be adiabatically connected

to the exact AKLT point on spin- 3
2 orthogonal dimer chain.

Apart from the Haldane phases, there are also two plaquette
phases, a dimer phase and a gapless phase in the phase dia-
gram. We identify the nature of these phases from different
aspects and determine the phase boundary between different
phases. Most of the phase transitions are first order, except that
between 3

2 -2- 3
2 Haldane and plaquette II, which is continuous

with central charge c ≈ 1. At α = 1.0, we also set J = cosθ ,
Q = sinθ and obtain the phase diagram for θ ∈ [0, 2π ], in
which we find another two partial polarized phases and a
small undefined region which is needed for further study in the
future. In addition, we also study the spin-1 case and identify
a 1-1-1 Haldane in the phase diagram, whose edge state is the
same as the Haldane phase in the spin-1 chain. With larger
Q, there is a gapless critical phase with dominant quadrupolar
correlation at �k = (±2π/3, π ) in the phase diagram.

If adding the interchain interaction, the quasi-1D orthogo-
nal dimer chain can form the 2D Shastry-Sutherland lattice. In
experiments, it may be possible to synthesize such a Shastry-
Sutherland lattice with weakly coupled orthogonal dimer
chain and higher spins. The main physics can be dominated
by this quasi-1D chain and it would be interesting to confirm
our numerical results in experiments. Another possible way
to construct the orthogonal dimer chain with higher effective
spin is to use the organic triangulene which has been suc-
cessfully used to construct the effective spin-1 Haldane chain
materials [22]. In theory, for the first case, it would be inter-
esting to investigate the evolution of the ground-state phase
diagram from 1D to 2D, and identify the possible 2D Haldane
phases in the Shastry-Sutherland model. As an analogy, for
the spin-1 Haldane chain, without biquadratic interaction, it
would quickly enter a Néel phase with only a small interchain
interaction [81–86]. But after adding biquadratic interaction,
an infinite projected entangled pair states study suggested that
the Haldane phase can extend to the 2D square limit with in-
creasing interchain interaction [86]. However, a DMRG study
on spin-1 square lattice did not find this Haldane phase and,
instead, they found a nematic spin liquid phase near the SU(3)
symmetry point, which cannot be adiabatically connected to

the 1D Haldane phase based on their calculation of spin cor-
relation with different interchain interactions and biquadratic
interactions [87]. This nematic spin liquid phase on spin-1
square lattice has also been studied by Refs. [88–90]. For
the orthogonal dimer chain, by using ED on a 16-site lattice,
Refs. [55,56] studied the effect of interchain interaction on
the spin-1 bilinear model and claimed that 1-1-1 Haldane can
exist to the 2D limit with increasing interchain interaction.
However, due to the limited size, it is still worthy to study
using more sophisticated numerical methods. Also, the effect
of biquadratic interaction may enhance the Haldane phase re-
gion and make it easier to appear in the 2D case. Furthermore,
recent theoretical [41,42] and experimental [46,49] studies
suggest that SrCu2(BO3)2 and the corresponding model on
the Shastry-Sutherland lattice are good platforms for the in-
vestigation of the deconfined quantum critical point (DQCP).
As a good starting point, our work on the quasi-1D orthogonal
dimer chain will be helpful for further research on finding the
DQCP in 2D frustrated system with S > 1/2.
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APPENDIX A: DECOUPLED LIMIT

As shown in Fig. 1(a), when the interactions between the
sites on the bonds of dimers (blue dashed lines) are zero (α =
0), the orthogonal dimer chain is decoupled into some isolated
plaquettes. By studying the bilinear-biquardratic Heisenberg
model (C = 0) on one plaquette, we can obtain the ground-
state properties when α is zero or small.

