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Topological information device operating at the Landauer limit
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We propose and theoretically investigate a novel Maxwell’s demon implementation based on the spin-
momentum locking property of topological matter. We use nuclear spins as a memory resource which provides
the advantage of scalability. We show that this topological information device can ideally operate at the Landauer
limit; the heat dissipation required to erase one bit of information stored in the demon’s memory approaches
kBT ln 2. Furthermore, we demonstrate that all available energy, kBT ln 2 per one bit of information, can be
extracted in the form of electrical work. Finally, we find that the current-voltage characteristic of topological
information device satisfy the conditions of an ideal memristor.
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I. INTRODUCTION

Controlling dissipation in electronic devices is one of the
major challenges in modern electronics. In fact, one of the
main aims of spintronics, and spin caloritronics in particular,
is to study the interplay of heat, charge, and spin transport
in electronic devices [1]. This led to an impetus to develop
spintronic devices, such as spin transistors and spin-dependent
memory devices, as alternatives to their electron-charge-based
counterparts [2–9], having low-energy dissipation and better
storage capabilities. A parallel research was also conducted
to better understand the thermodynamics of quantum co-
herent systems. Dubbed quantum thermodynamics, the field
focused on how quintessential classical thermodynamics con-
cept of heat engines, or the statistical mechanics concept of
Maxwell’s demon, would translate to the quantum domain.
This research led to the study of quantum heat engines,
where the working fluid is a quantum object or proposals
of few-electron devices operating as ”Maxwell’s demons,”
which offers another alternative method of reducing heat
dissipation and efficient energy storage (see Ref. [10] for a
review). Maxwell’s demon implementations also became a
central theme in the upcoming field of quantum information
thermodynamics [11,12].

Implementing a Maxwell’s demon (MD) could also be
attractive from the spintronics point of view, as it offers the
possibility to control and even reverse dissipation in a de-
vice as long as another resource, namely, demon’s memory,
is being consumed. Generating this resource in turn has a
cost, stated by the Landauer’s principle [13,14]: the erasure of
one bit of information requires a minimum amount of energy
kBT ln 2 to be dissipated, but this can be done at a later time.
To have an observable and useful effect, one needs to design a
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MD to operate at a device scale, wherein macroscopic number
of electrons need to be manipulated and perform the erasure
as close as possible to the Landauer limit. However, most of
the proposals [15–41], as well as experimental demonstrations
[42–58,60] are MD implementations comprised of a few par-
ticles at best. While a MD implementation that can operate at
a device level was proposed by some of the us [59], reaching
the Landauer limit remains to be the main issue.

In this paper, we propose and theoretically investigate a
novel spintronic device that operates as an information en-
gine: a MD implementation which uses information entropy
encoded in the spin degree of freedom to convert ambient
heat into electrical work. The device is capable of oper-
ating on a macroscopic number of electrons and reaching
the Landauer’s limit, hence bypassing both issues of scal-
ability and efficiency mentioned above. Compared to other
Maxwell’s demon implementations in other platforms, such as
single-electron transistors [60,61] and single qubits [26,62],
our proposed device has a natural way of scalability; by
adjusting the device size, one can reduce or increase the
number of nuclear spins, hence the energy output of the de-
vice. Furthermore, our proposed setup does not require any
superconducting elements, which significantly increases the
range of operating temperature of our device. We show below
that it is possible to extract all stored energy in the memory
in the form of electrical work, completing the full thermody-
namic cycle. This work extraction is achieved by connecting
topological information device to an external load in order to
generate electrical power.

Furthermore, we demonstrate that a topological informa-
tion device can be utilized as a memristor. A memristor is
an electronic circuit component [63] with a resistance that
depends on the amount of charge that has flowed through it.
By modeling the relation between the spin memory register
and the electrical conductance of our topological information
device we show that the current-voltage characteristic follow
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FIG. 1. Topological information device. The left lead is a quan-
tum anomalous Hall insulator with spin-up electrons propagating in
counterclockwise direction, while the right lead is another quantum
anomalous Hall insulator with spin-down electrons propagating in
clockwise direction. The central region contains nuclear spins and/or
magnetic impurities that allow electrons to transmit from one lead to
the other lead via spin-flip process.

the ideal laws of memristance [64] in a purely electronic
device (i.e., without moving atoms). Therefore, the proposed
topological information device is of fundamental interest as
a model system for the interaction between information and
energy, but could also lead to applications in energy efficient
energy storage, in-memory computing as well as neuromor-
phic computing.

