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Steady-state edge burst: From free-particle systems to interaction-induced phenomena
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The interplay between the non-Hermitian skin effect and the imaginary gap of lossy lattices results in the
edge burst, a boundary-induced dynamical phenomenon in which an exceptionally large portion of particle loss
occurs at the edge. Here, we find that this intriguing non-Hermitian dynamical phenomenon can be exactly
mapped into the steady-state density distribution of a corresponding open quantum system. Consequently, the
bulk-edge scaling relation of loss probability in the edge burst maps to that of steady-state density. Furthermore,
we introduce a many-body open-system model in which the two-body loss generates an interaction-induced
non-Hermitian skin effect. Using the positive-P method, we demonstrate the validity of the scaling relation
for steady-state correlators. These results provide a unique perspective on the interaction-induced many-body
non-Hermitian skin effect. Our predictions are testable in state-of-the-art experimental platforms.
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I. INTRODUCTION

Non-Hermitian systems exhibit various exotic phenomena
that lack Hermitian counterparts [1,2]. A notable example is
the non-Hermitian skin effect (NHSE), which describes the
accumulation of bulk modes at the boundaries under open
boundary conditions (OBC) [3–15]. The NHSE profoundly
reshapes the conventional topological band theory [3–5,16–
24] and significantly alters the dynamical properties of non-
Hermitian systems [25–33]. Moreover, the Liouvillian NHSE
in open quantum systems plays a crucial role in nonequilib-
rium steady states and relaxation dynamics [34–39].

Recently, a unique non-Hermitian dynamical phenomenon
known as the edge burst has been both theoretically proposed
and experimentally observed [33,40,41]. This phenomenon
highlights the surprisingly large loss probability at the bound-
ary when a particle walks in a lossy lattice [see Fig. 1(c)].
The edge burst originates from a universal bulk-edge scaling
relation, which is ascribed to the interplay between NHSE and
gapless dissipative spectrum [33].

So far, the edge burst is seen as a transient phenomenon that
occurs during a short period, and its detection requires a fine
timing. It is therefore highly desirable to find its counterpart,
if any, as steady states of open quantum systems, so that
it persists for an arbitrarily long time. Meanwhile, the edge
burst, as understood now, is a single-particle phenomenon. In
this work, we demonstrate that the dynamical phenomenon
of the non-Hermitian edge burst can be accurately mapped to
the properties of nonequilibrium steady states in bosonic open
quantum systems (Fig. 1). Concretely, the enhanced edge loss

*songfeiphys@gmail.com
†wangzhongemail@tsinghua.edu.cn

probability corresponds to a large steady-state particle density
near the boundary of the open quantum system. Moreover,
the universal bulk-edge scaling relation remains true for the
steady-state density distribution. This offers a fresh correspon-
dence between non-Hermitian dynamics and nonequilibrium
steady states.

Unlike the single-particle edge burst, the steady-state edge
burst here is a many-body phenomenon since the steady state
contains many bosons. Furthermore, we have also included
two-body loss, which amounts to having interaction effects
in the quantum master equation [42–46]. We found that the
key features of the steady-state edge burst are robust, and
also enriched, in such interaction effects. The on-site inter-
actions introduce a new mechanism of many-body NHSE,
which is different from widely studied non-Hermitian inter-
acting models with asymmetric hoppings [47–55]. In this
sense, the steady-state edge burst provides a promising avenue
for detecting and exploring NHSE in dissipative many-body
systems.

II. DYNAMICAL-STEADY CORRESPONDENCE

We begin by elucidating a correspondence between non-
Hermitian dynamics and steady states of open quantum
systems. We consider a one-dimensional non-Hermitian sys-
tem whose Bloch Hamiltonian is

H (k) = (t1 + t2 cos k)σx +
(

t2 sin k + i
γ1

2

)
σz − i

γ1

2
σ0. (1)

In the above, σx,y,z are Pauli matrices with σz = +1 (−1)
denoting the A (B) sublattice; σ0 is the identity matrix. t1 (t2) is
the intracell (intercell) hopping and γ1 is the loss strength on B
sites [Fig. 1(a)]. This model is equivalent to the well-explored

2469-9950/2023/108(23)/235422(12) 235422-1 ©2023 American Physical Society

https://orcid.org/0000-0002-2759-3382
https://orcid.org/0000-0001-7823-9888
https://orcid.org/0000-0002-1248-8475
https://orcid.org/0000-0001-6254-6138
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.235422&domain=pdf&date_stamp=2023-12-14
https://doi.org/10.1103/PhysRevB.108.235422


HU, XUE, SONG, AND WANG PHYSICAL REVIEW B 108, 235422 (2023)

FIG. 1. The dynamic-steady correspondence. (a) The Hamiltonian of the non-Hermitian dynamics. (b) The bosonic open quantum system.
(c) The loss probability P(x, t ) generated by the initial state |x0A〉. The blue histogram shows the total loss probability P(x,+∞). (d) The
time evolution of nB(x, t ) in the open quantum system with the initial state taken by randomly choosing each nA(x, 0) from {0, 1}. The blue
histogram shows the steady-state density on B sites nB(x, +∞). Parameters: t1 = 0.8, t2 = 1, γ1 = γg = γl = 0.8, L = 60, x0 = 50.

non-Hermitian Su-Schrieffer-Heeger model, with skin modes
squeezed to the left edge [3].

