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Recently, we have proposed the concept of laser-dressing-effect mediated spin-orbit (SO) control in semi-
conductor wells, with the laser polarization aligning with the well-growth direction [X. Li et al., Phys. Rev.
B 106, 155420 (2022)], facilitating flexible SO control. Here, for covering the full scenario and considering
practical applications, we focus on tilted laser fields (TLFs) and build up a generic model incorporating both
axial and transverse components of the laser polarization, which are respectively parallel and perpendicular to the
well-growth direction, to explore the electrical gate assisted optical multisubband SO control in realistic GaInAs
quantum wells with two occupied subbands. We reveal that the two laser components play contrasting roles in
affecting SO properties from distinct physical sources, with the axial component directly altering the quantum
confinement and the transverse component primarily adjusting the electron density of states. By performing a
self-consistent Poisson-Schrödinger calculation (with both TLF and gate bias) in the Hartree approximation, we
determine the full scenario of gate assisted TLF multisubband SO control, including intrasubband (Rashba αν and
Dresselhaus βν) and intersubband (Rashba η and Dresselhaus �) types, ν = 1, 2. Notably, we achieve adjusting
the intrasubband Rashba α1 and α2 of the two subbands while meanwhile not only keeping them of opposite signs
but also locking them to essentially equal strength, i.e., α1 = −α2, as a result of intertwined effect of the two
laser components. This provides a synchronous symmetric Rashba control of distinct subbands, and facilitates
the realization of persistent skyrmion lattice that we recently proposed [J. Fu et al., Phys. Rev. Lett. 117, 226401
(2016)], even with different pitches. Also, depending on the width of wells, we observe that α1 can even be pinned
at zero as TLF varies while α2 can be flexibly adjusted, greatly fascinating for selective multisubband SO control
in particular with suppressed spin relaxation for a given subband. As for the intrasubband Dresselhaus β1 and
β2, which inherit the bulk nature of materials and thus are usually immune to electrical control, we unveil their
flexible gate assisted optical tunability. Moreover, regarding the intersubband SO terms, while the Dresselhaus
� is found weakly dependent on the TLF, the Rashba η is optically tunable and is even accompanied by a sign
reversal. With the intersubband SO terms, we reveal three distinct scenarios for the spin-resolved multisubband
dispersion, featuring the band crossing without spin hybridization and the band anticrossing with and without
vertex corrections, respectively. Our work sheds light on experiments incorporating the TLF for a universal
control of the Rashba-Dresselhaus SO terms of both intrasubband and intersubband kinds.

DOI: 10.1103/PhysRevB.108.235429

I. INTRODUCTION

Coherent control of spin is a prerequisite from fundamental
physics to quantum information technology and spintronic
devices. The spin-orbit (SO) interaction, which couples an
electron spin and its orbital motion, acts on moving electrons
as an effective magnetic field, enabling the manipulation of
spin states via fully electrical means [1–3]. This essential
idea has inspired various proposals on spintronic devices, e.g.,
spin-field [4–6] and spin-Hall effect transistors [7,8]. Also, the
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SO interaction underlies a plethora of novel physical phenom-
ena such as the spin-orbit torque [9,10], spin galvanic effect
[11], topological insulators [12], Majorana fermions [13–15],
and Weyl semimetals [16]. Our recent proposals on persistent
skyrmion lattice [17], stretchable spin helix [18,19], as well
as helix-stretch based orbit (pseudospin) filter [20], which can
be realized by fine tuning the SO strengths, also manifest the
importance of SO effects for two-dimensional electron gases
(2DEGs) hosted in semiconductor nanostructures.

For semiconductor 2DEGs, there are two dominant SO
contributions: the Rashba [21] and the Dresselhaus [22] ef-
fects, arising from the breaking of structural and crystal
inversion symmetries, respectively. The Rashba strength is
essentially proportional to the external electric field exerting
on 2DEGs, and thus can be tuned with the doping profile [23]
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as well as in situ using gate bias [24,25]. Extensive studies
have been devoted to the Rashba coupling in semiconductor
heterostructures with one [23,26–29] and even two [30–37]
occupied subbands. Further, considering a triple quantum-
well configuration, which favors electron occupation of the
third subband, we unveiled intriguing Rashba SO control me-
diated by the charge transfer among distinct subwells [38].
In contrast to the Rashba coupling, the Dresselhaus coupling
contains both linear and cubic terms, with the linear term
mainly depending on the well confinement (e.g., well width)
[23,39] and the cubic one on the electron density [18]. In
addition, the interfacial effect in semiconductor heterostruc-
tures may also lead to an additional Dresselhaus term [3],
which depends on the layer-dependent band parameters and
can be comparable in magnitude to the usual linear term with
both intrasubband and intersubband contributions [40]. The
interfacial Dresselhaus term may provide an extra leverage
for extracting reliable bulk Dresselhaus SO parameter, the
value of which is usually controversial in both theory and
experiment [3,41].

While an external gate bias is widely adopted for manip-
ulating SO coupling [18,24,25], it certainly has limits in the
control of Dresselhaus term, which embraces the intrinsic
bulk nature of materials. As an effective way to complement
electrical means, the SO manipulation and its measurement
through optical manner have also gained growing interests
[42–47]. In particular, the birth of ultrashort (from femtosec-
ond to attosecond) laser pulses has made possible to produce
intense light field, whose magnitude can even far exceed that
of the atomic Coulomb field [48,49]. As a consequence, the
light, which had long been used only as a probe for mat-
ter, has now achieved such huge intensity that the electronic
states bound in atoms, molecules, clusters, and solids could be
strongly modified [48,49]. These modified states are the so-
called laser-dressed electronic states (or potentials) [48–53],
originating from the optical stark effect.

With the advent of high-quality and tunable laser sources
(e.g., free-electron lasers), the dressing effect of intense
high-frequency laser (IHFL) fields has exhibited strong ex-
perimental evidences and has been widely adopted in various
experiments and applications, including atomic stabilization
[50], molecular dissociation [51], and higher-order harmonic
generation [54]. More interestingly, in the case of semicon-
ductor heterostructures, the IHFL field was found dressing
quantum confining potential and greatly altering the quantized
energy levels. This gives rise to intriguing control of electronic
and optical properties of 2DEGs [52,55–57]. And, recently,
we have first proposed the concept of laser-dressing-effect
mediated spin-orbit (SO) control in semiconductor wells, with
the laser polarization aligning with the well-growth direction
[43], facilitating flexible SO control.

In reality, the applied laser field may usually have both per-
pendicular (axial) and parallel (transverse) components of the
polarization. And, depending on the incident light polariza-
tion, strong anisotropy of the optical and magnetic properties
usually occurs [58,59]. However, most studies on intense laser
fields were devoted to the special case of laser polarization
aligning with the growth (z ‖ [001]) direction of quantum
wells [43,52,55–57], i.e., solely with the axial component.
Further, so far, how the laser transverse component affects SO

FIG. 1. (a) Schematic diagram of a Al0.48In0.52As/Ga0.47

In0.53As/Al0.48In0.52As quantum well subjected to an external gate
bias (Vg) and tilted laser field (TLF), with θ the tilt angle between
the laser polarization (ŝ) and the well-growth direction (z axis).
The dashed (black) regions inside the barrier (Al0.48In0.52As) layers
represent the dopants with a symmetric doping condition, and E1 (E2)
stands for the energy level of the first (second) subband. (b) Illus-
tration of TLF, with the laser propagation along the y (blue arrow)
and z (green arrow) axes, corresponding to the polarization parallel
to the z (Az; axial component) and x (Ax; transverse component)
directions, respectively. [(c)–(e)] Self-consistent potential Vsc and
wave functions ψν (ν = 1, 2) of the two subbands for the well of
width Lw = 13 nm at Vg = −0.1 eV, with the tilt angle θ = π/16
(c), π/3 (d), and 2π/5 (e). The horizontal blue (green) line inside
the well indicates the self-consistent energy level E1 (E2), and the
dotted red (black) curve refers to Vsc without TLF (without both TLF
and Vg).

properties remains unknown, let alone its intertwined effect
with the laser axial component. Therefore, considering restric-
tions for a universal and simultaneous control of Rashba and
Dresselhaus of both intrasubband and intersubband types, we
believe it is greatly desired to construct a generic and com-
prehensive model taking into account both aspects of the laser
axial and transverse components and explore the intertwined
effect of the two components (together with electrical means)
on SO properties, not only for the fundamental theoretical
value, but also for practical applications, where manipulating
SO is important to control spin and engineer devices.

Here, for covering the full scenario of SO control and
considering practical applications, we focus on tilted laser
fields (TLFs) [Fig. 1(a)] and build up a generic model
incorporating both axial and transverse components of
the laser polarization, which are respectively parallel and
perpendicular to the well-growth direction [Fig. 1(b)], to
explore the electrical gate assisted optical multisubband SO
control in realistic GaInAs quantum wells with two occupied
subbands.We reveal that the two laser components may play
contrasting roles in affecting SO properties from distinct
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physical sources, with the axial component directly altering
the quantum confinement and the transverse component
primarily adjusting the electron density of states. Also, by
accounting for SO contributions from both TLFs and gate
bias, we derive an effective 4 × 4 Rashba and Dresselhaus
Hamiltonian (two for each subband) for conduction electrons,
with all the relevant SO terms of both intrasubband (Rashba
αν and Dresselhaus βν , ν = 1, 2) and intersubband (Rashba
η and Dresselhaus �) types. We consider quantum wells
that are similar to the experimental samples of Ref. [60],
while with two occupied electron subbands for covering
both the intrasubband and intersubband SO contributions. By
self-consistently solving the Schrödinger and Poisson equa-
tions (with both TLF and gate bias) for 2DEGs in the Hartree
approximation, we systematically determine the gate assisted
TLF multisubband SO control. For completeness, we consider
both relatively narrow and relatively wide wells, of the well
width equal to 13 and 26 nm, respectively, since narrow and
wide quantum wells may exhibit contrasting SO features [61].