II. TOPOLOGICAL INFORMATION DEVICE

Our proposed device is composed of two quantum anoma-
lous Hall insulators with opposite spins and chirality with
a junction area that contains nuclear spins and/or magnetic
impurities as the MD memory (see Fig. 1). A practical imple-
mentation of this device could, for example, be a magnetic
topological insulator with a domain wall inside, separating
the system into two distinct quantum anomalous Hall phases
characterized by Chern numbers Q = ±1.

Without loss of generality, we assume that the left lead
of our proposed topological information device has spin-up
electron edge states propagating in the counterclockwise di-
rection, while the right lead has spin-down electron edge
states propagating in the clockwise direction, as depicted in
Fig. 1. In the absence of any mechanism that can flip the
spins of the electrons, the conductance vanishes because there
are no available states for the electrons in the other lead.
In fact, the only way for transmitting an electron through
the device is to flip its spin via nuclear spins. In this way,
any time a spin-flip occurs, a bit of information is erased
and an electron is transmitted from one lead to the other.
Consequently, the transmission of electrons results in Joule
heating, in agreement with the Landauer’s erasure principle.
Conversely, polarized nuclear spins/magnetic impurities can
be utilized to extract thermal energy from the reservoirs in the
form of electrical power output.

A. Model for topological information device

We now quantify our proposed device. The domain wall,
where the nuclear spins are present, separates two regions
with opposite Chern numbers Q = ±1, therefore, we have
two copropagating chiral edge modes at the boundary with
opposite spins. We then project these copropagating chiral

edge modes at each side of the domain wall to the boundary
[65] and obtain the effective Hamiltonian

H = −ih̄vF ∂sσ0 + λ
∑

n

σ · Inδ(s − sn), (1)

where s denotes the position along the junction that is per-
pendicular to the domain wall boundary, vF is the Fermi
velocity of the chiral edge modes, and σ0 is the unit matrix
in the electron spin subspace. The second term in Eq. (1)
describes the Fermi contact interaction between nuclear spins,
described by the nuclear spin operator In for the nth nuclear
spin at position sn, and electrons with an interaction strength
λ = A0a3/S, where A0 is the hyperfine interaction constant, a
is the lattice constant, and S is the cross section of the junction
perpendicular to the domain wall. We stress that here, both
spin species are copropagating, as opposed to our earlier work
where opposite spins are counterpropagating [59]. As a result
of this feature, dissipation only takes place when there is an
associated spin-flip.

We define mean polarization of the nuclear spins/magnetic
impurities in the junction, m = (N↑ − N↓)/2N , which repre-
sents the state of the demon’s memory. Here, N↑(↓) is the total
number of up (down) nuclear spins and N = N↑ + N↓ is the
total number of nuclear spins in the junction.

We find that, in the quasistationary state, the charge current
flowing through topological information device is related to
the mean polarization

I = eN
dm

dt
. (2)

We see from Eq. (2) that the spin-flip mechanism is the only
way current can flow through the system. In other words, there
can be no electron transmitted through the system without
an associated nuclear spin flip. In the presence of a constant
applied voltage bias V , the rate of change of mean polarization
is given by [59,66,67]

dm

dt
= γ0

eV

2h̄
− m

τ (V, T )
, (3)

where γ0 = λ2/8π h̄2v2
F is the effective interaction strength

between an electron spin and a single nuclear spin, τ (V, T ) =
(γ0eV/h̄)−1 tanh(eV/2kBT ) is the nuclear spin dynamics time
scale which depends on temperature T and applied voltage
bias V .

Equation (3) shows that the memory composed of the
nuclear spins/magnetic impurities and characterized by the
mean polarization m that can be erased by applying a voltage
bias to the system via dynamical nuclear spin polariza-
tion. We find the mean nuclear spin polarization dynamics
in the presence of DC voltage bias to be m(t ) = (m0 −
m̄)e−t/τ + m̄, where m0 is the initial mean polarization and
m̄ = (1/2) tanh(eV/2kBT ) is defined to be the target mean
polarization.

We then use Eq. (3) and obtain the current-voltage char-
acteristics of the topological information device under DC
voltage bias

I = G0V ζ

[
1

2
− m coth

(
eV

2kBT

)]
, (4)
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where G0 = e2/h is the quantum of conductance, ζ = 2πNγ0

is the effective interaction strength of topological information
device. Note that the second term in Eq. (4) reverses the
dissipation: even in the absence of voltage bias, i.e., V = 0, fi-
nite nuclear-spin polarization and finite temperature generates
finite charge current. This also holds in the absence of a tem-
perature gradient within the system which can naturally gen-
erate a heat current. Therefore, we conclude that, even if the
electronic subsystem is completely at equilibrium, a charge
current can be induced due to nuclear spin flips. On the other
hand, the first term is the dissipative component of the charge
current in accordance with the Landauer’s erasure principle.

