
PHYSICAL REVIEW B 108, 245101 (2023)

Average pure-state entanglement entropy in spin systems with SU(2) symmetry

Rohit Patil ,1 Lucas Hackl ,2,3 George R. Fagan,1 and Marcos Rigol 1

1Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
2School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia

3School of Physics, The University of Melbourne, Parkville, VIC 3010, Australia

(Received 18 May 2023; revised 24 August 2023; accepted 11 October 2023; published 1 December 2023;
corrected 3 July 2024)

We study the effect that the SU(2) symmetry, and the rich Hilbert space structure that it generates in lattice
spin systems, has on the average entanglement entropy of highly excited eigenstates of local Hamiltonians and
of random pure states. Focusing on the zero total magnetization sector (Jz = 0) for different fixed total spin J ,
we argue that the average entanglement entropy of highly excited eigenstates of quantum-chaotic Hamiltonians
and of random pure states has a leading volume-law term whose coefficient sA depends on the spin density
j = J/(jL), with sA( j → 0) = ln(2 j + 1) and sA( j → 1) = 0, where j is the microscopic spin. We provide
numerical evidence that sA is smaller in highly excited eigenstates of integrable interacting Hamiltonians, which
lends support to the expectation that the average eigenstate entanglement entropy can be used as a diagnostic of
quantum chaos and integrability for Hamiltonians with non-Abelian symmetries. In the context of Hamiltonian
eigenstates we consider spins j = 1

2 and 1, while for our calculations based on random pure states we focus on
the spin j = 1

2 case.
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I. INTRODUCTION

Entanglement is a foundational concept in quantum me-
chanics. It provides crucial insights on phenomena that occur
across fields in physics, including black-hole evaporation [1],
quantum phase transitions [2], and quantum dynamics [3,4].
A commonly studied measure of entanglement in pure states
is the bipartite entanglement entropy. In strongly interacting
quantum many-body systems, the behavior of the bipartite
entanglement entropy of highly excited energy eigenstates has
become a topic of much current interest (see Ref. [5] for a
review). In the absence of strong disorder, independent of
the integrable or quantum-chaotic nature of the interacting
model, the average entanglement entropy of such states gen-
erally scales with the volume of the subsystem of interest
(when smaller than one-half of the volume of the system)
[5]. This is to be contrasted to the “area-law” scaling of the
entanglement entropy of ground states [2]. Recently, it was
conjectured that the coefficient of the volume in the average
entanglement entropy of highly excited energy eigenstates
can serve as a diagnostic of quantum chaos and integrability
[6]. The coefficient is expected to be maximal in quantum-
chaotic systems versus submaximal and dependent on the
ratio of the subsystem to the system volume in integrable
systems.

An analytic understanding of the numerically observed
behavior of the average entanglement entropy of highly ex-
cited eigenstates of many-body Hamiltonians has been gained
using different classes of random states. The (Haar-measure)
average entanglement entropy of random states [7] describes
the observed leading-order behavior of the average entangle-
ment entropy of quantum-chaotic Hamiltonian eigenstates [5],
i.e., like many other properties of such highly excited eigen-
states, the leading behavior of their entanglement entropy is

described by random matrix theory [8]. Differences between
the random-state predictions and the numerical results for
local Hamiltonian eigenstates have been observed at the level
of the subleading O(1) correction [9–12]. The volume-law
term in the (Haar-measure) average entanglement entropy of
random Gaussian states [13–15], on the other hand, resem-
bles the one in the average entanglement entropy of highly
excited eigenstates of integrable interacting Hamiltonians [5].
A similar behavior of the leading volume-law term was ob-
served, and rigorous bounds were calculated, for many-body
Hamiltonian eigenstates of translationally invariant quadratic
models [16–18].

Another question that has been explored is the role of
Abelian symmetries in the behavior of the average entan-
glement entropy [5,19]. Specifically, the presence of U(1)
symmetry in spin- 1

2 models (particle-number conservation in
spinless-fermion models) was shown to introduce a first sub-
leading correction to the average entanglement entropy that
depends on the square root of the volume [20]. Remarkably,
the same first subleading correction was found in random pure
states with fixed total magnetization or particle number [5,20].
Energy conservation was later argued to have a similar effect
in Hamiltonian eigenstates [21].

In this work we explore the effect that the non-Abelian
SU(2) symmetry has on the average entanglement entropy of
highly excited eigenstates of local Hamiltonians and of ran-
dom pure states in lattice systems. Non-Abelian symmetries
are present in models studied across fields in physics [22].
Recently, they have attracted significant attention in the con-
text of quantum-information thermodynamics [23–27], and
they have been identified as a route to generating quantum
many-body scars [28,29]. Recent studies have also explored
the effect that such symmetries have on the eigenstate ther-
malization hypothesis [30,31].
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We use numerical simulations to study the average entan-
glement entropy of highly excited eigenstates of quantum-
chaotic and integrable interacting Hamiltonians with SU(2)
symmetry. Our goal is to find how the average entanglement
entropy of energy eigenstates with different total angular
momentum scales with the volume of the subsystem of inter-
est, and whether quantum-chaotic and integrable Hamiltonian
eigenstates exhibit different behaviors (as they do in models
without symmetries or with Abelian symmetries). A second
goal of our work is to carry out analytic calculations of the
average entanglement entropy of random pure states that are
eigenstates of the SU(2) related conserved quantities to deter-
mine whether such averages describe the behavior observed
numerically for the Hamiltonian eigenstates of the quantum-
chaotic models.

We focus on pure states with zero total magnetization
(Jz = 0), and compute the average entanglement entropy for
different fixed values of the total spin J (and number of lattice
sites L). We argue that the average entanglement entropy of
highly excited eigenstates of quantum-chaotic Hamiltonians
and of random pure states has a coefficient sA of the volume
that depends on the spin density j = J/(jL), with sA → ln d
as j → 0 and sA → 0 as j → 1, where j is the microscopic
spin (notice the difference with the italic j used for the spin
density) and d = 2 j + 1 is the size of the Hilbert space of
a lattice site. For highly excited eigenstates of integrable
interacting Hamiltonians, on the other hand, we provide nu-
merical evidence that sA is smaller than for quantum-chaotic
Hamiltonians. We report numerical results for eigenstates of
spin j = 1

2 and 1 Hamiltonians, while for our analytic and
numerical calculations involving random pure states we focus
on the spin j = 1

2 case.
The presentation is organized as follows. In Sec. II, we

introduce the setup for our study of the entanglement entropy
and review previous results in the absence and presence of
U(1) symmetry. The dimensions of the sectors of the Hilbert
space in the presence of SU(2) symmetry are discussed in
Sec. III. We introduce the Hamiltonians considered and report
results for the average entanglement entropy of their highly
excited eigenstates in Sec. IV. Section V is devoted to the
study of the average entanglement entropy of random pure
states. A summary and discussion of our results is provided
in Sec. VI.

II. ENTANGLEMENT ENTROPY AND U(1) SYMMETRY

We study the bipartite entanglement entropy of pure states
|ψ〉 ∈ Hj of j spins in a lattice with L sites, where

Hj = (j)⊗L, (1)

for bipartitions

Hj = Hj
A ⊗ Hj

B = (j)⊗LA ⊗ (j)⊗LB , (2)

involving LA (LB) contiguous j spins in the subsystem of
interest A (the complement B), with L = LA + LB. The entan-
glement entropy of subsystem A is

SA(|ψ〉) = −Tr(ρ̂A ln ρ̂A), (3)

where a mixed

ρ̂A = TrB(|ψ〉 〈ψ |) (4)

is obtained after tracing out the complement B.
The (Haar-measure) average entanglement entropy of ran-

dom pure states in such systems is known to be nearly
maximal. It has, for LA � L/2, the form [7]

〈SA〉 = LA ln d − 1
2δ f , 1

2
+ o(1), (5)

where d = 2 j + 1, f = LA/L is what we call the “subsystem
fraction,” and we use o(1) to refer to terms that vanish in the
thermodynamic limit (Landau’s little o notation). The result
for LA > L/2 ( f > 1

2 ) follows after replacing LA → L − LA

in Eq. (5). Note that, in Eq. (5), the leading volume-law term
is maximal. 〈SA〉 in Eq. (5) is not maximal because of the O(1)
correction (− 1

2 ) that appears at the subsystem fraction f = 1
2 .

To understand how symmetries present in Hamiltonians of
interest change the average entanglement entropy of highly
excited energy eigenstates, one can carry out (Haar-measure)
averages of the entanglement entropy of random pure states
that are eigenstates of the conserved quantities associated
to those symmetries. Before discussing the case of SU(2)
symmetry, our interest here, we summarize previous results
for the U(1) case. The conserved quantity associated to the
U(1) symmetry is the total magnetization Ĵz, which is also
conserved in the presence of the (higher) SU(2) symmetry.