We are interested in the non-Hermitian dynamics where
a quantum walker described by |ψ (t )〉 evolves under
i d

dt |ψ (t )〉 = H |ψ (t )〉. The real-space H is generated by
Eq. (1). In a length-L chain under OBC, we use x and
s ∈ {A, B} to represent the indices of unit cells and sub-
lattices, respectively. Due to the inherent loss at sites B,
the norm of the wave function decays as d

dt 〈ψ (t )|ψ (t )〉 =
−2γ1

∑L
x=1 | 〈xB|ψ (t )〉 |2, which signifies the escape process

of the walkers from sites B. Therefore, we define the site-
resolved loss probability in the time interval [0, t] as P(x, t ) =
2γ1

∫ t
0 dt ′| 〈xB|ψ (t ′)〉 |2, and Px ≡ P(x,+∞) represents the

total loss probability at each B site. All possibilities fulfill∑L
x=1 Px = 1, which is ensured by the normalized condition

of the initial state 〈ψ (0)|ψ (0)〉 = 1. We take the initial state
to be |ψ (0)〉 = |x0A〉. Then, by utilizing the non-Hermitian
Green’s function [31–33], we can express Px as

Px ≡ P(x,+∞) = γ1

∫ +∞

−∞

dω

π
|〈xB| 1

ω − H
|x0A〉|2. (2)

When 0 < t1 � t2, the Bloch spectrum of H (k) in Eq. (1)
closes its imaginary gap by touching the real axis, which
means that the maximum imaginary part of the Bloch
spectrum is zero [33]. Under this condition, the numerical
simulation [Fig. 1(c)] demonstrates that Px under OBC ex-
hibits a remarkably pronounced peak at one edge, even though
the starting point x0 is far from this edge. This unexpected
non-Hermitian dynamical phenomenon, called the edge burst,

was explained by the interplay between NHSE and imaginary
gap closing [33]. Recently, it has been observed on photonic
platforms [41].

The above non-Hermitian dynamical process is also ex-
pected in a bosonic open quantum system whose density
matrix ρ(t ) follows the Lindblad master equation

d

dt
ρ = L[ρ] = −i[H0, ρ] +

∑
μ

(2LμρL†
μ − {L†

μLμ, ρ}),

(3)

whereL is the Liouvillian superoperator. The coherent Hamil-
tonian is H0 = ∑

i j b†
i (H0)i jb j with H0 being the Hermitian

part of H in Eq. (1), where i and j represent the indices
{(x, s)} and bi is the bosonic annihilation operator. We con-
sider single-particle loss L1,xB = √

γ1bxB on each B site.
In this system, the quantum dynamics started from single-
particle states are controlled by the effective Hamiltonian
Heff = H0 − i

∑L
x=1 L†

1,xBL1,xB = ∑
i j b†

i (Heff )i jb j where Heff

coincides with the real-space Hamiltonian H generated by
Eq. (1). Thus, the edge burst is anticipated from such
dynamics.

Remarkably, we also unveil the edge burst in nonequilib-
rium steady states of open quantum systems. To make this
clear, as shown in Fig. 1(b), we add new jump operators
L(l )

A = √
γl bx0A and L(g)

A = √
γgb†

x0A to the above system. Phys-
ically, this can be achieved by coupling the A site at location
x0 with a reservoir that serves as a particle source. In this
system, the time evolution of the correlator �i j (t ) = 〈b†

i b j〉 =
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FIG. 2. The steady-state bulk-edge scaling relation in a quadratic
open quantum system. (a) Steady-state values of nB(x) for different
x0 ∈ [10, 50]. The dashed lines represent numerical fittings of bulk
(blue) and edge (black) values. (b) The Bloch spectrum (red) and
OBC spectrum (blue) of X with γg = γl = 0.8. The black points
in (b) are gapless eigenvalues of X under PBC. Parameters: t1 =
0.5, t2 = 1, γ1 = 0.8, L = 60.