B. Memory erasure

The process of erasing the information stored in the
memory of a topological information device corresponds to
polarizing the nuclear spins/magnetic impurities. We find that
an erasure process using constant voltage bias requires heat
dissipation above the Landauer limit, even though one can
minimize the heat dissipation with a proper choice of voltage
bias. However, minimizing the heat dissipation down to the
Landauer limit is possible for an adiabatic erasure process,
similar to a Carnot cycle. This translates into adiabatic change
of the applied voltage bias such that the amount of power re-
quired is minimized. We accomplish this by having a voltage
profile such that the charge current flowing through the device
vanishes, as the power generated by the device is proportional
to the charge current. As the current depends on the rate of
change of nuclear spin polarization [see Eq. (2)], we find that
a voltage bias profile that satisfies ṁ = 0 minimizes the heat
dissipated by a topological information device. Using Eq. (3),
we obtain the required voltage to be

V ∗[m(t )] = 2kBT

e
tanh−1[2m(t )]. (5)

We then use the voltage profile given in Eq. (5) and obtain
the amount of heat dissipated during the erasure process as

Q = eN
∫ 1/2

0
dm V ∗(m),

= NkBT

(
1

2
ln(1 − 4m2) + 2m tanh−1(2m)

)∣∣∣1/2

0
,

= NkBT ln 2, (6)

where we see that the amount of heat dissipated in the process
of adiabatic erasure of the information stored in the memory
of the topological information device reaches the Landauer
limit.

C. Work extraction

Work can be extracted by utilizing a blank memory. A fully
polarized nuclear spin subsystem, i.e., a blank memory, in-
duces an imbalance between spin-up and spin-down electrons
by transferring spin angular momentum from the nuclear spin
subsystem to electron subsystem. As the left and right leads
have opposite spins and chirality, this imbalance generates
a charge current, which then can be extracted by applying a
reverse voltage bias or attaching the topological information

device to an external electrical load. In this way, Maxwell’s
demon harvests available thermal energy from the reservoirs
and power the load. In other words, a topological information
device operates as an engine.

We consider an external load with conductance GL attached
to topological information device. We make use of Eq. (4) and
the current conservation law and obtain [68]

GLV = −G0V ζ

[
1

2
− m coth

( |eV |
2kBT

)]
, (7)

where V is the induced voltage by a topological information
device. Solving for the induced voltage for a given load con-
ductance, we obtain

V = 2kBT

e
tanh−1 (αm), (8)

where α = ζ/(GL/G0 + ζ/2). We note that the induced volt-
age given in Eq. (8) is of the same form as the applied voltage
bias for adiabatic erasure in the charging phase, given in
Eq. (5). The only difference is the multiplicative factor in front
of m, where the first has the factor α and the second has the
factor of 2. In the limit of vanishing load conductance and
hence vanishing power (reversible process), we have α → 2.
In this case, we have the open circuit voltage Vopen, which is
directly proportional to the thermal energy kBT , and solely
relies on temperature. Conversely, in the device we previously
introduced [59], the open circuit voltage exhibits a linear de-
pendency on the parameter ζ . For currently available devices,
we estimate ζ ∼ 10−4 based on a device with approximately
N ∼ 107 nuclear spins and γ0 ∼ 10−12 [69,70]. As a result,
measuring the open circuit voltage in experimental settings for
the topological information device becomes more feasible.

Using the voltage given in Eq. (8), we obtain the amount
of work extracted from fully polarized nuclear spins as

W = NkBT
2ζ−1

(2 − α)

GL

G0

[
ln

(
1 − α2

4

)
+ α tanh−1

(α

2

)]
.

(9)

Figure 2 presents the amount of work extracted per nuclear
spin in units of thermal energy kBT . We observe that, in the
limit of high load resistance GL � G0, the amount of work
extracted by a topological information device reaches the
Landauer limit more rapidly for a given ζ value. Furthermore,
we examine the scaling behavior of the work extracted by the
topological information device with respect to ζ and find that
the amount of extracted work per nuclear spin increases for
increasing value of ζ , before reaching the maximum value
available, kBT ln 2 per nuclear spin.

III. MEMRISTOR APPLICATION

The first experimental realization of the memristor was
reported in 2008 using a two-terminal device which is com-
posed of a thin film of TiO2 placed in between two platinum
contacts [71]. Among multitudinous other platforms that were
proposed and experimentally demonstrated [72], spintronic
systems are regarded as promising candidates for memris-
tor applications [73] as these are less prone to fatigue than
systems with moving atoms. There have been various the-
oretical proposals [74–78] and experimental demonstrations
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FIG. 2. The amount of work extracted per N in units of kBT for
topological information device vs. ζ with load conductance GL in
units of conductance quantum G0. The dashed line represents the
Landauer limit on the extracted work per one bit of information.

