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Probing the edge states of Chern insulators using microwave impedance microscopy
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Microwave impedance microscopy (MIM) has been utilized to directly visualize topological edge states in
many quantum materials. While the microwave response for conventional metals and insulators can be accurately
quantified using simple lumped-element circuits, whose applicability to more exotic quantum systems remain
limited. In this work, we present a general theoretical framework of the MIM response of arbitrary quantum
materials. Applying it to topological edge states in a Chern insulator predicts an enhanced MIM response at the
crystal boundaries due to collective edge magnetoplasmon (EMP) excitations. The unique resonance frequency
of these plasmonic modes allows one to disentangle the signatures of topological versus trivial edge states. To
benchmark our analytical predictions, we experimentally probe the MIM response of quantum anomalous Hall
edge states in a Cr-doped (Bi, Sb)2Te3 topological insulator and perform numerical simulations using a classical
formulation of the EMP modes based on this realistic tip-sample geometry, both of which yield results consistent
with our theoretical picture. We also show how the technique of MIM can be used to quantitatively extract the
topological invariant of a Chern insulator and shed light on the microscopic nature of dissipation along the crystal
boundaries.

DOI: 10.1103/PhysRevB.108.235432

I. INTRODUCTION

Chern insulators host chiral one-dimensional edge states
and exhibit a quantized Hall conductance due to a nontriv-
ial topological band structure. The experimental signatures
of Chern insulators have been observed in a variety of ma-
terial systems, from the quantum Hall family to magnetic
topological insulators, and more recently moiré materials
[1–10]. A key feature of Chern insulators is the presence
of topological edge modes, which are electronic states that
propagate unidirectionally along the edges of the material
without backscattering. While edge states in Chern insulators
have been investigated extensively using electronic transport
techniques [11–14], these methods lack the spatial resolution
to probe the detailed structure and the degree of localization
of these modes.

To address this limitation, several imaging techniques
have been used to directly visualize topological edge modes,
including scanning tunneling microscopy (STM) [15–19],
superconducting quantum interference device (SQUID) mi-
croscopy [20–22], as well as some interferometry techniques
[23]. These experiments have detected current flow and an
enhancement of the density of states at the boundaries of topo-
logical insulators, which have been interpreted as evidence

for one-dimensional topological edge modes. However, this
interpretation can be complicated by the presence of trivial
electronic states at the physical boundaries arising from im-
purities, dangling bonds, and band bending [24–26].

In recent years, a near-field imaging technique called scan-
ning microwave impedance microscopy (MIM) has shown
great potential for spatially resolved detection of topological
boundary modes. Experiments have reported an enhanced
microwave response at the edges of two-dimensional topo-
logical insulators and quantum Hall systems [24,27–31], but
the observed behavior cannot be easily explained by a sim-
ple conductance increase close to the edge using classical
lumped-circuit models. Furthermore, the observed width of
quantum Hall edge states, as measured by MIM, is an order
of magnitude larger than that measured by transport tech-
niques and STM, significantly exceeding the magnetic length
[15–19,32–36]. This motivates our development of a the-
oretical foundation to compute the microwave response of
quantum materials that cannot simply be characterized by a
scalar conductivity value.

In this paper, we develop a general theoretical framework
that quantifies the MIM response of a quantum material within
linear response theory. Upon applying this theory to the spe-
cial case of quantum anomalous Hall (QAH) insulators, we
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predict that an enhanced MIM response at the edge should
arise from collective edge magnetoplasmon (EMP) modes that
circulate along the sample boundary [37–44]. The resonance
frequency of these plasmonic modes should depend quantita-
tively on the topological invariant of the Chern insulator state
and on the length of the sample’s perimeter [37–40]. This
nontrivial frequency dependence can unambiguously relate
the enhanced edge signal observed with MIM to the one-
dimensional topological edge modes that propagate around
the entire sample perimeter, whereas topologically trivial edge
effects are expected to be featureless in the frequency domain.