Tr[ρ(t )b†
i b j] follows

d

dt
�(t ) = X�(t ) + �(t )X † + 2M (g), (4)

where M (g)
i j = γgδi,x0Aδ j,x0A and the damping matrix X satisfies

Xi j = (iH∗)i j + (γg − γl )δi,x0Aδ j,x0A. (5)

Here, H is the real-space Hamiltonian of Eq. (1). The steady-
state correlator �ss = �(t = +∞) is given by d

dt �ss =
X�ss + �ssX † + 2M (g) = 0. Then, the steady-state density
on B sites has a formal expression (see detailed derivations
in Ref. [38] and Appendix A)

nB(x,+∞) ≡ (�ss)xB,xB = γg

∫ +∞

−∞

dω

π
|〈xB| 1

iω − X
|x0A〉|2.

(6)

When taking balanced gain and loss γg = γl , the damping
matrix X in Eq. (5) directly connects to the non-Hermitian
Hamiltonian H in real space as X = iH∗. Then, by compar-
ing Eq. (2) and Eq. (6), we can easily find the equivalence
between the loss probability Px and the steady-state den-
sity nB(x,+∞) as nB(x,+∞) = (γg/γ1)Px. Moreover, the
normalization condition

∑L
x=1 Px = 1 is translated into a

steady-state constraint
∑L

x=1 nB(x,+∞) = γg/γ1, which is
consistent with the steady-state condition d

dt Ntot = 0 for the
total particle number Ntot = ∑L

x=1

∑
s∈{A,B}〈b†

xsbxs〉. This is a
concrete example of dynamical-steady correspondence. With
this correspondence, we can predict the edge burst in the
steady state when X has NHSE under OBC and a gapless dis-
sipative spectrum under periodic boundary conditions (PBC).
The latter condition means that the maximum real part of the
PBC spectrum of X is zero [see Fig. 2(b)]. When the two con-
ditions are both satisfied in the parameter regime 0 < t1 � t2,
starting from a random initial state, the system will eventually
relax to the steady state with a prominent edge peak in the
distribution of nB(x,+∞) [Fig. 1(d)].

III. BULK-EDGE SCALING RELATION IN
NONEQUILIBRIUM STEADY STATES

The dynamical phenomenon of the edge burst stems from
the combination of NHSE and gapless dissipative spectrum.
This combination gives rise to a universal bulk-edge scaling
relation of the total loss probability [33]. Notably, this uni-
versal bulk-edge scaling relation also exists in the steady-state
correlators of open quantum systems.

As shown in Fig. 2, when the dissipative spectrum is gap-
less, the steady-state density nB(x) in the bulk region follows
an algebraic (power-law) decay as nB(x) ∼ |x − x0|−αb for
x < x0. Similarly, at the left edge, nB,edge ≡ nB(x = 1) also
exhibits an algebraic decay as nB,edge ∼ |x0 − 1|−αe , where
|x0 − 1| is the distance from the edge to the pumping site.
The edge burst shown in Fig. 1(d) originates from a bulk-edge
scaling relation between the two scaling exponents:

αe = αb − 1. (7)

The presence of NHSE and gapless dissipative spectrum
in our open quantum system is crucial for the bulk-edge
scaling relation in steady states. On the one hand, NHSE
appears in an intuitive way. The phase difference between
hoppings in A and B chains generates motions in oppo-
site directions, and loss processes suppress the rightward
motion on the B chain, causing a net leftward motion.
On the other hand, when 0 < t1 � t2 and γl = γg = 0, the
gapless dissipative spectrum under PBC explicitly comes
from the dark states |φn〉 = (1/

√
n!)(b†

k0
)n |0〉 with b†

k0
=

(1/
√

L)
∑L

x=1 eik0xb†
xA, where the momentum k0 satisfies the

decoupling condition t1 + t2 cos k0 = 0. With zero amplitude
on sites B, these dark states fulfill L1,xB |φn〉 = 0. They form
a dark space ρmn = |φm〉 〈φn| with purely imaginary Liou-
villian spectrums L[ρmn] = −i(m − n)t2 sin k0ρmn. As local
impurities, L(g)

A and L(l )
A at x0 perturb the eigenoperators ρmn

locally, contributing negligibly to the PBC spectrum when
L → +∞. As long as the localized impurity state is stable,
the Liouvillian PBC spectrum remains gapless. The points
A1,2 in Fig. 2(b) represent the gapless eigenvalues of the PBC
damping matrix X with γg = γl �= 0, which are related to the
dark states of the Liouvillian.

