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Interplay between multispin and chiral spin interactions on a triangular lattice
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We investigate the spin- 1
2 nearest-neighbor Heisenberg model with the four-site ring-exchange J4 and chiral

interaction Jχ on the triangular lattice by using the variational Monte Carlo method. The J4 term induces the
quadratic band touching (QBT) quantum spin liquid (QSL) with only a d + id spinon pairing (without hopping
term), the nodal d-wave QSL and U (1) QSL with a finite spinon Fermi surface progressively. The effect of the
chiral interaction Jχ can enrich the phase diagram with two interesting chiral QSLs (topological orders) with
the same quantized Chern number C = 1

2 and ground-state degeneracy GSD = 2, namely the U (1) chiral spin
liquid (CSL) and Z2 d + id-wave QSL. The nodal d-wave QSL is fragile and will turn to the Z2 d + id QSL
with any finite Jχ within our numerical calculation. However, in the process from QBT to the Z2 d + id QSL
with the increase of Jχ , an exotic crossover region is found. In this region, the previous QBT state acquires a
small hopping term so that it opens a small gap at the band touching points, and leads to an energy minimum
which is energetically more favorable compared to another competitive local minimum from the Z2 d + id QSL.
We dub this state as the proximate QBT QSL and it gives way to the Z2 d + id QSL eventually. Therefore, the
cooperation of the J4 and Jχ terms favors mostly the Z2 d + id-wave QSL, so that this phase occupies the largest
region in the phase diagram.

DOI: 10.1103/PhysRevB.108.245102

I. INTRODUCTION

As an exotic and attractive phase in condensed matter
physics, the quantum spin liquid (QSL) [1–4] has been studied
extensively in recent years. One of the remarkable charac-
teristics of QSL is that it does not possess any magnetic
order even at zero temperature. It is in fact not conventional
phase triggered by any symmetry breaking at low tempera-
tures obeying the paradigm of Landau’s theory, but a new
quantum phase with fractional excitations and classified by
projective symmetry group (PSG) [5]. Intrinsically, this exotic
ground state has nontrivial quantum many-body entangle-
ment so that different types of QSLs correspond to different
patterns of entanglement. Besides, there is a straight and
coarse classification to distinguish two classes of spin liquids
based on whether or not there is an energy gap between the
excitation spectrum and ground state. Gapped spin liquids
have topological order characterized by the global topological
structure, ground-state degeneracy (GSD) [6–8]. However, in
gapless systems, the quasiparticle description, such as gapless
fermionic (Dirac) spinon, breaks down [9]. And they may be
characterized by a higher dimensional topological order, or
the categorical symmetry [10].

It is expected that a spin system may fall into a QSL
instead of a long-range magnetic ordered phase, when quan-
tum fluctuations are strong enough. Usually, spin frustrations,
including the geometrical and exchange ones, can effectively
enhance the quantum fluctuations. As a celebrated example,
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the Kitaev model on the honeycomb lattice [11] possesses an
exact QSL ground state, where the exchange frustrations arise
from the bond-dependent anisotropic spin couplings, though
there is no geometrical frustration in this lattice geometry.
However, the Kitaev model is difficult to realize in a pure
spin systems due to its highly anisotropic Kitaev interactions.
Recently, many progresses have been achieved to realize the
Kitaev interactions in a class of Mott insulating magnets with
strong spin-orbit coupling [12–24]. On the other hand, there
are strong geometrical frustrations in the triangular lattice and
kagome lattice, so the searches for the QSL in the materials
with these lattice structures are always on the way [25,25–
38].

Traditionally, the QSL is first proposed in the triangular
antiferromagnetic (AFM) Heisenberg model [1]. In recent
years, it is generally agreed that the AFM Heisenberg model
with only the nearest-neighbor (NN) J1 spin interaction on
the triangular lattice exhibits a 120◦ magnetic order at low
temperatures. Therefore, several possible competitive interac-
tions beyond the J1 term have been considered. For example,
it is found that when the second NN exchange interaction
J2 is about 0.08 � J2/J1 � 0.16, the 120◦ order is melted
[39] and the QSL would arise [39–44]. Nevertheless, there
is still doubt about the class of the QSL in this J1-J2 AFM
model, though Dirac (gapless) spin liquid has been proposed
by those very exhausted numerical calculations [39,44]. This
ambiguity is due to the complication of the possible gapless
QSLs, as mentioned above [10]. Besides the second NN J2