To check the validity of this analytical model, we ex-
perimentally measured the real-space MIM response of the
QAH edge modes in a Cr-doped (Bi, Sb)2Te3 magnetic topo-
logical insulator at various microwave frequencies and also
conducted numerical simulations based on this experimental
tip-sample setup, both of which yielded results consistent with
the theoretical framework proposed here.

II. THEORY OF THE MIM RESPONSE
OF QUANTUM MATERIALS

MIM characterizes a material’s electronic response to mi-
crowave frequency electromagnetic fields confined to a small
spatial region around a sharp metallic probe. In practice, a mi-
crowave excitation is coupled to an atomic force microscopy
(AFM) tip in close proximity to the sample, and the real and
imaginary parts of the reflected signals are measured using
gighertz lock-in detection techniques [45–47].

We first review the basics of the MIM measurement setup
and then present a general model of the MIM response of
quantum materials within linear response theory. As shown in
Fig. 1, the MIM probe, driven by an AC voltage at microwave
frequency, is brought near the sample surface. Unlike STM,
the probe is only capacitively coupled to the sample. MIM
measures the displacement current exchanged between the
probe and the sample. This displacement current I can be
formally written as I = YtsV , where V is the driven voltage
and Yts is the complex tip-sample admittance [45].

In practice, an impedance matching network is always
necessary to maximize the sensitivity of the admittance mea-
surement. Since Yts is much smaller than the self-admittance of
the MIM probe Yt , the MIM signals are linearly proportional
to the change in Yts. Explicitly [45],

Re MIM + iIm MIM ≈ a(Re Yts + iIm Yts ) + b, (1)

where a is a real constant and b is a complex constant. In the
following section, we show how to obtain Yts in terms of the
density response function of the system.

A. General framework

The most commonly used model of Yts is the lumped-
element model, which treats the sample as a resistor and
a capacitor in parallel, then coupled capacitively to the tip
[47]. This model can accurately predict the MIM response of
conventional metals, dielectrics, and certain two-dimensional
materials [46]. However, a more general theoretical frame-
work is required to properly quantify the microwave response
of more complex quantum materials, such as topological
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FIG. 1. Theoretical MIM response of topological edge modes in
a quantum anomalous Hall insulator. (a) Schematic illustration of
the measurement setup, in which the MIM probe is scanned across
the QAH insulator edge. The probe is driven by an AC voltage at
microwave frequencies and then the displacement current is mea-
sured. The MIM signal can be computed by convolving with the
correlation function χ (r, r′) inside the sample. (b), (c) The imaginary
part of the MIM response of a QAH insulator according to Eq. (9). In
panel (b), the tip is scanned across the sample at fixed frequency ω

and the sample lies within the shaded region (between x = ±6/kω).
Here tx is the tip location in units of 1/kω, with kω being the EMP
momentum defined by ω ∼ ωEMP(kω ). In panel (c), the tip is situated
over the sample edge (r = d) while the frequency ω is swept. We
used d = 0.005P, l = 0.2P, and e2/[(2π )2ε0] = 0.2h̄v, where v is
the edge velocity and P is the sample perimeter. In both cases,
parameters are chosen to be relevant to the numerical simulation.

states of matter, that cannot be simply described by a pair
of scalar conductivity and permittivity values. For example,
in the case of QAH insulators, the model must accommodate
one-dimensional gapless plasmon modes at the sample edge,
which is outside the scope of the traditional lumped element
picture.

We start by considering a tip at rt , which generates an
external potential Vext (r, t ) = G(r, rt )Qt (t ) on the sample,
where Qt (t ) is the external charge at the apex of the tip,
and G(r, r′) is the Coulomb interaction inside the dielectric
environment. We note that the geometry of the tip can be
completely captured by G(r, r′), which can either be calcu-
lated numerically or be approximated by the vacuum value
of a single tip apex, G(r, r′) ≈ 1/4πε0|r − r′|. Now we write
down the induced charge density in the sample in terms of the
density response function,