The bulk-edge scaling relation has a quantitative explana-
tion [33]. On an infinite chain, the interplay between NHSE
and gapless dissipative spectrum induces a slow algebraic
decay n∞

B (x,+∞) ∼ |x − x0|−αb for x < x0. However, a fi-
nite system introduces boundaries at x = 1, and the large
residual portion of particles n∞

B (x,+∞) for x � 0 needs
to be redistributed into the finite system. Due to NHSE-
induced localization, these residual particles will accumulate
at the left edge x = 1. With constraints

∑+∞
x=−∞ n∞

B (x,+∞) =∑L
x=1 nB(x,+∞) = γg/γ1, the edge density nB,edge = nB(x =

1,+∞) can be estimated as nB,edge ∼ ∑
x�1 |x − x0|−αb ∼∫ 1

−∞ dx|x − x0|−αb ∼ |x0 − 1|−αb+1. Consequently, the ratio
between nB,edge and the nearby bulk density is proportional
to |x0 − 1|, leading to a pronounced steady-state edge burst.
Therefore, we establish the steady-state bulk-edge scaling re-
lation as Eq. (7). The numerical results in Fig. 2(a) closely
match the theoretical values αb = 1.5 and αe = 0.5 [33]. The
detailed calculation is presented in Appendix B.
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Although the aforementioned dynamical-steady corre-
spondence is exact in bosonic systems when γg = γl , we
emphasize that the steady-state edge burst still exists when
γg �= γl . Compared with the balanced situation, the imbal-
anced gain and loss at one A site introduce a local impurity
in the damping matrix [see Eq. (5)]. This additional impurity
changes the overall factors in the distribution of nB(x,+∞),
but it will never modify the algebraic behaviors of nB(x,+∞)
as long as the imbalance δγ = γg − γl is below a threshold to
make the steady state stable. The detailed analysis is shown
in Appendix C. This scenario can also be extended to predict
the steady-state edge burst in fermionic open quantum sys-
tems. With the same setups as in Fig. 1(b), the single-particle
fermionic gain and loss dissipators at one A site contribute
a local impurity term −(γg + γl )δi,x0Aδ j,x0A to the damping
matrix in Eq. (5). Due to fermionic statistics, this term always
induces a stable steady state. According to the above discus-
sion, this local impurity term does not affect the presence of
the steady-state edge burst in fermionic systems.

IV. STEADY-STATE EDGE BURST INDUCED BY
TWO-BODY LOSS

The bulk-edge scaling relation of steady states is remark-
ably general in open quantum systems, as long as both NHSE
and gapless dissipative spectrum are present. So far, our dis-
cussion focuses on noninteracting systems. A natural question
arises: Does the edge burst still persist in the presence of
many-body effects? We find that the steady-state edge burst,
along with the accompanying universal bulk-edge scaling re-
lation, is not only robust, but even enriched in dissipative
many-body systems. To illustrate this point, we introduce a
many-body open quantum system with experimentally ac-
cessible two-body loss L2,xB = √

γ2bxBbxB [42–46], which
replaces L1,xB = √

γ1bxB in Fig. 1(c).
The two-body loss plays a twofold role. First, it can bring

many-body NHSE. The two-body loss dampens the unidirec-
tional motion along the B chain, which results in many-body
NHSE toward a preferable direction. This mechanism of
interaction-induced NHSE differs from many-body NHSE
induced by asymmetric hoppings [47–55]. Second, the dark
states |φn〉 = (1/

√
n!)(b†

k0
)n |0〉 are immune to the presence

of two-body loss since L2,xB |φn〉 = 0. Although determining
the full many-body spectrum is challenging, we deduce that
these dark states still induce a gapless dissipative spectrum,
whose maximal real part approaches zero as the system size
grows. These dark states also imply that the particles on the
A chain can travel considerable distances without any dissipa-
tion before either jumping into B sites or being scattered by
the boundary.

The interplay between many-body NHSE and gapless dis-
sipative spectrum indicates the steady-state edge burst with
interactions. To illustrate this point, we examine the steady-
state correlators by a phase-space method called the positive-P
method [56–62]. This approach maps the Lindblad master
equation into a Fokker-Planck equation of a probability distri-
bution function in the phase space of bosons. Equivalently, the
dissipative many-body dynamics is obtained by simulating a
set of stochastic differential equations of the phase-space vari-
ables and averaging over random trajectories. By performing

FIG. 3. The steady-state bulk-edge scaling relation with two-
body loss. (a) CB(x) and (b) nB(x) for x0 = 45. The inset in
(a) shows the ratio CB(x)/n2

B(x). (c) CB(x) and (d) nB(x) for x0 ∈
{10, 15, . . . , 45}. Results in (a)–(d) are obtained by the positive-
P method. We take the average over 104 samples of stochastic
trajectories. (e) n2

B(x) and (f) nB(x) obtained from the mean-field
approximation. Dashed lines in (c)–(f) are given by numerical fittings
of bulk (blue) and edge (black) values. Parameters: t1 = 0.8, t2 =
1, γ1 = 0, γ2 = 0.01, γl = γg = 100, L = 50.

long-time simulations, we can obtain steady-state correlators.
Numerical details are presented in Appendix D.

