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Waiting time fluctuations in quasi-one-dimensional disordered conductors
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We consider sample to sample fluctuations of the waiting time between the detection of two consecutive
electrons in quasi-one-dimensional disordered conductors at zero temperature. We compute the full distribution
of the mean waiting time along the crossover from ballistic to localized transport in the framework of the
Dorokhov-Mello-Pereyra-Kumar theory for an arbitrary number of conduction channels. In particular, we show
that its variance, with respect to disorder, displays universal fluctuations similar to the universal conductance
fluctuations in the metallic regime. We further discuss the statistical properties of the jitter associated to quantum
fluctuations of the waiting time and compare it to predictions given by full counting statistics.
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I. INTRODUCTION

Electronic transport at the nanoscale is known to be
stochastic due to the quantum nature of particles [1]. In the
Landauer-Büttiker formalism, the complexity of a mesoscopic
conductor can be encoded in a scattering matrix describing
the different scattering processes from electronic modes of the
connected leads [2]. While the average current is related to the
sum of all the transmission probabilities, and already contains
many nontrivial information, granularity of charge carriers
lead to a fundamental quantum noise called shot noise. At low
frequency and temperature, the full counting statistics (FCS)
of transferred charges through the conductor, whose second
moment is the shot noise, is usually a generalized binomial
distribution [3]. At higher frequency, another source of noise
has to be considered and is often referred to as quantum jitter.
It is related to the fact that even if an electron is transmitted
through the sample, its time of detection is random due to its
wave nature. This jitter contains essential information about
the electronic quantum state and has important consequences
in the field of electron quantum optics, for instance [4–7]. In
order to better characterize this fundamental noise, the waiting
time distribution (WTD), namely the probability distribution
of time delays between the detection of two consecutive elec-
trons, has been introduced [8–12] and shown to be useful in
many situations.

If disorder is present in the sample, its interplay with wave
coherence of the charge carriers may have drastic conse-
quences. One extreme example is the absence of diffusion
in low-dimensional conductors due to destructive interfer-
ence known as Anderson localization [13,14], if the system
size is larger than a typical localization length ξ . This is
the localized regime where the conductance of the sample
is exponentially suppressed and presents strong fluctuations.
Another nontrivial example is the existence of universal con-
ductance fluctuations (UCF) when the system size is much
smaller than the localization length but much larger than
the scattering mean free path �. In this metallic regime, the

variance of the conductance has been predicted [15] to be
system independent and depends only on the existence or not
of time-reversal symmetry (TRS), which was experimentally
observed [16,17]. In general, the understanding of disordered
conductors has been greatly improved by the application of
random matrices to quantum transport [18]. In particular, in
the regime of quasi-one-dimensional transport, namely when
transport is carried by a finite number of transverse modes,
and weak disorder, the statistical distribution of the transmis-
sion coefficients has been shown to obey a universal scaling
equation called the Dorokhov-Mello-Pereyra-Kumar (DMPK)
equation [19]. This Fokker-Planck equation only depends on
the number of channels N , the mean free path �, and the Dyson
symmetry index β which is equal to one for time-reversal
systems and two if time-reversal symmetry is broken. It con-
stitutes a universality class of disordered systems and has been
successful to recover previous phenomena among others.

In this paper, we study the effect of disorder in quasi-one-
dimensional systems at zero temperature on waiting times in
the framework of the DMPK universality class. In Sec. II
we recall some important results on waiting times in clean
conductors as well as general results for the statistical distribu-
tion of transmission coefficients in disordered systems. Then,
Secs. III and IV are devoted to the application of the DMPK
theory to compute the probability density function, as well as
sample to sample fluctuations of the mean waiting time. The
latter being defined as the quantum average on each sample. In
Sec. V we present results on the fluctuations of the temporal
width of the WTD before giving our conclusions in Sec. VI.
Technical details are provided in the Appendix.