[79–82] of memristive behavior in spintronic systems (see
Refs. [83,84] for an extended review).

In general, any system with a memory that governs its re-
sistance can be considered as a memristive system. These sys-
tems satisfy the following current-voltage relationship [63]:

I (t ) = M−1[x(t )]V (t ), (10)

with dx
dt = f (x,V ), where M is the memristance, x is an

internal state variable, and f is a function of the internal state
variable x and voltage V . On the other hand, as opposed to
other memristive system, the resistance of an ideal memristor
depends only on the amount of charge that has flowed through
it and no other additional parameters [64]. In other words,
a memristor is defined as an ideal memristor if the internal
state variable x corresponds to the charge q. We show that the
current-voltage characteristic of the topological information
device meets this definition.

In our setup, the internal state variable x corresponds to
the polarization of the nuclear spins. Equation (2) suggests
that there is a one-to-one correspondence between the current
flowing through the device and the rate of change of mean
polarization in our system. This means that the change in
polarization of the nuclear spins by an amount dm provides
means of tracking the amount of charge flowing through the
device dq. We have

dq = eNdm, (11)

where we note that the direction of the polarity of the voltage
applied defines the direction of the current. We see that the
total amount of charge flowing through the device in a time in-
terval �t = t − t0 is q(t ) − q0 = eN

∫ t
t0

dm = eN[m(t ) − m0]
where m(t0) = m0 is the initial polarization and q(t0) = q0 is
the initial charge. As the resistance of the system depends on
the polarization of the memory, the topological information
device behaves as a memristor in the limit of |eV | � kBT . In
this case, we rewrite Eq. (3) as

dm = γ0

h̄

(
eV

2
− |eV |m

)
dt . (12)

To find the memristance of the topological information
device, we need to obtain its flux linkage-charge relation-
ship ϕ − q. To that end, we rearrange Eq. (12) and integrate
from a time t∗ at which the applied voltage V (t ) changes
sign for the last time. In this case, we obtain the flux
linkage ϕ(t ) as

ϕ(t ) = h̄

eγ0

∫ m(t )

m(t∗ )

dm

1/2 − sgn(V )m
+ ϕ(t∗). (13)

Without loss of generality, we consider a positive applied
voltage bias. We then use the relation between the charge and
the polarization given by Eq. (11) and get the flux linkage as
a function of charge as

ϕ(t ) = − h̄

eγ0
log

(
1 − 2

eN

q(t ) − q(t∗)

1 − 2m(t∗)

)
+ ϕ(t∗), (14)

where ϕ(t∗) depends on the history of the applied voltage bias
from the initial time t0 until time t∗:

ϕ(t∗) =
n∗∑

n=1

(−1)nh̄

eγ0
log

(
1 + (−1)n

eN

q(tn) − q(tn−1)

1/2 + (−1)nm(tn−1)

)
,

(15)

where at each time tn, the polarity of the applied voltage
bias switches. Here, we define tn∗ ≡ t∗. We then use Eq. (14)
to obtain the memristance M(q) = dϕ/dq of the topological
information device as

M(q) =
{

G02πNγ0

[
1

2
−

(
m(t∗) + q − q(t∗)

eN

)]}−1

. (16)

We emphasize that the flux linkage-charge (ϕ − q) rela-
tionship specified by Eq. (14) meets the three criteria for the
ideal memristor: (i) nonlinear; (ii) continuously differentiable;
and (iii) strictly monotonically increasing [85]. Therefore,
we conclude that the topological information device func-
tions as an ideal memristor in the limit of high bias voltage
(|eV | � kBT ).

IV. CONCLUSION AND OUTLOOK

In conclusion, we proposed and investigated a Maxwell’s
demon implementation in a spintronic setup. We demon-
strated that topological information device is also an ideal
memristor that can be used in electronic circuit applications.
The main advantage of our device is the scalability of the MD
memory (hence the energy storage capacity of the system)
in conjunction with a minimum amount of heat dissipation
during the memory erasure phase.

To provide an approximate estimation of the number of
nuclear spins involved, we note that edge states in topological
insulators can extend up to micrometers in length and span up
to ten unit cells into the (insulating) bulk. The average number
of nuclear spins per unit cell can reach up to 10, hence the total
number of nuclear spins that the edge states can interact can
reach up to N ∼ 107 nuclear spins.

