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We formulate and analyze in detail the ground-state quantum electrodynamical density functional theory
(QEDFT) for a generalized Dicke model describing a collection of N tight-binding dimers coupled to a cavity
photon mode. This model is aimed at capturing essential physics of molecules in quantum cavities in polaritonic
chemistry, or quantum emitters embedded in mesoscopic resonators of the circuit QED, and, because of its
simplicity, is expected to provide important insights regarding the general QEDFT. We adopt the adiabatic
connection formalism and the diagrammatic many-body theory to regularly derive a sequence of explicit
approximations for the exchange-correlation (xc) energy in the ground-state QEDFT, and to compare their
performance with the results of exact numerical diagonalization. Specifically, we analyze the earlier proposed
one-photon optimized effective potential (OEP) scheme, its direct second-order extensions, and a nonperturbative
xc functional based on the photon random-phase approximation (RPA). Our results demonstrate the excellent
performance of RPA-QEDFT in the ultrastrong-coupling regime and for any number N of Dicke molecules in
the cavity. We study in detail the scaling of xc energy with N and emphasize the importance for the ground-state
QEDFT of collective effects in the interaction of molecules with cavity photons. Finally, we discuss implications
of our results for realistic systems.

DOI: 10.1103/PhysRevB.108.235424

I. INTRODUCTION

The last decade witnessed a substantial progress in pho-
tonic technologies, allowing to routinely fabricate micro- and
nanocavities characterized both by large quality factors and
extremely small mode volumes, and, therefore, deeply sub-
wavelength field localization. This stimulated the research in
cavity quantum electrodynamics (QED), where a novel, ultra-
strong regime of light-matter coupling [1] has been actively
explored. In the ultrastrong-coupling regime, the character-
istic energy of light-matter interaction becomes comparable
to the cavity photon frequency: this results in the increased
role of the vacuum electromagnetic fluctuations, which may
modify the ground state of the matter placed inside the
cavity. Specifically, ultrastrong coupling was predicted to in-
duce various cavity mediated phase transitions [2–9] and to
substantially modify the chemical reactions [10]. The latter
phenomenon led to the emergence of the new interdisciplinary
research direction, polaritonic or QED chemistry [11,12]
exploring the influence of the electromagnetic vacuum fluc-
tuations on the chemical properties of the cavity-embedded
matter. While the regime of ultrastrong coupling has still yet
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to be attained with generic QED-chemistry systems such as
cavity-embedded molecular gases, it has already been real-
ized experimentally for different mesoscopic systems, such as
superconducting qubits [13] and intersubband transitions in
semiconductor quantum wells [14].

For the quantitative predictions of the cavity mediated
chemical properties of real materials, one should resort to
the ab initio modeling. Specifically, the generalization of
density function theory (DFT) [15–18] accounting for the
fluctuating quantum electromagnetic, termed quantum elec-
trodynamical DFT (QEDFT) [19–21], has been developed
over the last decade, in parallel with many other many-
body techniques including self-consistent (Hartree-Fock) field
methods [22–24], coupled cluster theory [24–28], diagram-
matic methods [29–31], configuration integration approaches
[32,33], and very recently the diffusion quantum Monte Carlo
technique [34].

Among different many-body techniques, QEDFT looks es-
pecially promising, especially for complex systems, because
by analogy with the standard electronic DFT, it is expected
to provide a good balance between the accuracy and nu-
merical efficiency. It also demonstrates a sufficient flexibility
to address the ground-state problems [35] and the problems
of dynamics, including analysis of excitations in the linear
response [36–38] as well as the modeling of cavity-mediated
chemical reactivity [39]. It can be also adopted to multimode

2469-9950/2023/108(23)/235424(18) 235424-1 ©2023 American Physical Society

https://orcid.org/0000-0001-6288-0689
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.235424&domain=pdf&date_stamp=2023-12-18
https://doi.org/10.1103/PhysRevB.108.235424


D. NOVOKRESCHENOV et al. PHYSICAL REVIEW B 108, 235424 (2023)

and lossy cavities to describe the natural linewidth of ex-
citations, radiation losses and related dissipative dynamics
[40–42]. Recently, QEDFT has been extended to the case
of cavities treated within the so-called macroscopic QED
parametrizing realistic optical setups [43].

As in any DFT-type approach, a practical application of
QEDFT relies on approximations for an exchange correlation
(xc) potential that encodes all complicated many-body ef-
fects. Unfortunately, for the moment little is known about the
properties of the xc functionals responsible photon-mediated
electronic correlations in the cavity QED. There are only a
few attempts to regularly address the problem of approxima-
tions in QEDFT [35,44–46]. In practice, only the perturbative
first-order optimized effective potential OEP of Ref. [44] has
been formulated in a practical form and tested for dynamical
problems in a number of model systems [41,47,48] and in the
ground-state version for realistic molecules [35]. Recently, a
promising local density version of the one-photon perturbative
xc functional has been proposed for the ground-state QEDFT
[45].

One obvious problem of the currently available approxi-
mations, based in the first-order OEP, is a missing collective
behavior in the case if several chemically independent
molecules are present in the cavity and interact with the same
photon mode. For the ground state this implies that, in these
approximations, the electron density in a given molecule is not
influenced by the other molecules in the cavity, which does
not look correct in the cavity QED context. However, how
important this collectivity is in reality, in particular for the
ground-state QEDFT, and which improvements of xc func-
tionals are needed to describe the corresponding physics is
currently unknown. This work is aimed at addressing these
questions and providing at least partial answers, using a sim-
ple model system as an example.

In this paper, we focus on the ground-state QEDFT applied
to a special case of generalized Dicke model that is one of the
most known model of quantum optics used in many different
contexts in the cavity and circuit QED [49–56]. The specific
version of the Dicke model we adopt in this work can be
understood physically as describing N two-site tight-binding
molecules (dimers) interacting with a cavity photon mode via
a minimal gauge-invariant coupling. This system is a cartoon
of a typical theoretical setup of polaritonic chemistry, in which
a set of chemically independent molecules interacting with
cavity photons is described by the Pauli-Fitz Hamiltonian
within the dipole approximation. It therefore perfectly suits
our purpose of deriving, comparing, and testing different ex-
plicit approximate xc functionals and analyzing the relevance
of quantum collectivity in the ground-state QEDFT. As we
will see, one of the beautiful simplifications we have in the
Dicke model is that regular diagrammatic many-body meth-
ods of constructing DFT approximations produce explicit and
frequently analytic density dependence, while in general they
always generate OEP orbital functionals, such as, for example,
in Refs. [31,57,58].

The paper is organized as follows: To make the paper
self-contained, in Sec. II we present a simple and compact
quantization of Maxwell equations in the dipole approxima-
tion, which directly leads to the dipole-gauge Hamiltonian
used as a starting point in most first-principal approaches

to QED chemistry. In Sec. III the adiabatic connection for-
malism is adopted to derive the exact representation for xc
energy in the ground-state QEDFT. Here we also introduce the
specific approximations analyzed in this work, the one- and
two-photon perturbative OEP, and a nonpertirbative photon
RPA functional. Section IV presents main results of this work.
Here we apply the general formalism introduced in Sec. IV to
the generalized Dicke model. By starting with the simplest
case of one dimer, we then go to the general multidimer
situation, analyze different approximation and compare their
performance with the results of exact numerical diagonaliza-
tion of the Dicke Hamiltonian. The main results and general
conclusions of this work are summarized in Sec. V.

II. QUANTIZATION OF ELECTROMAGNETIC FIELD:
HAMILTONIAN FOR CAVITY QED

Our aim is to describe a system of nonrelativistic electrons
strongly coupled to quantum electromagnetic modes of a mi-
crocavity, which is the main object of the cavity QED. In
a typical setup the size of the electronic subsystem is much
smaller that the wavelength of relevant photon modes, which
justifies the use of the dipole approximation for the electron-
photon interaction. The corresponding effective Hamiltonian
is usually derived from the Pauli-Fierz Hamiltonian by per-
forming a transformation to the dipole Power-Zienau-Woolley
(PZW) gauge [59–61]. To reveal the physics behind the PZW
Hamiltonian, it is instructive to assume the dipole coupling
at the level of Maxwell equations for the fields strengths and
quantizing them directly [62].

Let us start from the Maxwell equations for the transverse
part of the electromagnetic field:

∇ × E⊥ = −1

c
∂t B, (1)

∇ × B = 1

c
∂t E⊥ + 4π

c
j⊥, (2)

where E⊥(r, t ) is the transverse component of the electric
field with ∇ · E⊥ = 0, and j⊥(r, t ) is the transverse part of
electron current that enters as a source of the radiation field.
The dipole approximation corresponds to approximating the
current by a δ function with a strength equal to the time
derivative of the total dipole moment of the electronic system,

j(r, t ) = ∂t P(r, t ) = eṘ(t )δ(r − r0), (3)

where P(r, t ) is the polarization, R = ∑N
j=1 r j is the center-

of-mass position of the electrons, and it assumed that
coordinates r j of all N electrons are bounded to a region
around some point r0 inside the cavity, which is much smaller
than the cavity size and thus much smaller than the character-
istic wavelength λ of the field.