For spin j = 1
2 systems with U(1) symmetry, as mentioned

before, in Refs. [5,20] it was shown that fixing the total
magnetization when carrying out the averages introduces a
subleading correction that scales with the square root of LA.
These results are also of relevance to spinless fermion systems
with particle-number conservation, in which the total particle
number N plays the role that the total magnetization Jz plays
for spin j = 1

2 systems, N = Jz + L/2. When (more conve-
niently) written in terms of the fermion filling n = N/L, which
is equivalent to the total magnetization per site jz = Jz/L, n =
jz + 1

2 , the (Haar-measure) average entanglement entropy of
random pure states with fixed N has the form [5,20]

〈SA〉n = − [n ln n + (1 − n) ln(1 − n)] LA

−
√

n(1 − n)

2π

∣∣∣∣ln
(

1 − n

n

)∣∣∣∣δ f , 1
2

√
L

+ f + ln(1 − f )

2
− 1

2
δ f , 1

2
δn, 1

2
+ o(1), (6)

for LA � L/2. The result for LA > L/2 ( f > 1
2 ) follows from

Eq. (6) after replacing LA → L − LA. Three points to empha-
size about 〈SA〉n in Eq. (6) are as follows: (i) The coefficient
of LA in the first term depends on n [20,32] and agrees with
the one in Eq. (5) at n = 1

2 ; (ii) the coefficient of
√

LA in the
second term vanishes at n = 1

2 , i.e., it is only at half-filling
that there is no square-root-of-the-volume correction; and
(iii) the O(1) correction has one term that depends only on
f [20] and a − 1

2 that appears only at n = 1
2 and f = 1

2 [5].
Equation (6) is a result of the fact that the Hilbert space

H(N ) of the system at a fixed eigenvalue N of N̂ is a direct
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sum of tensor products

H(N ) =
N⊕

NA=0

(
H(NA )

A ⊗ H(N−NA )
B

)
, (7)

with NA being the eigenvalues of N̂ in subsystem A. While the
full derivation of Eq. (6) is lengthy (see Ref. [5]), the leading
volume-law term can be advanced as follows. The Hilbert
space of a system with LA sites and NA spinless fermions is

DNA ≡ dim H(NA ) =
(

LA

NA

)
. (8)

Using Stirling’s approximation for the particular case in which
NA/LA = N/L = n, one can write

DNA 	 1√
2πLA

√
n(1 − n)

exp{− ln[nn(1 − n)1−n]LA}. (9)

The leading term in Eq. (6) is the same as the leading term in
ln DNA for NA/LA = N/L = n, i.e., it is the same as the leading
volume-law term of the logarithm of the Hilbert space dimen-
sion of subsystem A at the same average site occupation as the
entire system. This is equivalent to taking the reduced density
matrix ρ̂A of subsystem A to be that of a maximally mixed
state of NA = nLA fermions in LA sites. For LA > L/2, the
relevant maximally mixed state is the one in the complement
of A, with LB = L − LA sites and NB = nLB fermions.

III. ENTANGLEMENT ENTROPY AND SU(2) SYMMETRY

To account for the presence of SU(2) symmetry, one can
carry out (Haar-measure) averages of the entanglement en-

tropy of random states that are simultaneous eigenstates of 
̂J 2

and Ĵz. In this section we discuss the dimensions of such sec-
tors of the Hilbert space and what those dimensions advance
about the leading volume-law term of the average entangle-
ment entropy of the corresponding random states.

The representation theory of SU(2) allows us to rewrite the
Lth tensor product of the spin-j representation in Eq. (1) as a
direct sum

Hj =
jL⊕

J=Jmin

J ⊕ · · · ⊕ J︸ ︷︷ ︸
njJ times

≡
jL⊕

J=Jmin

Hj
J , (10)

where the sum runs over integer (half-integer) spins J starting
at Jmin = 0 (Jmin = 1

2 for L > 1) for even (odd) 2jL, and nj
J is

the multiplicity of a spin J .
For large L, we can express J in terms of the spin density

j = J

jL
, (11)

which allows us to write the asymptotic form of the multiplic-
ities in the form

nj
J 	 αj( j)√

L
exp[βj( j)L], (12)

where the functions αj( j) and βj( j) can be computed us-
ing the group theory method of Weyl characters [33] (see
Appendix A). The key result is that βj( j) = ψj(z0( j)) can
be found as a saddle point, where ψj(z) is given in Eq. (A5)

and z0 � 0 is the unique non-negative real solution of the
saddle-point equation ψ ′

j
(z0) = 0.

The dimensions of the Hilbert space sector with fixed J and
the one with fixed (J, Jz ) are given by

Dj
J = dim Hj

J = (2J + 1) nj
J , (13)

Dj
J,Jz

= dim Hj
J,Jz

=
{

nj
J , |Jz| � J

0, else.
(14)

We therefore see that both will have the same exponential
scaling from Eq. (12) encoded in βj( j).

Drawing the analogy to DNA in Eq. (9) and 〈SA〉 in Eq. (6),
we thus expect that the leading-order behavior of the average
entanglement entropy of random pure states at fixed J will be
given by

〈SA〉jJ = βj( j)LA + o(LA), (15)

regardless of whether we fix Jz or not.
We focus next on the microscopic spin values j = 1

2 and
1 restricted to the zero total magnetization sector Jz = 0,
for which we carry out numerical calculations of the aver-
age entanglement entropy of highly excited eigenstates of
quantum-chaotic and integrable interacting Hamiltonians in
the next section.

Spin j = 1
2 . The multiplicity n1/2

J can be calculated exactly
for finite systems using the closed-form expression of an inte-
gral in Appendix A, or the combinatorics approach explained
in Appendix B:

n1/2
J = 2(1 + 2J )

2 + L + 2J

(
L

L/2 − J

)
. (16)

When written in the asymptotic form in Eq. (12), one finds
that β1/2( j) has the form

β1/2( j) = −
[

1 + j

2
ln

(
1 + j

2

)
+ 1 − j

2
ln

(
1 − j

2

)]
.

(17)

β1/2( j) will be used in our comparison to the numerical re-
sults obtained for the average entanglement entropy of highly
excited Hamiltonian eigenstates in Sec. IV, and to the analyt-
ical results obtained for the average entanglement entropy of
random pure states in Sec. V.

In Fig. 1, we show the rescaled fraction of states n1/2
J /D ×√

L with spin J in the zero magnetization sector vs the
rescaled J/

√
L for three values of L. We refer to the Hilbert

space of the full Jz = 0 sector as D, which can be obtained
using Eq. (8) replacing LA → L and NA → L/2. As L in-
creases, the rescaling used produces a collapse of the curves
for different values of L, with the maximal n1/2

J /D ≈ 1.2/
√

L
for J ≈ √

L/2. The collapse in Fig. 1 makes apparent that
as L increases the sectors with J = O(

√
L) account for an

increasingly large fraction of the entire Hilbert space.
The inset in Fig. 1 shows the scaling of n1/2

J /D with L for
J = O(1), n1/2

J /D ∝ 1/L; J = O(
√

L), n1/2
J /D ∝ 1/

√
L; and

J = O(L), n1/2
J /D decays exponentially with L. Those scal-

ings can be obtained analytically using that, for large values
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FIG. 1. Hilbert space fraction n1/2
J /D. (Main panel) Results pre-

dicted by Eq. (16) vs J , rescaled using
√

L, for L = 150, 500,

and 1000. The solid line shows
n1/2

J
D

√
L = 4J√

L
e−2J2/L , obtained

from Eq. (18) as the leading order for J = O(
√

L). (Inset) Re-
sults predicted by Eq. (16) vs L for J = 0,

√
L, and L/6. The

solid lines show the leading order predicted by Eq. (18) in each
regime, where n1/2

J /D = aL−1, bL−1/2, and ce−dL , with a, b, c, d =
2, 0.54, 0.53, 0.057, respectively.

of L, n1/2
J /D can be written as

n1/2
J

D
	 2√

1 − j2

(
j

1 + j
+ 1 − j

(1 + j)2L

)
(18)

× exp

{
−
[

1 + j

2
ln(1 + j) + 1 − j

2
ln(1 − j)

]
L

}
,

where j = 2J
L is the spin density ( j ∈ [0, 1]). When J =

O(
√

L), one obtains n1/2
J
D

√
L = 4J√

L
e−2J2/L, which describes the

results in Fig. 1 for large values of L. One can solve for the
location of the maximum in n1/2

J /D, from d (n1/2
J /D)/d j = 0,

via the transcendental equation

L[1 + j( j − 1) − j(1 − j2)arctan( j)L] = 0. (19)

This equation can be solved perturbatively in the limit L →
∞. We find j = 1√

L
− 1

2L + 9
8L3/2 + O(1/L2), which is where

the maximum was identified in Fig. 1.
Spin j = 1. For the microscopic spin j = 1 case, we focus

solely on the asymptotic behavior of dimensions of the Hilbert
spaces of interest. As discussed in Appendix A, for j = 1 one
finds that β1( j) [see Eq. (12)] takes the form

β1( j) = ln
3√

4 − 3 j2 − 1
+ j ln

√
4 − 3 j2 − j

2(1 + j)
. (20)

β1( j) will be used in our comparison to the results ob-
tained for the average entanglement entropy of highly excited
Hamiltonian eigenstates in the next section.