exchange interaction, the four-site ring-exchange interaction
(J4 term) [45] was proposed to favor a U (1) QSL with large
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Fermi surface on the triangular lattice. It is shown that the
120◦ order is robust against a small J4/J1 ratio and gives
way to the U (1) QSL at a large one [45]. In between, several
different phases have been claimed, including quadratic band
touching (QBT) state and nodal d-wave QSL [46], staggered
valence bond solid (VBS) [36], VBS and zigzag magnetic
order [47], and no intermediate phases [48], depending on
different effective spin models and numerical techniques
[36,46–48]. In particular, a new spin liquid with the d + id
spinon pairing and vanishing hopping has been found when
J2 ≈ 0, whose dispersion exhibits the quadratic band touching
at �k = 0, so it is dubbed as QBT spin liquid [46]. This state
has been used to explain numerous intriguing experimental
properties of the low-temperature phase in organic spin-liquid
candidate materials, EtMe3Sb[Pd(dmit)2]2 [25,31,32] and κ-
(BEDT-TTF)2Cu2(CN)3 [27,28]. We also note that a recent
experimental observation of the QSL candidate in inorganic
material NaRuO2 with triangular lattice also suggests the im-
portance of the long-range exchange interactions [49], such as
the J4 term. On the other hand, the scalar chiral interaction Jχ

that can be derived from the t/U expansion of the Hubbard
model at half filling with adding � flux through the elemen-
tary triangles [50] is introduced. The Jχ term can naturally
stabilize the topological CSLs [51] in a spin- 1

2 Heisenberg
model on the triangular lattice [52,53]. Consequently, the
Berry curvature of CSLs can lead to nontrivial thermal Hall
effect [54]. Generally, it is expected that this Jχ interaction
could stabilize the d + id chiral spin liquid induced by the
J4 interaction. Nevertheless, a comprehensive investigation of
the collective impacts resulting from the scalar chiral inter-
action (Jχ ) and the four-site ring-exchange interaction (J4)
within the context of the triangular AFM model is currently
lacking.

In this work, we investigate the interplay between the scalar
chiral interaction Jχ and four-site ring-exchange J4 in the
triangular AFM model with the NN spin interaction J1 using
the variational Monte Carlo (VMC) method, and focus on the
different chiral spin liquids and their intrinsic topology. We
find that a finite Jχ interaction can stabilize two distinguish-
able chiral states with time-reversal symmetry breaking, i.e.,
U (1) CSL with nontrivial fluxes through elementary trian-
gles and chiral Z2 d + id-wave QSL. Both of them have the
same quantized Chern number C = 1

2 but actually belong to
distinct phases. Especially, there are two different states of
the d + id-wave phase, which correspond to two energetic
minima induced by Jχ , respectively. They not only compete
with each other, but also happen to be energetically degener-
ate within the numerical error under specific conditions. The
120◦ magnetic ordered phase is robust against both a weak
four-site ring-exchange and scalar chiral interaction, and is
proximate to an algebraic U (1) Dirac QSL by PSG classifica-
tions [55–58]. At Jχ = 0 and with increase of J4, the system
goes through progressive transitions from the 120◦ magnetic
order state to a symmetric Z2 QBT QSL, nodal d-wave QSL
and U (1) QSL (or called uniform RVB state in literature) with
large spinon Fermi surface [U (1) SFS], which is qualitatively
consistent with the results reported in Ref. [46]. We find that
both the QBT and nodal d-wave QSLs are unstable against
a very small chiral interaction Jχ . The achiral nodal d-wave

state will immediately give way to the chiral Z2 d + id state
with relatively weak spinon pairings. While, the QBT state
falls into another chiral Z2 d + id state with a relatively in-
significant hopping term, which is one of the two different
d + id states mentioned above. The dispersion of its quasi-
particles is almost the same as that of the QBT state, except
a very small energy gap in the former. Thereby, we call it the
proximate quadratic band touching (PQBT) state. With further
increase of Jχ , the PQBT will enter into the chiral Z2 d + id
state.

The paper is organized as follows. In Sec. II, we intro-
duce the model, the variational Monte Carlo method and the
calculation of Chern numbers by the optimized variational
wave functions, mainly focus on the construction of the trial
variational wave functions. In Sec. III, we elaborate our results
on the phases induced by the J4 and Jχ terms independently
and the effects of their interplay. Section IV presents a sum-
mary. In Appendix A, we introduce the calculation method for
the ground-state degeneracy. And Appendix B presents the
description of finite-size effect and the crossover mentioned
above. Finally, in Appendix C, we elucidate the relations
and differences of U (1), d + id QSL, and Kalmeyer-Laughlin
state.