The transverse current coupled to the cavity modes via the
Maxwell equations is given by the transverse projection of the
polarization vector,

P⊥(r, t ) = eR(t )δ⊥(r − r0) = e

4π
∇ ×

(
∇ × R(t )

|r − r0|
)

.

(4)

In a quantum theory the Maxwell equations (1) and (2)
should correspond to Heisenberg equations for field operators.
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The Hamiltonian structure of these equations is revealed by
introducing a new electric variable—the displacement vector,

D⊥ = E⊥ + 4πP⊥, (5)

and rewriting the Maxwell equations(1) and (2) as follows:

∂t B = −c∇ × (D⊥ − 4πP⊥), (6)

∂t D⊥ = c∇ × B. (7)

One can easily check that, by considering the standard energy
of the transverse electromagnetic field,

Ĥe-m = 1

8π

∫
dr[Ê2

⊥ + B̂2]

= 1

8π

∫
dr[(D̂⊥ − 4π P̂⊥)2 + B̂2], (8)

supplemented with the following commutation relations for
the components of the magnetic field and the electric displace-
ment operators (throughout the paper we assume h̄ = 1):[

B̂i(r), D̂ j
⊥(r′)

] = −i4πcεi jk∂kδ(r − r′), (9)

we recover the Maxwell equations (2)–(7) from the canonical
Heisenberg equations

∂t B̂ = i[Ĥe-m, D̂⊥], (10)

∂t D̂⊥ = i[Ĥe-m, B̂]. (11)

This analysis clearly shows that the proper conjugated Hamil-
tonian variables for the electromagnetic field are the magnetic
field B and the electric displacement D [63].

The next step is to introduce the cavity mode functions as a
set of normalized transverse eigenfunctions fα (r) of the wave
equation inside a metallic cavity �:

c2∇2fα (r) = ω2
αfα (r), r ∈ �, (n × fα )|∂� = 0,

where n is a unit vector normal to the cavity surface ∂�.
Such defined mode functions fα (r) are proportional to the
electric field in the α mode but, because of the normalization
to unity, they are have a dimension of the square root of
inverse volume. The amplitude of the mode function can thus
be regarded as the inverse square root of the “mode volume.”

The basis set of the mode functions can be used to represent
all transverse functions in the Hamiltonian (8)

D̂⊥(r) =
∑

α

d̂αfα (r), (12)

B̂(r) =
∑

α

b̂α

c

ωα

∇ × fα (r), (13)

P̂⊥(r) = e
∑

α

(fα (r0) · R̂)fα (r). (14)

Here the expansion coefficients dα and bα are, respectively,
the quantum amplitudes of the electric displacement and the
magnetic field in the α mode. By substituting the expansions
of Eqs. (12)–(14) into Eqs. (8) and (9) we obtain the following
Hamiltonian:

Ĥe-m = 1

8π

∑
α

[
(d̂α − 4πefα (r0) · R̂)2 + b̂2

α

]
, (15)

and the commutations relations for the field amplitudes

[b̂α, d̂β ] = −i4πωαδαβ. (16)

Finally, we rescale the electric displacement and the mag-
netic field amplitudes

d̂α =
√

4πωα q̂α, b̂α =
√

4π p̂α, (17)

so that the new variables q̂α and p̂α satisfy the standard
coordinate-momentum commutation relations [ p̂α, q̂β ] =
−iδαβ , while the Hamiltonian (15) reduces to that for a set
of shifted harmonic oscillators,

Ĥe-m = 1

2

∑
α

[
p̂2

α + ω2
α

(
q̂α − λα

ωα

R̂
)2

]
, (18)

where the “coupling constant” λα is related to the electric field
of the α mode at the location of the electron system,

λα =
√

4πefα (r0). (19)

It is worth noting that the proportionality of λα to the mode
function assumes a coupling strength inversely proportional
to the square root of the mode volume.

The Hamiltonian of the electromagnetic field in Eq. (18)
corresponds to the description of electron-photon coupling
in the PZW gauge [59–61,63]. The total Hamiltonian for the
combined system of electrons and the field is a sum of He-m

(18) and the standard Hamiltonian of a nonrelativistic many-
electron system,

Ĥ = T̂ + V̂ext + ŴC + Ĥe-m. (20)

Here T̂ corresponds to the kinetic energy of the electrons,
V̂ext = ∑N

j=1 vext(r j ) is the energy of interaction with an ex-

ternal potential, and ŴC = 1
2

∑
i �= j

e2

|ri−rj| is the energy of the
Coulomb electron-electron interaction. This Hamiltonian is
commonly used as the starting point in first-principles ap-
proaches to the cavity QED, in particular in QEDFT, which
we discuss in the next section.

III. ENERGETICS OF ELECTRON-PHOTON SYSTEM
IN QUANTUM ELECTRODYNAMICAL

DENSITY-FUNCTIONAL THEORY

In the discussion below we focus on the ground-state
QEDFT assuming the validity of the dipole approximation,
which is the most common situation in cavity QED. In this
case, described by the Hamiltonian of Eq. (20), the standard
Hohenberg-Kohn mapping theorem [15] can be adopted to the
cavity QED setup practically without modifications [21] (the
general ground-state QEDFT beyond the dipole approxima-
tion is discussed in Ref. [21], see also Ref. [64]).

A. The ground-state exchange-correlation energy:
Adiabatic connection formulation

The Hohenberg-Kohn theorem adopted to the cavity QED
Hamiltonian (20) implies that the ground-state energy E0 =
〈�0|Ĥ |�0〉 of the interacting electron-photon system can be
represented as follows:

E0 = F [n] +
∫

vext(r)n(r), (21)
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where F [n] is a universal Hohenberg-Kohn functional. The
central object of any ground-state DFT, the xc energy func-
tional Exc[n], is defined via the Kohn-Sham (KS) construction
with respect to the KS system [16]. In the QEDFT context
the KS system corresponds to a system of free photons and
noninteracting KS particles in the presence of an effective KS
potential vs that is adjusted to reproduce the exact interacting
electron density n(r) in the noninteracting KS system. The xc
energy is defined by the following alternative representation
of the interacting ground-state energy:

E0 = Ts + 1

2

∑
α

ωα +
∫

vext(r)n(r) + EH + Exc, (22)

where Ts is the kinetic energy of KS particles and as usual
the Hartree energy EH related to the Coulomb interaction is
separated explicitly. Importantly, the mean-field contribution
related to the electron-photon interaction does not appear in
the ground-state energy because the expectation value of the
cavity transverse electric field êα = fα (r0)[d̂α − 4πefα (r0) ·
R̂] in the equilibrium state vanishes identically,

〈êα〉 = 1

e
〈λα (ωα q̂α − λαR̂)〉 = 0. (23)

It is worth noticing that this identity fixes the expectation
value of the photon coordinate 〈q̂α〉 (the average electric dis-
placement in the α mode) by relating it to the average dipole
moment of the electrons e〈R̂〉 = e

∫
rn(r)dr that is a simple

explicit functional of the density.
To obtain a formally exact representation of the xc energy

in terms of linear response functions we use the standard adi-
abatic connection fluctuation-dissipation (ACFD) formalism
[18,65–67]. Recently, the ACFD machinery has been applied
in the QEDFT context [45]. Here we use a slightly different
formulation by keeping density fixed along the adiabatic path
[65,66] and including, on equal footing, both electron-photon
coupling and the direct electron-electron interaction.

Let us introduce an adiabatic parameter 0 < γ < 1 and
rescale the electron-electron interaction and the electron-
photon coupling such that γ = 0 and γ = 1 correspond to
completely decoupled and fully interacting systems. In addi-
tion we enforce the electron density n(r) to be the same at
any value of γ by properly adjusting an external one-particle
potential V̂γ = ∑N

j=1 vγ (r j ). Apparently at γ = 1 the poten-
tial V̂γ=1 = V̂ext coincides with the physical external potential
in the fully interacting system, V̂γ=0 = V̂s is equal to the KS
potential and the system at γ = 0 is actually the KS system
of free photons and noninteracting KS particles. Formally, the
electron-photon system along this adiabatic path in described
by the following Hamiltonian:

Ĥγ = T̂ + V̂γ + γŴC + 1

2

∑
α

[
p̂2

α + ω2
α

(
q̂α − γ

λα

ωα

R̂
)2

]
.