II. MODEL

Before discussing our original results on the effect of dis-
order on waiting times, we make use of this section in order
to properly define the quantities of interest, the model, and
recall some useful results for the reader. All along this work,
we will consider one-dimensional noninteracting electrons at
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zero temperature in a two-terminal geometry. The mesoscopic
conductor will be modeled by a set of transmission coeffi-
cients Ti, i = 1, .., N , N being the number of channels. A
small constant-energy difference eV is applied between the
two leads (from left to right) so that transport is stationary
and the energy dependence of the Ti can be neglected. The
constrains of zero-temperature and energy dependence can
potentially be lifted [20] but our results remain valid as long as
temperature is small compared to the Fermi energy and eV is
small compared to the typical energy scale for variation of the
transmission coefficients which is usually fulfilled in transport
experiments. For our purpose, we are concerned about left
to right transmitted electrons. Since we are dealing with two
types of averages, we will use the symbol 〈· · · 〉 to denote
the average over quantum fluctuations and · · · for the average
over disorder. Similar, we use double brackets for the centered
moments of waiting times and Var(x) for the variance with
respect to disorder.

A. Basic results on waiting times

It is instructive to define the waiting times and their
corresponding WTD in the simplest case of a single quantum
channel [10]. This would correspond, for instance, to the case
of spin-polarized electrons flowing through a quantum-point
contact of transmission T . In that case, the average current
is simply I = e2V T/h, which can be interpreted as follows.
On average, the left lead injects an electron every τV = h/eV
due to the Pauli principle which is transmitted with probability
T [21]. The noise is proportional to T (1 − T ) and therefore
vanishes for T = 1 and the long time FCS is binomial with
an attempt frequency 1/τV and parameter T . The WTD is
defined as the probability distribution of time delay τ between
transmitted electrons. In that case, it has been shown to display
a crossover from an exponential distribution close to pinch
off (T � 1) to a Wigner surmise at perfect transmission [10].
However, it always vanishes at τ = 0, which is the conse-
quence of the Pauli principle. Due to the Fermi statistics, the
WTD also contains Friedel oscillations with period τV for
T < 1.

When the number of conducting channels is increased,
the vanishing probability at τ = 0 becomes finite because
several noninteracting electrons can be detected simultane-
ously. The random point process associated to the detection
of transmitted electrons through the different channels is now
a superposition of independent point processes similar to the
single-channel case but with a transmission Ti. In general, the
average waiting time (with respect to quantum fluctuations) is
given by

〈τ 〉 = τV∑
i Ti

= τV

g
, (1)

with g being the dimensionless conductance. It was shown that
for a large number of channels, the WTD becomes exponential
[20]. In the rest of the paper we will use τV as unit of time and
drop it from now on. Hence, the mean waiting time is directly
connected to the inverse of the dimensionless conductance,
namely the dimensionless resistance ρ = 1/g.

We now discuss typical deviations of the waiting time
τ , namely its variance with respect to quantum fluctuations.

TABLE I. List of the main physical parameters and different
regimes.

Parameters

β 1 2
Symmetry index TRS no TRS
L � N γ =
System size mean free path number of channels β(N − 1) + 2

Regimes

L < � L � γ � � � L � γ � L > γ�

ballistic metallic metallic diffusive localized

Although no analytical formula is known, we show in
Appendix A that the following formula is very precise:

〈〈τ 2〉〉 = 〈τ 2〉 − 〈τ 〉2 = 1(∑
i Ti

)2 + aN∑
i Ti

, (2)

with aN being a channel-dependent constant that decreases
faster than N , such that the second term vanishes in the limit of
N � 1. The square root of it, namely the standard deviation of
τ with respect to quantum fluctuation, is a relevant measure
of the quantum jitter.

B. DMPK equation

We start this section by recalling some important results
about the statistical distribution of transmission coefficients
in a quasi-one-dimensional disordered conductor in the frame-
work of the DMPK theory [18,19]. This theory describes the
evolution of the joint probability of Ti with respect to the
longitudinal system size L, valid for weak disorder (kF � � 1,
with kF the Fermi wave vector [18]).