We consider balanced gain and loss γg = γl hereafter.
Different from the quadratic case, the steady-state condi-
tion d

dt Ntot = 0 brings a new constraint on the four-point
correlators

∑L
x=1〈b†

xBb†
xBbxBbxB〉 = γg/(2γ2). As a result, we

examine the steady-state distributions of the B-site particle
number nB(x) = Tr(ρssb

†
xBbxB) as well as the four-point cor-

relator:

CB(x) = Tr(ρssb
†
xBb†

xBbxBbxB), (8)

where ρss is the steady-state density matrix.
Figures 3(a)–3(d) illustrate the steady-state correlators ob-

tained by the positive-P method, where we set 0 < t1 < t2.
First, the asymmetric distributions around x0 indicate the pres-
ence of many-body NHSE [Figs. 3(a), 3(b)]. Furthermore, we
observe the steady-state edge burst with prominent peaks on
the left edge [Figs. 3(a), 3(b)]. Quantitatively, the bulk values
of CB(x) and nB(x) exhibit algebraic scaling behaviors with
respect to |x − x0| where x < x0, and the edge values also
decay algebraically with respect to |x0 − 1| [Figs. 3(c), 3(d)].
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These numerical results elucidate that the bulk and edge
scaling factors of CB(x) and nB(x) follow two different rela-
tions, which are αb − αe ≈ 1.04 for CB(x) and αb − αe ≈ 0.52
for nB(x). These scaling relations can be explained as follows.
With the steady-state constraint

∑L
x=1 CB(x) = γg/(2γ2), the

analysis presented in Sec. III, which leads to Eq. (7), can
likewise be extended to the case of two-body loss. As a
result, the algebraic decay of CB(x) and the NHSE-induced
boundary accumulation directly lead to the bulk-edge scaling
relation αb − αe = 1. Additionally, compared with CB(x), the
half-scaling behavior of nB(x) is associated with an important
numerical observation CB(x)/n2

B(x) ≈ O(1) [see the inset in
Fig. 3(a)].

Inspired by this observation, we come up with mean-
field explanations for the numerical findings (see details
in Appendix E). To mimic the effect of two-body loss
L2,xB = √

γ2bxBbxB, we employ the mean-field linear bosonic
loss operators LMF,xB = √

2γ2nB,MF(x, t )bxB, where the loss
strength is determined by local particle density nB,MF(x, t ) =
Tr[ρ(t )b†

xBbxB] = �xB,xB(t ). These empirical mean-field lin-
ear loss operators introduce nonlinearity to Eq. (4) by
replacing the elements XxB,xB = −γ1 with (XMF)xB,xB =
−2γ2�xB,xB(t ). XMF denotes the mean-field damping matrix.
During the nonlinear evolution, XMF under PBC also possesses
gapless eigenvalues with the corresponding states having zero
amplitude at the B sites [similarly to A1,2 in Fig. 2(b)]. In
this context, particles can propagate long distances on the
A chain before escaping from the B sites or reaching the
left edge. Similarly to the noninteracting cases, this process
induces a slowly decaying algebraic distribution of the steady-
state bulk density. Quantitatively, at the mean-field level, the
steady-state density in the bulk region scales as nB,MF(x) ∼
γ̃ (x)−1.5|x − x0|−1.5 with γ̃ (x) ∼ 2γ2nB,MF(x) contributed by
the density-dependent loss in XMF. Consequently, the self-
consistent relation nB,MF(x) ∼ nB,MF(x)−1.5|x − x0|−1.5 results
in the scaling nB,MF(x) ∼ |x − x0|−0.6. With the mean-field
constraint

∑L
x=1 n2

B,MF (x) = γg/(2γ2), a similar explana-
tion below Eq. (7) leads to n2

B,edge(x0) ∼ |x0 − 1|−0.2 and
nB,edge(x0) ∼ |x0 − 1|−0.1, which is in good agreement with
the numerical results obtained from the positive-P method
(Fig. 3).

V. DISCUSSION

In this work, we uncovered a correspondence between
edge burst phenomena in non-Hermitian quantum dynam-
ics and steady-state correlators in open quantum systems.
This correspondence provides experimental feasibility to ex-
plore dynamical phenomena by preparing suitable steady
states. Moreover, in dissipative many-body systems, we dis-
covered a new mechanism of many-body NHSE, which
enriches our understanding of the universal bulk-edge scal-
ing relation of the steady-state edge burst in dissipative
interacting systems. Importantly, our findings demonstrated
that steady-state correlators contain valuable information on
many-body NHSE, offering an experimentally accessible
route to detect NHSE in dissipative many-body systems.
Exploring other types of dualities between non-Hermitian dy-
namics and nonequilibrium steady states in many-body open

quantum systems would be an interesting topic for future
research.

