
PHYSICAL REVIEW B 108, 235431 (2023)

Valley quantum Hall effect meets strain: Subgap formation and large increment
of the Hall conductivity
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We consider the effect of the uniaxial strain applied to a graphene monolayer with a realized quantum valley
Hall state, for which we use a version of the Haldane model. In its specific point, the latter model has two spectral
valleys: the gapless one and the gapped one. Using analytical and numerical arguments, we show that this state
is unstable against mechanical deformations of the lattice, which influences the energy spectrum, the density
of states, and the conductivity tensor. In particular, the Hall conductivity in the near-DC regime may surpass
largely the known plateau value along with the simultaneous sign change. Above effects pave the way to the
applied graphene strain engineering or straintronics. Namely, they can be used in quantum logical gates utilizing
a controllable strain manipulation for reversing or on- and off-switching of the Hall current.
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I. INTRODUCTION

Graphene is the thinnest material in the world, with only
one layer of atoms arranged in a hexagonal (honeycomb)
pattern. Because of that, it has many advantages for transpar-
ent and flexible electronics. Namely, it has high transparency
[1–4], strong resistance to stress and bending [2,3] (it sus-
tains reversible elastic deformations in excess of 20% [3,5]),
and fast electron movement [5]. Graphene is considered as
one of the most suitable materials for flexible devices like
transpired conductive electrodes, bendable screens, e-paper,
or clear solar cells [2,3]. However, to make this possible,
we need to know how the electric and optical properties of
graphene change when we apply voltage or pressure to it.
Another interesting application of this technology is to make
optical elements that can work with different wavelengths of
light and that can be very small and easy to integrate with
other devices. This is also a very important goal in the field of
nanotechnology.

One of the simplest models which captures well the ex-
ceptional topological properties of graphene is the Haldane
model [6]. The model was proposed by Haldane in his
seminal 1988 work [6], based on the honeycomb lattice
with nearest-neighbor and next-nearest-neighbor hopping.
The model utilizes two key ingredients: a difference in the
on-site energy of the two sublattices of graphene, which opens
a gap in the band structure, and a staggered magnetic field that
breaks the time-reversal symmetry of the system. The model
shows that the system has nontrivial topological properties,
such as a nonzero Chern number and chiral edge states, that
depend on the sign and magnitude of the parameters. Due to
the simplicity and physical elegance of the Haldane model
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[7], it is well-suited for our purposes of theoretical studies
of the strain effects on graphene monolayers. The distinct
feature of the Haldane model is that it does not require any
external magnetic field to break the time-reversal symmetry.
Instead, the broken time-reversal symmetry is mimicked by
the absence of mirror symmetry between specific spectral
structures within the Brillouin zone, the so-called valleys.
Hence, the version of the quantum Hall effect described by
the Haldane model is sometimes (and in this paper too)
referred to as the valley quantum Hall effect [8]. The suc-
cess of the model initiated subsequent intensive activities
and led to the discovery of an entire class of related models
based on different microscopic Hamiltonians, which share
the same basic properties [9–11], and eventually became
the object of experimental manipulations and engineering
design [12].

The honeycomb lattice symmetries are the key component
of the Haldane model. The excellent and robust transport
properties of graphene are mainly due to the honeycomb sym-
metry of the underlying lattice which is responsible for salient
spectral features. These and the transport properties can be
manipulated and engineered by mechanical deformations of
the honeycomb lattice, which has long been studied experi-
mentally and theoretically [13,14]. The applied strain breaks
the spatial isotropy of the honeycomb lattice. It displaces the
spectral cones from their initial positions but does not alter the
shape of the Brillouin zone [15–21]. The system reacts with
modified spectral and transport properties. It is of considerable
interest and intellectual challenge to investigate the properties
of the Haldane-like models on mechanically deformed hon-
eycomb lattices. The main questions which arise hereby are
as follows: what are the effects of the modified topography
of the honeycomb lattice on the spectra and the density of
states (DOS); how does it affect the electronic transport in the
system and in the longitudinal direction in particular; and to
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what extent is the valley Hall state immune against the strain?
These questions are also relevant for more complex systems
composed of graphene monolayers. For instance, they are
important for currently actively studied twisted graphene mul-
tilayers [22,23], where the strain leads to entirely unexpected
effects [24,25].