We note that, beyond the dominant nuclear spin relaxation
mechanism, which is the interaction with electrons which
was considered in this work, other relaxation mechanisms
exist, such as dipolar interactions between nuclear spins or
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FIG. 3. First alternative version of topological information de-
vice. The leads are the same as in first version, but in this case, the
central region is a quantum spin Hall insulator. In an ideal scenario
for this alternative version, only the bottom edge contains nuclear
spins/magnetic impurities.

other correlations among nuclear spins [86]. We note that
the timescale of such additional relaxation processes are es-
timated [87] to be orders of magnitude longer than the typical
operation time of the topological information device. Corre-
lations among nuclear spins are only important at sub-Kelvin
temperatures [88], significantly lower than the typical device
temperature.

We believe that our new device and the platform we
proposed has the potential to advance the field of quan-
tum thermodynamics by enabling researchers to investigate
fluctuations more deeply. This can lead to a better under-
standing of concepts such as the Jarzynski equality [89] and
Crooks fluctuation relations [90] that were previously studied
in electronic systems with a single degree of freedom [91],
hence we believe that our platform is a good candidate as a
testbed for theoretical ideas in the upcoming field of quantum
thermodynamics.
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APPENDIX A: ALTERNATIVE VERSIONS
OF TOPOLOGICAL INFORMATION DEVICE

In this Appendix, we introduce alternative versions of the
topological information device. The first alternative version
is a hybrid system which contains two quantum anomalous
Hall insulators with opposite spins and chirality, and a quan-
tum spin Hall insulator that contain nuclear spins/magnetic
impurities along a single edge. The helical edge states of the
quantum spin Hall insulator feature perfect spin-momentum
locking. We make use of this property of the helical edge
states to implement an alternative version of the topological
information device.

Similar to our proposal introduced in the main text, this
version also allows transmission of electrons from one reser-
voir to the other only when a spin-flip occurs (see Fig. 3). Due
to perfect spin-momentum locking of the helical edge states,

FIG. 4. Second alternative version of topological information
device. In this case, the system is a quantum Hall insulator in a
Corbino geometry. The red region has Q = 2 with spin-down chiral
modes, whereas the orange region has Q = 1 with a spin-up chiral
mode. One of the chiral modes of the spin-down electrons overlap
with the spin-up electrons originating from the outer reservoirs. Two
outer terminals are kept at the same chemical potential, whereas a
voltage bias is applied between the inner and outer reservoirs. In this
configuration, current can only flow from outer to inner terminals
only when there is a spin-flip interaction with nuclear spins.

flipping the spin of the electrons leads to backscattering. As
there are no available states for the spin-flipped electron in
the lead that it is injected, the electron will be transmitted
to the other lead. We note that transmission only takes place
when an odd number of spin-flip occurs for a single electron.
This is because an even number of spin-flips leads to no
change in electron spin (and also no change in total spin po-
larization of the nuclear spin), hence the electron backscatters
into the same lead that it was originated, without any heat
dissipation.

The equations given in the main text for the original ver-
sion of the topological information device also applies to this
alternative version. The only change then would be the total
number of nuclear spins located at the bottom edge of the
quantum spin Hall insulator.

Another alternative version of the topological information
device can be realized by using a quantum Hall insulator in
Corbino geometry as depicted in Fig. 4. This version is a non-
local transport setup, i.e., there are three reservoirs connected
to the device. Two reservoirs are connected to the outer region
whereas the third reservoir is connected to the inner region
shown in red in Fig. 4. We set the filling of the red region to
have Q = 2 with spin-down chiral modes, whereas the filling
factor of the rest of the device is set to have Q = 1 with
spin-up chiral mode.

This geometry and filling factor configuration allows for
one of the chiral modes originating from the third reservoir to
extend to the outer edge of the sample. In the region where
this chiral mode (with spin-down) meets with the chiral mode
circulating at the outer edge of the device (with spin-up).
Similar to our original proposal, nuclear spins can mediate a
scattering between these two chiral channel via the spin-flip
mechanism. An applied voltage bias between the inner and
outer terminals, while keeping the two outer terminals at the
same voltage, can only drive a charge current through the
system via nuclear spin-flip. As a result, the applied voltage
bias generates dynamic nuclear spin polarization. Conversely,
a finite nuclear spin polarization can induce a charge current
in the system by inducing an imbalance between spin-up and
spin-down chiral modes.