Remarkably, we achieve adjusting the intrasubband Rashba
α1 and α2 of the two subbands while meanwhile not only
keeping them of opposite signs but also locking them to
essentially equal strength, i.e., α1 = α2, as a result of inter-
twined effect of the two components of the laser polarization.
This provides a synchronous symmetric Rashba SO control of
distinct subbands, and facilitates the realization of persistent
skyrmion lattice (i.e., crossed spin helices) that we recently
proposed [17], even with different pitches (spin-density wave
length), which depends on SO strengths. Also, depending on
the width of quantum wells, we observe that α1 can even be
locked to zero as the TLF varies while α2 can be flexibly
adjusted, greatly fascinating for selective multisubband SO
control in particular with suppressed spin relaxation for a
given subband. As for the intrasubband Dresselhaus β1 and
β2, which inherit the bulk nature of materials and thus are
usually immune to electrical control, we unveil their flexible
gate assisted optical tunability. Moreover, regarding the inter-
subband SO terms, while the Dresselhaus � is found weakly
dependent on the TLF, the Rashba η is optically tunable even
accompanied by a sign reversal. With the intersubband SO
terms, we reveal three distinct scenarios for the multisubband
spin-resolved dispersion, featuring the band crossing without
spin hybridyzation and the band anticrossing with and with-
out vertex corrections of the spin texture, respectively. Our
work sheds light on experiments incorporating the TLF for a
universal control of the Rashba-Dresselhaus SO terms of both
intrasubband and intersubband kinds.

The paper is organized as follows. In Sec. II, we present
our theoretical framework of the laser-dressed potential and
the laser-modified DOS for 2DEGs, following approaches
of Floquet theory [48] and averaged Green’s functions
[57], respectively. Then, by accounting for SO contribu-
tions from both TLFs and gate bias, we derive an effective
two-dimensional (2D) model with two occupied electron sub-
bands, i.e., 4 × 4 SO Hamiltonian (two for each subband),
from the three-dimensional (3D) Hamiltonian accounting for
the Rashba and Dresselhaus couplings. Also, we present the
expressions of the Rashba and Dresselhaus SO terms of both
intrasubband and intersubband kinds. In Sec. III, we intro-
duce our quantum system and the involved parameters. In

Sec. IV, we show the self-consistent results, and discuss in
detail the electrical gate assisted optical multisubband SO
control with both the axial and transverse components of the
laser polarization. The impact of the intersubband terms on the
spin-resolved multisubband energy dispersion, which involves
the band crossing and the band avoided crossing with and
without vertex correction of the spin texture, is also discussed.
We summarize our main findings in Sec. V.

II. THEORETICAL FRAMEWORK

In this section, we first focus on the laser-dressing effects
of the two (axial and transverse) components of TLF on elec-
tronic states in quantum wells. Then, we take into account
SO contributions from both TLF and gate bias, and derive
an effective 2D electron Hamiltonian for quantum wells with
two subbands, containing both Rashba and Dresselhaus SO
couplings of the intrasubband and intersubband types, from
the 3D form of the Hamiltonian. The expressions for all the
relevant intrasubband and intersubband SO terms including
the corresponding SO strengths are also presented.

A. Electronic states in quantum wells with TLF

Considering contrasting impacts of the two laser com-
ponents on 2D electrons, we resort to different theoretical
approaches to model them. Specifically, to describe the laser-
dressing effect of the axial component, we follow the Floquet
approach [48], while to unveil the effect of the transverse com-
ponent, we adopt the method of averaged Green’s functions
[57]. Below we analyze in detail the laser-dressed potential
and the laser-modified DOS for 2DEGs, primarily due to
the axial and transverse components of the laser polarization,
respectively.

1. Laser-dressed potential

To describe the motion of electrons in the presence of light
field, the radiation field under the dipole approximation can be
described by the plane wave, i.e., A(t ) = A sin(ωt )(x̂ sin θ +
ẑ cos θ ), with θ the tilt angle between the polarization of laser
field and the growth direction of quantum well, A the poten-
tial amplitude, and ω the laser radiation angular frequency.
Here, the two components, i.e., Az(t ) = A cos θ sin(ωt )ẑ and
Ax(t ) = A sin θ sin(ωt )x̂, which are perpendicular to each
other, are along the axial (parallel to the z axis) and transverse
(parallel to the x axis) directions, respectively [Figs. 1(a) and
1(b)]. In the following, for simplifying notations, we define
Az = A cos θ and Ax = A sin θ , separately referring to the
laser electric field strengths of Fz = Azω and Fx = Axω.

By applying the Kramers-Henneberger space-translation
transformation and taking into account the space-translated
version of the time-dependent Schrödinger equation for
2DEGs subjected to laser fields, one obtains [62–67][

1

2m∗ (p − eAμ)2 + Vw(z)

]
�(r, t ) = ih̄

∂�(r, t )

∂t
, (1)

where p = −ih̄∇ is the momentum operator, e represents the
electron charge, and μ (= z, x) denotes the axis index.
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The laser-dressed potential energy is mainly caused by
the axial component Az(t ), which can be manifested by a
unitary transformation �(r, t ) −→ φ(r, t ) [68,69]. Accord-
ingly, Eq. (1) is rewritten as[

− h̄2

2m∗ ∇2 + Ṽw(z + αz(t ))

]
φ(z, t ) = ih̄

∂

∂t
φ(z, t ), (2)

where Ṽw[z + αz(t )] is the so-called laser-dressed potential
energy. Here we have defined αz(t ) = αz cos(ωt )ẑ the dis-
placement vector of the electron due to its quiver motion in
the presence of laser field, with αz ≡ eAz/(m∗cω) (c the light
speed) the axial laser parameter.

Following the Floquet approach [48], the time-dependent
Schrödinger equation [Eq. (2)] can be transformed into the
coupled time-independent differential equations in terms of
Floquet component of the wave function φ, where the Floquet
state is the analog to a Bloch state when replacing a spatially
periodic potential to a time-periodic one. To solve the coupled
differential equations, an iteration scheme, which essentially
proceeds in inverse powers of ω, can be adopted. Up to the
lowest order in ω, i.e., in the high-frequency limit of ωτ � 1
with τ the transit time of electrons [66,70], the photon absorp-
tion by the system becomes essentially impossible [48,71],
greatly quenching thermal effect. And, in this case, the set of
coupled equations reduces to a single one [48,67,71],[

− h̄2

2m∗ ∇2 + Ṽw(z; αz )

]
φ0(z) = Eφ0(z), (3)

with φ0 the zeroth Floquet component and Ṽw(z; αz ) the laser-
dressed potential energy [72], which is determined by the
axial laser parameter αz associated with the laser intensity
I and the laser oscillation frequency ω. And, depending on
the value of αz, there exist two distinct regimes for the laser-
dressed potential energy, marked at αz = Lw/2 (i.e., half of
the well width). Specifically, when αz � Lw/2,

Ṽw(z; αz ) = δc

π

[
�(αz − Lw/2 − z) arccos

(
Lw/2 + z

αz

)

+ �(αz − Lw/2 + z) arccos

(
Lw/2 − z

αz

)]
,

(4)

and when αz > Lw/2,

Ṽw(z; αz )

= δc

π

{
�(Lw/2 − αz − z) arccos

(
Lw/2 + z

αz

)

+ �(Lw/2 − αz + z) arccos

(
Lw/2 − z

αz

)
+ [�(z − Lw/2 + αz ) + �(−z − Lw/2 + αz ) − 1]

×
[
π + arcsin

(
z − Lw/2

αz

)
− arcsin

(
z + Lw/2

αz

)]}
,

(5)

where δc stands for the barrier height of quantum wells,
� denotes the Heaviside step function, and Lw is the well
width. Clearly, at zero laser parameter (αz = 0), the laser-
dressed potential Ṽw(z; αz ) will recover the original square
potential [Vw(z)] for confining electrons, in either case of
αz � Lw/2 or αz > Lw/2, namely, Ṽw(z; αz ) → Vw(z) as αz →
0, with Vw(z) = δc[�(z − Lw/2) + �(−z − Lw/2)]. Note that
Eqs. (4) and (5) essentially involve the transition from a usual
single well to an effective double well, entirely arising from
the laser-dressing effect, as we will emphasize later on in
Sec. IV.