II. MODEL AND METHOD

The model we consider is written as

H = J1

∑
〈i, j〉

2 �Si · �S j + Jχ

∑
i, j,k∈�/�

�Si · ( �S j × �Sk )

+ J4

∑
i, j,k,l∈♦

(Pi jkl + H.c.), (1)

where the J1 term is the first NN AFM Heisenberg exchange
interaction, and the Jχ term is the scalar chiral interaction
with the same magnitude in any elementary triangle (either
up triangle � or down triangle �, the three sites in the triangle
are in clockwise direction; see Fig. 1). The last term J4 is the
four-site ring-exchange coupling and is given in detail by∑

i, j,k,l∈♦
(Pi jkl + H.c.) = 5

∑
〈i, j〉

�Si · �S j +
∑
〈〈i, j〉〉

�Si · �S j

+ 4
∑

i, j,k,l∈♦
[( �Si · �S j )( �Sk · �Sl )

+ ( �Si · �Sl )( �S j · �Sk )

− ( �Si · �Sk )( �S j · �Sl )] + 1

4
, (2)

where 〈〈i, j〉〉 denotes the second NN bonds and i, j, k, l ∈ ♦
means summing all of elementary four-site rhombi defined by
unique second NN pairs 〈〈i, k〉〉 (see Fig. 1). Hereinafter, we
set J1 = 1 as the unit of energy.

In this work, we study the phase diagram of the model (1)
with the VMC method. We start from the parton construc-
tion (or Abrikosov-fermion spinon representation) of spin 1

2

operator: �S = 1
2

∑
α,β=↑,↓ f †

α �σαβ fβ . With this representation,
we halve one spin to two fermionic spinons. Hence, the
original physical spin- 1

2 Hilbert space must be recovered by
imposing the on-site constraint

∑
α f †

α fα = 1. Furthermore,
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FIG. 1. (a) Triangular lattice with �a1 · �a2 = − 1
2 , the lines marked

with different colors connect spins involved in the different terms
of model (1). Panels (b) and (c) denote the ansatzes for the 120◦

long-range order with alternating 0 and π flux, and U (1) CSL
with nonzero fluxes through elementary triangles, respectively. The
marked red dashed bonds in panels (b) and (c) denote that the hop-
ping terms along these bonds in Hmf have the opposite sign compared
with those unmarked ones.

this fermionic fractionalization will lead to the emergence of a
SU (2) gauge structure [59], which can become more explicit
if we introduce two doublets,

ψ1 =
(

f↑
f †
↓

)
, ψ2 =

(
f↓

− f †
↑

)
, (3)

and put them into a matrix 
 = (ψ1 ψ2), then we rewrite the
spin- 1

2 operator as follows:

�S = 1

4
Tr(
†
 �σ T ), (4)

where �σ is the Pauli matrix. Besides this formalistic demon-
stration, intrinsically, the emergent SU (2) gauge structure can
also be revealed by the combination of the U (1) gauge struc-
ture: fσ → fσ eiα and the particle-hole redundancy: fσ →
fσ cos(β ) + σ f †

σ̄ sin(β ), both α and β are any angles. In addi-
tion, it is the unique property for the fermionic representation
but not for the bosonic one with only U (1) gauge structure.

Then, we decouple the Hamiltonian (1) into a general
quadratic fermionic Hamiltonian with a unconsidered con-
stant number,

Hmf =
∑
i, j

(ti j f †
iσ f jσ + �i j f †

i↑ f †
j↓ + H.c.)

+ 2
∑

i

�Mi · �Si + const, (5)

where an additional background field �Mi is introduced to
induce a static magnetic long-range order as done before
[39,48,60]. Because the model we consider is very compli-
cate, we will get so many mean-field variational parameters

if we consider all channels. As well known, the numer-
ical simulations with so plenty of variational parameters
are almost not reliable and usually make physics unclear
in a limited time cost. Combining the previous works
Refs. [36,46–48,52,57,61] with the physics we focus on, here
we only consider various NN-bond (〈i, j〉) hoppings t〈i j〉, pair-
ings �〈i j〉, and the background field �Mi.

After constructing the ground state |G〉mf of the mean-field
Hamiltonian Eq. (5), we utilize the Gutzwiller projective oper-
ator PG = ∏

i(1 − ni↑ni↓) to |G〉mf to enforce the local particle
number constrain: ni↑ + ni↓ = 1. Finally, we obtain a gen-
eral trial variational wave function |
(P )〉 = PG|G〉mf , where
P denotes variational parameters. For those states without
magnetic order, we can set

∑
i Sz

i = 0 (or N↑ = N↓ = N/2,
N is number of the lattice sites) without loss of generality.
We fix the spinon chemical potential μ = tii such that |G〉mf

is at half filling before projection [46]. Actually, for those
ansatzes without spinon pairings, we just need the N occupied
states of Hmf to construct the trial wave functions, so the
chemical potential makes no difference for this procedure so
that we can abandon it as a variational parameter in practical
numerical calculations. As a result, the rest of the parameters
P = (t〈i j〉,�〈i j〉, �Mi ) in the mean-field Hamiltonian are used
as variational parameters. And we consider different types of
ansatzes, including various Z2, U (1) QSLs, and 120◦ AFM
ordered states to construct the initial trial wave functions,
where the parameters P are optimized by minimizing the trial
energy E (P ) = 〈
|H |
〉/〈
|
〉. For the optimization of the
trial wave functions, we have used the steepest decent and
stochastic reconfiguration methods [62–64].