This paper is devoted to the clarification of the above
and other aspects in graphene and other valley quantum Hall
systems. The main and quite unexpected result here is that
the valley Hall state (corresponding to the situation with one
solid and one fully gapped Dirac cone) turns out to be unstable
towards the slightest violations of the spatial isotropy. As
a consequence of that, the initially solid cone gets gapped
and the system turns into an insulator with a large gaps
mismatch. The comparison of the predictions made in our
work with the results of realistic ab initio calculations [26]
suggests that our model delivers pretty well a description of
the strain effects in graphene and its results could be eas-
ily checked by currently available experimental methods and
techniques.

The physical picture that unfolds in strained graphene
is mainly the consequence of the above gaps mismatch. In
what follows, we carry out a thorough investigation of dif-
ferent facets of strain influence like the gap evolution, the
DOS, and different kinds of conductivity in the proposed
model. The obtained physical picture enables us to envis-
age its possible applications in the spirit of the straintronics
concept [26–29], e.g., the strain-engineered quantum Hall
logical gates.

II. SPECTRAL AND TRANSPORT PROPERTIES
OF ELECTRONS IN ANISOTROPIC

HONEYCOMB LATTICE

In momentum space, the first quantized tight-binding
Hamiltonian of electrons on a generic honeycomb lattice
reads

H0 = −
3∑

j=1

(
0 t jeia j ·k

t je−ia j ·k 0

)
. (1)

Here ai are the nearest-neighbor positions on the honeycomb
lattice:

a1 = a(0,−1), a2,3 = a

2
(±

√
3, 1), (2)

with a being the interatomic separation, which we be put
to unity below. The Hamiltonian (1) has the 2 × 2 matrix
structure in the sublattice space of the non-Bravais honey-
comb lattice. Its energy spectrum consists of the following two
bands:

ε± = ±ε, ε =
√

h2
1 + h2

2, (3)

where

h1 = −
3∑

i=1

ti cos(ai · k), h2 = −
3∑

i=1

ti sin(ai · k). (4)

For an isotropic lattice, where all t j are equal, both above spec-
tral branches touch each other at six corners of the Brillouin

zone,

b±
1 = 4π

3
√

3a
(±1, 0), (5)

b±
2 = 2π

3
√

3a
(−1,±

√
3), (6)

b±
3 = 2π

3
√

3a
(1,±

√
3), (7)

where they compose two full Dirac nodes. Near these points,
the spectrum has a conical shape, where two cones are mirror
copies of each other. Namely, they are mapped to each other
by complex conjugation of the Hamiltonian and are, therefore,
chiral. Alternatively, the above spectral structures are referred
to as the spectral valleys. The violation of the mirror symme-
try between them leads to the appearance of currents in the
ground state and the onset of a quantum Hall state.

This picture is modified if the spatial isotropy is lifted and
the hopping amplitudes t j become different. This can be real-
ized, for instance, by the application of the in-plane uniaxial
mechanical strain. Such strain, acting on both sublattices in
opposite directions, modifies the electronic hopping ampli-
tude between the nearest atoms on the lattice. In terms of the
effective Dirac description of graphene, this effect creates an
additional term resembling the conventional vector potential,
which, however, does not break the time-reversal symmetry of
the Hamiltonian [15–18]. As we vary the strain (i.e., the elec-
tronic hopping amplitude t j) continuously, the Dirac nodes
can be moved in the momentum space accordingly. The main
effects of this heuristic picture are captured by the simplified
description, in which the hopping amplitudes t2 and t3 are
kept fixed at the value t0 of the isotropic lattice, while t1
changes smoothly between t0 and 2t0. This is the case of the
uniaxial strain applied in the y direction. Then the Dirac cones
with different chirality start moving in the momentum space
towards each other along the following trajectory:

kx = ± 2√
3

arccos

[
t

2t0

]
, ky = ±2π

3
. (8)

At the particular value t = 2t0, the Dirac nodes merge and
give rise to an anisotropic spectrum with parabolic dispersion
along the motion direction and linear perpendicular to it. This
regime is known as the Lifshitz point. For larger t , the partici-
pating bands become separated by a gap. At the Lifshitz point,
the spectral anisotropy turns into the transport anisotropy. In
particular, the low-energy asymptotics of the DOS changes
from ∼E below the Lifshitz point (Dirac cone) to ∼√