2. Laser-modified DOS

The effect of the transverse component Ax(t ) of the laser
polarization on electronic states can be obtained by directly
integrating Eq. (1) over t for Ax(t ) = Ax sin(ωt )x̂. This yields
the time-dependent wave function

�ν,k(r, t ) = �ν,k(r, 0)exp{−i/h̄[Eν (k) + 2γ h̄ω]t}
× exp{iαxkx[1 − cos(ωt)]}exp[iγ sin(2ωt)],

(6)

where �ν,k(r, 0) = eik·rψν (z), γ ≡ e2A2
x/8m∗h̄ω (dimension-

less), αx ≡ eAx/(m∗cω) is the transverse laser parameter, and
2γ h̄ω = e2F 2

x /4m∗ω2 stands for the energy blueshift induced
by the transverse component. The wave function in Eq. (6)
determines the probability amplitude P|ν ′,k′〉→|ν,k〉 of the pro-
cess for an electron in a state |ν ′, k′〉 at time t ′ evolving into
another state |ν, k〉 at time t , which reads as

P|ν ′,k′〉→|ν,k〉 =
∫

�∗
ν ′,k′ (r, t ′)�ν,k(r, t )d3

r = hν,k(t, t ′)δν,ν ′δk,k′ , (7)

with

hν,k(t, t ′) = exp{−i/h̄[Eν (k) + 2γ h̄ω](t − t′)}
× exp{−iαxkx[cos(ωt) − cos(ωt′)]}
× exp{iγ [sin(2ωt) − sin(2ωt′)]}. (8)

For noninteracting electrons, the Green’s function is
G+

ν,k(t > t ′) = −i/h̄�(t − t ′)hν,k(t, t ′) [73], which is the so-
lution of[
Eν + (h̄k − eAx )2

2m∗ − ih̄
∂

∂t

]
G+

ν,k(t > t ′) = δ(t ′ − t ) (9)

in the (ν, k; t ) space, and[
(p − eAx )2

2m∗ + Vw(z) − ih̄
∂

∂t

]
G+

ν,k(t > t ′)�ν,k(r, 0)

= δ(t ′ − t )�ν,k(r, 0) (10)

in the real space. The Fourier transform of the retarded
Green’s function reads as

G+
ν,k(E , t ′) =

∫ +∞

−∞
exp[i/h̄(E + iη)τ ]G+

ν,k(t > t′)dτ, (11)

where τ = t − t ′, and iη is the infinitesimal to avoid diver-
gences. Then, with the help of Bessel functions, Eq. (11) can
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be rewritten as

G+
ν,k(E , t ′) =

+∞∑
m=−∞

F̃m(kx, t ′)
E − Eν (k) − 2γ h̄ω − mh̄ω + iη

, (12)

where F̃m(kx, t ′) is the auxiliary function,

F̃m(kx, t ′) ≡ (−1)mFm(kx )
+∞∑

�=−∞
i�Jm+�(αxkx )

× exp{i[�ωt′ − γ sin(2ωt′)]}, (13)

with Jm(x) the Bessel function and

Fm(kx ) =
∞∑

q=0

Jq(γ )

1 + δq,0
[J2q−m(αxkx ) + (−1)m+qJ2q+m(αxkx )].

(14)

By averaging t ′ over one period of laser fields [74] in Eq. (12),
one can obtain the steady-state properties, with the averaged
Green’s function being written as

G∗
ν,k(E ) =

+∞∑
m=−∞

F 2
m (kx )

E − Eν (k) − 2γ h̄ω − mh̄ω + iη
. (15)

Thus, under the impact of the transverse component (αx) of
the laser polarization, the usual constant 2D DOS for electrons
occupying the νth subband, i.e., Dν (E ) = ρ0 ≡ m∗/(π h̄2),
needs to be modified. And, the modified DOS can be de-
termined from the imaginary part of the averaged Green’s
function, with Dν (E ) = −2/π

∑
k Im{G∗

ν,k(E)}, which in a
more expanded form reads as

Dν (E ) = 2

π
ρ0

∞∑
m=0

�(E νγ m)
∫ 1

0

× dξ√
1 − ξ 2

F 2
m

⎛⎜⎝ξ

√
2m∗E νγ m

h̄

⎞⎟⎠, (16)

where E νγ m ≡ E − Eν − 2γ h̄ω − mh̄ω. In terms of the non-
resonant laser beam, only nonresonant photons join in
the optical process, and thus no absorption and emission
processes are allowed. This causes that only the term cor-
responding to m = 0 in Eq. (16) will survive, and thus the
summation in Eq. (16) is reduced to

Dν (E ) = 2

π
ρ0�(E − Eν − 2γ h̄ω)

×
∫ 1

0

dξ√
1 − ξ 2

F 2
0

(
ξ

√
2m∗(E − Eν − 2γ h̄ω)

h̄

)
,

(17)

where F0(kx ) = J0(γ )J0(αxkx ) + 2
∑

q>0,even Jq(γ )J2q(αxkx ).
The laser-modified DOS depends on both the laser field
strength and frequency through the parameters γ and αx.
When the strength of the transverse component of TLF is
lower and (or) the frequency of TLF is higher, one has γ → 0
and αx → 0, thus, F0(kx ) → 1 since Jq(0) = δq,0. Clearly, in
this case, the laser-modified DOS recovers its usual ladder
profile appearing in the case without laser fields.Note that, for

a realistic laser source, the laser parameter αL(= √
α2

z + α2
x )

depends on its intensity I and frequency ω, which can be
expressed as αL = (I1/2/ω2)(e/m∗)(8π/c)1/2 [43]. Thus, as
long as θ is fixed, the laser-dressed potential energy and laser-
modified DOS are determined by ω and I through αL.

B. Model Hamiltonians: From 3D to 2D

Here we show the derivation of an effective 2D model
from a 3D Hamiltonian involving Rashba and Dresselhaus
SO couplings, and present the concrete expressions of intra-
subband and intersubband terms in the case of two subbands.
For intrasubband Dresselhaus coefficients, we also give the
expressions of its cubic term βν,3 and renormalized term βν,eff .

1. 3D SO Hamiltonian

We consider GaInAs/AlInAs quantum wells grown along
the z ‖ (001) direction. Based on the 8 × 8 Kane model in-
volving conduction and valence bands, an effective 3D SO
Hamiltonian for electrons reads as [61,75],

H3D = h̄2k2

2m∗ − h̄2

2m∗
∂2

∂z2
+ Vsc(z) +H3D

R +H3D
D , (18)

where m∗ = 0.043m0 (m0 the bare electron mass) is the effec-
tive electron mass and k is the in-plane electron momentum.
The third term Vsc = Vw + Vg + VL + Vd + Ve refers to the
total electron confining potential with self-consistence, which
is determined within the Schrödinger and Poisson equations in
the Hartree approximation, with Vw the structural potential
arising from the band offset, Vg the external gate potential, VL

the external laser field potential, Vd the doping potential, and
Ve the electronic Hartree potential [17,18,37,61]. The last two
termsH3D

R andH3D
D describe Rashba and Dresselhaus SO in-

teractions, respectively. For Rashba term,H3D
R = η(z)(kxσy −

kyσx ), where η(z) = ηw∂zVw + ηH∂z(Vg + Vd + Ve + VL) de-
termines the Rashba coupling strength, and σx,y,z are the spin
Pauli matrices. The parameters ηw and ηH are connected with
the bulk quantities of materials [37,61,76]. And for Dressel-
haus term, H3D

D = γ [σxkx(k2
y − k2

z ) + c.p.)], where γ is the
bulk Dresselhaus parameter and kz = −i∂z [22,75]. Further,
expanding on H3D

D , we get the cubic contribution H3D
D(3) =

γ kxky(σxky − σykx ).

2. Effective 2D model

Now we are ready to derive an effective 2D model start-
ing from the 3D Hamiltonian [Eq. (18)]. First, we determine
(self-consistently) the spin-degenerate eigenspinors |kνσ 〉 =
|kν〉 ⊗ |σ 〉, 〈r|kν〉 = exp(ik · r)ψν (z) and eigenvalues εkν =
Eν + h̄2k2/2m∗ (ν = 1, 2) of quantum wells without SO in-
teraction. Here, Eν (ψν) is defined as the νth quantized energy
level (wave function), k is the in-plane wave vector, and σ =
(↑,↓) is the electron spin component along the z direction.
Then, by projecting Eq. (18) onto the spin-degenerate basis
set {|kνσ 〉}, we obtain the effective 2D model for the Rashba
and Dresselhaus SO couplings in quantum wells with two
occupied electron subbands having both intrasubband and in-
tersubband terms. Under the coordinate system [x ‖ (100), y ‖
(010)] with the basis set {|k1 ↑〉, |k1 ↓〉, |k2 ↑〉, |k2 ↓〉}, our
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effective 2D model with two subbands reads as

H2D =
(

ρ11 ρ12

ρ21 ρ22

)
, (19)

where ρνν = εkν1 + αν (σykx − σxky) + βν (σyky − σxkx ), ν =
1, 2, ρ12 = η(σykx − σxky) + �(σyky − σxkx ), and ρ21 = ρ

†
12,

with 1 the 2 × 2 matrix in both spin and orbital (subband)
subspaces, σx,y the spin Pauli matrices, kx,y the wave vector
components along the x ‖ (100) and y ‖ (010) directions. The
parameters αν (η) and βν (�) are intrasubband (intersubband)
Rahsba and Dresselhaus SO coefficients.