We adopt a triangle lattice with torus geometry:
L1 = L2 = 12 (L1,2 are the lengths along the two reciprocal
basic vectors (�a1,2) of primitive cell, see Fig. 1) for main
results. For the nodal d-wave state, we apply L1 = 10 and
L2 = 11 instead, the details for this choice are discussed in
Sec. III A.

To extract the topological properties for these gapped
CSLs, we calculate Chern numbers by use of the optimized
variational wave functions |
〉opt with twist boundary condi-
tion [52,65], as follows:

fi+Lk ,↑ = fi,↑eiθk ; fi+Lk ,↓ = fi,↓e−iθk (k = 1, 2), (6a)

BP(p) = Im

(
ln

4∏
i=1

〈
 pi+1 |
 pi〉
)

, (6b)

Ctotal = 1

2π

∑
p

BP(p), (6c)

where Eq. (6a) expresses the twist boundary condition, BP(p)
is the Berry phase in the plaquette p, the label i = 1, 2, 3, 4
denotes the four corners of the pth plaquette, and the over-
laps are calculated by Monte Carlo method. Equation (6c)
is used to calculate the Chern numbers numerically. In our
calculations, we have checked the results with the num-
bers of mesh plaquettes, Np = 36, 64, 100, 144, and find
that Np = 100 is large enough so that the Chern numbers
do not change by further increasing the number of mesh
plaquettes.
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FIG. 2. Phase diagram of the model Eq. (1), which includes
one 120◦ magnetically ordered phase and the other five disordered
phases. The quadratic band touching state (QBT) is marked by red
solid line with Jχ = 0. The U (1) QSL with a finite spinon Fermi sur-
face [named as U (1) SFS] localizes in the area with large four-spin
interactions. Between them, there is a nodal d-wave (nd) disordered
state marked by the blue solid line. And the other two phases are
chiral spin liquids with TRSB, i.e., a U (1) CSL with nonzero flux
through the elementary triangles and a chiral d + id QSL with the
phases distribution illustrated in the inset. In the area of d + id
QSL phase, there is an orange dashed line separating the two states
corresponding to the two minima, one of them (we call it PQBT
state) is almost the same as the QBT state except a small gap at the
otherwise touching point (see text).

III. RESULTS

Let us first list all six phases we find, which are sum-
marized in the phase diagram shown in Fig. 2. It consists
of one long-range magnetic 120◦ order and five disordered
phases, the later includes two chiral spin liquids with nontriv-
ial Chern number and three achiral ones. We have considered
the potential tetrahedral order [47,53,66], especially, for a
large chiral interaction Jχ/J1 at which the spins may behave
as classical objects. But, we find that this ordered phase is
not energetically favored in the parameter range we consider
by our variational numerical simulations, compared with the
phases we find in the phase diagram. In the following, we will
discuss these found phases in detail.

A. Effects of J4

In this subsection, we fix Jχ = 0 to investigate the effects
of the four-site ring-exchange interaction J4. As well known,
the 120◦ long-range magnetically ordered phase exists when
J4 = 0. In fact, as has been shown before [39,48], a back-
ground magnetic field �Mi = | �M|(cos( �Q · �ri ), sin( �Q · �ri ), 0) is
needed to induce this order in the framework of the VMC
method, where | �M| denotes the field amplitude and �Q =
(1/3, 1/3) [here we adopt the single- �Q approximation and the
reciprocal bases of the primitive cells as denoted in Fig. 1(b)].
Otherwise, this magnetic phase will disappear and fall into
a U (1) Dirac QSL yielded by the NN-bond hopping terms
containing alternate 0 and π flux in the elementary triangles.

So, we label it as “120◦ order+π flux” in the phase diagram
Fig. 2.