E at this
point [15]. Similar behavior of σ⊥ ∼ √

ω is demonstrated by
the perpendicular (i.e., measured perpendicular to the strain
application direction) optical conductivity as a function of
external frequency ω. On the contrary, the parallel component
of the optical conductivity diverges as σ‖ ∼ 1/

√
ω [30,31]. At

low energies, both components of the conductivity tensor are
related by the so-called geometric average constrain [32–34]√

σ‖(ω)σ⊥(ω) ≈ σ0, (9)

where σ0 represents the frequency-independent, i.e., universal,
conductivity of the isotropic system [35]. In the DC limit,
the geometric average is satisfied for all strains between t0
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and 2t0 [30], the averaged quantity being the universal DC
conductivity of graphene [36].

III. THE REALIZATION OF THE VALLEY
SYMMETRY-BREAKING TERM

To realize our objectives, we implement the symmetry
breaking between both valleys employing a version of the
Haldane model [6,7] formulated in Ref. [11]. Technically,
the valley symmetry breaking is realized by adding the term
h3σ3, where σ3 is the diagonal Pauli matrix with elements
±1 and

h3 = Mδrr′ + t ′χrr′ , (10)

to the Hamiltonian (1). This term describes an inhomogeneous
gap at both valleys. It is given here in the coordinate represen-
tation with summation over lattice site coordinates r and r′.
Here M is the main gap value, and t ′ is the hopping amplitude
between the second-nearest neighbors. The matrix element in
the second term of Eq. (10) reads

χrr′ =
∑

i=1,2,3

(
eiφδr′,r+ci

+ e−iφδr′,r−ci

)
, (11)

where φ denotes the tunable Peierls phase of the periodic
staggered magnetic field and ci denotes the positions of the
second-nearest neighbors on the honeycomb lattice:

c1 =
√

3a(1, 0), c2,3 =
√

3a

2
(−1,±

√
3). (12)

As none of the vectors ci are parallel or antiparallel to the
strain application direction, the corresponding hopping am-
plitudes do not modify. In momentum space we have from
Eq. (10)

h3 = M + 2t ′
3∑

i=1

cos (ci · k + φ). (13)

In general, the term h3σ3 in the Hamiltonian (1) opens a gap
in the dispersion

E± = ±E , E =
√

h2
1 + h2

2 + h2
3. (14)

The gap at each of the two valleys can be varied indepen-
dently. In particular, it can be adjusted such that the gap
parameter vanishes completely in one valley while remain-
ing in the other. Sometimes this regime is called the critical
Haldane model [6]. It is realized with the Peierls phase φ =
−π/4 and the fine-tuned main gap M = 3t ′(1 + √

3)/
√

2.
Once this regime is established, the symmetry between the
right- and left-handed Dirac cones is broken, and the system
arrives at the nontrivial topological state with a finite Chern
number,

C1 = sgn(M )

2
, (15)

which corresponds to the real part of the Hall conductivity
Re σH = C1

e2

h . According to the prevailing lore, this quantity
represents a universal topological invariant. In particular, it
should not depend on the shape and width of the spectral
band lying above the gap. According to this argumentation,

if the second cone were gapped for some reason, it would
also contribute to the Hall conductivity. The total Hall con-
ductivity would then appear as the sum of both contributions,
i.e., twice the value Eq. (15) or zero depending on the sign
of the gap at each cone but irrespective of its size. The
combination of the Haldane model with the uniaxial strain
can thus give us a reliable tool for checking this funda-
mental claim, which is sometimes referred to as the TKNN
theorem [37].

Under strain, the position of both valleys varies as in the
case of simple honeycomb lattice. This process is shown in
Fig. 1. Moreover, the strain also modifies the valleys of the
Haldane model. Along the extremal trajectory (8), the expan-
sion of the spectrum (14) causes the following changes:

(i) We get the presence of a zero-momentum gap at the
originally gapless cone. We have in this case

h3 = M

6
√

3
[1 + 3

√
3 + τ 2 − 2

√
4 − τ 2 − τ (2 +

√
4 − τ 2)],

τ = t

t0
. (16)

For τ = 1 it is zero, recovering the isotropic case. Expanding
Eq. (16) in δτ = (t − t0)/t0 = τ − 1, we get

h3 ∼ 3 + √
3

18
Mδτ 2. (17)

To distinguish it from the main gap of the Haldane model, we
refer to this strain-induced gap as the subgap below.