C. Multisubband Rashba and Dresselhaus SO coefficients: Both
intrasubband and intersubband types

The Rashba SO coefficients appearing in Eq. (19) can
be expressed as the matrix elements 〈. . . 〉 of the weighted
derivatives of the potential contributions,

ηνν ′ = 〈ψν |ηw∂zVw + ηH∂z(Vg + VL + Vd + Ve )|ψν ′ 〉, (20)

with the intrasubband (intersubband) Rashba coefficients
αν ≡ ηνν (η ≡ η12). Here the intrasubband Rashba term αν

can be expressed as the sum of several constituent con-
tributions, i.e., αν = α

g
ν + αL

ν + αd
ν + αe

ν + αw
ν , with α

g
ν =

ηH〈ψν |∂zVg|ψν〉 the gate contribution, αL
ν = ηH〈ψν |∂zVL|ψν〉

the laser field contribution, αd
ν = ηH〈ψν |∂zVd|ψν〉 the doping

contribution, αe
ν = ηH〈ψν |∂zVe|ψν〉 the electron Hartree con-

tribution, and αw
ν = ηw〈ψν |∂zVw|ψν〉 the structural contribu-

tion. Similarly, the intersubband Rashba term η = ηg + ηL +
ηd + ηe + ηw. For convenience, we also mark α

g+d
ν (ηg+d ) =

α
g
ν (ηg) + αd

ν (ηd ). In addition, we should emphasize that, for
simplifying notations in our model, we treat the laser field
contribution as follows: (i) even though the ingredient αL

ν

denotes the laser field contribution, it is mainly dominated by
the laser axial component, which gives rise to modifications
to the original structural (square-well) potential (Vw) through
the laser-dressed one (Ṽw) (Sec. II A 1); (ii) the effect of the
laser transverse component is encoded in all the ingredi-
ent contributions αe

ν , α
g
ν , αd

ν , αw
ν , and even αL

ν , through our
self-consistent subband wave functions ψν determined by the
corresponding potential energies of Ve, Vg, Vd, Vw, and VL.

The Dresselhaus SO coefficients read as

�νν ′ = γ 〈ψν |k2
z |ψν ′ 〉, (21)

with the intrasubband (intersubband) Dresselhaus coefficients
βν ≡ �νν (� ≡ �12). In particular, for βν , we extend a renor-
malized term by defining βν,eff = βν − βν,3, with the cubic
term βν,3 = γ k2

F /4, where kF � √
2πn is the Fermi wave

vector with n being the areal electron density.
For realistic wells, both the Rashba (αν) and Dresselhaus

(βν) couplings always depend on the overall response of the
gate potential Vg, the laser field potential VL, the doping po-
tential Vd, the electron Hartree potential Ve, and the structural
potential Vw. They are not solely dependent on the external
gate or laser field. That is, for each value of Vg, αz, and
αx, the total confining potential Vsc = Vw + Vg + VL + Vd + Ve

and the eigenenergy and corresponding wave function of the
system are recalculated self-consistently before the relevant
SO coefficients [Eqs. (20) and (21)] are determined.

III. SYSTEM AND RELEVANT PARAMETERS

We consider ordinary Ga0.47In0.53As/Al0.48In0.52As quan-
tum wells of width Lw grown along the z ‖ [001] direc-
tion [Fig. 1(a)], similar to the experimental sample of
Refs. [60,61,77] while with two occupied subbands for elec-
trons. The quantum wells are exposed to both an external
gate bias (Vg) and tilted IHFL field characterized by the tilt
angle θ with respect to the well-growth direction [Fig. 1(a)].
The laser field is taken to propagate along the y axis, and
accordingly the axial (Az) and transverse (Ax) components of
the laser polarization are along the z and x axes [Fig. 1(b)],
respectively. These considerations on our quantum wells al-
low for gate assisted optical multisubband SO control, through
not only the laser parameter (αz; αx) determined by the laser
intensity, but also the tilt angle θ of the laser polarization.
Specifically, the gate bias is utilized for a simultaneous tuning
of the electron subband occupancy and the structural inversion
asymmetry (SIA) of the system, while the tilted laser field
is used to dress the quantum confinement potential and alter
the quantized subband energy levels as well as the DOS of
electrons.

In order to capture complete features of the gate assisted
optical multisubband SO control, we consider both relatively
narrow and relatively wide quantum wells, of the width Lw =
13 and 26 nm, respectively. For our wells, two symmetric
doping layers of width 6 nm in Al0.48In0.52As barrier layers
sit 13 nm away from either side of the well with the same
doping density ρ = 4 × 1018 cm−3, ensuring that the well at
zero gate bias (Vg = 0) is structurally symmetric (i.e., lack of
SIA). The band offset δc at the Ga0.47In0.53As/Al0.48In0.52As
interfaces is chosen as 0.52 eV [37,78]. In our self-consistent
Poisson-Schrödinger calculation, the Fermi level EF, with
which one can adjust the subband occupations, is pinned
at EF = 0 to ensure that the system sustains the condition
of double-electron occupancy [18,40]. Note that the Fermi
level is readily tunable in experiments, e.g., through electrical
means [79,80]. The temperature is 0.3 K, and the thermal
effect, which favors the electron occupation of higher-energy
subbands at elevated temperatures, is mainly encoded in
the Fermi-Dirac distribution appearing in our self-consistent
procedure [18,37,61]. Strictly speaking, although the band
parameters and the Kane parameters involved in the Kane
model also depend on temperature, we have recently verified
that these effects only provide negligible corrections to the
SO couplings [81]. Therefore, our results about SO properties
are essentially also valid for temperatures above 0.3 K within
a regime that the higher third subband remains unoccupied.
When the third subband starts to be occupied by electrons,
there will be more emerging SO contributions of intrasubband
and intersubband kinds [38].

For the IHFL field, on the one hand, the high-frequency
regime mentioned above in general implies that the condi-
tion of ωτ � 1 satisfies [70], with τ ∼ ps the transit time
of electrons, so that the electron is not capable of feeling
the rapidly oscillating potential, namely, the electron could
see an evident laser-dressing effect. The frequency in such
regime could range from several to even thousands of THz,
depending on specific applications [82,83]. On the other hand,
here we mainly focus on the SO properties without optical
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transitions, and hence consider the laser frequency tuned to
be off resonant with both intersubband (c-c for conduction
band-conduction band) and interband (c-v for conduction
band-valence band, i.e., the band gap) transitions. For our
wells, the energy separations of the intersubband (c-c) and
interband (c-v) transitions are about 100 and 816 meV [78],
which correspond to the resonant frequencies of about 25 and
200 THz, respectively. Thus, we consider a reasonable value
of the frequency of ω/(2π ) = 1.5 THz (far less than the c-c
and c-v resonance energies) and the laser electric field strength
of F = 2.5 kV/cm. These considerations correspond to the
overall laser parameter αL = 11.5 nm with the laser intensity
I = 28 kW/cm2.

In principle, under the intense field, scatterings of electrons
with lattice may lead to an enhancement of lattice heating
and even lattice expansion. This will affect the properties
of electronic transport [84,85] (though not the focus of this
work), whereas here we consider the laser intensity with an
appropriate order of ∼104 W/cm2, which is readily achievable
and widely adopted in experiments [86–93] and is far below
the usual intense laser fields of about 1013 W/cm2 [94,95]
until the even larger intensity of 1020 W/cm2 [96]. And,
due to the absence of photon absorption (see Sec. II A 1),
one can potentially quench the thermal effect. On the other
hand, the increase in lattice temperature may result in an
escalation of phonon energy and in turn affect phonon-assisted
intersubband transitions [97–99]. By virtue of the nonres-
onant laser fields we employed, the increase in electron
temperature caused by absorption can be largely quenched,
which clearly also suppresses the phonon-involved interband
transitions.

IV. RESULTS AND DISCUSSION

Below we discuss the gate assisted optical multisubband
SO control. To proceed, we first show our self-consistent
solutions, which are helpful for elucidating the general fea-
tures of SO control. Then, we emphasize the effects of the
two (axial and transverse) components of tilted IHFL fields
on the potential energy and the DOS of 2DEGs. Also, we
discuss the dependence of SO coupling on these two com-
ponents. Further, we dig into the cases of gate assisted TLF
multisubband SO control in either relatively narrow or wide
well, with the well width of 13 and 26 nm, respectively. Three
realistic but distinct scenarios for the impact of intersubband
SO terms on the spin-resolved multisubband energy disper-
sions are also discussed, featuring band crossing and avoided
crossing with and without vertex corrections of the spin
texture.

A. Self-consistent outcome

In Figs. 1(c)–1(e), we show the total self-consistent poten-
tial Vsc and wave functions ψν (ν = 1, 2) of the two subbands
for the 13-nm well at Vg = −0.1 eV, with the laser tilt an-
gle θ = π/16, π/3, and 2π/5, respectively. For highlighting
the laser-dressing effect, the self-consistent potential with-
out laser field (without both laser and gate fields) is also
shown alongside by the red (black) dotted curve. Before dis-
cussing our self-consistent outcome in detail, we first examine

the features from the point of view of symmetry analysis.
Clearly, the gate field triggers the SIA of the system so
that the left and right sides of the well are not symmetric
with respect to the well center [cf. black and red (dotted)
curves]. This is crucial for the Rashba SO coupling, which
directly depends on the SIA. Remarkably, the laser field, to a
certain extent, tends to balance the SIA induced by Vg [cf.
solid and dotted (red) curves]. The balanced SIA can also
be reflected by the spatial distributions of the two-subband
wave functions (ψ1 and ψ2), which are basically equally dis-
tributed in the left and right sides of the well at θ = 2π/5
[Fig. 1(e)].