IV. SU(2)-SYMMETRIC HAMILTONIANS

We study the spin j = 1
2 extended Heisenberg model with

nearest- and next-nearest- (with strength λ) neighbor interac-
tions in chains with L sites

H = −
L∑

i=1


̂Ji · 
̂Ji+1 − λ

L∑
i=1


̂Ji · 
̂Ji+2, (21)

where 
̂Ji = (Ĵx
i , Ĵy

i , Ĵ z
i ) is the spin- 1

2 operator at site i, and we
use periodic boundary conditions. This model is integrable
when λ = 0, and quantum chaotic (nonintegrable) when λ �=
0 (we set λ = 3 in the latter regime, see Appendix C).

We also study the spin j = 1 extended Heisenberg model
with nearest-neighbor interactions in a chain of L sites with
the Hamiltonian

H ′ = −
L∑

i=1


̂J ′
i · 
̂J ′

i+1 + λ′
L∑

i=1

( 
̂J ′
i · 
̂J ′

i+1)2, (22)

where 
̂J ′
i = (Ĵ ′x

i , Ĵ ′y
i , Ĵ ′z

i ) is the spin-1 operator at site i, also
with periodic boundary conditions. As opposed to its j =
1
2 counterpart with λ = 0, the j = 1 Heisenberg model in
Eq. (22) with λ′ = 0 (i.e., with only the first term in the sum)
is quantum chaotic. The second term with λ′ = 1 makes the
model integrable [34,35].

The Hamiltonians in Eqs. (21) and (22) are translation-
ally invariant so the total quasimomentum is conserved. We
compute the average entanglement entropy of sectors with
different fixed spin J (Jz = 0) using the central 20% of the en-
ergy eigenstates in the total quasimomentum subsectors kn =
2πn/L with n = 1, 2, . . . , L/2 − 1. The results reported are
the averages S̄A over all those “complex” sectors [11,36].

In Fig. 2 (Fig. 3), we plot S̄A vs j at subsystem fraction
f = 1

2 for the eigenstates of the extended Heisenberg model
in Eq. (21) [Eq. (22)] with j = 1

2 (j = 1). We show results for
two system sizes both for the quantum-chaotic and integrable
points considered. We plot as a continuous line in Fig. 2
(Fig. 3) the prediction for 〈SA〉jJ from Eq. (15) with β1/2( j)
[β1( j)] from Eq. (17) [Eq. (20)]. The numerical results for
S̄A for the quantum-chaotic points are distinct from their inte-
grable counterparts away from j = 1. (At maximal total spin
the Hilbert space consists of a single state.) One can also see in
Figs. 2 and 3 that, with increasing L, S̄A for quantum-chaotic
energy eigenstates approaches the 〈SA〉jJ predictions, while
S̄A for integrable energy eigenstates departs from the 〈SA〉jJ
predictions away from j = 1.

The aforementioned scaling behaviors with increasing sys-
tem size are better seen in the insets in Figs. 2 and 3, in
which we show finite-size scaling analyses for S̄A at f = 1

2
and J = 0. Both for j = 1

2 and 1, we find evidence that S̄A

has a leading volume-law term no matter whether the model
is integrable or quantum chaotic. For the quantum-chaotic
energy eigenstates we find that the coefficient of the volume
law sA = limL→∞ S̄A/(L/2) is consistent with the maximal
value of ln d (with d = 2 j + 1) as predicted by Eqs. (17) and
(20) for j = 0. For the integrable energy eigenstates, on the
other hand, sA appears to be only slightly larger than one-half
of the maximal value, as found in Ref. [6] for the spin- 1

2 XXZ
model, which has only U(1) symmetry.
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FIG. 2. Average entanglement entropy S̄A at f = 1
2 for the j = 1

2
Hamiltonian in Eq. (21). S̄A vs j = 2J/L for quantum-chaotic (λ = 3)
and integrable (λ = 0) Hamiltonian eigenstates in systems with L =
20 and 22. We also show results for the average entanglement entropy
of random pure states for L = 22 [see Eq. (23)]. The continuous
line shows the prediction for 〈SA〉1/2

J from Eq. (15) with β1/2( j)
from Eq. (17). (inset) S̄A vs 1/L at J = 0, for quantum-chaotic and
integrable Hamiltonian eigenstates, as well as for random states. The
solid line shows the prediction for 〈SA〉J=0,Jz=0 from Eq. (39). The
error bars are the standard deviation of the averages, and the dashed
lines are linear (a + b/L) fits to the Hamiltonian data shown.

Having seen that the results for the leading volume-
law term of the average entanglement entropy of highly
excited eigenstates of SU(2)-symmetric quantum-chaotic
Hamiltonians with j = 1

2 and 1 are consistent with the pre-
diction from a maximally mixed state in the relevant sector
of the Hilbert space in subsystem A, in what follows we use
analytical and further numerical calculations to address two
questions. The first one is whether the direct calculation of the
average entanglement entropy of random pure states produces
the same leading volume-law term as the maximally mixed
state advances. Our intuition on this matter was built based
on the results reviewed for the case of U(1) symmetry in
Sec. II, so we need to verify that this intuition also applies
for the SU(2) symmetry. The second question we address is
the nature of the subleading corrections depending on the
value of J . Our numerical calculations for Hamiltonian eigen-
states are restricted to system sizes that are too small to gain
an understanding of how the subleading corrections change
depending on the value of J , so an analytical treatment is
needed to address this question. If the nonvanishing (in the
thermodynamic limit) subleading corrections for the aver-
age entanglement entropy of highly excited quantum-chaotic
Hamiltonian eigenstates have the same form as those for ran-
dom pure states, as is the case for the U(1) symmetry, then our
analytical results for random pure states will provide insights
into what is to be expected for the subleading corrections in
Hamiltonian eigenstates.

For the analytic calculations in the rest of this work we
focus on the spin j = 1

2 case so, to lighten the notation, we
drop j from all the expressions that follow. A first indication

FIG. 3. Average entanglement entropy S̄A at f = 1
2 for the j = 1

Hamiltonian in Eq. (22). S̄A vs j = J/L for quantum-chaotic (λ′ = 0)
and integrable (λ′ = 1) Hamiltonian eigenstates, in systems with L =
12 and 14. The continuous line shows the prediction for 〈SA〉1

J from
Eq. (15) with β1( j) from Eq. (20). (inset) S̄A vs 1/L at J = 0, for
quantum-chaotic and integrable Hamiltonian eigenstates. The error
bars are the standard deviation of the averages, and the dashed lines
are linear (a + b/L) fits to the points shown.

that the leading behavior of the average entanglement entropy
of highly excited quantum-chaotic energy eigenstates behaves
similarly to that of the average entanglement entropy of ran-
dom pure states is provided by the closeness of both averages
in Fig. 2 for L = 22. The purple circles in Fig. 2 show our
numerical results for the average over random states with
spin J (Jz = 0). The random pure states are taken to have the
form

|ψ〉rand =
∑

i

Ci |J, 0〉i , (23)

where {|J, 0〉i}nJ
i=1 is a basis generated by the eigenstates of 
̂J 2

and Ĵz with eigenvalues J and Jz = 0, respectively. The ran-
dom coefficients Ci ∈ R are drawn from a normal distribution,
and they are normalized to satisfy

∑
i C2

i = 1. The scaling of
the average over random pure states is shown in the inset in
Fig. 2 for J = 0, which one can see is qualitatively similar to
that of the quantum-chaotic energy eigenstates, and follows
the analytical prediction for 〈SA〉J=0,Jz=0 from Eq. (39). The
latter shows that the average entanglement entropy of random
pure states in the J = 0 sector produces the same leading
volume-law term as the corresponding maximally mixed state
in subsystem A.