(24)

The ground-state energy E0 = Eγ=1
0 of fully interacting

system can then be computed using the Hellmann-Feynman

theorem,

E0 = Eγ=0
0 +

∫ 1

0
dγ

〈
�

γ

0

∣∣∣∣∣∂Ĥγ

∂γ

∣∣∣∣∣�γ

0

〉
= Ts + Vext

+
∫ 1

0
dγ

〈
�

γ

0

∣∣∣∣∣ŴC − e

γ

∑
α

R̂ · êγ
α

∣∣∣∣∣�γ

0

〉
, (25)

where |�γ

0 〉 is the ground-state wave function, and êγ
α =

γλα (ωα q̂α − γλαR̂) is the electric field operator for the sys-
tem described by the Hamiltonian of Eq. (24).

By comparing Eqs. (22) and (25) we can identify the xc
energy and observe that it naturally splits into two contribu-
tions attributed, respectively, to the direct electron-electron
interaction and to the electron photon coupling,1

Exc = E el
xc + Eph

xc . (26)

The electronic part comes E el
xc from ŴC term in Eq. (25).

It is given by the standard ADFD formula and can be con-
veniently expressed in terms of the density-density response
function χ

γ
n (r, r′, ω) = 〈〈δn̂(r); δn̂(r′)〉〉ω, where 〈〈. . . ; . . . 〉〉

stands for the Kubo correlation function (see, for example,
Refs. [18,67]),

E el
xc =

∫ 1

0
dγ

〈
�

γ

0

∣∣ŴC

∣∣�γ

0

〉 − EH

= −1

2

∫ 1

0
dγ

∫
drdr′ e2

|r − r′|

×
[∫

dω

π
χγ

n (r, r′, iω) + δ(r − r′)n(r)

]
. (27)

The electron-photon part Eph
xc of xc energy originates from the

last term in Eq. (25) and is determined by the static correla-
tion function of the electronic dipole moment and the cavity
electric field, 〈�γ

0 |R̂ · êγ
α |�γ

0 〉. The fluctuation-dissipation
theorem then relates the static correlation function to the
corresponding Kubo response function χ

γ

R,eα = 〈〈R̂ · êγ
α 〉〉 as

follows:〈
�

γ

0

∣∣R̂ · êγ
α

∣∣�γ

0

〉 =
∑
n �=0

〈
�

γ

0

∣∣R̂∣∣�γ
n

〉〈
�γ

n

∣∣êγ
α

∣∣�γ

0

〉

= −
∫ ∞

0

dω

π
Imχ

γ

R,eα (ω)

= −
∫ ∞

0

dω

π
χ

γ

R,eα (iω). (28)

This identity together with Eq. (25) leads to the final ACFD
representation of the photon contribution to the xc energy,

Eph
xc = e

∫ 1

0

dγ

γ

∫ ∞

0

dω

π

∑
α

χ
γ

R,eα (iω). (29)

Therefore the cavity-induced correction to the xc energy is
determined by the off-diagonal response function χR,eα (ω)
that describes the cavity electric field generated by an exter-
nal classical field applied to the electrons. By the Onsager

1This is similar to the exact representation of xc force in the time-
dependent version of QEDFT, also known as QED-TDDFT [19].
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reciprocity, this response function also determines the polar-
ization of the electronic system induced by external currents
(external dipole antennas) driving the cavity degrees of free-
dom.

B. Relation to the electron polarizability
and the photon propagator

Let us apply to the electrons a classical time-dependent
uniform electric field Eext (ω) which, by polarizing the elec-
tronic system, induces the cavity electric field,

Eext (ω) → δR(ω) → eα (ω).

The response function relating the net (summed over all
modes) cavity electric field e(ω) to the external field Eext (ω)
is the quantity we need to compute the photon contribution to
the xc energy (29),

ei(ω) =
∑

α

ei
α (ω) = −e

∑
α

χei
α,R j (ω)E j

ext (ω)

≡ −e χei,R j (ω)E j
ext (ω). (30)

The required off-diagonal response function χei,R j (ω) can
be conveniently expressed in terms of the polarizability of the
electron subsystem and the photon propagator.

We define a one-photon irreducible electronic polarizabil-
ity �(ω) as a polarization response of the electrons to the total
electric field; that is, the sum of the external and the cavity
fields,

δRi(ω) = e�i j (ω)
[
E j

ext (ω) + e j (ω)
]
. (31)

The Hamiltonian of Eq. (20) generates the following equa-
tion of motion for the expectation value of the photon
coordinate qα:

q̈α = −ωα (ωαqα − λk
αRk ).

By using the definition of the cavity field, ei
α = 1

e λ
i
α (ωαqα −

λk
αRk ), this equation can be transformed into the equation for

eα (t ),

ëi
α + ω2

αei
α = −1

e
λi

αλk
αR̈k, (32)

which is nothing but the α-mode-projected Maxwell equa-
tion for the cavity electric field driven by the transverse part of
the electron current. On the right-hand side of Eq. (32), Rk (t )
can be replaced by δRk (t ) because only the induced dynamical
part of electronic polarization generates the cavity field. From
here we find the Fourier components of the electric field in
each mode,

ei
α (ω) = −1

e

λi
αω2λk

α

ω2 − ω2
α

δRk (ω),

and the net cavity field,

ei(ω) =
∑

α

ei
α (ω) = 1

e
Dik (ω)δRk (ω). (33)

Here we defined the function Dik (ω) that is a bare propagator
of the cavity electric field evaluated at the location of the

electronic system,

Dik (ω) = −
∑

α

λi
αω2λk

α

ω2 − ω2
α

. (34)

Finally, by inserting Eq. (31) into Eq. (33), we get the
equation the cavity field relating to the external field,

[δi j − Dik (ω)�k j (ω)]e j (ω) = Dik (ω)�k j (ω)E j
ext (ω),

which gives the desired response function,

e χe,R(ω) = −[1 − D̂(ω)�̂(ω)]−1D̂(ω)�̂(ω). (35)

This result can be represented as a product χe,R(ω) =
−e D̂(ω)�̂(ω) of the fully dressed, physical propagator of
the cavity field D̂ = (1 − D̂�̂)−1D̂, and the one-photon ir-
reducible electron polarizability �̂. Diagrammatically, the
correlation function χ

g
R,eα (iω) of Eq. (35) corresponds to the

sum of all polarization diagrams describing the propagation
and screening of the cavity electric eα induced by a time-
dependent classical electric field applied to the electronic
subsystem.

To compute the photon contribution to the xc energy within
the adiabatic connection scheme we rescale all λα with the
adiabatic factor of γ , that is, λα → γ λα , modify accordingly
the response function Eq. (35), and substitute the result into
Eq. (29),

Eph
xc = −

∫ ∞

0

dω

π

∫ 1

0

dγ

γ

× tr{[1 − γ 2D̂(iω)�̂γ (iω)]−1γ 2D̂(iω)�̂γ (iω)}. (36)

Here �̂γ (ω) is the exact one-photon irreducible polarizability
of the electronic subsystem with the rescaled interaction. The
polarizability defined via Eq. (31) can be expressed in terms of
the density-density response function entering the electronic
part Eq. (27) of the xc energy,

�i j
γ (ω) = −

∫
ri

1χ
γ
n (r1, r2, ω)r j

2dr1dr2.

Therefore Eq. (36) provides the exact representation of Eph
xc in

terms of the same object—the density response function—that
determines the electronic contribution E el

xc given by Eq. (27).

C. Approximations for exchange-correlation energy:
Photon random-phase approximation

The exact ACFD representation Eq. (36) for the photonic
part of xc energy is a convenient starting point for constructing
approximate functionals. In general, a variety of approxima-
tions can be generated by using different perturbative forms of
the electronic polarizability and/or a perturbative expansion of
Eq. (36) itself.