(ii) Similarly, for the zero-momentum gap at the originally
gapped cone, we get

h3 = M

6
√

3
[1 + 3

√
3 + τ 2 + 2

√
4 − τ 2

− τ (2 −
√

4 − τ 2)]. (18)

For small δτ , the main gap acquires the following strain-
induced correction:

h3 ∼ M − 3 − √
3

18
M δτ 2. (19)

Hence, both gaps have the same sign sgn(M ), irrespec-
tively of the sign of δτ . Since they are associated with cones
with opposite chiralities, the corresponding Hall conductivi-
ties have different signs. The numerically evaluated subgap
values at the originally gapless cone and gap corrections to
the originally gapped cone are shown in Fig. 2.

IV. DENSITY OF STATES

To get insights into the physics of the critical Haldane
model under strain, it is instructive to first consider the DOS,
which is an imaginary part of the single-particle Green’s
function

ρ(E ) = −Im Tr
∫

BZ

d2k

4π3
(H − E + i0+)−1. (20)

Here, the trace operator Tr acts in the sublattice space and the
momentum integral is to be taken over the Brillouin zone (BZ)
of the honeycomb lattice. The numerical evaluation of the
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FIG. 1. The positions of the valleys in momentum space vs increasing parameter t/t0 in the model with broken valley symmetry. The
difference between valleys (large/small gap) and change of their locations are visually recognizable inside the black squares in the centers of
the panels. Black squares (rhombi on real scale) in each panel show the plaquette used for the momenta summations, as explained in the text.
Strain parameters from left to right: t/t0 = 1.0, 1.5, and 2.0.

DOS shows that it combines several features inherent in both
broken valley symmetry and lattice anisotropy. The effect of
the former is most prominent in the low-energy domain. Since
on isotropic lattice, the mass term defined in Eq. (13) gaps one
of the cones, the low-energy contribution comes only from the
second term. In particular, the slope of the linear part is only
half of that of the full spectrum, and when the energy super-
sedes the gap in the other, the DOS changes abruptly, reaching
the corresponding value of the full spectrum. The effects of
the strain are twofold. First, similar to the isotropic lattices, it
leads to the unpinning of the saddle points in the spectrum.
In the DOS this effect generates the lower and higher van
Hove singularities (Fig. 3). The appearance and origin of the
multiple van Hove singularities have been previously noticed
and discussed for the DOS in Refs. [16,19,34] and for the
optical conductivity in Refs. [19,30,32]. Second, there is an
effect that is specific to the Haldane model only. Namely, as
we have discussed previously, the strain breaks the full cone

in the spectrum and opens a gap. These gaps are visible in
the DOS.

The numerical evaluation of the observables requires much
caution. Namely, it is preferable to carry out the momen-
tum integration not over the actual hexagonal Brillouin zone,
which accounts for the cones at the corners only partly. This is
the reason for the sizable spurious oscillations of the results.
These issues become considerably less expressed if instead
one integrates over the plaquette, which fully envelopes two
opposing cones. This plaquette appears in Fig. 1 in the form
of black rhombi. Such a rhombus has the same area as the
conventional hexagonal Brillouin zone, is periodic in the
reciprocal space, and can be used as a single element for
covering the whole of it. Hence, the integration over this pla-
quette instead of the actual Brillouin zone does not influence
the result. Still, the evaluated DOS (and later the conductiv-
ities) exhibit some noise, especially at higher energies (see
Fig. 3). Importantly, this noise appears at higher energies and
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FIG. 2. Left panel: The spectrum of the model with broken valley symmetry under uniaxial strain. The left cone is gapless without strain
but acquires a gap under strain. The right cone has the initial (i.e., for t = 0) gap 0.2t0. The strain values 1.0 < t/t0 < 2.0 are coded by colors
and shown in the legend. As t → 2t0, the interminima separation becomes progressively smaller, and at the critical value t = 2t0 they merge
into a single one. Right panel: The size of the strain-induced subgap at the originally gapless left cone [blue line, Eq. (17)] and the main gap
strain-induced correction [red line, Eq. (19)].
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FIG. 3. The evolution of the DOS of the critical Haldane model with broken valley symmetry under strain. Left panel: General view of the
DOS with the clearly visible splitting of the main van Hove singularity due to the unpinning of the saddle points in the spectrum at t/t0 > 1.
The strain values t/t0 are similar to those in Fig. 2 (legend). Right panel: The low-energy part of the DOS at E/t0 < 0.4. The strain values t/t0