δn(r, ω) = e
∫

dr′χ (r, r′; ω)Vext (r′, ω), (2)

with r and r′ both inside the sample. We drop the index ω

below to simplify the notation. This induced charge density
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in turn generates a potential Vt = −e
∫

drG(rt , r)δn(r) at the
apex of tip. The total potential at the peak of the tip has
an additional term due to the tip head capacitance Ct , Vtot =
Qt/Ct + Vt , then we can find the tip-sample admittance by
expanding Ytot = ∂t Qt (t )/Vtot to the leading order in CtVt/Qt ,

Yts ≈ −iωe2C2
t

∫
drdr′G(rt , r)χ (r, r′)G(r′, rt ). (3)

We note that all constant terms and prefactors will be absorbed
in the constants a and b in Eq. (1) during impedance matching
and therefore they are neglected from now on. Equation (3)
is one of the main results of this work, which characterizes
the MIM response of arbitrary quantum systems with χ (r, r′)
describing the dynamical charge density-density correlation
between r and r′ in the sample. The derivation of this equa-
tion uses only two assumptions: the tip can be approximated
by a single point, and the microwave frequency electromag-
netic field generated by MIM can be treated within linear
response theory. The first assumption is verified in a special
case through numerical simulations in Sec. III, while the sec-
ond assumption is supported by the high sensitivity of MIM
provided by impedance matching.

Before we proceed to apply this general framework to
Chern insulators, we will make a few comments on the result
presented in Eq. (3). First, this general result reduces to the
lumped element model in the case of a simple homogeneous
metal sheet with dielectric function ε(q),

χ (q) = ε2
0

e2

(
1

ε0
− 1

ε(q)

)
|q|2,

Yts ∼ −iω
1

32π

t2

d2

(
1

ε0
− 1

εeff

)
, (4)

where t is the sample thickness, d is the tip-sample distance,
and εeff is the effective dielectric constant. εeff approaches
the usual DC dielectric constant ε(q = 0) in the limit when
the tip is sufficiently far from the sample. The lumped ele-
ment model parameters are given by the sample resistance
Rs ∼ 1/ωIm εeff and the sample capacitance Cs ∼ Re εeff . The
tip-sample capacitance C0 only shows up in constant terms
and prefactors (see Ref. [47], Sec. SI, for definitions and a full
derivation).

Second, in the limit when the tip is sufficiently far from the
sample, we can further approximate χ (q) by χ (q = 0); then
the MIM signal can be related to the electronic compressibility
dn/dμ as follows:

Yts ∼ −iχ (q = 0) = −i
δn

δμ
, (5)

where n is the electron density and μ is the chemical potential.
This provides a direct correspondence between the imaginary
part of the MIM response and the chemical potential μ(n)
(which, for example, can be measured by scanning single-
electron transistors and related field penetration techniques
[48,49]).

Finally, due to the factor of i in Eq. (3), the imaginary
part of the MIM response, Im Yts, comes from the real part
of the density response function, Re χ , and vice versa. Thus,
Im Yts and Re Yts measure the reflectivity and absorption of the
sample, respectively.

B. Special case: Application to QAH insulators

To illustrate a concrete example, we now apply this gen-
eral framework to calculate the MIM response of topological
edge modes in a QAH insulator. The recipe is to first find
all low-energy excitations, then compute these excitations’
contributions to the density response function χ , and finally
apply Eq. (3) to find the MIM response. In two-dimensional
QAH insulators, the bulk contributes little to the dielectric
response because of the large energy gap, so we only need
to focus on the edge contribution. The edge states in QAH
insulators are characterized by the chiral Luttinger liquid that
hosts plasmonic excitations [37,44,50]. These gapless edge
plasmon modes are called edge magnetoplasmons (EMP) in
the context of quantum Hall insulators and have been studied
extensively for several decades [37–39,41–44]. More recently,
they have also been studied in the context of QAH insulators
[40], quantum spin Hall insulators [51], and Chern insula-
tors [42]. To fully understand EMP modes beyond the chiral
Luttinger liquid, prior theory work has also considered semi-
classical corrections [37,41–43].