235428-5



BOZKURT, BRINKMAN, AND ADAGIDELI PHYSICAL REVIEW B 108, 235428 (2023)

APPENDIX B: DERIVATION OF MAXWELL’S
DEMON-INDUCED CURRENT AND GENERATED POWER

FOR TOPOLOGICAL INFORMATION DEVICE

In this Appendix, we derive the MD-induced charge cur-
rent for the topological information device. As a model, we
use the second version of the topological information device
shown in Fig. 3. We note that the derivation is more general
for the second version whereas the physics and the resulting
current voltage relation is the same.

We first write down the Boltzmann transport equation for
the helical edge electrons in the bottom edge of the device

∂t f bot
↑,↓ = ±[
bot

+−(ε, x) − 
bot
−+(ε, x) ] ν(0)−1 ∓ vF ∂x f bot

↑,↓,

(B1)

where fσ is the distribution function for the electrons with
spin σ and the superscript bot denotes the bottom edge. Here,

bot

−+ and 
bot
+− are the scattering rates for the electrons in the

bottom edge, scattering from left to right and from right to left,
respectively. We calculate these scattering rates as follows:


bot
−+(ε, x) = γ0

h̄
Nbot

↓ (x) f bot
↑ (ε, x)[1 − f bot

↓ (ε, x)],


bot
+−(ε, x) = γ0

h̄
Nbot

↑ (x) f bot
↓ (ε, x)[1 − f bot

↑ (ε, x)]. (B2)

We assume that the nuclear polarization m is changing
slowly and seek a steady-state solution. In this case, the dis-
tribution functions obey the steady-state Boltzmann equation

∂x f bot
↑,↓ = (
bot

+−(ε, x) − 
bot
−+(ε, x)) (vF ν(0))−1,

≡ 
bot[ f bot
↑ , f bot

↓ ], (B3)

where vF is the Fermi velocity and ν(0) is the density of states.
We expand in gradients of the distribution function and obtain
a linear dependence in position as

f bot
↑,↓(x) = f 0

L,R + 
bot
[

f 0
L , f 0

R

]
(x ± L/2), (B4)

where we use the boundary conditions f bot
↑ (x = −L/2) = f 0

L

and f bot
↓ (x = L/2) = f 0

R . Here, f 0
L and f 0

R are distributions of
left and right reservoirs, respectively.

In a similar fashion, we write down the Boltzmann equa-
tion for the top edge

∂t f top
↑,↓ = ∓[
top

+−(ε, x) − 

top
−+(ε, x) ] ν(0)−1 ± vF ∂x f top

↑,↓,

(B5)

where the superscript “top′′ denotes the top edge and the
scattering rates for the top edge are given as



top
−+(ε, x) = γ0

h̄
N top

↑ (x) f top
↓ (ε, x)[1 − f top

↑ (ε, x)],



top
+−(ε, x) = γ0

h̄
N top

↓ (x) f top
↑ (ε, x)[1 − f top

↓ (ε, x)]. (B6)

In the steady state, the distribution functions at the top edge
obey

∂x f top
↑,↓ = (
top

+−(ε, x) − 

top
−+(ε, x)) (vF ν(0))−1

≡ 
top[ f top
↑ , f top

↓ ]. (B7)

Before we make use of the same expansion to obtain the
distribution functions at the top edge, we revisit the prop-
erty of the topological information device. As only one spin
species is present in one of the leads, there is no state within a
given lead for the edge states with the opposite spin to occupy.
Therefore, the edge state with the opposite spin is extended
from the bottom edge to the top edge. We express this prop-
erty as a boundary condition that associates the distributions
function of the top and bottom edges:

f bot
↑ (x = L/2) = f top

↑ (x = L/2), (B8)

f bot
↓ (x = −L/2) = f top

↓ (x = −L/2). (B9)

Using Eq. (B8), we now expand in gradients of the distri-
bution functions at the top edge as follows:

f top
↑,↓(x) = f bot

↑,↓(±L/2)

+ 
top[ f bot
↑ (L/2), f bot

↓ (−L/2)] (x ∓ L/2). (B10)

We then use these distribution functions and obtain the total
charge current flowing through the topological information
device

Itot = e

h

∫
dε

(
f top
↓ + f bot

↑ − f bot
↓ − f top

↑
)
. (B11)

Using Eqs. (B4) and (B10), we rewrite the equation above
as

Itot = e

h

∫
dε

(

top

[
f bot
↑

(
L

2

)
, f bot

↓

(
−L

2

)]
− 
bot

[
f 0
L , f 0

R

])
L

= e

(
N top dmtop

dt
+ Nbot dmbot

dt

)
. (B12)

Equation (B12) shows that the charge current flows through
the system only via nuclear spin dynamics. The form of
Eq. (B12) suggests that we can modify the number of nuclear
spins for both edges (i.e., Nbot(top)) to get the desired current
characteristic. In a device in which there are no nuclear spins
present at the top edge, i.e., N top = 0, we arrive at the charge
current

Itot = eN
dm

dt
, (B13)

where we dropped the label for the bottom edge for clarity.
We note that, in the limit of vanishing junction length for

the quantum spin Hall insulator, the number of nuclear spins
participating in the spin-flip process changes, however, the
results remain unchanged. In fact, in this limit, we obtain our
first version of the topological information device presentedin
the main text.