With the introduction of the J4 term, we find that the 120◦
order can survive in an extended region up to J4 ≈ 0.153.
Then, it enters into the QBT state with only a d + id spinon
pairing, but without the hopping term as has been found before
[46,57]. The phases on different bonds of the d + id spinon
pairing state are illustrated in the inset of Fig. 2. This QBT
state exhibits the quadratic band touching at �k = 0 in its
dispersion, as shown in Fig. 3(a). With the further increase
of J4 term, the Z2 nodal d-wave state will be competitive and
become the ground state (Fig. 2). This state is characterized by
a singlet spinon pairing with the pairing function �〈i j〉 = �〈 ji〉
and its magnitude �nd = Re(�d+id ), and a bond independent
hopping term. The identification of this state and the phase
space that it exists are qualitatively consistent with those in
Ref. [46], in which the Hamiltonian has the same form with
us in the case of Jχ = 0. However, Ref. [48] has reported that
the nodal d-wave QSL is not energetically favored. We note
that the specific form of the J4 term chosen in Ref. [48] is
different from both ours and that of Ref. [46]. In detail, the
effective second NN Heisenberg term J2 is included in the
form of the J4 term in both Ref. [46] and our work, but it is
absent in Ref. [48]. It suggests that the stability of this nodal
d-wave state is sensitive to the detail of J4 interaction. We also
note that the stability of this gapless state may be sensitive
to the lattice geometry. If we use the torus geometry, such
as L1,2 = 12, then we always suffer dilemmas about the con-
struction of trial many-body wave function because there are
plenty of normal states for quasiparticles in the nodal d-wave
state in the thermodynamic limit. In fact, it is better to use the
lattice size with L1 �= L2 (such as L1 = 10, L2 = 11) instead
of the torus geometry in practical VMC procedure, as has
been noticed before [61]. Besides, the period-period boundary
condition is chosen in this case. The pairing amplitude |�nd|
will fade away as the four-spin term J4 increases. Finally, a
U (1) SFS state will emerge and extend to the largest J4 we
consider, as shown in Fig. 2.

B. Effects of Jχ

As the chiral interaction term Jχ breaks the time-reversal
symmetry, it is expected that it can induce or stabilize some
chiral phases. Starting from the 120◦ long-range magnetically
ordered phase, we find that it is robust against a chiral inter-
action Jχ < 0.34. In fact, it is found that the strength | �M| of
the 120◦ order decreases a little with the increase of Jχ , as we
have checked with the lattice size L1,2 = 6, 12, 18, and 24. In
this region, the chiral order parameter |χ | = |〈 �Si · �S j × �Sk 〉|
defined as the expectation averaged over all triangles (i, j
and k are the three vertices of each elementary triangle) is
also found to be zero. When Jχ � 0.35, the U (1) CSL phase
will be energetic favorite and become dominant, as shown in
Fig. 2 where the boundary between 120◦ order and U (1) CSL
is determined by comparing the energy of the two phases.
Associated with this transition, the chiral order parameter |χ |
shows a step-like rise from zero to a finite value as shown
in Fig. 4 (J4 = 0). Compared to the result obtained with only
the J4 term in the last subsection, we suggest that the 120◦
magnetic order is more stable against the chiral interaction.
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FIG. 3. Panels (a), (b), and (c) are dispersions of the quasiparticles of the QBT state, PQBT, and d + id state, respectively. These
dispersions are used only for exhibiting the differences among the three QSL states at the mean-field level, and the energy “E” is chosen
in arbitrary unit. (d) The energy landscape exhibits two minima with Jχ = 0.04 and J4 = 0.17, the first minimum corresponds to the d + id
QSL and the second the PQBT state. The inset is used for an enlarged view of the variational energy of the second minimum.

This CSL state is not only time-reversal symmetry break-
ing but also lattice reflection symmetry breaking. However,
the combination of the two symmetries is preserved [57]. In
this state, there exist alternating ψ and π − ψ fluxes through
the down triangles and up triangles without spinon pairings
[see Fig. 1(b)]. We find that the flux ψ increases as Jχ

increases in the whole area of the CSL state in the phase
diagram, consequently it leads to an increase of the energy
gap of quasiparticles. According to our calculation, the gap
reaches its maximum when ψ = π

2 . It corresponds to the case
ψ = π − ψ = π

2 so that the fluxes uniformly distribute along
all triangles. Hence, the chiral interaction tends to make the
alternating fluxes be homogeneous and increase the gap. As
denoted in Fig. 1(b), the 120◦ order+π flux phase has alternat-
ing 0 and π fluxs through the down triangles and up triangles.
So, the CSL state inherits this flux structure and acquires a
finite ψ to yield gap compared with gapless Dirac spin liquid
(ψ = 0). We note that, when we get an optimized flux ψopt

by VMC, simultaneously, another CSL with ψ ′ = π − ψopt

is degenerate with it in the thermodynamic limit, suggesting
the existence of a gauge degree of freedom. Though these
nonzero fluxes ψs are not equal within different areas in the
CSL phase, the corresponding states exactly belong to the
same type of QSLs according to the PSG classification. In

FIG. 4. Chiral order parameter |χ | = |〈 �Si · �Sj × �Sk 〉| (i, j, and
k are the three vertices of each elementary triangle) as a function
of the chiral interaction Jχ , for different four-site ring-exchange
interactions J4 = 0.0, 0.17, 0.2, 0.24. It is averaged over all triangles
of the lattice.

other words, any two different states of this CSL phase with
different fluxes can be interconverted by a local unitary opera-
tion without gap closing [67]. More intrinsically, they possess
the same topological structure protected by the sharing PSG.
So, the CSLs with different ψs carry the same total Chern
number Ctotal = 2 with high accuracy as shown in Fig. 5(b).
Finally, we must emphasize the total Chern number in Eq. (6c)
includes two kinds (spin-up and spin-down) of spinons and
two periods for the spin operators, which results in a fractional
quantized Chern number C = 1

2 [52,68].