In particular, by approximating the polarizability �̂γ with
skeleton diagrams constructed from the electron KS Green’s
function Gs, the bare photon propagators, and, if relevant,
the direct Coulomb interaction, we can generate a sequence
of OEP-type conserving approximations for QEDFT [31].
This construction is an extension of the diagrammatic OEP
construction in the electronic DFT [57,58]. The simplest ap-
proximation in this sequence is the one-photon OEP proposed
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FIG. 1. The diagrammatic expansion for xc energy up to the
second order in the photon propagator. The first two diagrams belong
to RPA series dominating for large N , while the last one is of the
exchange type. Each wavy line corresponds to Dph(iω), each vertex
corresponds to λσ̂z, while the solid line

∑
i |i〉 〈i| /(iε − Ei ), where

ε is a frequency carried along the line, Ei are eigenvalues of the
auxiliary Kohn-Sham Hamiltonian.

in Ref. [44]. It corresponds to keeping the lowest order in the
photon propagator term in Eq. (36), that is, E1ph

xc = 1
2 tr[D̂�̂s],

where �̂s = �̂γ=0 is the polarizability of the KS system. This
approximation, as well as its more recent LDA version [45]
may have potentially a serious problem when applied to realis-
tic setups in QED chemistry which typically deals with many
well separated molecules in a cavity. In this situation, the
irreducible polarizability scales linearly with the number N of
molecules and so does the one-photon xc energy, E1ph

xc ∼ N .
This apparent extensivity of the xc energy leads to the xc
potential inside a given molecule, which does not depend on N
and thus on the presence of the other molecules in the cavity.
However, the latter is not what one would expect physically
because of the extreme long-range character and nonexten-
sivity of the cavity induced interaction. The problem with
scaling becomes obvious already at the second order of the
perturbation theory, shown diagrammatically in Fig. 1. The
last, second-order exchange diagram contains one fermionic
loop and is linear in N . In contrast, the second RPA-type ring
diagram involves two polarization loops, scales with N2, and
dominates provided N is sufficiently large. A similar argument
applied to an arbitrary order of perturbation theory shows that,
for large N , within each given order in the coupling constant,
the RPA ring diagrams dominate because they contain max-
imal number of the electron polarization loops. Obviously,
all these leading contributions strongly violate the artificial
extensivity of the lowest OEP.

Selection and summation of the dominant ring diagrams
gives a new approximate xc energy functional, which we
call the photon RPA. At the level of the ACFD expression
Eq. (36), this summation corresponds to approximating the
exact irreducible polarizability with that of the KS system,
�̂γ ≈ �̂s, and performing the coupling constant integration.
The result of this procedure reads

Eph
xc ≈ ERPA

xc =
∫ ∞

0

dω

2π
tr ln[1 − D̂(iω)�̂s(iω)]. (37)

This functional is the natural QED extension of the RPA
correlation energy used in the electronic DFT [68,69].

We note that the argumentation based on the 1/N small
parameter has been recently applied to several problems of
cavity QED [70–76]. In the next section, we study its rel-
evance for the ground-state QEDFT using a paradigmatic
example of the Dicke model.

IV. PHOTON RANDOM-PHASE APPROXIMATION
EXCHANGE-CORRELATION FUNCTIONAL

FOR THE DICKE MODEL

A. Formulation of the model

Here, we apply the formalism developed in the previous
section to construct and test the accuracy of several xc func-
tionals for a model system of N tight-binding dimers (two-site
molecules) interacting with one cavity mode. In the site basis,
dimer i is represented by a 2×2 Hamiltonian with the hopping
kinetic energy proportional to the σ̂ i

x Pauli matrix. The matrix
σ̂ i

z represents the dimer’s dipole moment (charge imbalance
between the sites) that is coupled to the cavity electric field
and to the external classical potential. The Hamiltonian of this
system reads

Ĥ = −
N∑

i=1

T σ̂ i
x +

N∑
i=1

vi
extσ̂

i
z

+ 1

2

⎡
⎣p̂2 + ω2

ph

(
q̂ − λ

ωph

N∑
i=1

σ̂ i
z

)2
⎤
⎦, (38)

where ωph is the frequency of the photon mode, and T is the
amplitude of the hopping between the sites of the dimers,
which for simplicity are assumed to be identical. In the
QEDFT context, the first and the second terms in Eq. (38) cor-
respond, respectively, to the kinetic energy T̂ and the external
potential energy V̂ext in the generic Hamiltonian of Eq. (20).
The last term in Eq. (38) is apparently the Ĥe-m in Eq. (20)
with the total dipole moment R̂ = ∑N

i=1 σ̂ i
z equal to the sum

of the dipole moments for all dimers. The expectation value
of the density imbalance in the dimer ni = 〈σ̂ i

z 〉 plays a role of
basic density variable in QEDFT for this model system. This
local density variable ni is conjugated to the external potential
vi

ext in Eq. (38). As usual in the lattice formulation of DFT,
all density functionals of the general QEDFT now become
functions of N variables, F [n(r)] �→ F (n1, . . . nN ).

The model described by the Hamiltonian Eq. (38) is a car-
toon of a typical polaritonic chemistry setup—a multi-emitter
cavity QED system. Formally, it is a special, gauge-invariant
version of the generalized Dicke model [49–56], which de-
scribes a set of two-level systems coupled to a bosonic mode
via a minimal electromagnetic coupling. In fact, Eq. (38) is
gauge equivalent to the Hamiltonian, where a coupling to
the photon mode is introduced via Peierls substitution of the
vector potential into the hopping phase. This gauge invariance
prevents the unphysical superradiance of the standard Dicke
model [77].

B. One dimer: Quantum electrodynamical density functional
theory for the quantum Rabi model

We start with the simple case of one dimer interacting
with a single cavity mode; that is, N = 1. In this case, the
generalized Dicke model defined by Eq. (38) reduces to the
quantum Rabi model,

Ĥ = −T σ̂x + vextσ̂z + 1

2

[
p̂2 + ω2

ph

(
q̂ − λ

ωph
σ̂z

)2
]
, (39)
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which is probably one of the most famous models in quantum
optics. In particular, it has been used in the QEDFT context to
assess the validity of the one-photon OEP [44]. In this section,
we go beyond this simplest approximation and analyze xc
functionals based on the second order of the self-consistent
perturbation theory and on the full photon RPA of Eq. (37).

It is natural to rewrite the photon canonical variables in the
second quantization formalism as follows:

q = 1√
2ωph

(â + â†), p = −i

√
ωph

2
(â† − â). (40)

In terms of the operators â† and â the Hamiltonian reads

Ĥ = − T σ̂x +
[√

ωph

2
λ(â + â†) + vext

]
σ̂z

+ ωph(â†â + 1/2) + λ2

2
. (41)

The eigenvalues of this model can be found by appropriately
truncating the photon Fock subspace. As in this work we
are concerned with the ground-state QEDFT, only the ground
state of the system is required.

The KS system for the Rabi model correspond to one
KS particle on a dimer in the presence of the KS potential
vs = vxc + vext. The ground |φg〉 and excited |φe〉 KS orbitals,
and the corresponding energy eigenvalues εe,g are determined
from the following KS equation:

[−T σ̂x + vsσ̂z]|φe,g〉 = εe,g|φe,g〉. (42)

The solution of this simple two-level problem is readily
found and reads 〈φg| = (v, u) with εg = −W , and 〈φe| =
(u,−v) with εe = W , where W = (v2

s + T 2)1/2, and u, v =√
(1 ± vs/W )/2. It is also convenient to introduce the res-

onant excitation frequency of the noninteracting KS system:
�s = 2W .

The above solution of the KS problem is represented as a
function of the potential vs that, by the DFT mapping theorem,
is a unique functional of the density. A remarkable feature of
the two-level system is the functional relation between the po-
tential vs and the basic density variable (the density imbalance
of dimer nodes) n = 〈φg|σ̂z |φg〉 can be found explicitly,

n = − vs

W
= − vs√

v2
s + T 2

, (43)

vs = − nT√
1 − n2

. (44)

The function W which determines the KS eigenvalues in terms
of n reads W (n, T ) = T/(1 − n2)1/2. Using vs(n) of Eq. (44)
we can express the KS orbitals as the functions of n and
eventually find the explicit form of the KS kinetic-energy
functional Ts(n) entering the ground-state energy (22),

Ts(n) = −T 〈φg(n)|σ̂x |φg(n)〉 = −T
√

1 − n2, (45)

where we used 〈φg|σ̂x |φg〉 = 2uv = T/W = (1 − n2)1/2. The
final expression for the ground-state energy of one dimer

coupled to the cavity mode takes the form

E0 = −T
√

1 − n2 + ωph

2
+ vextn + Eph

xc (n). (46)

Here the xc energy Eph
xc (n) is also naturally expressed as a

function of the density if we adopt the diagrammatic represen-
tation of the ADFT formalism as described above in Sec. IIIC.
The reason is the known n dependence of the KS Green’s
functions Gs appearing in the diagrams for the xc energy,

Gs[n](ω) = [ω + T σ̂x − vs(n)σ̂z]
−1, (47)

where vs(n) is given by Eq. (44). Remarkably, the KS kinetic
energy in Eq. (45) is also an explicit function of the density.
Therefore the minimization of total energy can be performed
directly, without introducing the KS orbitals and solving the
KS equations.