The laser-dressing effect on the confining potential and
the electron wave functions is mainly dominated by the axial
component (Az or αz) of laser field. Specifically, under the
impact of the laser-dressing effect, the laser axial component
greatly alters the effective width of the well and so the poten-
tial profile [Figs. 1(c)–1(e)]. There exist two distinct regimes
for the laser-dressed potential as the tilt angle θ varies, marked
off around θ = π/3 (corresponding to αz ∼ Lw/2 = 6.5 nm),
in the parameter range considered. In the first regime, where
θ is relatively large and greater than π/3, so that the axial
laser parameter αz is less than Lw/2 (half of the well width),
the laser field is apt to shrink the width of the lower half of the
well, while tends to widen the upper half of the well [cf. dotted
and solid (red) curves in Fig. 1(e)]. And, this feature becomes
more pronounced as θ decreases (i.e., αz increases), and con-
sequently the well potential eventually exhibits a triangular
profile when θ = π/3, following from the laser-induced width
quenching of the lower half of the well [Fig. 1(d)]. Remark-
ably, for even smaller tilt angle of θ < π/3 (i.e., αz > Lw/2),
referring to the second regime of the laser-dressing effect, a
transition from the original single well to an effective double
well occurs [Fig. 1(c)]. In addition to effectively modifying
the well width, the laser field also behaves as lowering the
barrier height of the self-consistent potential Vsc seen by elec-
trons [cf. dotted and solid (red) curves in Fig. 1(c)]. This arises
from the dressing of the well confinement potential by the
laser axial component and the modification of electron DOS
(and so the electron Hartree potential) by the laser transverse
component [100].

The above laser-dressing effect greatly alters the confine-
ment potential energy with the change of the well width
and the barrier height. This, together with the SIA induced
by an external gate voltage, offers the feasibility of flexible
SO control over both Rashba and Dresselhaus terms, which
primarily depend on the gate bias and quantum confinement,
respectively. To see the laser-dressing effect in a more di-
rect manner, below we show how the axial component αz of
tilted laser field dresses the structural potential energy with
Vw → Ṽw, i.e., in the absence of self-consistent procedure, and
further describe how the laser transverse component αx alters
the DOS of 2DEGs.

B. Laser-dressed potential and laser-modified DOS

In Figs. 2(a)–2(c), we show the laser-dressed structural
potential Ṽw (i.e., without self-consistence) for the 13-nm
well at αz = 2, 6.5, and 9 nm, respectively [see solid (red)
curves]. The dotted (black) curve refers to the original
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FIG. 2. [(a)–(c)] Laser-dressed structural potential (Ṽw) of the
13-nm GaInAs well with only the TLF axial component being
present (θ = 0), at αz = 2 nm (a), 6.5 nm (b), 9 nm (c), indicat-
ing that the quantum well transits from the usual single well to
an effective double well as the laser field strengthens. The dotted
(black) curve representing the pure structural (square) potential (Vw),
with Ṽw → Vw when αz → 0, is shown alongside, for highlighting
the laser-dressing effect. The horizontal blue (green) line inside the
well indicates the energy level E1 (E2) of the first (second) subband.
(d) DOS of 2DEGs with only the transverse component of TLF being
present (θ = π/2), of the frequency ω/2π = 1.5 THz, at αx = 0,
2, 11.5 nm. The inset shows a blowup of an inconspicuous energy
blueshift of about 3 meV as αx increases from 0 to 11.5 nm. (e) Eν

(ν = 1, 2) versus the axial (αz; upper axis) and transverse (αx; lower
axis) laser parameters. The black dotted lines refer to the case of zero
laser field (i.e., αz = αx = 0). In [(a)–(e)], the gate voltage is held at
zero bias.

(undressed) structural potential Vw in the case of αz = 0.
Here, we can more visibly see the two distinct regimes of
the laser-dressing effect, indicating the transition of our sys-
tem from a usual single well [Fig. 2(a) at αz = 2 nm] to
an effective double well [Fig. 2(c) at αz = 9 nm], with in-
termediated potential featuring a triangular profile [Fig. 2(b)
at αz = Lw/2 = 6.5 nm]. And, in the single-well regime of
αz < Lw/2, the lower half of the well confinement (i.e., Ṽw <

δc/2 = 0.26 eV) essentially shrank, while the upper half of the
well confinement (i.e., Ṽw > δc/2) tends to be enlarged. When
αz > Lw/2, referring to the double-well regime, the effective
barrier height is greatly suppressed as compared to the un-
dressed structural potential [cf. red (solid) and black (dotted)
curves in Fig. 2(c)]. Clearly, the total self-consistent potential
Vsc basically inherits all the features of the laser-dressing
effect on the structural potential Vw [cf. Figs. 1(c)–1(e)
and 2(a)–2(c)].

We should emphasize that, as αz varies, the well width
and the barrier height, both of which are the main sources
affecting the quantum confinement of electrons, in general are
simultaneously altered under the impact of laser field. This
gives rise to a direct consequence that the electrons occupying
the two subbands may see contrasting change of quantum
confinement, in particular when the half of the barrier height
is sandwiched between the energy levels of the two subbands,
i.e., E1 < δc/2 and E2 > δc/2. In this configuration, clearly,
the first- and second-subband electrons are locally subjected
to a well which effectively becomes widened and narrowed,
respectively. We will analyze these features in more detail
later on for the optical response of the energy levels [Fig. 2(e)]
and for the SO control.

Now we turn to the effect of the transverse component (αx)
of laser field on 2DEGs. Figure 2(d) shows the DOS depen-
dence of 2DEGs on the energy at ω/2π = 1.5 THz for several
values of αx, with αx = 0, 2, and 11.5 nm, corresponding to
Fx = 0, 0.5, and 2.5 kV/cm, respectively. In contrast to the
usual ladder profile of the 2D DOS at αx = 0 [dotted (black)
curve], the laser transverse component tends to quench the
DOS of 2DEGs. And, the reduction of the 2D DOS becomes
more distinct with the enhancement of αx [cf. dashed (orange)
and solid (green) curves]. Note that the laser-modified DOS
may vary the self-consistent electron Hartree potential Ve by
altering the density of electrons, and consequently adjust the
SO strengths (Sec. II C). In addition to modifying the DOS of
2DEGs, the transverse component also causes a slight energy
blueshift of about 3 meV, as shown in the inset of Fig. 2(d).
We should emphasize that this energy blueshift is independent
of the subbands, namely, for either subband the blueshift is
�E = 2γ h̄ω, which depends on the laser strength of the trans-
verse component through the parameter γ (see Sec. II A 2) and
the laser oscillation frequency ω.

The laser-dressed potential and the laser-modified DOS
will surely affect the quantized energy levels of 2DEGs. In
Fig. 2(e), we show the energy levels E1 and E2 of the two
subbands as functions of the laser axial component αz (up-
per axis) and transverse component αx (lower axis). We find
that both E1 and E2 increase significantly as αz grows. More
specifically, for a lower value of αz of less than 5 nm, both
energy levels E1 and E2 are below δc/2, and the quantum
confinement for electrons of both subbands intensifies due to
shrinking of the effective well width as αz increases. Clearly,
with the increasing of αz, the second-subband energy level
will eventually rise above δc/2, and accordingly the electrons
occupying the second subband will effectively see a widening
well. In this situation, clearly, the two-subband electrons see
contrasting quantum confinement, thus allowing for distinct
SO control for electrons of the two subbands. On the other
hand, in contrast to the strong energy dependence of Eν on
αz, it is found that both E1 and E2 depend very weakly on αx,
with a blueshift of only about 3 meV [see also the inset of
Fig. 2(d)].

The above features of the laser-dressed potential and laser-
modified DOS suggest that the two components of laser
polarization are expected to manipulate SO terms from con-
trasting perspectives, both of which (from distinct physical
sources) potentially have direct impacts on SO control. These
results are helpful for understanding the underlying physics of
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FIG. 3. (a), (b) The Rashba αν and the linear Dresselhaus βν

(ν = 1, 2) coefficients for the 13-nm GaInAs well, as functions of the
TLF axial component αz (a) and of the TLF transverse component
αx (b), when the tilt angle θ ranges from 0 to π/4, as indicated
by the orange and blue (downward) arrows. (c) Dependence of the
cubic (βν,3) and the renormalized (βν,eff = βν − βν,3) Dresselhaus
coefficients on αx . (d) Subband occupations nν of 2DEGs versus
αx , with the total 2D electron density nT = n1 + n2. For highlight-
ing distinct and individual SO control of the two TLF components
(αz and αx), in (a), αz = αL cos θ , while we set αx = 0 (instead of
αx = αL sin θ ); similarly, in (b)–(d), αx = αL sin θ , while we consider
αz = 0. The gate potential is chosen as Vg = −0.1 eV, and the overall
laser parameter is set at αL = 11.5 nm.

the gate assisted optical multisubband SO control in quantum
wells subjected to tilted laser fields. Below we first analyze the
SO manipulation by solely the axial and transverse compo-
nents of the laser polarization, respectively, and then discuss
the intertwined effect of the two components on the spin-
related properties.

C. SO control by two components of TLF

To unveil distinct and individual SO manipulation by the
two components of TLF, we first look into the effect of the
axial component on the control of SO coupling. Figure 3(a)
shows the Rashba and Dresselhaus strengths for the 13-nm
well at the gate potential Vg = −0.1 eV, as functions of the
axial laser parameter αz (= αL cos θ ) when the tilt angle varies
from 0 to π/4. Note that the overall laser parameter is held
fixed at αL = 11.5 nm, corresponding to αz ranging from 11.5
to 8.2 nm, which is greater than Lw/2. This indicates that the
system is in the regime of an effective double well [Sec. IV B;
Fig. 2(c)], due to the dressing effect of the axial component
of laser polarization. Also, we should emphasize that, to only
highlight the effect of axial component αz on the SO control,
we have set in Fig. 3(a) αx = 0 instead of αx = αL sin θ .