In addition to EMP modes, edge acoustic modes have also
been observed in the low-energy excitation spectrum in QAH
insulators [52,53]. However, these modes are overdamped
at microwave frequencies in the parameter regime of QAH
insulators. Therefore, we can safely conclude that the MIM
response in QAH insulators is dominated by edge plasmon
modes. This is the underlying reason why the MIM response
of a QAH insulator behaves so differently from the response
of materials in which electron-hole pair excitation dominates.
It might be a bit surprising since plasmon modes are usually
not expected to show up in MIM data due to their finite energy
gap. However, in QAH insulators these EMP modes are gap-
less due to the one-dimensional (1D) nature of the edge states.
In the following, we only focus on the EMP contribution to Yts.

If we place the tip a linear distance r from the edge, the
tip-sample admittance reduces to

Yts ∼ − iωe2

P

∑
k

Gr (k)χ (k)Gr (−k), (6)

where k is the 1D momentum along the edge, P is the sam-
ple perimeter, and Gr (k) = K0(|k|r)/4πε0 is the 1D Fourier
transform of the Coulomb interaction 1/4πε0|r − r′| with K0

being the modified Bessel function. In Ref. [47], Sec. SII,
we compute χ (k) for chiral edge modes at the random-phase
approximation level,

χ (k) = 1

2π

k

h̄ω − h̄vk − e2

(2π )2ε0
k log

(
1
kl

) , (7)

where v is the edge velocity and l is the localization length of
the edge mode, which is inversely proportional to the bulk gap
and is assumed to be small compared to r in Eq. (6). In pure
QAH samples where the Dirac velocity vF is the only energy
scale, we expect v = vF . The poles of χ (k) define the EMP
frequencies,

h̄ωEMP(k) = h̄vk + e2

(2π )2ε0
k log

(
1

kl

)
. (8)
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This result agrees with Ref. [37], where the first term is
referred to as the quantum part and the second term is re-
ferred to as the classical part. The imaginary part of χ (k) can
be obtained by taking ω �→ ω + iε, then Imχ (k, ω + iε) =
−kδ(h̄ω − h̄ωEMP)/2, with δ being the delta function. In the
experiment, ε could be a small but finite number due to
dissipation effects, then Imχ (k) would become a Lorentzian
function centered at h̄ωEMP (see Ref. [47], Sec. SIII A).
Therefore, we expect the line shape of the EMP resonance
peaks to be broadened in the presence of dissipation along
the sample boundaries. These features should allow mi-
crowave imaging to shed light on the the microscopic nature
of the dissipation in the chiral edge modes, as revealed by the
MIM response in the frequency domain.

Since we are operating at microwave frequencies, we have
to worry about the quantization of momentum k = 2πn/P,
with n being an integer, given the finite sample diameter P.
If the MIM frequency ω ∼ ωEMP(2π/P) is comparable to the
lowest few EMP resonances, the dominant contribution to the
MIM response comes from a particular momentum kω whose
EMP frequency ωEMP(kω ) is closest to ω, then

Yts ∼ − iωe2

32π3ε2
0 P

kω

h̄ω − h̄ωEMP(kω )
K2

0 (kωr) ∼
r→0

− log2 kωr.

(9)

In experiments, we expect the case ω ∼ h̄ωEMP(2π/P) to hold
given the size of the system [40].

The presence of edge magnetoplasmons should be mani-
fested experimentally in a strong enhancement of the MIM
response at the boundaries of the QAH insulator, in agreement
with prior experimental results [29,30]. Figure 1(b) shows
the spatial profile of the MIM response (Im MIM ∼ ImYts)
of a QAH edge mode, revealing a sharp peak at the crystal
boundaries, following Eq. (9). The width of this edge peak
is given by the characteristic length scale 1/kω, the EMP
wavelength, which can be as large as a few microns for real-
istic sample dimensions. It is generally expected that the edge
width measured with MIM will be larger than the actual edge
localization length l due to long-range Coulomb coupling
between the tip and the sample. This observation helps explain
the vastly different edge state widths reported in transport
[32,33] and STM [15–19] studies versus MIM experiments
[29,30].