are shown in the legend. The second cone is gapped at arbitrarily small values of the strain, while the main gap acquires minimizing corrections
by the strain, Eqs. (16) and (18). For t/t0 > 1.6, the lower van Hove singularity enters the considered energy region. In both panels, the mass
parameter is chosen to be 0.2t0.

is, therefore, largely indifferent to the value of the analytical
continuation 0+.

V. KUBO FORMULA FOR CONDUCTIVITY

The components of the conductivity tensor are calculated
from the Kubo formula [38]

σμν (ω) =
∫

BZ

d2k

(2π )2

fβ (Ek ) − fβ (−Ek )

2iEk

×
(

Tr{ jμP+ jνP−}
ω − 2Ek − i0+ + Tr{ jμP− jνP+}

ω + 2Ek − i0+

)
, (21)

where fβ (x) denotes the Fermi-Dirac distribution functions
at inverse temperature β−1 = kBT , with kB being the Boltz-
mann constant. The projectors on the upper/lower band are
defined as

P± = 1

2

[
1 ± H

Ek

]
. (22)

Here, the generic Hamiltonian is defined as

H = h1σ1 + h2σ2 + h3σ3, (23)

its spectrum Ek =
√

h2
1 + h2

2 + h2
3, and the current operators

are

jμ = ∂

∂kμ

H, (24)

where kμ is wave vector in the μ = 1 and 2 spatial directions.
Using the notation pa

ν = ∂ha

∂kν
, the matrix element for generic hi

can be written as

Tr{ jμP± jνP∓} = pa
μ pb

ν

E2
k

{
E2

k δab − hahb

} ∓ iεabc

pa
μ pb

νhc

Ek

(25)

and applies to any matrix Hamiltonian of the form of Eq. (23),
irrespective of its low-energy spectra.

Due to another numerical limitation, one has to ensure that
the inverse quasiparticle lifetime 0+ is actually kept finite but
smaller than the frequency ω to avoid strong oscillations of the
integrals. Unfortunately, because of this, the actual DC limit
is not accessible as the frequency too needs to be kept finite.

VI. LONGITUDINAL CONDUCTIVITIES
AND THE GEOMETRIC AVERAGE

We evaluate the longitudinal conductivity in the near-DC
regime, i.e., for small constant external frequencies ω. One
should be careful with that definition though, since it suggests
the frequency-to-gap ratio to be small. While it is indeed
possible to realize this for the main gap M of the model,
there are always strain values for which the induced gap
would be smaller than the frequency. Therefore, we expect the
frequency-to-induced-gap ratio to vary gradually from very
large values, passing through unity to the very small ones.

In both spatial directions, we observe a universal behavior
of the real part of the corresponding longitudinal conductivity.
This behavior is characterized by linear small-strain asymp-
totics with positive and negative slopes along and across the
applied strain direction respectively. This asymptotics varies
smoothly into a nonlinear increment and reaches a maximum
before it abruptly breaks down at some scale.

The qualitative understanding of this behavior can be
achieved with the help of the effective anisotropic Dirac
Hamiltonian

H = v1k1σ1 + v2k2σ2 + mσ3. (26)

This Hamiltonian has the strain-dependent parameters v1,2
and m. It captures well the physics of the originally gapless
cone of the Haldane model for small strains. The current
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operators become

j1,2 = v1,2σ1,2. (27)

For the conductivity in the μ = 1 direction, the matrix ele-
ment in Eq. (25) becomes

Tr{ jμP± jνP∓} = 4v2
1
v2

2k2 + m2

E2
k

. (28)

Then, for ω > 0, we arrive at

σ11 = 2v2
1

∫
dk1dk2

(2π )2

v2
2k2

2 + m2

iE3
k

1

ω − 2Ek − i0+ . (29)