In the spin- 3
2 case, as shown in Fig. 14(a), the ground

states of four-site plaquettes are both singlet states when
Q � 0.23 and when Q � 0.34. But the spin correlations are
quite different at Q = 0.0 and 1.0, especially for the spin
correlations between diagonal sites, which can be seen in
Figs. 2(d) and 2(e) [also shown in Figs. 14(b) and 14(c)]. This
indicates that the ground states in the small Q and large Q
regions are two kinds of singlet states. As shown in Fig. 15,
after introducing a small α to connect the isolated plaquettes,
protected by the finite excitation gap, the spin correlations
between different plaquettes are still relatively weak, and the
spin correlations in each plaquette are quite similar to that in
the decoupled limit, which are also consistent with that shown
in Figs. 2(d) and 2(e). Therefore, these two phases can be
adiabatically connected to the direct product of two different
singlet states at α = 0, which are named as plaquette I and
plaquette II.
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FIG. 14. (a) The energy spectra of a S = 3
2 plaquette, in which

the excited gaps with different total spin S = 0, 1, 2, and S > 2 are
represented by red, green, blue, and purple lines, respectively. The
real-space spin correlations between different sites in a plaquette
at α = 0, Q = 0, and α = 0, Q = 1.0 are, respectively, shown in
(b) and (c), which have also been shown in Figs. 2(d) and 2(e).

In the spin-1 case, as shown in Fig. 16(a), there is a
level crossing at Q = 1.0. When Q < 1.0, the ground state
is a singlet state (S = 0). In Fig. 16(b), we show the spin
correlations at Q = 0. When α > 0, similar to the spin- 3

2
case, the ground state can also be adiabatically connected to
the direct product of the four-site singlets, which is named the
plaquette phase. For Q > 1.0, the ground state of the plaquette
is a fivefold degenerate quintuplet state (S = 2) distributed in
Mz = 0, ±1, and ±2 subspaces. Therefore, the ground state is
highly degenerate with many decoupled plaquettes at α = 0.
When α is not zero, there is a quite narrow magnetic phase
and then it quickly enters the critical (±2π/3, π ) quadrupo-
lar phase at a very small Q, which is shown in Figs. 10(a)
and 10(b).

APPENDIX B: FIRST-ORDER PHASE
TRANSITION POINTS

As shown in Figs. 2 and 10(a), there are many first-order
phase transitions both in spin- 3

2 and spin-1 case. At these
transition points, the quadrupolar correlations 〈Q̂b · Q̂c〉 show
abrupt changes, which can be seen in Figs. 3, 17, and 18. By
using DMRG to obtain the corresponding critical points αc or
Qc on different sizes of lattices, we can finally determine these
first-order phase transition points.

In the spin- 3
2 case, when the biquardratic interaction Q =

0, we have shown the quadrupolar correlations 〈Q̂b · Q̂c〉 in
Fig. 3 and discussed the determination of three first-order
phase transition points among plaquette I, 3

2 -2- 3
2 Haldane,

FIG. 15. The real-space spin correlation on S = 3
2 orthogonal

dimer chain with N = 32 under OBCs.

FIG. 16. (a) The energy spectra of a S = 1 plaquette, in which
the excited gaps with different total spins S = 0, 1, 2, and S > 2
are represented by red, green, blue, and purple lines, respectively.
The real-space spin correlations between different sites in a plaquette
at α = 0, Q = 0, and α = 0, Q = 2.0 are shown in (b) and (c),
respectively.

FIG. 17. (a)–(d) The quadrupolar correlations 〈Q̂b · Q̂c〉 at α =
0.5, 2.0, 2.5, and 3.0, respectively.

FIG. 18. (a) The quadrupolar correlations 〈Q̂b · Q̂c〉 at Q = 0
in spin S = 1 orthogonal dimer chain as functions of α. (b)–
(d) The quadrupolar correlations 〈Q̂b · Q̂c〉 at α = 1.0, 2.5 and 3.0,
respectively.
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3
2 -1- 3

2 Haldane, and dimer phases in the main text. Here, we
show more results after considering biquardratic interaction
Q in Figs. 17(a)–17(d). It can be seen that the transition
points are almost independent on the lattice sizes, so they are
determined by results of the largest lattice sizes used in the
calculation. The corresponding values of the phase transition
points are shown in Fig. 17.

In the spin-1 case, as shown in Fig. 18, the situations are
quite similar. The critical points obtained on large-size lattices
are always almost the same. Therefore, we use the results
obtained on lattices with N = 48 (when Q = 0) and N = 40
(when Q > 0) to determine the first-order phase transition
points between different phases whose values are also shown
in Fig. 18.
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