ACKNOWLEDGMENTS

We thank He-Ran Wang and Zhou-Quan Wan for helpful
discussions. This work is supported by NSFC under Grant No.
12125405.

APPENDIX A: STEADY STATES IN QUADRATIC
OPEN QUANTUM SYSTEMS

The density matrix of a quadratic open quantum sys-
tem follows the Lindblad master equation as Eq. (3) with
a quadratic Hamiltonian H0 = ∑

i j b†
i (H0)i jb j and linear

Lindblad operators L(g)
μ = ∑

i D(g)
μ,ib

†
i and L(l )

μ = ∑
j D(l )

μ, jb j .

The operators bi, b†
i can be either bosonic (i.e., [bi, b j] =

[b†
i , b†

j] = 0 and [bi, b†
j] = δi j) or fermionic (i.e., {bi, b j} =

{b†
i , b†

j} = 0 and {bi, b†
j} = δi j). A special property of

quadratic open quantum systems is that their steady states
ρss ≡ ρ(t → +∞) are always Gaussian. In other words, the
information contained in the steady state can be completely
extracted from its two-point correlator (�ss)i j = Tr[ρssb

†
i b j].

As we have mentioned in the main text, the steady-state cor-
relator �ss satisfies a matrix equation

X�ss + �ssX
† + 2M (g) = 0, (A1)

where the so-called damping matrix is given by X = iHT
0 +

M (g) − (M (l ) )T in a bosonic system [or X = iHT
0 − M (g) −

(M (l ) )T in a fermionic system], with M (g) = ∑
μ(D(g)

μ )†D(g)
μ

and M (l ) = ∑
μ(D(l )

μ )†D(l )
μ . This equation can be solved as

follows. First, we can transform the matrices �ss and M (g) into
two supervectors as |�ss) = ∑

i j (�ss)i j |i〉 ⊗ | j〉 and |M (g) ) =∑
i j M (g)

i j |i〉 ⊗ | j〉. Through this transformation, the matrix
equation Eq. (A1) is converted to

(X ⊗ I + I ⊗ X ∗)|�ss) = −2|M (g) ). (A2)

Then, |�ss) can be obtained via calculating the inverse of X ⊗
I + I ⊗ X ∗. After diagonalizing the damping matrix as X =∑

n λn |nR〉 〈nL|, the inverse of X ⊗ I + I ⊗ X ∗ equals to

∑
m,n

|mR〉 ⊗ |nR∗〉 1

λm + λ∗
n

〈mL| ⊗ 〈nL∗| . (A3)

Inserting this back to Eq. (A2), we achieve a formal expres-
sion of |�ss). This expression can be further simplified by
considering the equality

1

λm + λ∗
n

=
∫ +∞

−∞

dω

2π

1

iω − λm
× 1

iω + λ∗
n

. (A4)

This equality holds when the damping matrix only has eigen-
values with nonpositive real parts, namely Re(λn) � 0. This
condition is also necessary for the existence of a well-defined
steady state. With the equality Eq. (A4) and mapping |�ss)
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back to its matrix representation, we derive that

(�ss)i j

= −2
∑

k,l,m,n

M (g)
kl

∫ +∞

−∞

dω

2π

〈i|mR〉 〈mL|k〉 〈 j|nR∗〉 〈nL∗|l〉
(iω − λm)(−iω + λn)∗

= 2
∑
k,l

M (g)
kl

∫ +∞

−∞

dω

2π
〈i| 1

iω − X
|k〉〈 j|

(
1

iω − X

)∗
|l〉

=
∫ +∞

−∞

dω

π
〈i| 1

iω − X
M (g)

(
1

iω − X

)†

| j〉. (A5)

This result leads to Eq. (6) in the main text. To see more
applications of Eq. (A5), one can consult Ref. [38].

APPENDIX B: ALGEBRAIC SCALINGS IN STEADY
STATES

In the main text, we consider a quadratic bosonic open
quantum system with Hamiltonian

H0 =
L∑

x=1

t1(b†
xAbxB + H.c.)

+
L−1∑
x=1

t2
2

(b†
xAb(x+1)B + b†

(x+1)AbxB + H.c.)

+
L−1∑
x=1

it2
2

(b†
(x+1)AbxA − b†

(x+1)BbxB − H.c.) (B1)

and three types of jump operators

L1,xB = √
γ1bxB, x = 1, 2, . . . , L;

L(l )
A = √

γl bx0A; L(g)
A = √

γgb†
x0A. (B2)

When γl = γg, the damping matrix of this model has a
momentum-space expression

X (k) = i(t1 + t2 cos k)σx − i
(

t2 sin k + i
γ1

2

)
σz − γ1

2
σ0.