For the Rashba couplings of the two subbands, we reveal
that α1 and α2 essentially have the same strength, i.e., |α1| =
|α2|. As αz varies from 11.5 to 8.2 nm, the system features a
double-well profile, and thus the electrons occupying the first
and second subbands are mainly residing in the right and left
subwells [Fig. 1(c)], respectively. In the double-well regime,
the dressing effect may to a certain extent balance the relative
gate-induced SIA seen by electrons of the two subbands in the
two subwells, thus resulting in the Rashba coefficients α1 and
α2 of essentially equal strength in magnitude. Further, we find
that α1 and α2 also have opposite signs, and thus the relation
α1 ≈ −α2 holds. Note that the matching condition of two-
subband Rashba terms is achieved in essentially the whole
range of αz considered [Fig. 3(a)], not at a specific value of
αz, greatly facilitating the formation of the so-called persistent
skyrmion lattice that we recently proposed [17], which em-
braces crossed features of two spin helices. Contrasting signs
of α1 and α2 arise from opposite direction of the force field
[i.e., the derivative of potential energy in Eq. (20)] exerting
on electrons of the two subbands, corresponding to the flip of
SIA between the right and left subwells [38,40,43,61], which
mostly host the first- and second-subband electrons, respec-
tively. Moreover, both α1 and α2 decrease in their strength
as αz decreases. This is mainly attributed to the fact that the
weakening of αz alleviates the local SIA seen by electrons of
the two subbands, and further leads to essentially the sym-
metric distribution of two-subband wave functions [Sec. IV A;
Fig. 1(e)].

We should emphasize that all the above features of the
dependence of Rashba coeffcients on αz dominate the syn-
chronous symmetric multisubband SO control that we will
emphasize later on in Sec. IV D. Regarding the Dresselhaus
terms β1 and β2, we observe that they basically remain inertia
to αz since the quantum confinement is only slightly altered
with the reduction of αz in the regime of an effective double
well induced by the laser-dressing effect.

Now we have a look at the control of the Rashba and Dres-
selhaus couplings solely by the laser transverse component
αx, as shown in Fig. 3(b). The transverse component, which
primarily affects the DOS of 2DEGs, clearly alters our self-
consistent solutions (energy levels and wave functions) and so
the relevant SO terms (Sec. II C). Despite this, for the GaInAs
wells considered here, we observe that the Rashba αν and
linear Dresselhaus βν SO coefficients for both subbands have
relatively weak dependence on αx. This is mainly because the
DOS of 2DEGs modified by αx has no direct consequence in
affecting the SIA of the system and the quantum confinement,
which are the key sources determining the Rashba αν and
Dresselhaus βν strengths, respectively. To see the underlying
physics in more detail, in the Supplemental Material (SM;
Fig. S1) [101], we show all distinct ingredient contributions
to the Rashba couplings of the two subbands for the 13-nm
well, including the electron Hartree contribution αe

ν , the gate
plus doping contribution α

g+d
ν , the pure structural contribution

αw
ν , and the laser field contribution αL

ν . From Fig. S1 in the SM
[101], we reveal that it is mainly the electron Hartree contri-
bution αe

ν dominating the dependence of the overall Rashba
coupling αν = αe

ν + α
g+d
ν + αw

ν + αL
ν on the laser transverse

component, following from that the change of DOS conse-
quently alters the 3D electron density and so the electron
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Hartree potential Ve, which directly determines αe
ν (Sec. II C).

In addition, the tunability of the Rashba term via the laser
transverse component turns to become more distinct in even
wider quantum wells, where the two-subband electrons have
much broader spatial distributions (see Fig. S2 in the SM
[101] for the well of width of Lw = 26 nm), which we will
analyze in more detail later on in Sec. IV F for the laser tilt
angle dependence of SO control.

On the other hand, even though the laser transverse com-
ponent has no direct consequence on the linear Dresselhaus
terms β1 and β2, it, however, can directly affect the 2D
electron density nT of the well [Fig. 3(d)], i.e., the electron
occupations nν of the two subbands with nT = n1 + n2, via the
laser modified DOS of electrons, so it is expected to be more
feasible to adjust the cubic βν,3 = γπnν/2 and renormalized
βν,eff = βν − βν,3, which are crucial for determining the cor-
rect symmetry points of the persistent spin helix [17,18,61].
The dependence of βν,3 and βν,eff on αx is shown in Fig. 3(c).
We find that β1,3 (β2,3) largely decreases (increases) with
increasing of αx, directly following from the dependence of
n1 (n2) on αx [Fig. 3(d)]. And, the tunability of βν,eff , which
exhibits opposite dependence on αx to βν,3, alongside the con-
trol of the corresponding Rashba terms of distinct subbands,
is in favor of the formation of multisubband persistent spin
helices [17,38], for which the compensated SO strengths of
Rashba and renormalized Dresselhaus terms for both sub-
bands need to be simultaneously satisfied, i.e., α1 = ±β1,eff

and α2 = ±β2,eff .

D. Synchronous symmetric control
of the two-subband Rashba couplings

Having the knowledge of the individual SO control by re-
spectively the axial and transverse components of polarization
for tilted laser field, now we are ready to analyze how to en-
gineer the Rashba and Dresselhaus SO couplings by resorting
to the geometrical tilt angle θ of laser field having both of the
two polarization components.

Figure 4(a) shows the Rashba αν and Dresselhaus βν

strengths of the two subbands as functions of θ for the 13-
nm well at Vg = 0. Due to the lack of SIA of the well at
zero gate bias, the Rashba coefficiets of the two subbands
identically vanish for all angles of θ ∈ [0, π/2] [blue and
green curves in Fig. 4(a)]. In contrast, for the Dresselhaus
term [pink and yellow curves in Fig. 4(a)], first, we observe
that β1 and β2 change very slightly when θ varies from 0 to
π/4, primarily due to the axial component αz, under which
the well is in the regime of an effective double well, similar to
that in Fig. 3(a). However, as θ further increases, the double-
well profile will eventually turn into an effective triangular
one around θ ∼ π/3. In this case, the quantum confinement
effect is significantly enhanced with the reduction of αz as
θ increases, resulting in considerable increment of β1 and
β2. Furthermore, when θ > π/3, the well will be restored to
the original single-well profile. Thus, further reduction of the
axial component, one the one hand, leads to the widening of
the lower half of the well, while on the other hand, results
in the increasing of barrier height [Fig. 2(a)]. Clearly, the
broadening of well width and the increasing of barrier height
have opposite consequences on the quantum confinement.

FIG. 4. (a), (b) Intrasubband Rashba αν and Dresselhaus βν (ν =
1, 2) coefficients of the two subbands as functions of the TLF tilt an-
gle θ , for the 13-nm GaInAs well at Vg = 0 (a) and Vg = −0.1 eV (b).
(c), (d) Several distinct constituent contributions to the Rashba terms
α1 (c) and α2 (d) versus θ for the well at Vg = −0.1 eV, including the
electron Hartree contribution αe

ν , the gate plus doping contribution
αg+d

ν , the pure structural contribution αw
ν , and the laser field contri-

bution αL
ν . In [(b)–(d)], the vertical (black; dotted) line at θ ∼ π/4

marks α1 = α2 (indicated also by the red solid dot). In (c) and (d),
the relation α1 ≈ −α2 largely holds as θ varies when θ < π/4. (e),
(f) Dependence of the intersubband Rashba η and Dresselhaus �

coefficients on θ for the well at Vg = 0 (e) and −0.1 eV (f). In (e)
and (f), similar to αj=e,g+d,w,L

ν , several different ingredient contribu-
tions ηj to η are also shown. The overall laser parameter is set at
αL = 11.5 nm.

Since the energy level of the first subband E1 is mostly below
the the critical value of δc/2 = 0.26 eV in the parameter
range considered [Fig. 2(e)], depending on the second-
subband energy level E2 being below or above δc/2, β1 and
β2 may behave contrasting dependence on the tilt angle θ

(cf. β1 and β2).
When the gate bias is switched on, the SIA of the well is in-

duced, giving rise to finite Rashba SO couplings. In Fig. 4(b),
we show both Rashba and Dresselhaus SO coefficients as
functions of θ for the 13-nm well at Vg = −0.1 eV. For the
optical response of Rashba terms, in a certain range of tilt
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angle θ ∈ [0, π/4] [to the left of the vertical dotted (black)
line], we find that α1 and α2 exhibit similar laser dependence
with essentially the same magnitude but opposite signs, i.e.,
α1 ≈ −α2. This arises from the mitigation of the local SIA
seen by electrons of the two subbands in the aforementioned
double-well regime, as a result of the combined contributions
from the laser-dressing effect of αz [see also Figs. 2(c) and
3(a)] and the modification of αx on electron Hartree potential
through the adjustment of 2D electron density. The symmetric
Rashba control of α1 and α2 via the geometric angle θ , pro-
vides a synchronous manipulation of the two-subband Rashba
SO couplings over a wide range of laser polarizations, rather
than being restricted to a unique value, greatly facilitating
the realization of persistent skyrmion lattice that we recently
proposed [17], even with different pitches. On the other hand,
when θ is greater than π/4 [to the right of the vertical dotted
(black) line], as θ varies we reveal that α1 and α2 could have
the same sign, or even α1 vanishes while α2 is finite, greatly
facilitating selective SO manipulation of distinct subbands.
Note that, the vanishing Rashba coupling of the first subband
is related to a seemingly symmetric configuration seen locally
by the electrons occupying the first subband [Fig. 1(d)]. This
provides a means for selectively suppressing the SO-induced
spin relaxation mechanisms among distinct subbands. In con-
trast, for the laser dependence of Dresselhaus coefficients, we
find that the changes of β1 and β2 in Fig. 4(b) are essentially
consistent with that in Fig. 4(a), indicating that the linear
Dresselhaus terms are not sensitive to electric control. Note
that, in the parameter range considered, we reveal that the
laser tunability of Rashba terms are much more distinct than
that of Dresselhaus terms.