It is customary to parametrize the transmission coefficients
as Ti = 1/(1 + λi) or Ti = 1/ cosh2 xi with λi or xi positive
real numbers. The DMPK equation in terms of λi reads

�
∂P

∂L
= 2

γ

N∑
i=1

∂

∂λi
λi(1 + λi )J

∂

∂λi

P

J
, (3)

J =
N∏

i=1

N∏
j=i+1

|λ j − λi|β, (4)

with γ = β(N − 1) + 2 and β being the universal symmetry
index denoting the presence (β = 1) and absence (β = 2) of
time-reversal symmetry. The only microscopic parameter en-
tering this equation is �, the mean free path. This equation has
to be complemented with the boundary condition P({λi}, L →
0) → ∏

i δ(λi − 0+), which describes the ballistic limit. It is
important to note that although the electron transport occurs
through independent channels, the corresponding transmis-
sion coefficients are strongly correlated. This can be easily
understood from the presence of the Jacobian J which
describes universal repulsion between the λi.

Generically, the different regimes of transport are labeled
as the metallic regime if L � γ �, or the localized regime
if L > γ�. In the former case there is an extra distinction
if L < �, namely the ballistic regime, or if � � L � γ � the
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metallic diffusive regime. A summary of the different physical
parameters and regimes can be found in Table I.

While Beenakker and Rejaei [22,23] presented an exact
solution for the situation with broken time-reversal symmetry,
Caselle [24] extended the solution for arbitrary β. It was
further shown that the solution of the DMPK equation in
the metallic regime has the form of a Gibbs distribution
P({xi}) ∝ exp[−βH({xi}), with

H({xi}) =
∑
i< j

U (xi, x j ) +
∑

i

V (xi ),

U (xi, x j ) = −1

2

(
ln | sinh2 x j − sinh2 xi| + ln

∣∣x2
j − x2

i

∣∣),
V (xi ) = γ

2βs
x2

i − 1

2β
ln |xi sinh 2xi|, (5)

with s = L/�. This approximation turned out to be very
precise within every regime and was used to compute the
conductance distribution numerically using Monte Carlo sam-
pling [25]. The Hamiltonian H in Eq. (5) can be viewed as the
one of N interacting classical particles located at position xi,
within a confinement potential V (xi ) and the particle inter-
action U (xi, x j ). The relation between the positions and the
transmission values are Ti = 1/ cosh2(xi ). This is the method
we employ in this paper to compute the average over disorder,
while we usually average over 107 configurations.

In addition, there are some limiting cases where the
distribution can be calculated analytically. The first one is
the single channel limit N = 1, where an exact integral so-
lution has been obtained by Gertsenshtein and Vasil’ev [26],
or Abrikosov [27]. In terms of the inverse conductance ρ =
〈τ 〉 = 1/g the solution reads

P(ρ, s) = 2√
πs3

∫ +∞

arch
√

ρ

x exp[−(x2/s + s/4)]

(ch2x − ρ)1/2
dx, (6)

resulting in an exponentially increasing ρ(s). Further, in the
localized regime, for arbitrary N , the Coulomb gas becomes
very dilute but crystallized, such that the xi are very large
and strongly separated [18]. The joint probability of the xi

factorizes to a product of shifted Gaussian distributions

P({xi}) 

(

γ �

2πL

)N/2 N∏
i=1

exp

[
−γ �

2L
(xi − L/ξi )

2

]
, (7)

with ξi = γ �/(1 + βi − β ). Deeply in the localized regime,
the conductance is dominated by the smallest xi and is
distributed according to a log normal distribution.

Most strikingly, in the metallic diffusive regime, the
conductance distribution is approximately Gaussian with
g = N/s + 1

3 (1 − 2/β ) and UCF Var(g) = 2
15β

.