(B3)
This damping matrix has diverse spectrums under PBC and
OBC [Fig. 4(a)], which is a fingerprint of NHSE. Further-
more, the dissipative gap closes under PBC when t1 < t2.
The dissipative gap closing can induce algebraic (power-law)
scalings in steady states. For example, the steady-state density
distribution nB(x), which is determined by Eq. (6), follows
the algebraic decay in the bulk region of an OBC chain.
Subsequently, we will give detailed derivations of it.

When x is far from the edge, the matrix element 〈xB|(iω −
X )−1|x0A〉 in Eq. (6) can be expressed as

〈xB| 1

iω − X
|x0A〉 =

∮
C

dβ

2π iβ
βx−x0

(
1

iω − X (β )

)
BA

, (B4)

where X (β ) ≡ X (k)|eik→β and the contour C takes the
generalized Brillouin zone (GBZ) [31]. Here, the GBZ
is a circle on the complex plane with a radius |β| =√|(t1 − γ1/2)/(t1 + γ1/2)| [Fig. 4(b)]. The damping matrix

FIG. 4. (a) The PBC spectrum (red) and OBC spectrum (blue)
of the damping matrix X in Eq. (B3). We set L = 60. A1 and A2 are
the gapless points λ = iω0 on the imaginary axis. (b) Brillouin zone
(red dashed line) and generalized Brillouin zone (blue solid line). A1

and A2 are βL (ω0) with ω0 = ±√
t2
2 − t2

1 , respectively. (c) |βL (ω)|
changes as ω. (d) |βR(ω)| changes as ω. Parameters: t1 = 0.5, t2 =
1, γ1 = γg = γl = 0.8.

in Eq. (B3) provides(
1

iω − X (β )

)
BA

= i
[
t1 + t2

2 (β + β−1)
]

det[iω − X (β )]
. (B5)

Consequently, the poles of the integral in Eq. (B4) are con-
tributed by the two roots of det[iω − X (β )] = 0, which we
denote as βL(ω) and βR(ω). They obey |βL(ω)| > |βR(ω)|
for ω ∈ R when t1 < t2. Due to the fact that |βL(ω)βR(ω)| =
|(t1 − γ1/2)/(t1 + γ1/2)|, βL(ω) and βR(ω) reside outside and
inside GBZ, respectively. Thus, Eq. (B4) is determined by the
residue at βR(ω) [βL(ω)] when x > x0 (x < x0), leading to

nB(x) =
{

γg
∫ +∞
−∞

dω
π

| fR(ω)|2|βR(ω)|2(x−x0 ), x > x0,

γg
∫ +∞
−∞

dω
π

| fL(ω)|2|βL(ω)|2(x−x0 ), x < x0.
(B6)

The coefficients fL(ω) and fR(ω) are given by

fL/R(ω) = lim
β→βL/R

[β − βL/R(ω)]
i[t1 + t2

2 (β + β−1)]

β det[iω + 0+ − X (β )]
.

(B7)
The integrals in Eq. (B6) are dominated by the neigh-
bor of the frequency ω0 that gives maxω∈R |βR(ω)| or
minω∈R |βL(ω)|. These integrals can be evaluated by expand-
ing fL/R(ω) and βL/R(ω) to the leading order of δω = ω − ω0.
In the regime 0 < t1 < t2, the dissipative gap closing ac-
companies minω∈R |βL(ω)| = |βL(ω0)| = 1 at ω0 = ±√

t2
2 −t2

1

[Fig. 4(c)]. For later convenience, we focus on ω0 =√
t2
2 −t2

1

and present the expressions βL(ω0) = − t1
t2

− i
√

t2
2 −t2

1

t2
and
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βR(ω0) = t1−γ1/2
t1+γ1/2 (− t1

t2
+ i

√
t2
2 −t2

1

t2
). The leading-order expan-

sions around ω0 are [33]

fL(ω0 + δω) ≈ −
√

t2
2 − t2

1

t2
1

(
2
√

t2
2 − t2

1 − iγ1
)δω,

ln |βL(ω0 + δω)| ≈ γ1
(
t2
2 − t2

1

)
t3
1

(
4t2

2 − 4t2
1 + γ 2

1

) (δω)2. (B8)

In the second line, we define the coefficient before (δω)2 as
K = γ1(t2

2 −t2
1 )

t3
1 (4t2

2 −4t2
1 +γ 2

1 )
. Finally, the steady-state density distribu-

tion n∞
B (x) for x < x0 on an infinite chain is given by

n∞
B (x) ∼ γg

∫
d(δω)(δω)2e−2K (δω)2|x−x0| ∼ γg|x − x0|− 3

2 .

(B9)

This expression indicates the algebraic scaling of nB(x) and
tells us the bulk scaling exponent αb = 1.5. At the same time,
as a result of the bulk-edge scaling relation αe = αb − 1, the
edge scaling exponent αe = 0.5. These theoretical predictions
are verified by numerical simulations.