To further explore the underlying physics of the gate-
assisted TLF control of the Rashba couplings, in Figs. 4(c)
and 4(d), we show αν of the two subbands and the corre-
sponding constituent contributions α

e,g+d,w,L
ν as functions of

θ for the 13-nm well at Vg = −0.1 eV. For the gate plus
doping contribution α

g+d
ν , it is found that α

g+d
1 = α

g+d
2 , which

is attributed to a constant force field of Fg+d = −dVg+d/dz
since the potential Vg+d is linear across the whole 2DEG
region [18,37,43]. Regarding the electron Hartree contribu-
tions αe

ν , as the electrons of the first and second subbands
tend to reside on opposite sides of the well [61], the force
field Fe = −dVe/dz for the two subbands largely has opposite
signs, thus resulting in αe

1 and αe
2 essentially being opposite

in their signs. As for the structural αw
ν and laser field αL

ν

contributions, we observe that αw
1 (αL

1 ) and αw
2 (αL

2 ) almost
have the same magnitude but opposite signs, and dominate
over α

g+d
ν and αe

ν in magnitude. Thus, here we attribute αw
ν and

αL
ν to the main ingredient contributions to the synchronous

symmetric control of the two-subband Rashba SO couplings.

E. Intersubband Rashba and Dresselhaus couplings

Figure 4(e) shows the intersubband Rashba term η includ-
ing its constituent contributions ηe,g+d,w,L and the Dresselhaus
term � as functions of the laser tilt angle θ , for the 13-nm
well at zero gate bias. Due to different parities of the wave
functions ψ1 and ψ2 of the two subbands, the intersubband
Dresselhaus strength � in quantum wells without SIA main-
tains zero, regardless of which direction the laser polarization

aligns in, as is expected [17]. In contrast, the intersubband
Rashba coefficient η, which mainly depends on the overlap
of the two-subband wave functions, has distinct dependence
on θ and even features a sign reversal as θ varies. Regarding
the constituent contributions of η, we find that the gate plus
doping contribution ηg+d is identically zero, following from
(i) the orthogonality condition for ψ1 and ψ2 of the two
subbands and (ii) the gate plus doping potential Vg+d being
linear across the well region hosting 2DEGs [18,37,43]. And,
the electron Hartree contribution ηe, which mainly depends
on the electron density, also exhibits inertia as θ varies. As a
consequence, similar to the intrasubband Rashba term αν , the
intersubband Rashba term is also mainly determined by the
structural ηw and laser field ηL contributions.

Even the gate voltage is switched on with the emergence
of SIA of the well, we reveal similar features of the optical
control of the intersubband SO couplings for both Rashba η

and Dresselhaus � terms [cf. Fig. 4(e) at Vg = 0 and Fig. 4(f)
at Vg = −0.1 eV]. Specifically, even in the presence of SIA,
which is expected to alter the symmetry of the wave func-
tions and to quench the spatial overlap between ψ1 and ψ2,
the Dresselhaus term � still basically remains zero and the
Rashba term η essentially has the same magnitude as that
at zero gate bias [cf. Figs. 4(f) and 4(e)]. This is primar-
ily because the laser field may compensate the SIA of the
well induced by the electrical gate bias, as is aforementioned
[Fig. 1(e)].

Note that the nonzero intersubband Rashba SO coupling
may give rise to intriguing physical phenomena, e.g., un-
usual Zitterbewegung [103] as well as band crossing and
anticrossings of multiband spin branches [38]. Further, the
intersubband SO term has also been experimentally verified
in 2D electron systems with, e.g., unusual spin textures [34]
and intrinsic spin-Hall effect [35]. Flexible control of the in-
tersubband terms via TLFs, alongside the intrasubband terms,
may trigger more interesting SO effects and the corresponding
spintronic applications.

F. Gate assisted optical SO control in a relatively wide well

For capturing the full scenario of the gate assisted optical
multisubband SO control, in Fig. 5(a) we show the intrasub-
band Rashba and Dresselhaus SO coefficients as functions
of θ in a relatively wide well of Lw = 26 nm. Clearly, the
quantum confinement in wide wells is greatly quenched, and
accordingly the energy levels of the two subbands are both
below the critical energy δc/2. This directly follows that the
linear Dresselhaus coefficients β1 and β2 of the two subbands,
which are dominated by quantum confinement, are relatively
small. Meanwhile, due to the compensating contributions of
the laser-dressing effect on the effective well width and barrier
height to the degree of quantum confinement, β1 and β2 are
also weakly dependent on θ . As for the intrasubband Rashba
coefficients, remarkably, we also achieve adjusting the two
Rashba terms in a selective manner with large flexibility.
Specifically, as TLF varies, we manage to pin the first subband
α1 at zero, as indicated by the shadowed region in Fig. 5(a),
while meanwhile to flexibly alter the second subband α2, i.e.,
{α1 = 0, α2 �= 0}. These features are in stark contrast to the
aforementioned synchronous symmetric control of α1 and α2,
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FIG. 5. (a) Intrasubband Rashba αν and Dresselhaus βν (ν =
1, 2) coefficients of the two subbands as functions of the TLF tilt
angle for the 26-nm GaInAs well. The shadowed region indicates
that the Rashba term α1 of the first subband essentially vanishes
when θ < 3π/8. (b) Dependence of the intersubband Rashba η and
Dresselhaus � terms on θ , including several constituent contributions
to η: the electron Hartree ηe, the gate plus doping ηg+d, the pure struc-
tural ηw, and the laser field ηL contributions. (c), (d) Self-consistent
potential Vsc and wave functions ψν for the 26-nm well at θ = π/16
(c) and π/3 (d), with the dotted (red) curve referring to Vsc without
TLF. The horizontal blue (green) line inside the well indicates the
self-consistent energy level E1 (E2) of the first (second) subband. The
gate potential is set at Vg = −0.2 eV and the overall laser parameter
is chosen as αL = 11.5 nm.

which have opposite signs while are essentially locked to the
same magnitude as θ varies, for the relatively narrow well of
Lw = 13 nm. We should emphasize that here the consistent
pinning of α1 at zero within a large range of laser polarization,
to a large extent, facilitates the suppression of electron spin
relaxation for a given subband, while meanwhile allows for
SO control of another subband in great flexibility, greatly
fascinating for selective SO control in spintronic applications.
Recently, we also achieved a similar selective Rashba control
of distinct subbands, but with {α1 �= 0, α2 = 0} and under the
stringency of a specific value of gate voltage or laser parame-
ter [32,43]. This together with the TLF-mediated wide-range
selective SO control of {α1 = 0, α2 �= 0} opens more possi-
bilities for practical applications in which a full scenario of
selective SO control is important.

Now we analyze more in detail the TLF control of the
two-subband Rashba couplings via the geometrical tilt angle.
The vanishing of the first-subband Rashba term α1 in Fig. 5(a)
is due to the fact that the electrons occupying the first sub-
band see a locally symmetric configuration, as a result of
the balanced effect of the laser field on the SIA induced by
the external gate bias. And, the local symmetric configuration
seen by the first-subband electrons can also be reflected by the

spatial distribution of the wave function ψ1, which is symmet-
ric with respect to the center of the well [see Fig. 5(c)]. While
for the second subband, as θ increases, electrons are inclined
to move from the right side of the well to the left side [cf. green
curves (ψ2) in Figs. 5(c) and 5(d)]. This process of charge
transfer between left and right sides of the well quenches
the SIA induced by gate field so that the force field seen
by the second-subband electrons is shrinking, and accord-
ingly leads to the reduction of the second-subband Rashba
term α2.

In addition to the intrasubband SO terms emphasized
above, Fig. 5(b) shows the intersubband Rashba (including its
constituent contributions) and Dresselhaus SO coefficients as
functions of θ for the 26-nm well. Regarding the intersubband
Dresselhaus term �, in contrast to that in the case of the 13-nm
(relatively narrow) well, here it becomes finite and is readily
tunable by the tilt angle θ . Notably, with the variation of θ ,
we find that � disappears at about θ = π/4 and the sign of
it can even be reversed as θ further increases. Despite this,
we should emphasize that � is still much weaker than the
intersubband Rashba term η that we will discuss next.

Regarding the intersubband Rashba term η, in addition to
its much larger magnitude than �, we find that η can also
change its sign as θ varies. This feature is similar to that
for the 13-nm well, even though η is largely positive for the
26-nm well while is mostly negative for the 13-nm well, in
the range of parameters considered [cf. Figs. 4(f) and 5(b)].
Furthermore, we note that here for the 26-nm well the laser
field plays a very important role in η, for which the laser field
contribution ηL almost dominates over all the other contri-
butions of ηe, ηg+d, and ηw, indicating potential applications
of flexible control of the intersubband SO terms via optical
manner.