Since all our analytical calculations are carried out using
random coefficients Ci ∈ C (so that the states |ψ〉rand are Haar
random in the respective Hilbert space) whereas all our nu-
merical calculations are carried out using random coefficients
Ci ∈ R (to reduce the computation time), we stress that the
difference between the results for Ci ∈ R and Ci ∈ C is expo-
nentially small in L (see Appendix E), i.e., real vs complex
coefficients result in negligible differences in what follows.
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V. ENTANGLEMENT ENTROPY FOR FIXED J AND j = 1
2

To compute the average over random states with j = 1
2

analytically, we write H = HA ⊗ HB as a direct sum [see
Eq. (10)],

L/2⊕
J=0

HJ︸ ︷︷ ︸
H

=
LA/2⊕

JA=Jmin

HJA︸ ︷︷ ︸
HA

⊗
LB/2⊕

JB=Jmin

HJB︸ ︷︷ ︸
HB

, (24)

where Jmin = 0 ( 1
2 ) if LA is even (odd), and nA

JA
(LA) = dim HJA

[nB
JB

(LB) = dim HJB ] can be obtained using Eq. (16) with
L → LA and J → JA (L → LB and J → JB). Equation (24)
can be interpreted as pairing, given by the principle of angular
momentum addition |JA − JB| � J � JA + JB, spins JA and JB

within subsystems A and B to produce total spin J . The range
of values of JA and JB (depending on LA and LB) that can be
paired are

max[Jmin, J − LB
2 ] � JA � min

[
LA

2
, J + LB

2

]
, (25)

max[Jmin, |J − JA|] � JB � min

[
LB

2
, J + JA

]
. (26)

Next, we study S̄A separately for J = 0, J = O(1), and J =
O(L). As discussed in the context of Fig. 1, for J = O(1)
one has that nJ/D ∝ 1/L while for J = O(L), nJ/D decays
exponentially with L.

A. Spin J = 0

We consider first J = 0, which is special as JB = JA in
Eq. (26). The n0-dimensional sector HJ=0,Jz=0 can be repre-
sented as a direct sum [see Eq. (24)]

HJ=0,
Jz=0

=
min[ LA

2 ,
LB
2 ]⊕

JA=Jmin

H0
JA

, (27)

where H0
JA

⊂ HJA ⊗ HJB contains the nA
JA

× nB
JB

states that
have identical JA = JB and zero total spin. We can explicitly
construct the basis for H0

JA
as

|ψab〉 =
JA∑

m=−JA

cm(JA) |JA, m〉a ⊗ |JA,−m〉b , (28)

where m is the Jz eigenvalue within subsystem A, a (b) labels
the nA

JA
(nB

JA
) states with spin JA within subsystem A (B), and

cm(JA) is the Clebsch-Gordan (CG) coefficient

〈JA, m; JA,−m|J = 0, Jz = 0〉 = (−1)JA−m

√
1 + 2JA

. (29)

Hence, the Haar-average entanglement entropy 〈SA〉J=0,Jz=0
over random pure states in the spin sector HJ=0,Jz=0 can
be computed using the Haar-average entanglement entropy

〈SA〉0
JA

over the restricted subspaces H0
JA

via [5,19]

〈SA〉J=0,
Jz=0

=
∑

JA

dJA

d

[〈SA〉0
JA

+ 	(d + 1) − 	(dJA + 1)
]
, (30)

where

	(x) = 
′(x)


(x)
(31)

is the digamma function, dJA = dim H0
JA

, and d = ∑
JA

dJA =
dim HJ=0,Jz=0.

A random state in the subspace H0
JA

can be written as a
superposition of base states |ψab〉,

∣∣ψ0
JA

〉 = nA
JA

[LA]∑
a=1

nB
JA

[LB]∑
b=1

Wab |ψab〉 , (32)

where Wab are random numbers drawn from a fixed trace
ensemble Tr(WW †) = 1. The corresponding reduced density
matrix ρ̂A = TrB |ψ0

JA
〉 〈ψ0

JA
| can be written as

ρ̂A =
∑

a,a′,m

R(m)
aa′ |JA, m〉a 〈JA, m|a′ . (33)

It is block diagonal over spaces of fixed m, and the entries
in such blocks are R(m)

aa′ = |cm|2(WW †)aa′ . The eigenvalue
distribution is thus the product of the fixed distribution of
the CG coefficients |cm(JA)|2 = 1/(1 + 2JA) and the eigen-
value distribution of WW † from the fixed-trace ensemble,
which is the well-known Page result [7] (for subsystems
of dimensions nA

JA
and nB

JA
). The entropy of the product

of two distributions is the sum of the entropies of the
distributions

〈SA〉0
JA

= SCG(JA) + SPage
(
nA

JA
, nB

JA

)
,

SCG(JA) = −
∑

m

|cm(JA)|2 ln |cm(JA)|2 = ln(1 + 2JA),

SPage(dA, dB) = 	(dAdB + 1) − 	[max(dA, dB) + 1]

− min(dA, dB) − 1

2 max(dA, dB)
. (34)

Plugging Eq. (34) in Eq. (30), using that dJA = nA
JA

nB
JA

and d =
n0, yields an exact expression for 〈SA〉J=0,Jz=0,

〈SA〉J=0,
Jz=0

=
min[ LA

2 ,
LB
2 ]∑

JA=Jmin

nA
JA

nB
JA

n0

[
	(n0 + 1) − 	

(
nB

JA
+ 1

)

−nA
JA

− 1

2nB
JA

+ ln(1 + 2JA)

]
, (35)

where we assumed that LA � LB, without loss of generality
due to the LA ↔ LB symmetry of 〈SA〉J=0,Jz=0.

We then obtain the asymptotic formula in the limit L →
∞ for fixed f = LA/L � 1

2 as follows. First, we extract the
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asymptotic behavior of the density function

ρ(JA) = nA
JA

nB
JA

n0

=
√

8

π

(1 + 2JA)2

√
f (1 − f )L

3 exp

[
− 2JA

2

f (1 − f )L

]
+ o(1).

(36)

We also extract the asymptotic behavior of

ϕ(JA) = 〈SA〉0
JA

+ 	(n0 + 1) − 	
(
nA

JA
nB

JA
+ 1

)
= ln(2) f L + 3 ln(1 − f )

2
− 2JA

2

(1 − f )L

− 1

2
δ f , 1

2
+ o(1). (37)

Note that it is interesting that in the expansion of ϕ(JA) the
term ln(1 + 2JA) is exactly canceled by a similar term appear-
ing in SPage(nA

JA
, nB

JA
), so that there is no ln(L) term at J = 0.

For large L, we can evaluate the sum as an integral

〈SA〉J=0,
Jz=0

=
∑

ρ(JA)ϕ(JA) =
∫

ρ(JA)ϕ(JA)dJA + o(1),

(38)

and then do a rescaling by introducing jA = JA/
√

L, so
that 〈SA〉J=0,Jz=0 = ∫∞

0

√
Lρ( jA)ϕ( jA)d jA. The leading-order

terms for f = LA/L � 1
2 read as

〈SA〉J=0,
Jz=0

= ln(2) f L + 3[ f + ln(1 − f )]

2
− 1

2
δ f , 1

2
+ o(1),

(39)

where, as before, o(1) indicates corrections that vanish in the
thermodynamic limit. The first two terms in Eq. (39) were
obtained for a related problem away from f = 1

2 in Ref. [37].
The exact result in Eq. (39) has some important prop-

erties that we would like to emphasize: (i) The leading
volume-law term has the expected maximal coefficient ad-
vanced by Eq. (17) at J = 0. (ii) The first subleading
correction is O(1). It has the same structure as the one in the
presence of U(1) symmetry [see Eq. (6), for which n = 1

2 is
equivalent to Jz = 0 here], with one term that is a function of
f and a − 1

2 that appears only at f = 1
2 . Note that the prefactor

of the function of f is different in Eqs. (39) and (6).
Since all other sectors with J = O(1) have j → 0 as L →

∞, it is to be expected given Eq. (6) that all those sectors will
exhibit the same leading volume-law term. This and the nature
of the first subleading correction for J = O(1) are explored
next.

B. Spin J = O(1)

When J �= 0, random states cannot be decomposed into
direct sums of tensor products because there are many pos-
sible pairings between JA [Eq. (25)] and JB [Eq. (26)]. A
basis {|φab〉} of HJ,Jz=0, in terms of |JA, mA〉 ⊗ |JB, mB〉, can
be written as

|φab〉 =
min[JA,JB]∑

m=− min[JA,JB]

cm(J, JA, JB) |JA, m〉a ⊗ |JB,−m〉b , (40)

with cm(J, JA, JB) = 〈JA, m, JB,−m|J, 0〉 being the corre-
sponding CG coefficient.