C. Interplay between Jχ and J4

Let us first look at the effects of the four-site ring-exchange
interaction on the U (1) CSL induced by the chiral spin inter-
action. This CSL without spinon pairings is stability against a
small J4 interaction, but will transit into the chiral Z2 d + id-
wave QSL state with the increase of J4. This chiral state is not
only TRSB but also lattice reflection symmetry breaking, but
the combination of the two symmetries is preserved [57] as the
same as U (1) CSL. The d + id QSL holds the characteristic
spinon pairing function, whose phases show different distri-
butions on different bonds as illustrated in the inset of Fig. 2,
but its hopping term is uniform along different bonds. As
discussed above, the ψ in the alternating ψ and π − ψ fluxes
in the U (1) CSL state increases with Jχ , and tends to a ho-
mogeneous distribution of fluxes. This relative homogeneous
distribution is more compatible with the uniform distribution
of the hopping term in the d + id QSL, which might be
beneficial to the transition into the d + id QSL. Hence, the
region of the CSL state in the phase diagram becomes narrow
with Jχ , as can be clearly seen in Fig. 2.

Then, we turn to discuss the instability with respect to the
Jχ term of the four phases we find in the vicinity of J4 �= 0 in
the Sec. III A. We find that the two QSLs with gap nodes in
the spinon pairing function are fragile to the chiral spin inter-
action, while the U (1) SFS state is more stable. Noticeably,
all the three QSLs will eventually give way to the same phase,
namely the d + id QSL. For the 120◦ magnetically ordered
phase, it also transits into the d + id QSL when J4 exceeds the
triple point value in the phase diagram. For the U (1) SFS state,
a notable Jχ is needed to destabilize it for large ring-exchange
interaction, for example, Jχ ≈ 0.6 is required for J4 = 0.3.
Hence, the U (1) SFS is favored and stabilized by large J4
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FIG. 5. (a) A torus is generated by the tow red dashed rings, where θ1 and θ2 are fluxes through the two holes. We compact L1 = L2

triangular lattice to this torus and mesh the phase space to 100 plaquettes to calculate the Chern number. Panels (b), (c), and (d) present the
distribution of the Berry phases in the θ1-θ2 plane for three chiral QSLs, U (1) CSL, d + id , and PQBT, respectively. The total Chern number
is marked with red numbers in each figure.

term. In the meantime, the region of the U (1) SFS is also nar-
rowed by Jχ . Therefore, we find that the d + id QSL occupies
the largest region in the phase diagram with the cooperation
of the Jχ and J4 interactions (see Fig. 2). As mentioned in
Ref. [46], the third-neighbor AFM Heisenberg interaction is
also suggested to be able to expand the insignificant region of
the chiral d + id QSL state. Our results show that the chiral
interaction is an alternative way to accomplish that.

Now, let us further discuss the detail of the instabilities
of the two QSLs with gap nodes (nodal d-wave and QBT)
with respect to the chiral interaction. The nodal d-wave QSL
is found to be unstable into the d + id QSL with any finite
Jχ with our numerical calculations, so its region in the phase
diagram in Fig. 2 is denoted as a blue line. When the chiral in-
teraction Jχ is turned on, the QBT state with gapless quadratic
band touching also opens gaps at the quadratic touching
point �k = 0 and another two Dirac points [K = (1/3, 1/3),
K ′ = (2/3, 2/3)], where we adopt the reciprocal bases of the
primitive cells as denoted in Fig. 1(b) by acquiring a nonzero
hopping term. However, Fig. 3 shows that its quasiparticle
dispersion is quite different from that of the chiral d + id QSL
as mentioned above. On the other hand, though its dispersion
looks to be quite similar to that of the QBT (see Fig. 3), it has
small gaps at those �k points, so its low temperature properties
will show differences with the QBT. Therefore, we dub it the
proximate QBT, though it shares the same PSG with the chiral
Z2 d + id QSL. In fact, we find a strong competition between
the PQBT state and the Z2 d + id state in this region, and
it exhibits the existence of two local minima in the energy
curve corresponding to these two states. To characterize the
two states, we define a parameter α = arctan(|�|/t ), where
|�| represent the amplitude of spinon pairing term and t is
the hopping one. A typical energy curve as a function of α

for Jχ = 0.04 and J4 = 0.17 is presented in Fig. 3(d). The
minimum at α = 0.495π comes from the PQBT state, which
deviates from the value 0.5π of the QBT state after acquiring
a small nonzero t . And another one at α = 0.05π corresponds
to d + id QSL state. For Jχ = 0.04 and J4 = 0.17, the local
minimum at α = 0.495π has significant lower energy, so the
PQBT state is energetically favorable. Thus, we show that
the chiral interaction induces two stable states when starting
from the QBT, one is the PQBT and the other is the d + id
QSL. First, the PQBT state has a lower energy, but the energy