III. FULL DISTRIBUTION OF THE MEAN WAITING TIME

We present in this section results obtained from our
comprehensive study to provide valuable insights into the
probability density function of the mean waiting time
〈τ 〉 contributing to the understanding of the regimes of

FIG. 1. Probability density function of the mean waiting time
〈τ 〉 for several transmission channels. (a) [(b)] Presents the localized
[metallic] regime, for several combinations of s = L/� and N with
β = 1 and 2, respectively. (c) Shows the ballistic regime for s = 0.02
and β = 2 for the numerical Monte Carlo simulations (solid lines),
as well as the analytical approach (dashed lines) from Eq. (10).

ballistic, metallic, and localized one-dimensional conductors.
The general approach for the probability density function can
be calculated by

P(〈τ 〉) =
[∏

i

∫ ∞

0
dxi

]
δ

(
〈τ 〉 − 1∑

i 1/ cosh[xi]2

)
P({xi}),

(8)
where δ(x) is the Dirac-delta distribution. We begin with the
Monte Carlo sampling within the localized regime, where
s/γ � 1 and all transmission values x1 � x2 � x3... � xn

are strongly separated. The distributions of the mean waiting
time P(〈τ 〉) in the localized regime for β = 1 and 2 are shown
in Fig. 1(a). Deep in the localized regime we find that inde-
pendent of the number of transmitting channels, the tail of the
distributions follows a log-normal distribution with a lower
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bound cutoff at 〈τ 〉 = 1, given by

P(〈τ 〉) 
 1

2〈τ 〉
( γ

2πs

)1/2
exp

[
− γ

2s
(ln(4〈τ 〉)/2 − s/γ )2

]
.

(9)
Such a cutoff has also been found for the probability
density function of the conductance [28]. Thus, in the strongly
localized regime the localization length is much smaller than
the sample length and all transmitting channels are strongly
suppressed. In this limit the transport is dominated by a single
channel [see Eq. (9)], namely the channel with the smallest
xi. Conclusively, the localized single channel calculations by
Abrikosov [18,27] become the relevant description.

By downsizing the length of the sample we change the
setup into the metallic regime (for reasonable N). The results
in that regime are shown in Fig. 1(b). There, the probabil-
ity density functions for N = 10 and N = 20 represent a
Gaussian, distributed around 〈τ 〉. Similar results have been
found for conductance distribution [18,29]. For N = 2 (red
lines), P(〈τ 〉), with its maximum at 〈τ 〉, shows the direct con-
version of the probability density function from the localized
and ballistic regime, since the metallic diffusive regime is im-
passable. Similar, for N = 5 the results are not Gaussian, but
represent the crossover into the metallic situation. In general,
the metallic diffusive regime is reached more favorably for
β = 2, since the localization length γ � becomes larger in TRS
broken systems.

Next, we reduce the system length to the ballistic regime
(s � 1), where each channel becomes almost fully conduct-
ing. We highlight the corresponding distributions in Fig. 1(c).
For clarity we show the distributions on a log scale for β = 2.
There, the solid lines represent the analytical results that we
derive in Appendix B, given by

P(〈τ 〉) = δα
(〈τ 〉 − 1

N

)α−1
e−δ(〈τ 〉− 1

N )

(α)
, (10)

which is a gamma distribution with the shape parameter
α = γ N

2 , the rate parameter δ = Nα/s, and (x) the gamma
function. In the ballistic situation we find excellent agreement
with the analytical formula for s � 1, also for β = 1 and any
N (not shown). Physically, the transmission channels become
independent of each other, due to the fact that the system
length is smaller then the mean free path. The limit of Eq. (10)
to N = 1 is also in very good agreement with the solution
made by Abrikosov [see Eq. (6)]. As a side remark, the
probability density function for the transmission values in the
ballistic regime is for x represented by the positive eigenvalues
of a random chiral matrix ensemble for the symmetry classes
β [30]. For details we refer to Appendix B.

IV. UNIVERSAL WAITING TIME FLUCTUATIONS

In this section, we present distinct sample-to-sample
fluctuations of the mean waiting time across various config-
urations of the sample, revealing the connection to the UCF
[15,18,25]. By calculating the expectation values for 〈τ 〉 and
〈τ 〉2, the variance of the mean waiting time can be performed

by Var(〈τ 〉) = 〈τ 〉2 − 〈τ 〉2
. We evaluate the corresponding

variance in dependence of s, shown in Fig. 2. There we find,
independent of the number of channels, a vanishing variance

FIG. 2. Rescaled variance of the mean waiting time 〈τ 〉 for
several transmission channels for increasing length of the setup
(s = L/�). The symmetry classes β = 1(2) are represented by solid
(dashed) lines.