Below, we analyze and compare several specific approxi-
mations based on the diagrammatic expansion for photon part
of the xc energy Eph

xc .
Let us start with the simplest finite-order perturbative

approximations. Figure 1 shows the lowest perturbative con-
tributions to Eph

xc , up to the second order in the photon
propagator. The analytical expressions for the diagrams on
Fig. 1 denoted as D1, D2, and D3, respectively, are given
in Appendix A, Eqs. (A2)–(A4). The first-order diagram
D1 corresponds to the lowest-order photon OEP functional,
E1ph

xc (n) = D1(n), proposed in Ref. [44]. The sum of all three
diagrams on Fig. 1 yields the complete second-order exten-
sion of OEP, E2ph

xc (n) = D1 + D2 + D3, while the first two
diagrams correspond to the photon RPA functional truncated
at the second order, E2RPA

xc = D1 + D2.
The highest-level xc functional we consider in this work

is the photon RPA of Eq. (37), which corresponds to the
summation of all RPA-type ring diagrams up to infinite order.
In the present case of the Rabi model, the corresponding xc
energy can be found explicitly as follows:

ERPA
xc =

∫ ∞

0

dω

2π
ln[1 − λ2Dph(iω)�s(iω)]

= 1

2
[(�+ + �−) − (ωph + �s)], (48)

where, for convenience, we extracted the coupling constant
dependence from the propagator of Eq. (34) and defined the
bare photon propagator Dph(ω) as follows:

Dph(ω) = − ω2

ω2 − ω2
ph

. (49)

The KS polarizability �s(ω) of the dimer reads (see Ap-
pendix A),

�s(ω) = − Zex
s

ω2 − �2
s

, (50)

with the following oscillator strength of the KS exciton, Zex
s =

4T 2/W = 4T (1 − n2)1/2, and resonant excitation frequency
of the noninteracting KS system: �s = 2W .

The result of the ω integration in Eq. (48) is expressed in
terms of the frequencies, �+ and �−, of the upper and lower
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Rabi polaritons,

�± = 1
2

[√
(ωph + �0)2 + λ2Zex

s ±
√

(ωph − �0)2 + λ2Zex
s

]
.

(51)

These frequencies correspond to zeros of the expression
1 − λ2Dph�s(ω) and determine the energies of the phys-
ical bosonic excitations of the system in the presence of
the electron-photon coupling. In particular, the polaritonic
frequencies appear as poles in the physical dressed photon
propagator,

D(ω) = Dph(ω)

1 − λ2Dph(ω)�(ω)

= −ω2

(
Zph

+
ω2 − �2+

+ Zph
−

ω2 − �2−

)
, (52)

where the strength Zph
+ (Zph

− ) of the upper (lower) polariton
contribution to the physical photon is defined as

Zph
± = 1

2

(
1 ± �2

+ + �2
− − 2�2

s

�2+ − �2−

)
. (53)

The form of the xc energy of Eq. (48) has a clear physical
structure of the zero-point energy, which is typical for RPA
[68,69]. The second line in Eq. (48) can indeed be understood
as the interaction-induced change of the zero-point energy of
the bosonic electron-photon excitations.

By inserting �± of Eq. (51) into Eq. (48) we obtain the
following compact expression for the photon RPA xc energy:

ERPA
xc = 1

2

[√
(ωph + �s)2 + λ2Zex

s − (ωph + �s)
]
. (54)

As the KS excitation frequency �s = 2T/(1 − n2)1/2, and the
corresponding KS oscillator strength Zex

s = 4T (1 − n2)1/2 are
known as function of n, the above equation defines ERPA

xc (n) as
a simple and explicit function of the density.

To assess the quality of the approximate QEDFT function-
als for the Rabi (N = 1 Dicke) model we also compute the
xc energy from the exact diagonalization of the Hamiltonian
Eq. (41). The exact diagonalization xc energy EED

xc for the
many-body ground state �0 is calculated directly from the
definition of Eq. (22) as the difference of EED

0 = 〈�0|Ĥ |�0〉
and the energy of noninteracting KS system at the same den-
sity n = 〈�0|σ̂z|�0〉,

EED
xc = EED

0 + T
√

1 − n2 − ωph

2
− vextn. (55)

To find EED
xc as function of n one should vary the ground-

state density n. In practice, by calculating the ground-state
wave function �0 as a function of the external potential vext,
we define the map vext �→ {EED

xc , n}, from which the function
EED

xc (n) is reconstructed.
In Fig. 2 we show different contributions to the energy

as functions of the density, namely, the xc energy Eph
xc (up-

per panel), the Hohenberg-Kohn energy F (n) = Ts + Eph
xc ,

and the full ground-state energy E0 = F (n) + vextn. Here,
we compare the exact energies with approximate QEDFT
energy functionals, at the level of (i) the first-order OEP
with E1ph

xc = D1, (ii) the full second-order OEP correspond-
ing to E2ph

xc = D1 + D2 + D3, (iii) the second-order truncated

FIG. 2. Different contributions to the energy of one dimer in the
cavity: xc energy E ph

xc (upper panel), Hohenberg-Kohn energy F =
Ts + E ph

xc (middle panel), and the full ground-state energy E0 (bottom
panel). We show approximate functionals based on the finite-order
diagrams D1, D2, D3 presented in Fig. 1, and the full RPA series. The
results of exact diagonalization (ED) serve here as a benchmark. The
parameters of the system are λ = 1.5, ωph = 1, T = 1.

RPA with E2RPA
xc = D1 + D2, and (iv) the full photon RPA

defined by Eq. (54). The corresponding dependencies of the
density n on the external potential, obtained by minimiz-
ing E0 = F (n) + vextn at fixed vext, are presented in Fig. 3.
We have chosen a fairly large coupling constant of λ = 1.5,
which in the quantum optics tradition would be classified as
a deep strong coupling. In our context, the most important
point is that, in this interaction regime, the strict perturbative
approaches are not applicable and the difference between ap-
proximations becomes obvious.

One can clearly see from Fig. 2 that, within the first-order
OEP, the energy does not look correct even qualitatively. For
λ > 1 this approximation produces a double-well Hohenberg-
Kohn functional F (n), while physically there should a single
minimum at n = 0, which we indeed see from the exact so-
lution. This qualitative error is corrected in the second-order
RPA; that is, by adding the second-order RPA-type dia-
gram D2. However, in the full second-order OEP, which
also includes the second-order exchange, the energy func-
tional worsens considerably, becoming even worse than in the
first-order OEP. The better performance of the “incomplete”
second-order OEP is not so surprising because we are using
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FIG. 3. Dependencies of density n on external potential vext. ED
denotes exact diagonalization. The parameters of the system are
λ = 1.3, ωph = 1, T = 1.

the perturbative constructions in a self-consistent way beyond
the strict validity of the perturbation theory.

Apparently, the best QEDFT energy functional for the Rabi
model is obtained within the full photon RPA. The RPA curves
in Fig. 2 are essentially on top of the results obtained from the
exact diagonalization, with the accuracy of a few percent. It
is remarkable that the simple function Eq. (54) provides so
excellent an analytic fit of quite expensive numerical solution
of the full many-body electron-photon problem in the deep
strong-coupling regime. Parametrically the RPA diagrams be-
come dominant in the limit of large N , however we see that
the photon RPA functional works very well even for N = 1,
at least if the coupling strength is not anomalously large.

Finally, we note that the density distribution shown on
Fig. 3 is much less sensitive to the quality of the xc den-
sity functional. While the differences of Eph

xc (n) for different
approximations are very well visible, they are much less pro-
nounced in the dependence of the density on the external
potential. All functions n(vext ) in Fig. 3 look quite reasonable,
in spite of the Hohenberg-Kohn functionals in Fig. 2 some-
times differing qualitatively. In the next section, we see that
the differences in the performance of different approximations
become much more pronounced in the many-dimer Dicke
model, that is when several dimers are present in the cavity,
being collectively coupled to the photon mode.

C. General case: Many-dimer Dicke model

1. N equivalent dimers coupled to the cavity mode

Now we consider a group of N equivalent dimers in the
cavity biased by the same external potential vext. In this case,
the Hamiltonian of Dicke model, Eq. (38), reduces to the form

Ĥ =
N∑

i=1

{
−T σ̂ i

x +
[√

ωph

2
λ(â + â†) + vext

]
σ̂z

i + λ2

2

}

+ ωph(â†â + 1/2) +
N−1∑
i=1

N∑
j=i+1

λ2σ̂z
iσ̂ j

z , (56)

where we used the second-quantized representation of
Eq. (40) for the photon canonical variables. Apparently, the
local densities n = 〈σ i

z 〉 are identical for all dimers. The same
is true for one-particle energies attributed to separate dimers
in the KS system, so that the kinetic energy Ts of the KS
system and the energy of external potential scale with N thus
depending extensively on the number of dimers. The total
ground-state energy can then be written in terms of the density
n of single dimers as follows:

E0 = −NT
√

1 − n2 + Nvextn + Eph
xc (n) + ωph

2
. (57)

Since the dimers are coupled to the same photon mode
their behavior is expected to be correlated. In particular, the
ground-state density in a given dimer should depend on the
presence of the other dimers in the cavity. In the rest of this
section we study the importance of such collective effects in
the ground state and to which extent they can be captured by
different approximations for the xc energy functional.