In this limit, we obtain the total power generated as

Ptot = e2V 2

h
ξ

[
1

2
− coth

(
eV

2kBT

)
m

]
. (B14)

We recall the formula for mean polarization dynamics given
by

m(t ) = (m0 − m̄)e−t/τ + m̄, (B15)

where m̄ = 1
2 tanh(eV/2kBT ) is the target mean polariza-

tion and τ = (γ0eV/h̄)−1 tanh(eV/2kBT ) is the character-
istic timescale for mean polarization dynamics. We insert
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Eq. (B15) into Eq. (B14) and obtain the power generated

Ptot = e2V 2

h
ξ

[
1

2
− m0 coth

(
eV

2kBT

)]
e−t/τ . (B16)

APPENDIX C: MEMORY ERASURE USING
CONSTANT VOLTAGE BIAS

In this Appendix, we show how to erase the memory by
applying a constant voltage bias and polarizing nuclear spins.
We start from zero mean polarization, m0 = 0, and polarize
the nuclear spins up to κ/2, where κ is defined to be the
fraction of nuclear spins we choose to polarize

κ

2
= m̄(1 − e−t̄/τ ). (C1)

Here, t̄ = −τ ln[1 − κ coth(eV/2kBT )] is the time when
we stop erasing the memory. We obtain the heat dissipated
by taking the integral of power over time

WC =
∫ t̄

0
dt

e2V 2

h

ξ

2
e−t/τ

= eV

2kBT
κNkBT . (C2)

Note that 0 � 1 − κ/2m̄ < 1 [see Eq. (C1)]. Therefore,
this conditions sets a lower bound on the applied voltage

V � kBT

e
ln

(
1 + κ

1 − κ

)
. (C3)

Taking the lower bound value as the applied voltage bias,
we obtain the minimum amount of heat dissipated during the
memory erasure phase

WC = κ

2
ln

(
1 + κ

1 − κ

)
NkBT . (C4)

APPENDIX D: DISCHARGING PHASE

1. Work extraction under constant voltage bias

Equation (B16) shows that Ptot � 0 for 1
2 −

m0 coth( eV
2kBT ) � 0. We now find the extracted work under

constant voltage bias by integrating Eq. (B16) over time

W =
∫ ∞

0
dt

e2V 2

h
ξ

[
1

2
− m0 coth

(
eV

2kBT

)]
e−t/τ

= eV

2kBT

[
tanh

(
eV

2kBT

)
− 2m0

]
NkBT . (D1)

We assume that the nuclear spins are fully polarized ini-
tially, (m0 = 0.5). We maximize Eq. (D1) with respect to
applied voltage V and find the maximum work can that can
be extracted as

Wext ≈ 0.4NkBT ln(2),

for eV ≈ 1.28kBT . This means that, using a constant voltage
bias, we can extract work equivalent up to %40 of the Lan-
dauer limit.

2. Work extraction using a load resistance

We now consider the case in which an external load con-
nected to the topological information device. We show that
work extraction is possible at the Landauer limit, as dis-
cussed in the main text, with an appropriate choice of load
resistance. The power generated by the topological infor-
mation device for an attached load with conductance GL is
given as

P = GLV 2 = GL

[
2kBT

e
tanh−1[αm(t )]

]2

, (D2)

where we used the induced voltage V = 2kBT
e tanh−1 [αm(t )]

with α = ζ/(GL/G0 + ζ/2). The extracted work by the topo-
logical information device is given as

W =
∫

dtGL

(
2kBT

e
tanh−1[αm(t )]

)2

. (D3)

We now use the change of variables to reexpress Eq. (D3)
and obtain

W =
∫

dm
dt

dm
GL

(
2kBT

e
tanh−1[αm(t )]

)2

,

= GL

G0

4kBT

2πγ0

1

α − 2

∫ 0

α/2
dx tanh−1

(
x
)
, (D4)

where, in the last line, we used Eq. (3) and later defined
x = αm(t ) for convenience. We assume that all nuclear spins
were polarized initially, m = 0.5, and finally, completely de-
polarized, m = 0. This process is reflected in the limits of the
integral. Finally, we take the integral in Eq. (D4) and arrive at
the work extracted for a given load conductance GL as given
in Eq. (9) in the main text

W = 2NkBT

(2 − α)ζ

GL

G0

[
ln

(
1 − α2

4

)
+ α tanh−1

(
α

2

)]
.