Substituting viki → qi, we obtain the following for the real
part:

Re σ11 = v1

v2

∫
d2q

2π

q2
2 + m2

E3
q

δ(2Eq − ω). (30)

The most convenient way to evaluate the integral (30) is to
use the polar coordinates in the (q1, q2) plane. In this case,
after performing the angular integration, we can replace q2

2 →
q2/2, integrate over q2, and then integrate further over Eq =√

q2 + m2. The final result is

Re σ11 = v1

4v2

ω2 + 4m2

ω2
�(ω − 2|m|). (31)

To derive the expression (31), we exploited the properties
of the Heaviside � function

∫ ∞
|m| dE = ∫ ∞

−∞ �(E − |m|) dE .
Analogously, we get the following for the perpendicular con-
ductivity component:

Re σ22 = v2

4v1

ω2 + 4m2

ω2
�(ω − 2|m|), (32)

which explains qualitatively the origin of the conductivity
anisotropy in the strained system. The expressions (31) and
(32) provide the qualitative understanding of the curves in
Fig. 4. If there is no strain (i.e., t/t0 = 1), when m = 0 and
vi = v (v being the Fermi velocity of the isotropic lattice), the
conductivities approach the same value

Re σμμ = 1

4

e2

h̄
= 1

2
σ0, (33)

where we restore the conductivity units and the “universal”
conductivity of the pristine graphene. At finite strain, i.e., for
finite m, the system is conducting only for the frequencies
larger than the double gap, i.e., for ω > 2|m|. If the strain
becomes so large that the frequency falls inside the gap, then
the conductivity collapses to zero.

To reveal the main difference between the considered
strained Haldane model and that of the “ordinary” graphene,
it is useful to consider the geometric average

σav = √
σxxσyy ≡ √

σ11σ22. (34)

The comparison of the expression (34) with respect to
Eqs. (31) and (32) shows the basic difference between the
above two models. Namely, while the presented (strained
Haldane) model has the frequency and strain-dependent σav
(34), in the “ordinary” graphene this quantity has a strain-
independent universal value (33) [30].
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FIG. 4. The longitudinal conductivities parallel (yy components,
blue curves) and perpendicular (xx components, black curves) to the
strain direction. The conductivities are scaled in units of the universal
conductivity of the isotropic system. The gap parameter is varied
from 0.4t0 (maxima at smaller t/t0) to 0.1t0 (maxima at larger t/t0),
see figures near the curves. The respective geometric averages are
depicted in solid red. For smaller strains t/t0, they collapse to a
horizontal strain-independent line. The smaller the gap, the broader
the strain-independent region. The frequency of the external field is
chosen as 10−2t0.

VII. HALL CONDUCTIVITY

The Hall conductivity of the critical Haldane model un-
der strain is evaluated from the Kubo formula in a fashion
similar to that of the longitudinal one. The near-DC results
are reported in Fig. 5 and reveal several unexpected features.
Namely, while the Hall conductivity starts at the universal
value, inherent in unstrained graphene, at some quite small
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FIG. 5. The Hall conductivity in units of e2/h calculated for
different values of the main gap parameter M from Eq. (10) (legend).
The visible behavior of the Hall conductivity is due to the interplay of
the contributions from both cones. The TKNN regime is achieved for
large strains, where the Hall conductivity approaches zero according
to Eq. (35).
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strains it decreases rapidly, switches the sign, develops a sin-
gularity, and finally approaches zero for larger strains.

The above behavior can also be understood with the help
of the gapped Dirac Hamiltonian (26). To be more specific,
it appears that this behavior is due to the combined effect of
both cones:

σH(t ) = σ M
H (t ) − σ m

H (t ), (35)

where σ M
H (t ) denotes the Hall conductivity contribution from

the originally gapped cone and σ m
H (t ) denotes the Hall con-

ductivity contribution from the originally gapless one. It reads
specifically [11,39,40] as

σH(t ) ≈ M(t )

2ω
log

∣∣∣∣2M(t ) + ω

2M(t ) − ω

∣∣∣∣
− m(t )

2ω
log

∣∣∣∣2m(t ) + ω

2m(t ) − ω

∣∣∣∣. (36)

We note that M(t ) depends weakly on the strain and can be
assumed to be constant to the roughest approximation, similar
to ω. The second term starts at zero, develops a singularity at
2m(t ) = ω, and approaches the constant value for large t . The
difference between both parts captures perfectly the shape of
the conductivity in Fig. 5.