Formally, the above-mentioned correlations are reflected
in the dependence of Eph

xc on the number N of dimers in the
cavity. Within our diagrammatic approach, a given diagram
for xc energy scales as Nl , where l is the number of electronic
loops. For example, we have E1ph

xc = ND1 for the first-order
OEP, E2RPA

xc = ND1 + N2D2 for the second-order truncated
RPA, E2ph

xc = ND1 + N2D2 + ND3 for the full second-order
OEP, where D1, D2, and D3 are given by Eqs. (A2)–(A4) in
Appendix A. Therefore, the first-order OEP scales extensively
with N , which implies that the dimers do not feel each other,
and the physically expected correlations are totally missing
in this approximation. This fictitious extensivity is violated
already at the second order by the RPA diagram (see second
diagram of Fig. 1) which scales as N2.

Apparently, the terms of higher order in the electron-
photon coupling will generate contributions with higher
powers in N . An important observation is that, within a given
order of the diagrammatic perturbation theory for Eph

xc , the
RPA diagram has the maximal number of fermionic loops,
thus corresponding to the highest power of N . This suggests
that the quality of the photon RPA functional should further
improve with an increase in the number of dimers. The ex-
plicit form of the RPA xc energy for the Dicke model is
immediately obtained from Eqs. (48) and (54) by noticing that
the KS polarizability is additive, and for N dimers it simply
reads �N

s (ω) = N�s(ω). Therefore, the final RPA xc en-
ergy is obtained by replacing λ2 �→ Nλ2 in the corresponding
result for N = 1,

ERPA
xc =

∫ ∞

0

dω

2π
ln[1 − Nλ2Dph(iω)�s(iω)]

= 1

2

[√
λ2NZex

s + (ωph + �s)2 − (ωph + �s)
]
. (58)

Physically this energy can be interpreted as the interaction
correction to the zero-point energy of bright (dipole active)
collective polaritons with the following frequencies:

�N± = 1
2

[√
(ωph + �s)2 + λ2NZex

s

±
√

(ωph − �s)2 + λ2NZex
s

]
. (59)
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FIG. 4. Different contributions to the energy per dimer for a
system of N equivalent dimers in the cavity as functions of the
one-dimer density n: xc energy E ph

xc (upper panel), Hohenberg-Kohn
energy F = Ts + E ph

xc (middle panel), and the full ground-state en-
ergy E0 (bottom panel), calculated using different approximations.
The results of exact diagonalization (ED) serve here as a benchmark.
The parameters of the system are N = 3, λ = 1.5, ωph = 1, T = 1.

The difference between these frequencies correspond to the
collective Rabi splitting that has a familiar structure,

�R =
√

(ωph − �s)2 + λ2NZex
s , (60)

while their sum determines the xc energy of Eq. (58). For suf-
ficiently large N the frequency �N+ of the upper polaritonic
excitation, and the Rabi splitting �R grow as

√
N , which is

commonly interpreted as a regime of ultrastrong collective
coupling [78]. On the other hand, this automatically assumes
that the xc energy also scales with

√
N when the number of

molecules in the cavity increases. Such subextensive scaling
implies decreasing of the xc energy per dimer as 1/

√
N ,

which means that the relative contribution of the xc effects
to the properties of the ground state becomes progressively
smaller when we go to the ultrastrong collective coupling. We
return to this seemingly counterintuitive point in a moment,
after discussing the performance of different approximate xc
functionals for the many-dimer Dicke model.

In Fig. 4 we show the xc energy, Hohenberg-Kohn energy,
and the total ground-state energy per dimer for N = 3 and
the same coupling strength as in Fig. 2. Here we compare
the results of three approximations, the first order OEP (D1),

FIG. 5. Dependency of the one-dimer density n on external po-
tential vext for the N-dimer Dicke model. The parameters of the
system are N = 3, λ = 1.3, ωph = 1, T = 1.

the second order RPA (D1 + D2), and the full photon RPA,
with those obtained from the exact diagonalization (ED). It
is clear that, already for N = 3, the OEP schemes based on a
finite-order perturbation theory produce unreliable energetics
(we do not show the results of the full second-order OEP,
which look even worse). In contrast, the full nonperturbative
RPA, as expected, approximate the exact energy functionals
almost perfectly. The ground-state density of a given dimer
in Fig. 5 confirms this trend. Despite the density being less
sensitive to the quality of approximation, the deficiency of
the finite-order OEP functionals becomes obvious in the case
of few a dimers in the cavity. We note that the first-order
produces at least a qualitatively reasonable density without
unphysical inflections. However, it strongly overestimates the
density compared with the results of exact diagonalization. In
contrast, the RPA density and the exact one are essentially
indistinguishable.

The systematic overestimation of the effect of the cavity
by the first-order OEP is related to its wrong scaling with N
and missing collective effects. To illustrate this point, in Fig. 6
we present the dependence of the density in a given dimer on
the external potential for different numbers of dimers in the
cavity. As we can see, the function n(vext ) corresponding to
the first-order OEP can be considered as an upper bound for
the exact/RPA densities. It reasonably agrees with the exact
n(vext ) at N = 1 but becomes progressively worse for lager N .
While the first-order OED does not depend on N , the exact and
RPA treatment shows that the xc correction to the density gets
smaller with the increase of the number of dimers. In fact, the
lower bound for the density in Fig. 6 is provided by the curve
for the decoupled system with λ = 0. For the considered cou-
pling strength λ � 1, this lower bound is reached at N > 100,
which we have checked explicitly within RPA as the exact
diagonalization becomes too costly for N > 10.

Apparently, in the case of large N , corresponding to
the ultrastrong collective coupling, the cavity photon mode
produces a progressively smaller effect on the electron
ground-state density. This can be understood as follows: In
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FIG. 6. Dependencies of the one-dimer density n on the external
potential for different numbers of dimers N calculated within RPA
and the exact diagonalization. The parameters of the system are
ωph = 1, T = 1, λ = 1.2.

the DFT language, the photon xc correction to the density in a
dimer is controlled by the xc potential vxc(n), which is given
by density derivative of the xc energy per dimer,

vxc = 1

N

∂Eph
xc

∂n
. (61)

As in the limit of large N the xc energy is expected to scale
subextensively ∼√

N , the xc potential decreases as vxc ∼
1/

√
N , thus leading to the smaller xc shift of the density.

This behavior can be explained more physically in terms of
the many-body perturbation theory. Let us consider the self-
energy of the electron induced by the virtual excitation of the
dressed photon propagating through a polarizable system of
dimers. In the case of N dimers, the propagator of the physical
dressed photon, by analogy with Eq. (52), reads as follows:

DN (ω) = −ω2

(
Zph

N+
ω2 − �2

N+
+ Zph

N−
ω2 − �2

N−

)
, (62)

where the frequencies of the bright collective polaritons are
given by Eq. (59), and the strengths of the corresponding poles
in the propagator are defined as

Zph
N± = 1

2

⎡
⎢⎣1 ± λ2NZex

s + ω2
ph − �2

s√(
λ2NZex

s + �2
s + ωph

)2 − 4ω2
ph�

2
s

⎤
⎥⎦. (63)

The virtual excitation of the polaritonic excitation con-
tributing to the physical photon is the physical origin of
cavity-induced electron self-energy. In the limit of large N ,
the photon propagator is dominated by the upper polari-
ton as its weight Zph

N+ tends to unity. However, because the
frequency �N+ grows as

√
N , the excitation of this mode

becomes energy-costly, leading to the O(1/
√

N ) correction to
the self-energy. On the other hand, the frequency of the lower
polariton �N− decreases as 1/N , and it could be efficiently
excited, but this is compensated by its small weight factor

Zph
N−. This argument shows that, in the regime of ultrastrong

collective coupling, the huge modification of the polaritonic
excitations and very large Rabi splitting imply a weak in-
fluence of the cavity on the ground-state properties of the
electronic subsystem. It is worth noting that the effective
decoupling of the electronic subsystem in the large-N limit
is closely to the so-called no-go theorems preventing superra-
diance in the thermodynamic limit [77].

Our results clearly demonstrate a very good performance
of the photon RPA functional for QEDFT of the Dicke model.
The RPA xc energy in Eq. (58) provides a simple, but excellent
analytic fit of the exact xc energy obtained from a heavy nu-
merical diagonalization of the full many-body Hamiltonian in
a strongly nonperturbative regime. Now we analyze quantita-
tively the accuracy of this approximation for different number
of dimers in the cavity.