around s ≈ 0, corresponding to perfect transmission of non-
fluctuating transmission coefficients. Similarly, at very large s,
the transmission coefficients become independent from each
other, resulting in an effective single channel with Var(〈τ 〉) <

〈τ 〉4
. Most interesting, at length scales, where the correlations

between the channels are strong, an increase of the number
of channels results from a single maxima (see red curves
for N = 2) to an almost constant value of the variance (see
brown or blue curves for N = 10 or N = 20, respectively).
This fascinating result has been previously shown in the UCF
[15,18,25]. It is well known that in the metallic diffusive
regime the transmission density follows a bimodal distribution
P(T ) ∝ 1/(T

√
1 − T ), such that each of the channels has

the probability of either perfect transmission or zero trans-
mission [31]. The correspondence to the disorder-averaged
mean waiting time is found by the following argument. In
the metallic diffusive regime, g = g + δg, where δg � g are
small Gaussian-distributed fluctuations, so that we can safely
assume that 〈τ 〉 = 1

g+δg , leading to 〈τ 〉 ≈ (1 − δg
g )/g, such

that Var(〈τ 〉) ≈ Var(g)
g4 = 2

15β
〈τ 〉4

. Conclusively, the variance
of the mean waiting time contains the well-known symmetry-
dependent constant 2

15β
, while on the same time it depends

on the fourth power of the disorder-averaged mean waiting
time. This feature is a consequence of the Gaussian distri-
bution of 〈τ 〉 within the metallic regime. In that respect, this
result is not surprising. However, although any linear statistics
[A = ∑

i a(Ti ), with a(Ti) a function of Ti alone] is known
to display universal fluctuations in this regime [18,32]; this
is one rare example of nonlinear statistics where such sig-
nature of universal fluctuation show up. We emphasize this
by presenting the transformed probability density function

P(z), where z = (〈τ 〉 − 〈τ 〉)/〈τ 〉2
, for 20 channels in Fig. 3.

There, we find in the metallic regime (s is varied from 2.9
to 4.9) an approximate Gaussian distribution, with variance
σ 2 = 2

15β
. The red curves in Fig. 3 corresponds to the TRS

broken situation (β = 2), which is in very good agreement
with the analytics (blue curve). For β = 1, one already finds
deviations from that, due to the fact that the metallic regime
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FIG. 3. Probability density of the scaled mean waiting time

z = (〈τ 〉 − 〈τ 〉)/〈τ 〉2
within the metallic regime. The length of the

setup (s = L/�) is varied in the range of s ∈ (2.9, 4.9), for N = 20.
The symmetries for β = 1(2) are shown in black (red), while the blue
curve represents the expected normal distribution for β = 2.

is not perfectly reached. The results can be improved with
an increasing number of channels (N > 20). In summary, the
waiting time fluctuations are reminiscent of UCF [25], but

cannot be considered universal due to the rescaling with 〈τ 〉4
.

V. QUANTUM JITTER

In the previous sections we have discussed the statisti-
cal properties of the mean waiting time 〈τ 〉 with respect to
disorder. It is, however, natural to wonder about the ones of
higher-order moments of the WTD 〈τ k〉 with k an integer
number. In this work we focus on the second moment which is
the first characterization of quantum fluctuations of the wait-
ing times. As discussed in Sec. II and Appendix A it can be
written analytically according to Eq. (2) and therefore depends
on the statistical properties of the inverse of the dimensionless
conductance and its square. This brings information which is
beyond the scope of linear statistics [18].