G. Combined control of the Rashba coupling via gate and TLF

Since the Dresselhaus SO coupling, which depends on
quantum confinement, is mainly dominated by the laser field
and in general is not sensitive to electric manipulation, here
we mainly focus on the Rashba SO coupling of both relatively
narrow (13-nm) and wide (26-nm) wells, for the combined
control via the electrical gate bias and the tilted laser field. To
this end, in Figs. 6(a) and 6(b), we show the grayscale map
of the intrasubband Rashba terms α1 (first subband) and α2

(second subband), respectively, as functions of Vg and θ , for
the 13-nm well. Note that several constant values of α1 and
α2 are also shown by the contour lines with different colors.
Clearly, within the range of θ ∈ [0, π/4], α1 and α2 have
opposite signs and are essentially locked to equal strength,
i.e., α1 ≈ −α2, independent of the gate voltage, referring to
the synchronized symmetric control of the Rashba terms of
distinct subbands. Note that, under the combined action of the
axial and transverse components of laser polarization, since
α1 and α2 are locked to each other over a wide range of laser
fields, this greatly facilitates the formation of multisubband
persistent spin helices simultaneously [17].

Figures 6(c) and 6(d) show the Rashba coefficients of the
two subbands for the relatively wide well of Lw = 26 nm.
Clearly, α1 is basically vanishing in most of the range of Vg

and θ considered, due to the fact that the electrons of the
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FIG. 6. (a), (b) Intrasubband Rashba coefficients α1 (a) and α2

(b) of the two subbands for the 13-nm GaInAs well, as functions of
the gate voltage Vg and the TLF tilt angle θ . (c), (d) Refer to the
corresponding analogs to (a) and (b), respectively, while for the 26-
nm well. In [(a)–(d)], several values of contour lines of α1 or α2 are
also shown. The overall laser parameter is set at αL = 11.5 nm.

first subband see approximately symmetric confining potential
dressed by the laser field. And, because of the quenching of
the effective force field as θ increases, α2 also drops sharply
to zero with θ . As a remark, the extensive electro-optical
control of multisubband SO couplings via both external gate
bias and tilted laser field greatly alleviates the strictness for
the SO manipulation with solely the electrical means, highly
desirable for practical applications.

H. Two types of avoided crossings with distinct spin textures:
With and without vertex corrections

So far, we have separately discussed the intrasubband and
intersubband SO terms in the presence of gate and laser fields.
The flexible electro-optical control of the intrasubband and
intersubband SO couplings inspires us to further explore the
combined effect of them on the band dispersion and the spin
texture, which are crucial for various corresponding spintronic
applications, e.g., spin-charge conversion [104, 105]. As we
emphasized above, by adjusting the gate and laser fields, the
intrasubband Rashba terms α1 and α2 of the two subbands
can have either the same or opposite signs, or even both α1

and α2 vanish (symmetric well) so that the only surviving
intrasubband SO terms are the Dresselhaus types β1 and β2

(see Figs. 4 and 6). Therefore, without lack of generality,
below we mainly focus on these three typical scenarios, i.e.,

(i) α1 = α2 (same sign), (ii) α1 = −α2 (opposite signs), and
(iii) β1 = β2 (α1 = 0, α2 = 0). For the intersubband SO terms,
below we only take into account the Rashba coupling η, as
the Dresselhaus coupling � is much smaller than η in the
parameter range considered [see Figs. 4(f) and 5(b)].

In Figs. 7(a)–7(c), we show the spin-resolved energy dis-
persions for the four spin branches (two for each subband)
of the two subbands, for the above three scenarios (i)–(iii),
respectively, under the impact of the intersubband Rashba
term η. The dotted black curves are for the uncoupled case
between the two subbands with η = 0 (i.e., without intersub-
band term), featuring the crossing of the spin branches of the
two subbands.

Under the impact of the intersubband SO coupling η, we
reveal that the four spin branches of the two subbands may
maintain crossing [scenario (i); see green circle in Fig. 7(a)]
or turn to avoided crossing [scenario (ii); see green circle in
Fig. 7(b)], depending on the relative sign of the intrasubband
terms α1 and α2, as compared to the uncoupled (η = 0) case.
For both cases of crossing and avoided crossing, the usual
Rashba chiral spin texture remains unchanged, i.e., the spin
hybridization is not allowed [see size (the degree of spin
polarization) and color (the spin direction) of markers in
Figs. 7(a) and 7(b)]. However, in scenario (iii) when there
are only Dresselhaus terms for the intrasubband SO coupling,
referring to the case of the quantum well in the absence of
SIA (e.g., Vg = 0), we unveil distinct spin textures with vertex
corrections to the usual Rashba kinds, even though the en-
ergy dispersion itself is the same as that for scenario (ii) [cf.
Figs. 7(b) and 7(c)]. Notably, near the avoided crossing, there
is even vanishing spin polarization due to the hybridization
of different spin branches. This is in stark contrast to the sce-
nario (ii), where the avoided crossing of the energy dispersion
essentially does not destroy the original spin texture in the
absence of intersubband SO coupling, namely, without vertex
corrections.

We should emphasize that the avoided crossing induced by
the intersubband SO term has been experimentally verified
in the Rashba surface states of Bi/Ag(111) and Bi/Cu(111)
even with hybridized spin textures [34,106], where there exist
physical phenomena related to the orbital mixing as well as
the SO entanglement. These vertex corrections to the spin
texture due to the interband terms may also lead to intriguing
possibilities for spintronic applications, e.g., high-efficiency
spin-charge conversion devices and the intrinsic spin-Hall ef-
fect [35,104,107].

V. CONCLUDING REMARKS

The intense and high-frequency laser field dresses the
quantum confinement and alters the quantized energy levels
in quantum confined systems, giving rise to intriguing control
of electronic and optical properties of 2DEGs. Recently, we
proposed the concept of laser-dressing-effect mediated SO
control in semiconductor wells, with the laser polarization
aligning with the well-growth direction [43], facilitating flex-
ible SO control. Here, by resorting to TLFs with the interplay
of laser axial and transverse components, we go much beyond
that in Ref. [43], not only from the generic and compre-
hensive theoretical model itself (and practical applications)
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FIG. 7. Spin-resolved energy dispersions (scaled by a factor of 15 for visibility) with both intrasubband and intersubband SO terms of the
four spin branches versus kx [‖ (100)] of the AlInAs/GaInAs well, for {α1 > 0, α2 > 0} (a), {α1 > 0, α2 < 0} (b), and {β1 > 0, β2 > 0} (c).
The size of the marker scales with the degree of spin polarization and the color represents the spin orientations up (red) and down (blue),
as indicated by the up and down arrows. The black dotted curves correspond to the uncoupled (η = 0) bands which clearly have crossing (as
indicated by green circle), and for η �= 0 the bands maintain crossing (a), or exhibit avoided crossing (b), (c), depending on the combined effect
of intrasubband and intersubband terms. The SO coefficients are chosen for the 13-nm well at Vg = −0.1 eV and θ = π/16 [Figs. 4(b) and
4(f)], with α1 = α2 = 11 meV nm for (a), α1 = −α2 = 11 meV nm for (b), and β1 = β2 = 11 meV nm for (c), and η = −17.5 meV nm. Note
that the intersubband Dresselhaus term � is negligibly small and hence is omitted [Figs. 4(e) and 4(f)].

incorporating both of the two laser components, but also from
the emerging new SO features, greatly fascinating for spin-
tronic applications.

The two laser components are found to manipulate SO
terms from distinct physical sources, with the axial component
primarily dressing the quantum well and the transverse com-
ponent mainly altering the electron DOS. Under the impact
of TLFs, we have achieved a synchronous symmetric Rashba
control of distinct subbands, i.e., α1 = −α2, over a wide range
of laser polarization, rather than being restricted to a unique
value of laser field, which greatly facilitates the realization of
persistent skyrmion lattice (even with different pitches) that
we recently proposed [17]. Also, we achieve adjusting the two
Rashba terms in a selective manner, where α1 can be pinned
at zero as TLF varies while meanwhile α2 can be flexibly
adjusted, greatly fascinating for selective multisubband SO
control in particular with suppressed spin relaxation for a
given subband. As for the intrasubband Dresselhaus coupling,
we unveil the optical tunability of linear βν terms and even
the dependence of cubic βν,3 and renormalized βν,eff terms on
laser transverse component. Moreover, we demonstrate that
the magnitude and sign of the intersubband Rashba coupling
η can be significantly manipulated by TLFs, which together
with the intrasubband terms triggers the band crossing and an-
ticrossing of multiband spin branches with and without vertex
corrections, which are important for spintrobic applications,
e.g., spin-charge conversion [104,105]. Our work sheds light
on experiments incorporating the TLF for a universal control
of the Rashba-Dresselhaus SO terms of both intrasubband and
intersubband kinds.

In addition, our generic model can also be potentially used
to explore SO features in other quantum systems, in which
the laser transverse component may possibly dominate the

SO control. For instance, for the GaInAs triple wells with
three occupied subbands [38], due to the occupation of much
higher-energy subbands, the laser transverse component may
significantly adjust the relative electron distributions among
distinct subbands and so the relevant SO strengths. Moreover,
the TLF-mediated optical SO control may inspire further the-
oretical studies in wurtzite quantum systems, e.g., wide-gap
GaN/AlGaN quantum wells [30]. The wurtzite heterostruc-
tures with strong built-in (spontaneous and piezoelectric)
electrical fields have the insensitive electrical control of the
usual Rashba coupling, let alone the Dresselhaus coupling.

As a final remark, here we only consider nonresonant laser
fields without photon absorption, while we believe that the
SO-mediated linear (and nonlinear) spin-dependent optical
properties as well as spin transport and dynamics with phonon
(and even impurity) scatterings, in particular, due to the ther-
mal effects in the near-resonance scenario may be highly
interesting. More work is needed to explore these possibilities.
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