A random state |φ〉 in HJ,Jz=0, and its reduced density
matrix ρ̂A = Tr |φ〉 〈φ|, therefore take the form

|φ〉 =
min[ LA

2 ,J+ LB
2 ]∑

JA=max[Jmin,J− LB
2 ]

min[ LB
2 ,J+JA]∑

JB=max[Jmin,|J−JA|]

nA
JA

[LA]∑
a=1

nB
JB

[LB]∑
b=1

min[JA,JB]∑
m=− min[JA,JB]

W JAJB
ab cm(J, JA, JB) |JA, m〉a ⊗ |JB,−m〉b , (41)

ρ̂A =
min[ LA

2 ,J+ LB
2 ]∑

JA,J ′
A=max[Jmin,J− LB

2 ]

min[ LB
2 ,J+JA,J+J ′

A]∑
JB=max[Jmin,|J−JA|,|J−J ′

A|]

nA
JA

[LA]∑
a=1

nA
J′
A

[LA]∑
a′=1

nB
JB

[LB]∑
b=1

min[JA,J ′
A,JB]∑

m=− min[JA,J ′
A,JB]

W JAJB
ab

(
W J ′

AJB

a′b

)∗

× cm(J, JA, JB)c∗
m(J, J ′

A, JB) |JA, m〉a 〈J ′
A, m|a′ , (42)

where W JAJB
ab ∈ C are Gaussian random variables with zero

mean and fixed variance drawn from the fixed trace ensemble,
i.e.,the normalization of the state |φ〉 requires

∑
JA,JB

nA
JA

[LA]∑
a=1

nB
JB

[LB]∑
b=1

∣∣W JAJB
ab

∣∣2 = 1, (43)

where the limits of the sums over JA and JB are given by
Eqs. (25) and (26).

One can see that the matrix ρ̂A is block diagonal with
respect to the spin component m in the subsystem A, but
in principle has “interferences” between different JA and
J ′

A. Only in the special case in which J = 0 we effec-
tively have δJA,J ′

A
δJA,JB , which leads to the block structure

over JA discussed for J = 0. If J is not extensive ( j = 0
in the limit L → ∞), i.e., J = O(1) or J = O(

√
L), we ex-

pect that the entries of ρ̂A have a band structure around
JA = J ′

A.
In Figs. 4 and 5, we plot numerical results for the average

entanglement entropy obtained for random pure states using
ρ̂A in Eq. (42) for J = 1 and 2, respectively, at f = 1

2 (a) and
1
4 (b). [We use real coefficients in the evaluation of Eq. (42),
see Appendix E.] The results in the plots are normalized by
the expected leading volume-law term. We also plot in Figs. 4
and 5 numerical results for the average entanglement entropy
of highly excited eigenstates of the quantum-chaotic (nonin-
tegrable) Hamiltonian [Eq. (21) with λ = 3]. For random pure
states for both values of J and f shown, and for Hamiltonian
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FIG. 4. Scaling of S̄A for J = 1. S̄A vs 1/L for eigenstates of the
quantum-chaotic Hamiltonian (21), random pure states, and the SD1,
at f = 1

2 (a) and at f = 1
4 (b). The error bars show the standard

deviation of the averages, and the dashed lines show linear (a + b/L)
fits to all data sets in (a) and to the SD1 results in (b). (Insets)
Relative differences between the random states and the SD1 results,
which are consistent with 1/L and e−aL decays in (a) and (b), dashed
lines, respectively. The results for systems sizes that are even or
odd multiples of 2 in (a) have a different slope in their finite-size
scalings, but approach a similar O(1) number (∼0.27) as 1/L → 0.
Fits (a + b/L) in that case are carried out using the results for the
largest four system sizes in each case.

eigenstates for both values of J shown at f = 1
2 (at f = 1

4
we have insufficient data points), the numerical results are
consistent with the leading volume-law term in S̄A being the
expected maximal result (the y-axis intercept at 1/L = 0 is
close to 1), and with the first subleading correction being
O(1) (the numerical results follow linear a + b/L fits). Those
results suggest that Eq. (39) applies for J = O(1) > 0, but
with an O(1) correction that depends on J .

We note that Eq. (42) allows us to numerically compute the
entanglement entropy averages over random pure states for
larger system sizes than those accessible by the calculation in-
volving Eq. (23), which requires generating an exponentially
large basis {|J, 0〉i}nJ

i=1 for HJ . In order to carry out numerical
calculations for random pure states in even larger system
sizes, as well as to make analytic progress later for J = O(L),
we introduce an approximation to evaluate Eq. (42) that is
motivated by the J = 0 case. We call this approximation the
“spin decomposition 1,” in short SD1. The SD1 approximation
ignores the “interference” between different JA and J ′

A, i.e.,it
assumes that ρ̂A is also block diagonal with respect to JA. This
means that we include a Kronecker delta δJA,J ′

A
in the sum in

Eq. (42).

FIG. 5. Scaling of S̄A for J = 2. Same as Fig. 4 but for J = 2. In
the inset in (a), the fits cross the y axis at ∼0.35.

The corresponding Hilbert space decomposition resembles
Eq. (27) and is given by

HSD1
J,Jz=0 =

min[ LA
2 ,J+ LB

2 ]⊕
JA=max[Jmin,J− LB

2 ]

HJ
JA

, (44)

where HJ
JA

⊂ HJA ⊗ HB,JA contains the dJA = nA
JA

× nB
B,JA

states that have fixed spin JA in subsystem A and total spin
J . Here, HB,JA is a direct sum over all JB Hilbert spaces that
can combine with JA to give total spin J and their number is
given by

nB
B,JA

=
min[ LB

2 ,J+JA]∑
JB=max[Jmin,|J−JA|]

nB
JB

. (45)

The average entanglement entropy can be obtained by com-
puting the (Haar-random) average entanglement entropy
〈SA〉J

JA
over the restricted subspace HJ

JA
using the equiva-

lent of Eq. (34), plugging it into Eq. (30) instead of 〈SA〉0
JA

,
and using the appropriate dimensions dJA = nA

JA
× nB

B,JA
and

d = ∑
JA

dJA .
In Figs. 4 and 5, we plot numerical results for the average

entanglement entropy obtained for random pure states using
the SD1 for J = 1 and 2, respectively, at f = 1

2 (a) and 1
4

(b). (We use real coefficients in the evaluation of the SD1,
see Appendix E.) For both values of J , one can see that as
the system size increases the SD1 results at f = 1

4 become
indistinguishable from the numerical evaluation of Eq. (42).
At f = 1

2 , on the other hand, the SD1 results are always
greater than those obtained using Eq. (42), but the difference
appears to be O(1) because the linear fits intercept the y axes
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at points close to 1, only the slopes are different. We show
results for the scaling of the differences between the numerical
calculation for random pure states and the SD1 in the insets
in Figs. 4 and 5. They make apparent that at f = 1

4 (and we
expect the same for other values of f �= 1

2 ) the differences
vanish exponentially with increasing system size. At f = 1

2 ,
on the other hand, the differences appear to converge to small
O(1) numbers, ∼0.27 for J = 1 and ∼0.35 for J = 2, in the
thermodynamic limit.

Summarizing our results for J = O(1), we provided nu-
merical evidence that Eq. (39) applies for J = O(1) > 0, but
with an O(1) correction that depends on J . Furthermore, our
results in the insets in Figs. 4 and 5 show that at f �= 1

2
using the SD1 introduces an exponentially small error when
evaluating the average entanglement entropy for J = O(1),
while the error appears to be an O(1) error at f = 1

2 .
Since j = 0 in the thermodynamic limit also for J =

O(
√

L), we expect the leading volume-law term in Eq. (39)
to also apply to that case. The nature of the subleading correc-
tions for J = O(

√
L) is something that will need to be studied

in future works.

C. Spin J = O(L)

We conclude our study of the average entanglement en-
tropy of random pure states by considering the case J = O(L).
As discussed in Sec. III, in this case the ratio nJ/D decays
exponentially with L.