If the external frequency is initially chosen to be much
smaller than the bare gap of the isotropic system, at the
strain increase, the strain-induced subgap grows from being
much smaller to much larger than the frequency. This
interplay of different parameters crucially influences the Hall
conductivity, which starts at the plateau related to the bare
gap and then drops to zero at some threshold strain, where the
Hall current is suppressed due to the synergy of the external
field and strain. The threshold strain value can be estimated
from Eq. (36): Assuming M to be constant and much larger
than the frequency ω and introducing x = m(t )/ω, we get the
following at the zero point:

xc log

∣∣∣∣2xc + 1

2xc − 1

∣∣∣∣ ≈ 1. (37)

The numerical solution is

m(tc) ≈ 0.41667ω, (38)

and then with Eq. (17) the critical strain

δτc ≈ 1.259

√
ω

M
. (39)

With the strain increasing even further, the current reverses
its direction; i.e., the Hall conductivity changes the sign. As
the gap approaches the frequency (in energy units), the Hall
conductivity increases dramatically due to the presence of
highly populated states at the bottom of the spectral cone
above the subgap [11]. With further strain increase, the
subgap becomes comparable with the main gap, the valley
symmetry gets restored, and the Hall conductivity tends to
zero. According to Eq. (39), the TKNN regime [37] in the
strained Haldane model sets up either in the literal DC limit,
i.e., ω → 0, or in the effective DC regime, when M → ∞.
In both cases, the total Hall conductivity defined in Eq. (35)
tends to zero, thus signaling the fulfillment of the TKNN
theorem. Particularly in the second case this is because the

strain-generated gap becomes much larger than the frequency
m(t ) � ω and the second term in Eq. (35) approaches the
first. Therefore, the external frequency can be regarded
as a measure of the deviation of the Hall conductivity
from its topologically invariant value. However, since the
TKNN theorem is formulated for the DC regime, there is no
contradiction to our results. If any, the deviation from the
TKNN theorem would be visible in the case ω/M → 0, but
we do not observe any sizable effect here. Admittedly though,
we have worked with the gaps a priori much smaller than the
band width.

By varying the strain around the threshold value given
in Eq. (39), one acquires a capability of controllable re-
versing of the Hall conductivity, which is tantamount to the
same for the direction of the Hall current. With what has
been said so far, we can indulge in envisioning a fascinating
concept of a quantum Hall logical gate: a device based on
strained graphene. This device would harness the discussed
remarkable capabilities of a controllable reversing mechanism
combined with an intricate on/off switching of the Hall cur-
rent. These functionalities are achieved through precise and
manipulable alterations in applied strain. Through this con-
trollable manipulation, the device can effortlessly reverse the
direction of its operations, defying the conventional logic.

VIII. DISCUSSION OF THE EXPERIMENTAL
SITUATION AND CONTEXTS

The uniaxial strain applied to the pristine honeycomb
lattice breaks its spatial isotropy by distinguishing a
selected direction for electronic hopping. This emergent spa-
tial anisotropy then passes through into the spectral and
transport properties. This physics is well understood (see
Ref. [41] and references therein).

On the other hand, here we consider the other mechanism
of strain influence, which has not been considered to date.
Namely, we consider the strain-induced violation of the sym-
metry between spectral valleys or Dirac cones. It opens a gap
in the spectrum and thus turns the sample into a topologically
nontrivial insulator. Recent experimental findings [42] show
that, to generate the artificial magnetic field [see the expres-
sion (11) above] in a graphene sample, they need a strain
around 3% of the initial lattice constant, which in our “hop-
ping language” corresponds approximately to t/t0 = 1.4 (see
Supplemental Material of Refs. [42,43]). This artificial mag-
netic field is indeed related to the considered Haldane model
[6] and is responsible for the effects, which we obtain the-
oretically (see Ref. [41] and references therein). This shows
that the deformations in real graphene structures, at which
the nontrivial patterns, related to the above artificial magnetic
field appear, lie well within the parameters range used in our
theoretical approach. As the aim of experimental research in
Ref. [42] was not directly related to the quantities we have
considered here, the precise experimental measurements of
“ordinary” and Hall conductivities in strained graphene sam-
ples are badly needed.