Investigating the frequency dependence of the MIM edge
peak should shed light on the topological nature of the Chern
insulator state. Figure 1(c) illustrates the evolution of the edge
peak amplitide as a function of the MIM excitation frequency
ω. Here we plot Im MIM as a function of ω for a fixed tip
location over the sample edge, with d = 0.005P, l = 0.2P,
and e2/[(2π )2ε0] = 0.2h̄v. The EMP resonances appear at a
series of discrete microwave frequencies, which are found to
depend quantitatively on both the topological invariant and the
sample perimeter [37–40]. Because trivial edge states local-
ized at crystal boundaries should be featureless as a function
of frequency, this unique fingerprint of the EMP resonances
in the frequency domain provides a route to unambiguously
differentiate between topological and trivial edge modes. The
quantitative relationship between the resonance frequency
and the sample circumference also illustrates the nonlocal,

topological nature of the chiral edge modes that circulate
around the entire sample.

In practice, because continuously sweeping the MIM fre-
quency can be experimentally challenging, one could first
identify the EMP resonances using traditional microwave
transmission measurements [40] and then perform MIM
imagining at a few frequencies close to and away from those
EMP resonances.

III. SEMICLASSICAL SIMULATIONS

To verify our analytical results, which were derived
using an approximation that treats the MIM tip as a point,
we also perform a numerical simulation of the MIM signal
that incorporates a realistic tip-sample geometry and dielectric
environment that had been neglected in the analytical treat-
ment. The simulation still focuses on the topological edge
state contribution to the MIM signal and utilizes a classical
formulation of the EMP modes, which accurately captures
the density response of these modes even though it may not
accurately reproduce the EMP frequencies [41,42]. This for-
mulation requires solving Maxwell’s equations with a nonzero
Hall conductance inside the sample, which therefore only
captures the classical part of the EMP frequencies in Eq. (8).

To compute the admittance Yts, we use finite element anal-
ysis to numerically solve Maxwell’s equations for the entire
experimental setup, including the MIM tip, the sample, and
the substrate, as illustrated schematically in Fig. 2(a) (see
Ref. [47], Sec. SIII, for details). The sample is placed on top
of the substrate as in the experiment [29], which results in
a step across the sample boundary [Fig. 2(a)]. The dielectric
environment is set to be identical to the experiment setup,
and the conductivity tensor is set to be σxy = e2/h inside the
sample and zero outside. To ensure numerical convergence,
we set the sample size to 12 µm × 20 µm, which is much
smaller than the one used in the experiment in Ref. [29]
and Sec. IV. A side effect of scaling down the sample di-
mension is that we need to look at much higher frequencies
in order to compare with the experiment since the first few
EMP frequencies ωn ∼ h̄ωEMP(2πn/P) are scaled up at the
same time [see Eq. (8) and Ref. [47] Sec. SIII B for details].
More quantitatively, the first few EMP frequencies are about
13 times larger than one would expect in the sample to be
discussed in Sec. IV given their difference in perimeter. The
topological nature of the problem requires a careful choice of
the solver to ensure convergence [47].

Figure 2(b) displays a real-space plot of Im Yts as the tip
is scanned across the sample, which reproduces clear peaks
at the sample boundaries, x = ±6 µm. The spatial profile
of these edge peaks, including the decay length inside the
sample, agree quantitatively with the analytical predictions in
Fig. 1(b). The most obvious difference lies in the asymmetry
of Im Yts inside and outside the sample in the simulation,
which comes from the step and a change in dielectric envi-
ronment across the sample boundary.