We consider first J = L/2, which is the largest spin. The
sector HJ=L/2,Jz=0 contains only one state, with JA = LA/2 =
f J and JB = LB/2 = (1 − f )J , such that

|ψ〉 =
min[JA,JB]∑

m=− min[JA,JB]

cm(J, JA, JB) |JA, m〉 ⊗ |JB,−m〉 , (46)

where cm(J, JA, JB) is the CG coefficient:

〈JA, m, JB,−m|J = JA + JB, 0〉
= (−1)2JA−2JB 4

√
π
√

2(JA + JB) + 1

×
√

(2JA )!(2JB )!2−2JA−2JB (JA+JB )!
2(JA+JB+ 1

2 )!(JA−m)!(JA+m)!(JB−m)!(JB+m)!
. (47)

This state has a simpler form when written in terms of the
tensor product basis of individual Ĵ z

i , that is, it is a uniform
superposition of all the base states with zero total magnetiza-
tion Jz = 0 given by [38]

|ψ〉 ∼ (Ĵ+)
L
2

L⊗
i=1

|Jz
i = −1/2〉 , (48)

where Ĵ+ = ∑L
i=1 Ĵ+

i with the raising operators Ĵ+
i = Ĵx

i +
iĴy

i at site i.
The reduced density operator becomes

ρ̂A =
min[JA,JB]∑

m=− min[JA,JB]

|cm(J, JA, JB)|2 |JA, m〉 ⊗ 〈JA, m| , (49)

and the entanglement entropy 〈SA〉J= L
2 ,Jz=0 = SA(|ψ〉) is thus

the one of the CG coefficients (as probability distribution).
In the limit of L → ∞ for fixed 0 < f < 1

2 , the distribution

of |cm(J, JA, JB)|2 in m approaches a normal distribution with
average m = 0 and standard deviation

√
f (1− f )L

4 . A closed
form for the leading term in the entanglement entropy of
this state can be obtained using the distribution of the CG
coefficients cm(J, JA, JB) = 〈JA, m; JB,−m|J, Jz = 0〉 [38], so
that for 0 < f < 1,

〈SA〉J= L
2 ,

Jz=0

= 1

2
ln

[
πe f (1 − f )L

2

]
+ o(1). (50)

To make analytic progress for J = O(L) < L/2, we introduce
a “spin decomposition 2” (SD2) with an extra simplifying
assumption on top of the SD1 discussed for J = O(1) > 0.
In the SD2, we assume that the leading contributions to the
entanglement entropy come from the terms in ρ̂A [Eq. (42)]
where JB = J − JA, which amounts to including a product of
Kronecker deltas δJB,J−JAδJA,J ′

A
in the sum in Eq. (42). This

assumption is justified by the observation that for large L and
fixed JA < J , the number nB

JB
falls off exponentially as we

increase JB from JB = J − JA, i.e.,most of the states with fixed
J , JA, and JB satisfy the relation J = JA + JB (the SD2 is exact
for J = L/2, for which there is only one state). For the SD2,
we thus only compute the average entanglement entropy over
those states.

This yields the Hilbert space

HSD2
J,Jz=0 =

min[ LA
2 ,J+ LB

2 ]⊕
JA=max[Jmin,J− LB

2 ]

HJ
JA,J−JA

, (51)

where HJ
JA,J−JA

⊂ HJA ⊗ HJ−JA contains the dJA = nA
JA

×
nB

J−JA
states with fixed JA, JB = J − JA, and J .

The resulting density matrix ρ̂A of a Haar-random state is
thus block diagonal over both JA and m [similar to Eq. (33)]
with blocks given by

W JA,J−JA (W JA,J−JA )†|cm(J, JA, J − JA)|2. (52)

The normalization of the original state is then equivalent of
requiring

min[ LA
2 ,J+ LB

2 ]∑
JA=max[Jmin,J− LB

2 ]

Tr(W JA,J−JAW JA,J−JA
†
) = 1, (53)

i.e., it is equivalent to setting W JA,JB = 0 in Eq. (41) for JB �=
J − JA.

We can compute the (Haar-random) average entanglement
entropy 〈SA〉J

JA,J−JA
over the restricted subspace HJ

JA,J−JA
ana-

lytically, as it is the entropy associated to a block of the form
in Eq. (52), though with the simpler constraint

Tr(W JA,J−JAW JA,J−JA
†
) = 1, (54)

as we only sample in the respective block. The resulting en-
tropy can be computed in full analogy to Eq. (34):

〈SA〉J
JA,J−JA

= SCG(JA) + SPage
(
nA

JA
, nB

J−JA

)
. (55)

The average entanglement entropy is then

〈SA〉SD2
J,
Jz=0

=
∑

JA

dJA

d

[〈SA〉J
JA,J−JA

+	(d+1)−	(dJA +1)
]
, (56)
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FIG. 6. Scaling of S̄A for J = O(L). S̄A vs 1/L for eigenstates of the quantum-chaotic Hamiltonian (21), random pure states, the SD1, and
the SD2 [Eq. (56) and numerical results], at J = L/3 [(a) for f = 1

6 and (b) for f = 1
3 ] and J = L/4 [(c) for f = 1

4 and (d) for f = 1
2 ]. The

inset in (d) is a zoom into the 1/L → 0 regime. The solid lines show the predictions of Eq. (57), while the dashed lines are fits of the results
(for the largest 4 values of L) of the SD1, and in (d) also of the random pure state averages, to Eq. (57) plus an O(1) constant as the only fitting
parameter.

with dJA = nA
JA

× nB
J−JA

, d = ∑
JA

dJA . The leading-order terms
for large L are given by (see Appendix D)

〈SA〉SD2
J=O(L),

Jz=0

= sA( j) f L +
√

1 − j2 ln
(

1− j
1+ j

)
2
√

2π

√
L δ f ,1/2

+ 〈SA〉J= L
2 ,

Jz=0

+ h( j, f ) + o(1), (57)

sA( j) = −
[

1 + j

2
ln

(
1 + j

2

)
+ 1 − j

2
ln

(
1 − j

2

)]
,

(58)

h( j, f ) = ln

(
2 j3/2√
1 − j2

)
− 1 − 2 f (1 − j)

2 j
ln

(
1 + j

1 − j

)

+(1 − δ j,1)
f + ln(1 − f )

2
. (59)

Three points to emphasize about 〈SA〉SD2
J=O(L),Jz=0 in Eq. (57)

are as follows: (i) The coefficient of the volume in the leading
term is the one advanced in Eq. (17). (ii) There is a

√
L

correction that appears at f = 1
2 when j �= 0, 1. (iii) The

subleading ln L correction for j < 1 becomes the leading term
at J = L/2.

In Figs. 6(a)–6(c), we show results for S̄A for eigenstates
of the quantum-chaotic Hamiltonian [Eq. (21) with λ = 3],
random pure states, and the SD1, at J = L/3 [(a) for f = 1

6
and (b) for f = 1

3 ] and at J = L/4 [(c) for f = 1
4 ], all away

from f = 1
2 . As in Figs. 4(b) and 5(b), the random states

and the SD1 results become indistinguishable as L increases
(because their difference is exponentially small in L), and the
Hamiltonian eigenstates results are very close to them. The
SD2 results are in all cases smaller, but they approach the
others with increasing L. The differences between the SD1

and SD2 results are consistent with the SD2 approximation
introducing an O(1) error. This expectation is supported by
the fact that in Figs. 6(a)–6(c) we show that the same equa-
tion that describes the SD2 results with increasing L [Eq. (57)]
describes the SD1 results for the largest system sizes after we
add an O(1) constant to Eq. (57) as a fitting parameter. The
same applies to the SD1 and random state results in Fig. 6(d)
at J = L/4 and f = 1

2 .
At f = 1

2 , the SD1 already introduces an O(1) error, so the
SD1 results are visibly greater from those obtained using the
full reduced density matrix for random pure states. The SD2

results, on the other hand, are smaller than those for random
pure states. With increasing system size, all the numerical
results in Fig. 6(d) approach each other, which suggests that
the leading volume-law term is the same for all calculations.
Having both a ln L and a

√
L correction at J = L/4 and f = 1

2
produces finite-size effects that are nonmonotonic as L → ∞.
The inset highlights the regime in which the

√
L term becomes

the dominant subleading correction in SD2.

VI. SUMMARY AND DISCUSSION

We studied the effect of the SU(2) symmetry in
the average entanglement entropy of highly excited

245101-10
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Hamiltonian eigenstates of spin j = 1
2 and 1 models in

the Jz = 0 subspace in sectors with different fixed spin J .
Our numerical results provide evidence that the leading
volume-law term in the average entanglement entropy of
highly excited eigenstates of quantum-chaotic (integrable)
Hamiltonians is the same as (different from) that obtained
from maximally mixed states in the appropriate sectors
of the Hilbert space of subsystem A. We also carried out
analytical and numerical calculations for random pure states
with spin j = 1

2 . Our results indicate (prove for J = 0) that
the leading term in the average entanglement entropy of
random pure states is also the one predicted by the maximally
mixed state in the appropriate sector of the Hilbert space
of subsystem A, as we find for the average entanglement
entropy of highly excited eigenstates of quantum-chaotic
Hamiltonians. Hence, our results suggest that the average
entanglement entropy can be used as a diagnostic of
quantum chaos and integrability in models with non-Abelian
symmetries.