It is convenient to quantify the accuracy of the RPA xc
energy by the maximal relative error ηxc of ERPA

xc with respect
to exact diagonalization xc energy EED

xc ,

ηxc =
∥∥∥∥EED

xc − ERPA
xc

EED
xc

∥∥∥∥
∞

= max
n

∣∣∣∣EED
xc (n) − ERPA

xc (n)

EED
xc (n)

∣∣∣∣. (64)

In fact, for all N the maximal error is achieved at n = 0 that
corresponds to symmetric dimers. Similarly, we characterize
the accuracy of computing the density from the RPA, by the
relative density error,

ηn =
∥∥∥∥nED − nRPA

nED

∥∥∥∥
∞

= max
vext

∣∣∣∣nED(vext ) − nRPA(vext )

nED(vext )

∣∣∣∣, (65)

where nRPA(vext ) and nED(vext ) are the densities calculated
from RPA functional within QEDFT and from the exact di-
agonalization, respectively.

The dependence of ηxc on the number N of dimers is given
in Fig. 7. It shows that, for the coupling strength λ ≈ 1 the
error of the RPA xc energy gets larger for larger couplings, but
remains small, typically at the level of few percent. For larger
values of λ we observe the expected increase of accuracy
(decrease of the relative error) with increasing the number of
dimers. The density error presented in Fig. 8 shows the same
trends with the same level of error.

An interesting observation is that, in the limit of large N ,
the errors in Figs. 7 and 8, while becoming smaller, do not
go to zero but saturate to some small finite value. In other
words, we see numerical evidence that the RPA, being quite
accurate, is not asymptotically exact at N � 1. The reason is
the adopted way of taking the limit of large N at fixed coupling
constant λ, which indicates an interesting subtlety in defining
the thermodynamic limit in the cavity QED context.

Physically, λ ∼ 1/
√

Vm is inversely proportional to the
square root of the mode/cavity volume. Hence, by increasing
N at fixed λ we put more molecules inside a given cavity. In
this absolutely physical setup, for a given order of the per-
turbation theory, the RPA diagram carries the largest possible
power of N thus dominating over all other contributions of
the same order. However, the same power of N can also come
from the higher-order non-RPA diagrams. In a nonperturba-
tive regime with λ > 1 such contributions formally cannot
be ignored. Our exact diagonalization results show that, as
a matter of fact, the post-RPA corrections are small, but it
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FIG. 7. The relative error ηxc of the RPA xc energy with respect
to the exact results, depending on the number of dimers N . Different
plots correspond to different coupling constant λ. The parameters of
the system are ωph = 1, T = 1.

is clear that, in this setup, RPA is never exact. The observed
saturation of the xc energy error indicates that the scaling of
the exact xc energy Eph

xc ∼ √
N is probably the same as in

RPA, but the coefficient is slightly different.
Alternatively, we can increase the number of molecules N

in the cavity while keeping fixed their density N/Vm inside
the mode volume. This assumes increasing the mode vol-
ume Vm ∼ N , and therefore rescaling the coupling constant as

FIG. 8. The density error ηn as a function of number of dimers N
for different λ. The parameters of the system are ωph = 1, T = 1.

FIG. 9. The relative error of the RPA xc energy as a function
of N . Here, the change of N is accompanied with rescaling of the
coupling λ = λ0/

√
N . In all cases, the parameters of the system are

ωph = 1, T = 1.

λ = λ0/
√

N . We note that rescaling of the coupling constant
with N is a common way of defining the large N expansion
in the quantum field theory, see for example Ref. [79]. In
the cavity QED context, it can also be understood as fixing
the so-called collective coupling strength λ

√
N = λ0. If the

limit of large N is taken at fixed λ0, each photon propagator
in a diagram brings the factor of 1/N , which makes RPA
asymptotically exact in the limit of large N . In fact, the RPA
energy diagrams of all orders become N-independent, while
all other contributions appear with negative powers of N . The
xc energy error ηxc in this setup is presented in Fig. 9. Our
numerical calculations of the exact xc energy indeed show that
the error of RPA energy converges to zero at large N . In our
case, it reaches fractions of percent at N � 10.

2. Arbitrary set of dimer groups

In the previous section, we demonstrated that QEDFT
based on RPA works extremely well for any N and indepen-
dently of a specific way of controlling the number of dimers in
the cavity. In this demonstration, we used the simplest version
of the Dicke model, in which equivalent dimers are all biased
by the same external potential. It is natural to expect that this
technical simplification should not be critical for the quality
of RPA.

In this section, we discuss QEDFT for the most general
gauge-invariant Dicke model, and derive the explicit form of
the corresponding RPA energy functional. Specifically, we
consider an arbitrary number Md of different groups of equiva-
lent dimers, coupled to a photon mode. The jth group consists
of Nj dimers, so that we have N = ∑Md

j=1 Nj dimers in total.
The dimers within jth group are subject to the same exter-
nal field vext j , have coupling constant λ j and the intradimer
hopping Tj . The corresponding generalization of the Dicke
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Hamiltonian Eq. (38) takes the form

Ĥ =
Md∑
j=1

Nj∑
i=1

{
−Tj σ̂

i j
x +

[√
ωph

2
λ j (â + â†) + vext, j

]
σ̂z

i j

}

+
Md∑

j1=1

Md∑
j2=1

Nj1∑
i1=1

Nj2∑
i2=1

λ j1λ j2 σ̂z
i1 j1 σ̂ i2 j2

z + ωph(â†â + 1/2).

(66)

By construction, the dimers in the same group have iden-
tical densities. Therefore, QEDFT for this system operates
with Md basic density variables n j, j = 1, . . . , Md. Within
the KS formulation of the theory, the ground-state energy as a
function of the density reads as follows:

E0 =
Md∑
i=1

Ni[Ts(ni ) + vexti ni] + ωph

2
+ Eph

xc ({ni}), (67)

where Ts(ni ) = −Ti(1 − n2
i )1/2 is the KS kinetic energy of a

dimer in the ith group.
The RPA xc energy in this system is given by the obvious

generalization of the expression for the single group Dicke
model,

ERPA
xc =

∫ ∞

0

dω

2π
ln

⎡
⎣1 −

Md∑
j=1

λ2
jNjDph(iω)�s j (iω)

⎤
⎦, (68)

where the KS polarizability �s j (ω) of a dimer from jth group
is defined as follows:

�s j (ω) = − Zex
s j

ω2 − �2
s j

. (69)

Here Zex
s j = 4Tj (1 − n2

j )
1/2 and �s j = 2Tj/(1 − n2

j )
1/2 are, re-

spectively, the oscillator strength and excitation frequency of
the KS exciton corresponding to a dimer in group j.

Similarly to the single dimer and the singe group cases, af-
ter the integration in Eq. (68) the xc energy ERPA

xc is expressed
in terms of the zero-point energy of the bright polaritons.
However, in the general case of Md inequivalent groups of
dimers, there are Md + 1 optically active polaritonic excita-
tions with frequencies �ν . Apparently, the number of bright
polaritons in the interacting system equals to the number of
distinct KS excitons (number of dimer groups Md) plus the
number of photon modes (one in our case). The final result
for the photon RPA xc energy then takes the following form:

ERPA
xc = 1

2

⎡
⎣Md+1∑

ν=1

�ν −
⎛
⎝ Md∑

j=1

�s j + ωph

⎞
⎠
⎤
⎦. (70)

The frequencies �ν of bright polaritons correspond to zeros of
the argument of the logarithm in Eq. (68). Alternatively, they
can be defined as positive roots of the following function:

PMd (ω) = ω2
ph − ω2

⎛
⎝1 −

Md∑
j=1

λ2
jNj�s j (ω)

⎞
⎠. (71)

Obviously, the roots of PMd (ω) also determine the position of
poles in the dressed photon propagator.

Equations (70) and (71) fully determine the xc energy
ERPA

xc (n1, . . . , nMd ) as a function of Md densities. A closed

FIG. 10. The xc energy as a function of the densities, n1 and
n2, for a Dicke model with two groups of dimers: The first-order
OEP E 1ph

xc (green surface), the RPA ex energy ERPA
xc (red surface),

and the exact diagonalization EED
xc (black surface). Projections along

n1 and n2 axes show slices of these surfaces at n1 = 0 and n2 = 0,
respectively. The number of dimers, coupling constants and hopping
coefficients within each group are N1 = 4, N2 = 3, λ1 = 1.5, λ2 = 1,
T1 = T2 = 1. Photon frequency: ωph = 1.

analytic expression for this function can still be found in the
case of two groups, Md = 2. The corresponding formulas are
presented in Appendix B. In general, for Md > 2 a numerical
solution of the polynomial equation PMd (ω) = 0 is required,
which is nonetheless incomparably easier than the full nu-
merical solution of the interacting many-body electron-photon
problem defined by the Hamiltonian of Eq. (66).