difference between them is reduced with Jχ . So, the two states
will have the same energy at the critical value. We collect
these critical values and plot them as an orange dashed line
in the phase diagram Fig. 2. Above this line, the system enters
into the d + id QSL. We note that there is another difference
between these two states, i.e., the chiral order parameter |χ |
approaches to the saturated value after crossing this line, but
increases smoothly in the crossover PQBT region, as can be
seen in Fig. 4. While, it has a steplike rise when starting from
the nodal d-wave state as shown with J4 = 0.2, or from the
U (1) SFS with J4 = 0.24.

When turning on the spin chiral interaction, one will expect
it to induce nonzero Chern numbers. To calculate the Chern
number, we compact the triangular lattice on the torus with
θ1 and θ2 the fluxes through the two holes [see Fig. 5(a)]. We
find nonzero Berry phases as a function of θ1 and θ2, which
are presented in Fig. 5. For the three chiral states including
the CSL, d + id QSL and PQBT, their Berry phase in the θ1

and θ2 plane exhibits different distribution. This difference is
expected to be reflected as different temperature dependences
of the thermal Hall effect, as it depends strongly on the mo-
mentum dependence of the Berry curvature [69–71]. Though
they have different distribution of the Berry phase, we find that
they have the same total Chern number 2 within our numerical
errors, see Fig. 5. To interpret the global topological structure,
we calculate the GSDs of the two gapped chiral QSLs, namely
the U (1) CSL and Z2 d + id QSL. The detail calculations
can been found in Appendix A. We obtain GSD = 2 for a
U (1) CSL with ψ = π

2 and the d + id QSL. So, both of two
chiral states support semionic topological excitations [72].
Combining with the total Chern number, we infer that both
of the two chiral spin liquids are Kalmeyer-Laughlin state
with the same filling factor ν = 1

2 [65,73]. While, they are
two different types of chiral spin liquids protected by different
PSGs [57].

IV. CONCLUSIONS

In summary, we have investigated the interplay between
the chiral interaction Jχ and four-site ring-exchange J4 in the
triangular J1 Heisenberg model by use of the VMC technique.
We map a detail Jχ -J4 phase diagram, in which the long-range
magnetic 120◦ order and five quantum disordered phases are
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identified, the latter includes two chiral spin liquids with non-
trivial Chern numbers and three achiral ones. The J4 term
alone induces QBT, nodal d-wave and U (1) SFS QSLs with
its progressive increase. Among them, the nodal d-wave spin
liquid is destabilized into the Z2 d + id QSL with any finite Jχ

within our numerical calculations. And the U (1) SFS state is
more robust and turns to the chiral Z2 d + id spin liquid above
critical Jχ values. In particular, we find a crossover region
between the QBT spin liquid for Jχ = 0 and the Z2 d + id
spin liquid once introducing the Jχ term. This proximate QBT
state defined in this crossover region differs from the QBT
spin liquid in that it acquires a nonzero hopping term and
opens gaps at the quadratic touching point and two Dirac
points. In this region, both the proximate QBT and d + id
spin liquid are stable solutions and compete with each other,
while the former is energetically favored. With the further
increase of Jχ , the system will give up its preference of the
proximate QBT state and enter into the Z2 d + id spin liquid
with a more favorable energy. For the small Jχ and J4, the
120◦ magnetically ordered state is dominant. This phase is
fully gapped but topological trivial (ground-state degeneracy
GSD = 1). The Jχ term will eventually destabilize the 120◦
order and prefers the U (1) CSL, and this U (1) CSL will also
transit into the Z2 d + id spin liquid with the increase of the
J4 term. These results show that the Z2 d + id spin liquid
occupies the largest region in the Jχ − J4 phase diagram due
to the interplay between the chiral interaction Jχ and four-site
ring-exchange term J4. Finally, we also show that U (1) CSL,
proximate QBT state and the Z2 d + id QSL are topological
nontrivial states with Chern number C = 2 and ground-state
degeneracy GSD = 2.
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APPENDIX A: CALCULATION OF THE GROUND-STATE
DEGENERACY

First, we compact the triangular lattice on a torus, see
Fig. 5(a). In the thermodynamic limit, it does not cost any
energy to insert a global π flux into any of the two holes
of the torus. In practice, this process is equivalent to change
periodic boundary condition of the mean-field Hamiltonian
to antiperiodic one. According to this equivalence, we can
construct four mean-field ground states |Gmf

±,±〉, where ± de-
notes the boundary conditions for the directions of �a1,2, in
detail, + means periodic boundary condition and the − means
the antiperiodic one. Then, we apply a Gutzwiller projection
to these mean-field ground states to obtain physical wave
functions |
±,±〉 as the same as that in Sec. II. After these
previous preparations, we can obtain the overlap (or density)
matrix with the element given by