More specifically, for j = 1
2 in sectors where J = O(1),

whose dimension nJ divided by the dimension D of the Jz = 0
subspace vanishes as nJ/D ∝ 1/L, our results indicate (prove
for the average over random states with J = 0) that the leading
volume term in the average entanglement entropy is maximal
(identical to that of the average over random states in the
Jz = 0 subspace), while the first subleading correction is O(1).
We advance that the same is true about the leading term of the
larger J = O(

√
L) sectors, for which nJ/D ∝ 1/

√
L. A direct

study of those sectors remains a challenge for future analytical
and numerical studies.

We find that the SU(2) symmetry plays its most distinc-
tive role in sectors with J = O(L), for which nJ/D vanishes
exponentially with increasing system size. Using a spin de-
composition (SD2) supplemented by numerical results for
random pure states with j = 1

2 , we showed that in the J =
O(L) sectors the coefficient sA of the leading volume-law
term depends on the spin density j = 2J/L, with sA( j →
0) = ln 2 and sA( j → 1) = 0 [see Eq. (58)]. Away from f =
1
2 , we find the first subleading correction to be ln L (this
correction becomes the leading term at j = 1). Sublead-
ing corrections of this form do not appear in the presence
of U(1) symmetry [see Eq. (6)], and they may be a hall-
mark of non-Abelian symmetries. Furthermore, at f = 1

2
and j �= 1, we found that the first subleading correction
is ∝ √

L.
Our numerical results indicate that Eq. (57), which is one of

the main analytical results of this work, differs from the exact
Haar-random average in the O(1) correction. A challenging
task that we plan to tackle next is computing the exact value
of the O(1) correction for the Haar-random average. As a
first step to achieve this, we intend to compute the equivalent
of Eq. (57) in the context of the SD1, which our numerical
results indicate approaches the exact result for f �= 1

2
exponentially fast with increasing L. Another interesting
question that we plan to explore is the effect of non-Abelian
symmetries in the symmetry-resolved entanglement entropy.
The effect of the Abelian U(1) symmetry in the symmetry-
resolved entanglement entropy was recently studied
in Ref. [39].
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APPENDIX A: HILBERT SPACE DIMENSIONS FOR SPIN j

Let us briefly review how to compute the multiplicity nj
J

introduced in Eq. (10) using group theory [33].
The character of a group element g ∈ G in a representa-

tion ρ : G → Lin(Hj) is given by the trace function χ (g) =
Trρ(g). In the case of the spin-J representation of SU(2), we
can use the Weyl character formula

χJ (g) = sin(2J + 1)θ

sin θ
, (A1)

where the group element is parametrized by a coordinate
θ ∈ [0, 2π ] and two other coordinates, which χJ (g) does not
depend on. The (invariant) Haar measure after integrating out
the other two coordinates is given by (sin2 θ/π )dθ .

A key property of characters is that they multiply when
taking tensor products of representations and add up when
taking direct sums of representations. Moreover, the character
functions (on compact groups) are orthonormal with respect
to the normalized Haar measure. Therefore, to determine how
often the representation J appears in the tensor product j⊗L,
one can just evaluate the integral

nj
J ≡ nj

J (L) = 1

π

∫
χJ (θ )χj(θ )L sin2 θ dθ, (A2)

where χJ (θ ) refers to the spin-J representation we want to
count and χj(θ )L is the character of the tensor product repre-
sentation j⊗L.

We can rewrite this integral using z = e−iθ as

nj
J = i

∮
(z2−1)(z1+2J−z−(1+2J ) )

4π

(
z1+2j−z−(1+2j)

z−z−1

)L
dz

= i
∮

(z2−1)z1+2J

2π

(
z1+2j−z−(1+2j)

z−z−1

)L
dz, (A3)

where the contour integral follows the unit circle counter-
clockwise. There exist closed expressions for this integral that
can be evaluated using the residue theorem, such as in the
case of j = 1

2 in which one finds Eq. (16), which is derived
in Appendix B by other means.

To obtain the asymptotic behavior for large values of L, it
is better to express J in terms of the spin density j = J

jL and
apply the saddle-point approximation. One finds

nj
J = i

∮
(z2 − 1)z

2π
eψj(z)Ldz, (A4)
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with

ψj(z) = 2 j j ln(z) + ln

(
z1+2j − z−(1+2j)

z − z−1

)
. (A5)

The saddle-point approximation then states that the integral in
Eq. (A4) is approximately given by

nj
J = i

√
2π

−ψ ′′
j

(z0)L

(z2
0 − 1)z0

2π
eψj(z0 )L, (A6)

where z0 is the dominating saddle point, such that ψ ′
j
(z0) =

0 and Re[ψj(z0)] is maximal. Here, this corresponds to the
solution z0 with ψ ′

j
(z0) = 0 that is non-negative and real.

For j = 1
2 , the dominating saddle point is z0 =√

(1 − j)/(1 + j), which gives rise to the β1/2( j) reported in
Eq. (17), and to the approximation in Eq. (18). For j = 1, the
dominating saddle point is

z0( j) =
√√

4 − 3 j2 − j

2(1 + j)
, (A7)

which gives rise to the β1( j) reported in Eq. (20). While one
can compute α( j) based on Eq. (A6), understanding β( j) suf-
fices to advance the leading volume-law term of the average
entanglement entropy.

APPENDIX B: HILBERT SPACE DIMENSIONS FOR j = 1
2

For the specific case of j = 1
2 , one can find closed-form

expressions for the Hilbert space dimensions using combina-
torics [40–42]. For completeness, next we summarize how this
is done. To lighten the notation, since we only discuss the case
j = 1

2 , we drop j from all the equations in this Appendix.
Once again, we construct the Hilbert space H as L tensor

products of the spin- 1
2 representation of SU(2):

1

2
⊗ 1

2
⊗ · · · ⊗ 1

2︸ ︷︷ ︸
L times

. (B1)

We can use the rule

J1 ⊗ J2 =
J1+J2⊕

J=|J1−J2|
J (B2)

to write (
1
2

)⊗0 = 0,

1
2 = 1

2 ,

1
2 ⊗ 1

2 = 0 ⊕ 1,

1
2 ⊗ 1

2 ⊗ 1
2 = 1

2 ⊕ 1
2 ⊕ 3

2 ,

1
2 ⊗ 1

2 ⊗ 1
2 ⊗ 1

2 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 2,

...

( 1
2 )⊗L = J1 ⊕ · · · J1︸ ︷︷ ︸

nJ1 times

⊕ · · · ⊕ Jk ⊕ · · · Jk︸ ︷︷ ︸
nJk times

. (B3)

The general form of the multiplicities nJ can be deduced from
a generalization of Pascal’s triangle, where we cut the triangle

at the middle axis (corresponding to J = 0):

spin J 0 1
2 1 3

2 2 5
2 3

L = 0 1
L = 1 1
L = 2 1 1
L = 3 2 1
L = 4 2 3 1
L = 5 5 4 1
L = 6 5 9 5 1.

The entries of the triangle represent the multiplicities nJ ,
where J consists of positive half-integers for odd L and non-
negative integers for even L.

One can find a closed formula for nJ as a function of L by
identifying the process with a random walk on non-negative
integers (representing 2J) starting at 0, where we jump from
0 to 1 with probability 1, while for all other integers 2J , we
jump either to 2J − 1 or 2J + 1 with probability 1/2 each.
The number of paths leading to integer 2J after L steps can
then be calculated using Bertrand’s ballot theorem [43,44] (in
the variant where ties are allowed). In this context, the random
walk is yet again reinterpreted as counting ballots for two
candidates with total votes p for the candidate 1 and q < p
votes for candidate 2. Bertrand’s ballot theorem (ties allowed)
then states that the number of ways the votes can be counted
(one after each other), such that candidate 1 is never behind
candidate 2 is given by(

p + q

q

)
−
(

p + q

q − 1

)
= p + 1 − q

p + 1

(
p + q

q

)
. (B4)

In our case, we have p + q = L (total votes) and 2J = p − q
(p represents right steps and q represents left steps). With this,
we find

nJ = nJ (L) = 2(1 + 2J )

2 + L + 2J

(
L

L
2 − J

)
. (B5)

Note that L/2 − J is always an integer, as J is a half-integer
whenever L is odd.