In Fig. 2(b), we note that the spatially resolved MIM signal
is plotted at a series of generic frequencies, which are typically
away from exact resonance frequencies. Upon analyzing the
frequency dependence of ImYts, we find the edge peak to
be narrower at higher frequencies. This phenomenon has a
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FIG. 2. Numerical simulation of topological edge magnetoplasmons in a QAH insulator. (a) Schematic illustration of the tip-sample setup
used in the numerical simulation. The sample is characterized by the nonzero Hall conductance σxy = e2/h and the vanishing longitudinal
conductance σxx . (b) Imaginary part of the MIM response, measured as a function of position across the sample, at various frequencies. A
strong enhancement of the MIM response is observed at the sample boundaries due to the presence of edge magnetoplasmon (EMP) modes.
(Note: Here we work with frequencies much higher than usually used in MIM experiments to compensate the fact that the EMP frequencies
are scaled up when we scale down the sample dimension to ensure numerical convergence). (c) Imaginary part of the MIM response, plotted
as a function of frequency when the tip is positioned over the sample edge. The difference between this simulation result and the analytical
result in Fig. 1 mainly comes from the dielectric environment. (d), (e) Electric potential distribution in (d) the vertical plane across the tip and
(e) the horizontal plane across the sample at the first few EMP resonances. The location of the tip is marked, which pins the phase of the edge
charge distribution (see main text).

simple explanation within our theoretical framework. From
Eq. (8), we know that a higher frequency ω corresponds to
a larger EMP momentum kω. Meanwhile, 1/kω sets the decay
length scale of the MIM signal when the tip moves away from
the edge [see Eq. (9)]. Combining these two observations, the
peak is expected to be narrower at higher frequencies at which
the MIM response comes from a higher-frequency EMP mode
associated with a shorter decay length. This prediction is later
compared with experiments in the following section.

When the tip is positioned over the sample edge, the
imaginary part of Yts picks up a series of resonance peaks
corresponding to the first few EMP modes [Fig. 2(c)], in
agreement with analytical predictions. However, compared to
Fig. 1(b), there is an additional contribution from the dielectric
environment that scales linearly with the MIM frequency.
Another noticeable feature is the absence of a zero frequency
peak due to the factor of kω in Eq. (9). In Ref. [47] Sec. SIII B,
we extract the dispersion of the EMP modes by identifying
resonance peaks in Im Yts, which agrees quantitatively well
with the classical part of Eq. (8).

Figures 2(d) and 2(e) illustrate the electric potential dis-
tribution in the plane of the sample at the first few EMP
frequencies, which provides a visualization of the real-space
charge density oscillations at the fundamental EMP mode and
higher harmonics. As shown in Fig. 2(e), when the MIM
frequency ω coincides with these EMP resonance frequencies,

positive and negative charges start to concentrate at the sam-
ple edge with an in-plane distribution of δn ∼ δ(r⊥)ei(kr‖+φ),
where r‖ is the distance along the edge and r⊥ is the distance
from the edge. We note that the phase φ is pinned by the loca-
tion of the tip since the energy is minimized when the charge
distribution is most negative beneath the tip. The characteristic
potential distribution of standing wave patterns clearly iden-
tifies their plasmonic nature, while also confirming that the
experimental setup is able to excite EMP modes. In Fig. 2(d),
we see that the potential starts to decay immediately away
from the edge, suggesting that charges are spatially confined
to the boundaries of the sample.

Finally, we comment on the how expected MIM signatures
of the EMP modes in a QAH insulator can be distinguished
from the signatures of trivial edge modes arising from impuri-
ties at the boundaries of a conventional insulator. As shown in
Ref. [47], Sec. SIV, the peak conductance required to repro-
duce the shape of the MIM curve is as high as 1 × 107 S/m,
which would require a large concentration of metallic impu-
rities that are extremely unlikely given the current fabrication
process. Additionally, the peak in the MIM response at the
boundaries of the sample is found to vanish at magnetic fields
corresponding to the σxy = 0 phase, which suggests that the
enhanced edge conduction is not trivial in nature [29]. Mean-
while, in the trivial case, the profile of the MIM edge peak
would remain the same across a large range of frequencies,
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FIG. 3. Spatially resolved measurement of chiral edge states in a quantum anomalous Hall insulator. (a) Schematic illustration of the MIM
experimental measurement setup. The tip is scanned across the sample, parallel to the shorter edge. (b) Experimental data reveal a strong
enhancement of the imaginary part MIM response at the edge of the sample in the QAH regime (the sample lies within the shaded region).
The measured edge peak profile becomes narrower as the MIM frequency increases. (c) Transport characterization of the sample, showing a
well-quantized Hall conductance and vanishing longitudinal conductance in the QAH phase. (d) The Re MIM vs Im MIM scatter plot of the
experimental data at 4, 6, and 8 GHz and the simulation results around the first EMP frequency. The red (blue) curves correspond to data close
to the left (right) sample edge.