Oi j = 〈
i|
 j〉√〈
i|
i〉〈
 j |
 j〉
, (A1)

where i, j ∈ {++,+−,−+,−−}, and we emphasize that the
normalization is necessary. Usually, O is a 4 × 4 matrix, but
sometimes, we do not construct the whole four states un-
der Gutzwiller projection, see the supplemental material in
Ref. [74]. In practice, the gap of a certain mean-field state is
the bigger the better for this progress to weaken the finite-size
effect. After the construction, we can diagonalize the over-
lap matrix to get four eigenvalues (or apply singular value
decomposition), and the number of the significant eigenvalues
is equal to that of linearly independent states. It is just our final
target, the ground-state degeneracy.

APPENDIX B: FINITE-SIZE EFFECT
AND THE CROSSOVER

In the phase diagram Fig. 2, the 120◦ order, U (1) CSL,
d + id QSL, and U (1) SFS state occupy a wide area and are
stable. When Jχ = 0, the 120◦ order, QBT, nodal d-wave QSL
and U (1) SFS state occur in sequence, which is qualitatively
consistent with the result of Ref. [46]. In this work, the PQBT
is a key phase and its area in phase diagram is relatively
small. To check its stability, we have calculated the energies
of PQBT, d + id QSL, and QBT for different system sizes,
and the results are presented in Fig. 6. One can see that when
the lattice size L1,2 � 12, the PQBT state is stable.

Furthermore, when the Jχ slightly increases near the or-
ange dashed line in the phase diagram, the energy of PQBT
state gradually gets closer to that of d + id QSL, as shown
in Fig. 7. Therefore, the orange dashed line is determined by
the energy degeneracy between these two states. Moreover,
they belong to the same PSG. So, we suggest that it is a
crossover.

As mentioned in Sec. III B, the magnitude of 120◦ order
| �M|, is not zero when the phase transition from the 120◦
order to the CSL happens. As shown in Fig. 8, we present the
calculated variational energy with respect to | �M|. Apparently,
the locations of the minima are different for different lattice
sizes, but all of the corresponding magnitudes of this order
are significant. Besides, we can also notice that the curves
of L1,2 = 12 and L1,2 = 24 are very close to each other. That
means the lattice size with L1,2 = 12 is suitable.

FIG. 6. The size-scaling of energy of model with Jχ = 0.04 and
J4 = 0.17. The PQBT state is stable. Besides, we note that the error
bar is about 0.0003 and less than the minor tick of “E” axis.
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FIG. 7. Two energy minima when Jχ = 0.05 and J4 = 0.17.

APPENDIX C: RELATIONS AND DIFFERENCES OF U(1)
CSL, d + id QSL, AND KALMEYER-LAUGHLIN STATE

First, the obvious difference between the U (1) CSL and
d + id QSL is that there is a spinon-pairing term in the d + id
QSL and no that in the U (1) CSL. Furthermore, the energy
gap of the U (1) CSL is caused by the coupling of the U (1)
gauge field to the matter field. And the U (1) gauge field
leads to nontrivial alternative fluxes φ and π − φ through the
elementary triangles. Therefore, the time-reversal symmetry is
obviously broken, and the unit cell is doubled. For the d + id
QSL with spinon-pairing terms, obviously, it is a Z2 QSL.
Its energy gap comes from the complex spinon pairings. So,
though the time-reversal symmetry is also broken, its unit cell
remains unchanged. In addition, from the language of PSG,
they are characterized by different PSGs, namely, they are not
the same QSLs.

We note that both of them are the lattice versions of the
Kalmeyer-Laughlin state. If we consider spinless version of

FIG. 8. The curves of variational energy of 120◦ order for differ-
ent lattice sizes (Jχ = 0.35 and J4 = 0.0). And | �M| is the magnitude
of this magnetic order.
U (1) CSL at half filling, then it is a Chern insulator with
Chern number c = ±1 for the two nondegenerate bands. For
a lattice with 2N sites, this is an N-body Slater determinant

. Now we consider the spinful case [U (1) CSL]. The wave
function is a product of the two determinants, � = M
2,
where M is an irrelevant factor. If we regard the up spinon
as hardcore boson, then it is analogous to state with hall-filled
Landau level ν = 1/2 of bosons. In principle, we can apply
the � = M
m to construct any half-filled number ν = 1/m of
lattice version. Please see Ref. [73] for more details. For U (1)
CSL, the total Chern number is 2 because of spin degeneracy
as shown in the main text. The d + id state processes the
same total Chern number. Besides, both of them have the
same ground-state degeneracy GSD = 2. Combining the same
Chern number and GSD, we suggest that both U (1) CSL and
d + id QSL are Kalmeyer-Laughlin states.
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