Based on this calculation, we can determine the dimensions
of the Hilbert spaces with fixed total spin J , fixed spin Jz, and
fixing both J and Jz. The corresponding dimensions are then
given by

dim(Jz ) =
(

L
L
2 + Jz

)
, (B6)

dim(J ) = 2(1 + 2J )2

2 + L + 2J

(
L

L
2 − J

)
, (B7)

dim(Jz, J ) =
{

2(1+2J )
2+L+2J

( L
L
2 −J

)
J � |Jz|,

0 otherwise
(B8)

and we see that, as long as J � |Jz|, the dimension of the
Hilbert space for fixed (J, Jz ) is independent of Jz. Hence, the
Hilbert space dimension of a sector with fixed J within the
Jz = 0 subspace is dim(Jz = 0, J ) = nJ .

APPENDIX C: MAXIMALLY CHAOTIC REGIME

In order to reduce finite-size effects in the comparison
between the average entanglement entropy of highly excited
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FIG. 7. Maximally chaotic regime. Results for (a) 
 − π/2 and
(b) S̄A at subsystem fraction f = 1

2 plotted as functions of λ for J =
0, 1, and 2 in chains with L = 20 and 22, for the microscopic spin
j = 1

2 .

eigenstates of a one-dimensional quantum-chaotic (nonin-
tegrable) Hamiltonian and random pure states with spin
j = 1

2 , following the recent discussion in Ref. [11] we set the
Hamiltonian parameter λ = 3 [see Eq. (21) in the main text]
to be in the maximally chaotic regime. By maximally chaotic
regime it is meant that, for the system sizes that one can
study using exact diagonalization, sensitive probes of quan-
tum chaos return results that are closest to the random matrix
theory predictions.

To locate the maximally chaotic regime, we use transla-
tional invariance to diagonalize the Hamiltonian in the zero
magnetization sector (Jz = 0). Translational invariance allows
us to block diagonalize the Hamiltonian within sectors with
total quasimomentum k = 2nπ/L, n ∈ [0, L/2]. We consider
chains with L = 20 and 22, and focus on the “complex” sec-
tors with n ∈ [1, L/2 − 1]. Those sectors lack the reflection
symmetry present in the “real” k = 0 and π sectors, and suffer
from smaller finite-size effects [6,11]. We select the central
100 eigenstates with J = 0, 1, and 2 in each of the complex
sectors, in each eigenstate we compute the two quantum chaos
indicators mentioned below, and then average the results over
all the eigenstates with a given value of J .

The two quantities that we compute in each eigenstate
are the “Gaussianity” and the entanglement entropy at f =
LA/L = 1

2 [11]. The Gaussianity is defined as


n =
∣∣x(n)

α

∣∣2∣∣x(n)
α

∣∣ 2 , (C1)

where x(n)
α = Re[C(n)

α ], C(n)
α being the coefficient of total

quasimomentum eigenstate |kα〉 (with the appropriate Z2

eigenvalue within the Jz = 0 sector) in the energy eigen-
state |En〉, |En〉 = ∑

α C(n)
α |kα〉. (We obtain similar results,

not shown, using Im[C(n)
α ].) The averages in Eq. (C1) are

computed over i, and then we further average 
n over all
eigenstates with a given J to obtain 
 = 
̄n reported in
Fig. 7(a). Since the eigenstates of random matrices are random
unit vectors with normally distributed coefficients, the random
matrix prediction for 
 is 
RM = π/2 [6].

Figure 7 shows our results for 
 − π/2 [Fig. 7(a)] and for
S̄A [Fig. 7(b)] as functions of λ. The results in Fig. 7(a) show

that 
 is closest to the random matrix theory prediction for the
three values of J considered for L = 20 and 22, about λ = 3.
For the average entanglement entropy in Fig. 7(b), we find that
the maximum occurs between λ = 2 and 6 depending on the
value of L and J . Given those results, we selected λ = 3 in the
maximally chaotic regime to carry out the finite-size scaling
analyses reported in the main text.

APPENDIX D: ASYMPTOTICS OF SD2

We extract the large-L asymptotics of Eq. (56) as explained
below. The general method is similar to the one explained in
detail in Ref. [5] to compute 〈SA〉N .

First, we compute the asymptotic dJA in terms of L, f , and
the subsystem spin density jA = 2JA/L, to find

dJA = α

L
exp

{[
f sA

(
jA
f

)
+ (1 − f ) sA

(
j − jA
1 − f

)]
L

}
,

(D1)

α = 8 jA( j − jA)

π (1 − f + j − jA)( f + jA)

×
√

(1 − f ) f

( f 2 − j2
A)(1 − f − j + jA)(1 − f + j − jA)

+ o(1), (D2)

where sA(·) is defined in Eq. (58).
Second, we approximate ρ( jA) = L

2
dJA
d by a Gaussian us-

ing a saddle-point approximation around the mean j̄A = j f .
We find that the variance is given by σ 2 = (1 − j2) f (1 −
f )/L + O(1/L2). We Taylor expand the exponent of dJA up
to cubic order around j̄A and then expand the exponential up
to linear order to find

ρ( jA) = 1√
2πσ 2

exp

[
− ( jA − j̄A)2

2σ 2

]

×
[

1 +
∑
�=1,3

α�( jA − j̄A)� + o(1)

]
, (D3)

where 1/(
√

2πσ 2) normalizes the Gaussian, and the expan-
sion coefficients α� (note that the quadratic order is absorbed
in the definition of the Gaussian) are given by

α1 = (1 − 2 f )(1 − j + j2)

(1 − f ) f j(1 − j2)
+ o(1), (D4)

α3 = (1 − 2 f ) jL

3(1 − f )2 f 2(1 − j2)2
+ O(1), (D5)

where the O(1) term in α3 will only contribute towards an o(1)
term in the final result.

Third, we use that the CG coefficients cm(J, JA, J − JA)
follow a normal distribution with zero mean and variance
σ 2

m = JA(J − JA)/(2J ) = jA( j − jA)L/(4 j) for large L. The
entropy of the normal distribution is

SCG(JA) = ln(
√

2πe σm) + o(1). (D6)

Fourth, we replace the sum in Eq. (56) over JA by an integral
over the subsystem spin density jA, i.e.,

∑
JA

→ L
2

∫
d jA and

split the summand, now an integrand, into the product of
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ρ( jA), which includes the factor L/2, and

ϕ( jA) = L

[
sA( j) − (1 − f )sA

(
j − jA
1 − f

)]
+ ln

⎡
⎢⎣2 j2(1 − f + j − jA)

√
(1 − f )(1 − j2)(1 − ( j− jA )2

(1− f )2 )

(1 − j)(1 + j)3( j − jA)

⎤
⎥⎦

+ 1

2
ln

[
πe jA( j − jA)L

2 j

]
+ o(1). (D7)

There is an important subtlety, namely, ϕ( j) is nonanalyti-
cal at jcrit = 2

L Jcrit (defined as the point where nA
Jcrit

= nB
Jcrit

),
such that for jA � jcrit , we need to replace f → 1 − f and
jA → j − jA.

Fifth and finally, we carry out the integration by expanding
ϕ( jA) up to quadratic order in ( jA − j̄A) to find Eq. (57) for
0 < j < 1. Note that the

√
L term with the Kronecker delta at

f = 1
2 stems from the alignment of the center of the Gaussian

j̄A = f j and jcrit , such that the Taylor expansion of ϕ( jA) is
different for jA � j̄A and jA � j̄A.

APPENDIX E: COMPLEX VS REAL RANDOM
COEFFICIENTS

To compute all the numerically obtained average entan-
glement entropies S̄A reported in the main text: for random
pure states, SD1, and SD2, we use Gaussian distributed real
coefficients, as opposed to the Gaussian distributed complex
coefficients implicit in the Haar-random averages carried out
in our analytical calculations. Real coefficients are used in
the numerical calculations to reduce the computation time. As
shown in Fig. 8, the relative differences between the results
obtained using real and complex coefficients decreases expo-
nentially with increasing L, and it is very small for the systems
sizes considered in our study.

All the results reported for random pure states were ob-
tained by averaging over at least 1000 random states for
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FIG. 8. Gaussian distributed real vs complex coefficients. Rel-
ative difference between S̄A obtained numerically by sampling real
(S̄R

A) vs complex (S̄C
A ) coefficients for J = L/4. The columns corre-

spond to the results for random states [(a) f = 1
2 and (d) f = 1

4 ], SD1

[(b) f = 1
2 and (e) f = 1

4 ], and SD2 [(c) f = 1
2 and (f) f = 1

4 ]. In all
cases the results are consistent with an e−aL decay with the number
of lattice sites L, as indicated by the dashed lines.

L � 20 and over at least 100 random states for L > 20. All
the results reported for the SD1 and SD2 approximations were
obtained by averaging over at least 1000 random states for
L � 30, and over at least 100 random states for L > 30.
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