in contrast to the expected MIM response from EMP modes
based on the theoretical picture presented above.

IV. EXPERIMENTAL RESULTS

To verify our theoretical framework, we performed real-
space microwave imaging of one-dimensional QAH edge
states in a high-quality magnetic topological insulator thin
film at various frequencies. The experimental setup is shown
in Fig. 3(a). The sample is a Cr-doped (Bi, Sb)2Te3 Hall bar
with dimensions of 400 µm by 20 µm, and we scan the MIM
tip across the device parallel to the short edge. Details on
device preparation and the MIM measurement setup can be
found in Ref. [47], Sec. SVI. Transport measurements are
used for a baseline characterization of the quality of the QAH
insulator state. As shown in Fig. 3(c), the Hall conductance σxy

is fully quantized and the longitudinal conductance σxx drops
to zero at B = 50 mT below the coercive field, suggesting that
current is primarily transmitted by chiral edge modes that
are topologically protected from backscattering in the QAH
phases (labeled by Chern number N = ±1).

The presence of the QAH edge modes is manifested exper-
imentally in a sharp enhancement of the MIM response at the
boundaries of the sample, as shown in the spatially resolved
microwave imaging data presented in Fig. 3(b). (We remind
readers that the experiment and the numerical simulations
were performed at very different frequencies to compensate
the difference in sample dimensions, but the resulting MIM
data can still be compared at a qualitative level).

These experimental results have a few surprising features
that differ from the expected behavior of a conventional insu-
lator with an enhanced edge conductivity with trivial origins.
First of all, the observed MIM signal is much stronger than
that expected from edge defects or local doping (see Ref. [47],

Sec. SIV, for a comparison). If the MIM signal comes from
the EMP modes, however, it is expected to diverge at EMP
frequencies and can therefore be large in general. Another
feature is that the real part of the measured MIM response is
much smaller than the imaginary part, as shown in Fig. 3(d).
This can be explained by Eq. (7) since Re χ (k) is tiny except
when the MIM frequency precisely hits one of the EMP fre-
quencies. In addition, the spatial profile of the MIM response
near the sample edge becomes narrower at higher frequencies,
which agrees qualitatively with the numerical simulations [see
Figs. 3(b) and 2(b)].

Finally, we also investigate the relationship between the
real and imaginary parts of the MIM response, measured as
a function of position, at various frequencies. As shown in
Fig. 3(d), we note that the real and imaginary parts of the
observed MIM response have a linear relation at frequencies
higher than 4 GHz. This linear relationship provides strong
evidence in favor of EMP modes being responsible for the
enhanced MIM signal at the sample edge and stands in sharp
contrast to the expected semicircle relation predicted by the
lumped-element model. The results suggest that the MIM
signal mainly comes from a 1D edge, then the r dependence of
ReMIM and ImMIM has to be the same. At frequencies lower
than the first EMP resonance, the interpretation is complicated
by the dielectric background. We refer interested readers to
Ref. [47], Sec. SV, for more details.

V. DISCUSSION AND OUTLOOK

This paper provides the first quantitative interpretation of
the MIM response of quantum materials within linear re-
sponse theory. In the limit when the tip is sufficiently far
from the sample, we show that the imaginary part of the
MIM response can be quantitatively related to the electronic
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compressibility. We take this opportunity to compare MIM
and the scanning single-electron transistor (SET) technique,
which directly measures chemical potential and therefore the
electronic compressibility [48,49]. MIM has the advantage of
being less constrained by the electrostatic gating setup (and
the associated fringing fields near the sample boundaries)
and has a higher spatial resolution due to a simpler tip ge-
ometry, while scanning SET has the benefit of providing a
more quantitative measurement of gap sizes and electronic
compressibility without the need for impedance matching.