(D5)
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[32] K. Ptaszyński, Phys. Rev. E 97, 012116 (2018).
[33] G. Engelhardt and G. Schaller, New J. Phys. 20, 023011 (2018).
[34] J. S. S. T. Wright, T. Gould, A. R. R. Carvalho, S. Bedkihal, and

J. A. Vaccaro, Phys. Rev. A 97, 052104 (2018).
[35] T. Croucher and J. A. Vaccaro, Phys. Rev. E 103, 042140

(2021).
[36] T. Croucher and J. A. Vaccaro, arXiv:2111.10930.
[37] A. V. Lebedev, G. B. Lesovik, V. M. Vinokur, and G. Blatter,

Phys. Rev. B 98, 214502 (2018).
[38] R. Sánchez, P. Samuelsson, and P. P. Potts, Phys. Rev. Res. 1,

033066 (2019).
[39] R. Sánchez, J. Splettstoesser, and R. S. Whitney, Phys. Rev.

Lett. 123, 216801 (2019).
[40] B. Annby-Andersson, P. Samuelsson, V. F. Maisi, and P. P.

Potts, Phys. Rev. B 101, 165404 (2020).
[41] M. Josefsson and M. Leijnse, Phys. Rev. B 101, 081408(R)

(2020).
[42] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano,

Nat. Phys. 6, 988 (2010).
[43] A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R.

Dillenschneider, and E. Lutz, Nature (London) 483, 187 (2012).
[44] É. Roldán, I. A. Martínez, J. M. R. Parrondo, and D. Petrov,

Nat. Phys. 10, 457 (2014).

[45] M. D. Vidrighin, O. Dahlsten, M. Barbieri, M. S. Kim, V.
Vedral, and I. A. Walmsley, Phys. Rev. Lett. 116, 050401
(2016).

[46] M. A. Ciampini, L. Mancino, A. Orieux, C. Vigliar, P. Mataloni,
M. Paternostro, and M. Barbieri, npj Quantum Inform. 3, 10
(2017).

[47] P. A. Camati, J. P. S. Peterson, T. B. Batalhão, K. Micadei, A. M.
Souza, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Phys. Rev.
Lett. 117, 240502 (2016).

[48] J. P. S. Peterson, R. S. Sarthour, A. M. Souza, I. S. Oliveira, J.
Goold, K. Modi, D. O. Soares-Pinto, and L. C. Céleri, Proc. R.
Soc. A. 472, 20150813 (2016).

[49] J. V. Koski, V. F. Maisi, T. Sagawa, and J. P. Pekola, Phys. Rev.
Lett. 113, 030601 (2014).

[50] J. V. Koski, V. F. Maisi, J. P. Pekola, and D. V. Averin, Proc.
Natl. Acad. Sci. USA 111, 13786 (2014).

[51] K. Chida, S. Desai, K. Nishiguchi, and A. Fujiwara, Nat.
Commun. 8, 15301 (2017).

[52] N. Cottet, S. Jezouin, L. Bretheau, P. Campagne-Ibarcq, Q.
Ficheux, J. Anders, A. Auffèves, R. Azouit, P. Rouchon, and
B. Huard, Proc. Natl. Acad. Sci. USA 114, 7561 (2017).

[53] Y. Masuyama, K. Funo, Y. Murashita, A. Noguchi, S. Kono, Y.
Tabuchi, R. Yamazaki, M. Ueda, and Y. Nakamura, Nat Comm.
9, 1291 (2018).

[54] M. Naghiloo, J. J. Alonso, A. Romito, E. Lutz, and K. W.
Murch, Phys. Rev. Lett. 121, 030604 (2018).

[55] P. A. Erdman, B. Bhandari, R. Fazio, J. P. Pekola, and F. Taddei,
Phys. Rev. B 98, 045433 (2018).

[56] A. Kumar, T.-Y. Wu, F. Giraldo, and D. S. Weiss, Nature
(London) 561, 83 (2018).

[57] M. Ribezzi-Crivellari and F. Ritort, Nat. Phys. 15, 660 (2019).
[58] G. Paneru, S. Dutta, T. Sagawa, T. Tlusty, and Hyuk Kyu Pak,

Nat. Commun. 11, 1012 (2020).
[59] A. M. Bozkurt, B. Pekerten, and İ. Adagideli, Phys. Rev. B 97,
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