In Fig. 4 we present results about 〈τ 2〉 − 〈τ 〉2, namely the
average over disorder of the second cumulant of the WTD.
More precisely we compute

Fτ = 〈τ 2〉/〈τ 〉2 − 1 (11)

in the spirit of Ref. [10] in order to compare it to the Fano
factor, which is the ratio of the shot noise and the average cur-
rent. Note that we could also look at 〈τ 2〉/〈τ 〉2, which displays
similar features. The two Fano factors are known to match for
renewal processes, namely when consecutive waiting times
are uncorrelated. This regime is known to be attained only
in the limit of small transparency [10] and therefore this con-
nection will be valid in the localized regime only. In order to
understand this it is instructive to consider the single-channel
case without disorder. In that case, the Fano factor of the
FCS is simply F = T (1 − T )/T = 1 − T and therefore is one
in the tunneling limit where FCS is Poissonian and cancel
for perfect transmission. However, the second moment of the

FIG. 4. Fano factor Fτ = 〈τ 2〉/〈τ 〉2 − 1 for several transmission
channels for increasing length of the setup (s = L/�). The symmetry
classes β = 1(2) are represented by solid (dashed) lines. The brown
dot-dashed line corresponds to N = 1 (independent of β).

WTD is finite in that case. This mismatch between the two
quantities is a signature of the quantum jitter of electrons.

We now go back to the discussion of quasi-one-
dimensional disordered systems. In Fig. 4, in the localized
regime s � 1, we indeed recover that Fτ tends to one and
therefore match the results of FCS. This is expected since
transport of electrons becomes Poissonian.

As the system enters the metallic regime for smaller values
of s and reasonably large N , FCS would predict a universal
value of 1/3 [31,32]. This is not what we observe for Fτ in
accordance with the prediction of Eq. (2). This equation pre-
dicts that Fτ = 1 − aN g. We show in Appendix A that aN

decays faster than N while g scales as N in the metallic
diffusive regime. For large N , Fτ then tends to one which is
larger than the 1/3 prediction. This result is surprising at first
sight since electron transport is described by the superposition
of a large number of point processes. The consecutive waiting
times are then expected to be uncorrelated. However, this
leads to an exponential WTD, which cannot reproduce the
bimodal statistics of the FCS. In that regime, the long-range
rigidity of the electronic stream in each channel cannot be
described by the WTD alone and the renewal assumption does
not hold at all. The WTD and the FCS are therefore sensitive
to different aspects of quantum transport.

Finally, as the systems approaches the ballistic regime, Fτ

decreases but never vanishes as it should for the FCS Fano
factor. This is the regime where the quantum jitter is domi-
nant and is highlighted by waiting time fluctuations [10]. At
exactly s = 0 the system is perfectly ballistic and can be in-
terpreted as the clean limit of perfectly transmitting channels
(Fτ (s = 0) = 1 − anN). Moreover it is interesting to note that
for s < 1 the Fano factor becomes β independent which is an
expected result since TRS is no longer important when the
number of scattering events is of order one. This is a regime
where the FCS cannot bring in any interesting information
while the WTD reveals interesting features encoded in the
electronic many-body state.
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VI. CONCLUSION

In summary, we discussed in this work the sample-to-
sample fluctuations of the waiting times due to disorder for
quasi-one-dimensional mesoscopic conductors in the frame-
work of the DMPK equation.

We have computed numerically the full distribution of the
mean waiting time 〈τ 〉 along the crossover from the ballis-
tic regime to the localized regime and have given analytical
expressions in all limiting cases. In addition, we have found
that the variance of the mean waiting time, in the metallic
diffusive regime, displays fluctuations reminiscent to the uni-
versal conductance fluctuations.

We have also studied the statistical properties of the
quantum fluctuations of the waiting times. We further showed
and discussed important discrepancies between the statistics
of the waiting time and full counting statistics.

A natural extension of this work would be to look at the
statistics of higher-order cumulants of the waiting times. In
the spirit of this study it would also be interesting to look at
the waiting time fluctuations in chaotic quantum dots where
the distribution of transmission coefficient is given by random
matrix theory [18].
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APPENDIX A: ANALYTICAL EXPRESSION
FOR THE JITTER

We present in this Appendix an analytical expression for
the second moment of the WTD which reproduces with great
accuracy the exact numerical results. Before doing this we
recap the method to compute the WTD.