The performance of the photon RPA for the general multi-
group Dicke model is illustrated in Fig. 10. Specifically, we
consider a system with Md = 2 which contains four dimers
in the first group N1 = 4, and tree dimers in the second
group N2 = 3. The three-dimensional (3D) plots of xc en-
ergies Eph

xc (n1, n2) presented in Fig. 10 show that, for this
system in a nonperturbative regime with couplings λi � 1, the
first-order OEP denoted as D1 fails dramatically. As we have
already discussed, this failure is mostly related to missing
collective effects, which leads to the strong overestimation
of the cavity induced modifications of the electron density.
In contrast, the full photon RPA agrees excellently with the
results of exact diagonalization, demonstrating the expected
few percent accuracy.

Despite clearly demonstrated excellent performance of the
photonic RPA functional, it is worth adding a word of cau-
tion. If the coupling constant becomes substantially larger
than unity, and the number of dimers is not too large, the
errors of RPA grow, see for example the curve correspond-
ing to λ = 2 in the range of small N in Fig. 7. This trend
continues with the further increase of the coupling strength.
Moreover, for mesoscopic (consistent of few dimers) systems
at sufficiently strong coupling, new physical effects, such as
a quantized step-like cross-polarizability, have been predicted
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recently [75]. Whether these effects can be captured by some
regular post-RPA corrections, for example based on the 1/N
expansion, is an interesting question for the future.

V. CONCLUSION

In conclusion, we presented a comprehensive formulation
of ground-state QEDFT in application to the generalized
Dicke model. In particular, we derived the general exact rep-
resentation of the xc energy in the KS DFT based on the
ACFDT formalism in the case when electrons are coupled
to the long-wavelength cavity photons. The main emphasis
of this work is to adopt the ACFDT representation of the
xc energy, and the many-body perturbation theory for con-
structing explicit approximate xc functionals and carefully test
their performance using the Dicke model as a specific simple
example.

The gauge-invariant version of the Dicke model can be
viewed as a cartoon of a polaritonic chemistry setup in which
a collection of diatomic molecules described tight-binding
dimers and minimally coupled to the cavity photons. This
model is expected to correctly capture the collective nature
of the interaction between molecules and the photons, and the
importance of this collectivity for the ground-state QEDFT is
one of the main general conclusions of our work.

Specifically, for the Dicke model, we derived several OEP-
type approximate xc functionals and check their performance
against the exact numerical diagonalization of the Dicke
Hamiltonian. We analyzed the OEP constructions based on
a finite-order perturbation theory, similar to the first-order
one-photon OEP of Ref. [44], and the approximation for xc
energy corresponding to the full RPA diagrammatic series.
Our results show that, in the nonperturbative regime of strong
coupling, λ � 1 and any number N of molecules in the cavity,
RPA functional works extremely well with an error of about
few percent. In contrast, the finite-order OEP constructions
may fail dramatically, especially for N > 1, that is, when

several molecules are coupled to the same photon mode. The
origin of this failure is a wrong scaling with the number of
molecules in the cavity. In particular, the first-order OEP,
being simply proportional to N , completely missed collective
effects and as a result strongly and systematically overesti-
mates the interaction corrections to the ground-state electron
density. The physical photon contribution to the xc energy
scales at large N subextensively ∼√

N , which is perfectly
captured by the RPA.

Apparently, the importance of collective effects influenc-
ing the dependence on the number of emitters in the cavity
(number of molecules in the polaritonic chemistry setup) is
a generic point unrestricted to the Dicke model. As we have
seen, in wide range couplings the photonic RPA conceptually
provides a high-quality solution of this problem. For the Dicke
model, the corresponding xc energy is simple and essentially
analytic function of the density. However, for realistic sys-
tems, implementation of the full OEP-RPA scheme of QEDFT
does not look feasible in practice. A possible compromise
would be to combine the ideas of simplified LDA form of the
first-order photonic OEP, proposed recently in Ref. [45], with
the ADCFD form of the photon RPA functional derived in this
work. Specifically, in the photon-RPA xc functional defined
by Eq. (37), one can try to use orbital-free approximations for
the electron polarizabilities, such as, for example, VV10 [80]
adopted in Ref. [45], or similar density-based approximations
developed in the context of van der Waals DFT functionals
[67,81].
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APPENDIX A: BASIC EXPRESSIONS AND THE LOWEST-ORDER DIAGRAMS FOR EXCHANGE-CORRELATION ENERGY

In this section, we calculate several diagrams and diagrammatic elements entering the expressions for the xc energy in the
main text. In particular, the KS polarizability �s(ω) diagrammatically can be written as

(A1)

where energies E1 and E2 are equal to εg and εe respectively [for the definition, see Eq. (42)].
The analytical expressions for the first-order diagram D1 and two second-order diagrams D2 and D3 for the xc energy, shown

in Fig. 1 together with expansion coefficients, read as follows:

D1 = −1

2

1

(2π )2

∫ ∞

−∞
dε1dω

2∑
i=1

2∑
k=1

λ2dikdki

(iε1 − Ei )(iε1 + iω − Ek )
Dph(iω) = λ2T 2

W (ωph + 2W )
, (A2)

D2 = −1

4

1

(2π )3

∫ ∞

−∞
dε1dε2dω

2∑
i=1

2∑
k=1

2∑
l=1

2∑
j=1

λ4dikdkid jl dl j

(iε1 − Ei )(iε1 + iω′ − Ek )(iε2 − Ej )(iε2 + iω′ − El )
D2

ph(iω)

= − λ4T 4

W 2(ωph + 2W )3
, (A3)
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D3 = 1

4

1

(2π )3

∫ ∞

−∞
dε1dε2dω

2∑
i=1

2∑
k=1

2∑
l=1

2∑
j=1

λ4d jidikdkldl jDph(iω)Dph[i(ω + ε1 − ε2)]

(iε1 − Ej )(iε1 + iω − El )(iε2 − iω − Ei )(iε2 − Ek )

= λ4T 2(ωW + T 2)

2W 2(2W + ωph)2(W + ωph)
, (A4)

where

d12 ≡ dge = d21 ≡ deg = 〈φg|σ̂z |φe〉 = 2vu = T

W
=

√
1 − n2, (A5)

d11 ≡ dgg = 〈φg|σ̂z |φg〉 = − vs

W
= n, d22 ≡ de,e = 〈φe|σ̂z |φe〉 = vs

W
= −n. (A6)

APPENDIX B: EXPLICIT FORM OF EXCHANGE ENERGY IN CASE OF TWO GROUPS OF EQUIVALENT DIMERS

The energy ERPA
xc is

ERPA
xc =

∫ ∞

0

dω

2π
ln

⎡
⎣1 − Dph(iω)

2∑
j=1

λ2
jNj�s j (iω)

⎤
⎦dω =

(−ωph − �s1 − �s2 +
√

2
√

f1(e3 + f2) − f 2
1 + (e3 + f2)

)
2

,

where f1, f2, e3 are expressed as follows:

f1 = 3e2 − e2
3

3qe
+ e3

3
− qe

3
, f2 =

2
√

9e2
2 − 3e2(2e3 − qe)(e3 + qe) + e4

3 + e3
3qe + e3q3

e + q4
e

3qe
,

e1 = ω2
ph�

2
s1�

2
s2, e2 = Zex

s1 �2
s2 + Zex

s2 �2
s1 + ω2

ph�
2
s1 + ω2

ph�
2
s2 + �2

s1�
2
s2,

e3 = Zex
s1 + Zex

s2 + ω2
ph + �2

s1 + �2
s2,

qe =
3

√√√√3
√

3
√

e1
(
27e1 − 9e2e3 + 2e3

3

) − 9e1e2e3 + 2e1e3
3 + 4e3

2 − e2
2e2

3 − (
27e1 − 9e2e3 + 2e3

3

)
2

.

The asymptotic behavior of ERPA
xc in N1 and N2 reads

ERPA
xc =

√
Zex

s1 + Zex
s2

2
+ 1

2

⎛
⎝
√

Zex
1 �2

s2 + Zex
2 �2

s1

Zex
s1 + Zex

s2

− ωph − �s1 − �s2

⎞
⎠

+

(
Zex

s1 + Zex
s2

)(
2

√
ω2

ph�
2
s1�

2
s2(Zex

s1 +Zex
s2 )

Zex
s1 �2

02+Zex
s2 �2

s1
+ ω2

ph + �2
s1 + �2

s2

)
− Zex

s1 �2
s2 − Zex

s2 �2
s1

4
(
Zex

s1 + Zex
s2

)3/2 + O

(
1

nl
1nk

2

)
, k + l = 1. (B1)

Thus, the principal order is proportional to the root of the number of dimers. The asymptotics of interaction energy for an
arbitrary number of groups can be determined by a simple formula:

ERPA
xc = 1

2

√√√√ Nd∑
j=1

Zex
s j + O(1). (B2)
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