Theoretically, the symmetry breaking between spectral val-
leys is realized by the inclusion of the Haldane-like term
in the initial system Hamiltonian (1). At a specific point of
the model, only one of the Dirac cones inside the Brillouin
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zone is gapped while the other remains solid. At this point
the system exhibits both the longitudinal and the transversal
(Hall) conductivities, both taking exact quantized values dic-
tated by the spectral topology of the model. The “marriage”
of both models reveals a fascinating interplay of each model’s
features, clearly visible in observable quantities. The critical
regime happens to be very fragile with respect to mechanical
distortion. No matter how weak the strain is, the only solid
cone of the critical Haldane model gets broken and acquires
a spectral gap, even though it might seem negligible for small
strains, because of the quadratic dependence. On the other
hand, at the gapped node, the strain tries to reduce the bare
gap. As the strain increases, the system evolves towards a
state with a gap at each cone comparable in size. As the
presence of a single gap in the critical Haldane model mani-
fests the broken time-reversal symmetry, the gap equalization
process might be considered as the natural tendency of the
system towards a more trivial state with higher symmetry. The
appearance of the subordinated subgap and the modification
of the main gap are clearly visible in the DOS. Since the
DOS is a normalized quantity, the disappearance of the low-
energetic states due to the subgap opening is compensated
by the emergence of additional states below the main gap
edge (Fig. 3).

The nontrivial topology of the electronic spectrum on
a honeycomb lattice is reflected in a number of perfectly
quantized observables, mainly the DC longitudinal (universal)
and transversal (Hall plateau) conductivities. The universal
conductivity is a fundamental invariant of the isotropic sys-
tem, closely related to the topology of the spectrum. Even
if the spatial isotropy of the system is violated, it can be
reconstructed in the process called the geometric average.
Formally, it is given by Eq. (9) and states that the product
of optical (i.e., frequency dependent) conductivities measured
along and across the strain application direction is a universal,
frequency-independent quantity with the precise value of the
universal conductivity. Moreover, the geometric average is
also strain independent. The latter property turns out to be
also valid for the strained critical Haldane model, as long as
the induced subgap does not supersede the external frequency
(Fig. 4). The conductivity breaks down when the subgap
becomes larger than the external frequency.

The Hall conductivity reveals a spectacular behavior. If the
external frequency is initially chosen to be much smaller than
the bare gap of the isotropic system, at the strain increase,

the strain-induced subgap grows from being much smaller to
much larger than the frequency. This interplay of different
parameters crucially influences the Hall conductivity, which
starts at the plateau related to the bare gap, then drops to zero
at some threshold strain, where the Hall current is suppressed,
and changes the sign for larger strain values.

According to the ab initio simulations of graphene per-
formed by Choi et al. in Ref. [26] (and verified and improved
by several others since), the shift of Dirac points should be
indeed observed for the strains as small as 8% increase of
the interatomic distance. Also, the merging of cones, i.e., the
Lifshitz transition, has been predicted there at the strain of
26.5%, which in our units corresponds approximately to 2.2,
which is quite close to our threshold value t/t0 = 2 (see also
above). Recent reviews [27,41] list similar values for several
graphene-like materials, including silicene, phosphorene, etc.
Therefore, our theoretical model should be well within reach
of currently available experimental techniques.

The theoretically predicted physical picture enables us to
devise a straintronic quantum Hall gate, i.e., a Hall cur-
rent switching microelement functioning with the help of the
strain. By employing carefully calibrated adjustments to the
strain, the gate gains the remarkable ability to seamlessly
toggle the flow of the Hall current on and off. This extraordi-
nary feat allows for unprecedented control over the device’s
functionality and opens up endless possibilities for data
manipulation and processing. While this speculation stretches
the bounds of current scientific understanding, it ignites the
imagination and invites us to envision a future where such
strained-graphene-based devices might exist, captivating the
world with their unparalleled capabilities and paving the way
for exciting advancements in the realm of quantum logic and
technology.
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