The WTD W (τ ) denotes the probability distribution for
the time delay τ between the detection of two consecutive
electrons. In general, it is customary to compute the WTD
from the idle time probability �(τ ), namely the probability of
not detecting any electron during a period of measurement τ .
For a single channel and for noninteracting electrons at zero
temperature, �(τ ) can be expressed as a determinant which
depends on the transmission probability T of the channel
[10]. In the limit of perfect transmission or close to pinch
off (T � 1) the latter can be approximated by (in units of
τV = h/eV )

�W(τ ) = e− 4τ2

π − τerfc

(
2τ√
π

)
, (A1)

�P(τ ) = e−τ . (A2)

The WTD distribution is obtained through

W (τ ) = 〈τ 〉d2�(τ )

dτ 2
, (A3)

FIG. 5. Second moment 〈τ 2〉 of the WTD as a function of the
conductance g for different number of channels N . The symbols
correspond to numerical evaluation of Eq. (A5) while the full lines
are given by Eq. (A6).

with 〈τ 〉 = −1/�′(0). When transport occurs through
N channels with transmission probability Ti, the idle time
probability factorizes and reads

�N (τ ) =
N∏

i=1

�(τ, Ti ), (A4)

where each �(τ, Ti ) is computed from the determinant for-
mula given in Ref. [10]. The first moment is shown to be
〈τ 〉 = 1/

∑
i Ti, which is Eq. (1) of the main text [20]. The

second moment 〈τ 2〉, for N channels, can be calculated (after
integration by parts) as

〈τ 2〉 = 2〈τ 〉
∫ ∞

0
�N (τ )dτ. (A5)

It is obvious that the second moment must be a symmetric
function of the Ti. We therefore expand it as a power series
of 1/g, with g = ∑

i Ti. In order to recover the limiting cases
it has to stop to second order in 1/g. We therefore take the
following ansatz for 〈τ 2〉:

〈τ 2〉 = aN∑
i Ti

+ bN

(
∑

i Ti )2
, (A6)

where aN and bN are constants depending on the number
of channels. The constant aN and bN are found by match-
ing this result with the limiting cases Ti = 1 and Ti � 1.
We find bN = 2 and aN = 2

∫ ∞
0 dτ�W(τ ) − 2/N . This gives,

for instance, a1 = 3π/8 − 2, a2 = (19
√

2 − 16)π/48 − 1.
For larger values of N , aN 
 √

2π/NeN/2erfc(
√

N/2) − 2/N ,
which behaves as −2/N2 for N � 1. In Fig. 5 we show some
examples of comparison between the analytical ansatz and
the numerical evaluation of 〈τ 2〉, which demonstrate a very
good agreement. We have tested this formula up to N = 20
channels (not shown) with the same conclusion.
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APPENDIX B: PROBABILITY DENSITY FUNCTION
IN THE BALLISTIC REGIME

We present here the calculation for the distribution of the
mean waiting time 〈τ 〉 within the ballistic regime s � 1. We
start with Eq. (5) and assume that each transmission value is
close to unity, such that we can approximate

P({xi}) ∝
∏
i< j

∣∣x2
j − x2

i

∣∣β ∏
i

√
2x2

i e− γ

2s x2
i , (B1)

as well as

1

g
= 1∑

i 1/ cosh xi
2

≈ 1

N

(
1 + 1

N

∑
i

x2
i

)
. (B2)

The distribution for 〈τ 〉 can be calculated by

P(〈τ 〉) =
∏

i

∫
dxiδ

[
〈τ 〉 − 1

N
−

∑
i

x2
i

N2

]
P({xi}), (B3)

which can be carried out within spherical coordinates. The
integration over the angles results in a constant term that we
include within the normalization condition, such that we are
left (〈τ 〉 � 1

N ) with

P(〈τ 〉) ∝
∫

drδ

(
〈τ 〉 − 1

N
− r2

N2

)
rNγ−1e− γ r2

2s

= 1

2
Nα

(
〈τ 〉 − 1

N

)α−1

e− αN (〈τ 〉− 1
N )

s , (B4)

with α = γ N
2 . After normalization the probability density

function is in compact form given by

P(〈τ 〉) = δα
(〈τ 〉 − 1

N

)α−1
e−δ(〈τ 〉− 1

N )

(α)
, (B5)

which is the gamma distribution with the shape parameter α

and the rate δ = Nα/s.
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