To illustrate a concrete application of the general model
above, we compute the MIM response of a QAH insulator and
reveal that the experimentally observed enhancement of the
MIM signal at the sample boundaries comes from topological
edge magnetoplasmon modes. This observation allows one
to experimentally distinguish topologically nontrivial edge
modes from trivial edge modes by investigating the quanti-
tative relationship between the real and imaginary parts of the
complex MIM response at multiple frequencies. Furthermore,
this theoretical picture also allows us to predict the width 1/kω

of the experimentally observed peak of MIM response at the
boundaries of Chern insulators, which explains the apparent
inconsistencies between the edge-state decay length scales
measured using MIM versus STM or transport [28,31,34–36].

To confirm and expand on the analytical results, we per-
formed numerical simulations that took into account the
effects of the tip-sample geometry and the dielectric back-
ground: the former turned out to be a small correction and
the later only added linearly to the MIM signal. We also per-
formed MIM measurements of the Chern insulator states in a
Cr-doped (Bi, Sb)2Te3 magnetic topological insulator at mul-
tiple GHz frequencies to verify our theoretical understanding.
We observed a clear peak in the MIM response at the edge of
the sample, whose spatial profile, frequency dependence, and
ratio of the real and imaginary parts of the MIM signal were
consistent with our framework. We would like to point out that
future MIM experiments with continuous frequency tunability
would be desirable to fully verify our EMP interpretation of
the MIM edge response in QAH insulators.

We would also like to discuss how to measure the topo-
logical invariant of a Chern insulator using the technique of
MIM. Expanding upon our previous calculations for QAH
insulators with Chern number ν = 1, the resonance frequency
and MIM response can also be computed for systems with
higher Chern numbers by including multiple branches in the
density response calculation. At the classical level, we expect
both the EMP frequencies and the MIM signal magnitude
right on the resonance to be linearly proportional to the Chern
number as shown in Fig. 4, h̄ωEMP ∝ C, Yts ∝ C. We refer
readers to Ref. [47] Eq. (S28) for the full analytical formula
with quantum corrections. We also expect the lineshape of
the MIM signal to depend on the dissipation along the chiral
edge states (manifested in a finite σxx), as discussed in Sec. II.
These features should allow the technique of MIM to shed
light on the Chern number of a topological state, as well
as the microscopic nature of the dissipation at the sample
boundaries.

Finally, we want to emphasize that our theoretical frame-
work is suitable for arbitrary quantum materials though we
focus on QAH insulators in this work as an illustration. The

(a) (b)

FIG. 4. Numerically simulated MIM response of a higher Chern
number insulator. Here we present numerical simulations of the MIM
response of a Chern insulator with the tip positioned directly over the
edge state. The topological invariant, or Chern number, is C. (a) Plot
of the EMP resonance frequencies for a variety of Chern insulator
states with different integers C. The curves can be fitted by the same
parameters of εr and l as in the inset of Fig. 2(c). (b) Imaginary part
of the MIM signal at the EMP frequency f , plotted as a function of
the Chern number. Here we consider a finite dissipation σxx 
= 0 and
factor out the trivial factor f in Eq. (2) for clarity. The MIM signal
has a finite magnitude at C = 0 due to baseline contributions from
the dielectric environment.

only assumption used in the derivation is the microwave being
weak enough to remain in the linear response regime, which
is always true in the MIM setup. The geometry of the tip
is captured by the Coulomb interaction G(r, r′), which can
be accurately obtained from a finite element calculation. In
the future, we will exploit the power of this framework to
study more exotic quantum materials including strange met-
als, topological superconductors, and fractional quantum Hall
insulators.
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