In addition, |βR(ω)| also reaches the maximal value
maxω∈R |βR(ω)| = |βR(ω0)| < 1 at ω0 = ±√

t2
2 −t2

1 [Fig. 4(d)].
Therefore, when x > x0, the steady-state density decays expo-
nentially nB(x) ∼ |βR(ω0)|2(x−x0 ).

APPENDIX C: IMBALANCED GAIN AND LOSS

As discussed in the main text, the balanced incoher-
ent pumping (γg = γl ) at one A site is crucial for the
exact dynamical-steady correspondence. Due to this corre-
spondence, the bulk-edge scaling relation established in the
non-Hermitian edge burst can be revealed in the steady-state
edge burst of a corresponding bosonic open quantum system.
In this section, we show the robustness of steady-state edge
burst in the presence of imbalanced gain and loss (γg �= γl ).

The imbalanced gain and loss introduce a local impurity to
the damping matrix in Eq. (B3). The modified damping matrix
X̃ in real space is given by

X̃ = X + δγ |x0A〉 〈x0A| . (C1)

δγ = γg − γl represents the imbalance between gain and loss.
X is the real-space version of the balanced damping matrix
defined in Eq. (B3).

Due to the imbalance, the evolution of the total num-
ber of particles is given by dNtot

dt = −2γ1
∑

x〈b†
xBbxB〉 +

2δγ 〈b†
x0Abx0A〉 + 2γg. As a result, the constraint on the steady-

state density becomes

γ1

∑
x

〈b†
xBbxB〉 = δγ 〈b†

x0Abx0A〉 + γg. (C2)

This equation indicates that the total number of particles at the
B sites

∑
x〈b†

xBbxB〉 is still a finite number as long as 〈b†
x0Abx0A〉

is finite. The finite 〈b†
x0Abx0A〉 is guaranteed by the stability of

the imbalance-induced impurity state, which requires that δγ

is below a threshold δγc. Under this condition, an algebraic
scaling of nB(x) ≡ 〈b†

xBbxB〉 can still induce the steady-state
edge burst.

To show the robustness of the steady-state edge burst
against the local imbalance, we calculate the modified Green’s
function:

G̃(ω) = 1

iω − X̃
= 1

iω − X − δγ |x0A〉 〈x0A| . (C3)

With the bare Green’s function G(ω) = (iω − X )−1, the ma-
trix elements of the modified Green’s function are given by

〈xB|G̃(ω)|x0A〉

= 〈xB|G(ω)|x0A〉
( ∞∑

n=0

(δγ 〈x0A|G(ω)|x0A〉)n

)

= 〈xB|G(ω)|x0A〉
1 − δγ 〈x0A|G(ω)|x0A〉 . (C4)

It should be noted that the element 〈xB|G̃(ω)|x0A〉 is
only changed by a factor N (ω) = [1 − δγ 〈x0A|G(ω)|x0A〉]−1

that is independent of the spatial coordinate x. As a result,
〈xB|G̃(ω)|x0A〉 and 〈xB|G(ω)|x0A〉 share the same spatial pro-
files as long as N (ω) is finite. The imbalance-induced factor
N (ω) changes the coefficients fR/L(ω) in Eq. (B6), but leaves
the scaling parts |βR/L(ω)|2(x−x0 ) unaffected.

We consider 0 < t1 < t2 below, where the dissipative PBC
spectrum of X (and X̃ ) is gapless. As shown in the last section,
we have obtained

| 〈xB|G(ω0 + δω)|x0A〉 |2 ∼ (δω)2e−2K (δω)2|x−x0| (C5)

when x < x0. We can also get [31]

〈x0A|G(ω)|x0A〉 =
∮

GBZ

dβ

2π iβ

(
1

iω + 0+ − X (β )

)
AA

= iω − t2
2 (βR − β−1

R ) + γ1

t2(t1 + γ

2 )(βR − βL )
+ 1

2t1 − γ
.

(C6)

To obtain this result, we use the fact that the integrand
1
β

( 1
iω+0+−X (β ) )AA = γ1+iω− t2

2 (β−β−1 )
β det[iω+0+−X (β )] has two poles β = 0 and

β = βR(ω) inside the GBZ.
Because the integral in Eq. (B6) is dominated by

the neighbor of ω0, we can expand 〈x0A|G(ω)|x0A〉 as
a series of δω = ω − ω0 to obtain 〈x0A|G(ω)|x0A〉 =
〈x0A|G(ω0)|x0A〉 + K1δω + · · · . For simplicity, we consider
ω0 =√

t2
2 −t2

1 here, while another gapless point ω0 = −√
t2
2 −t2

1

provides a similar result. With the aforementioned expressions
of βL/R(ω0), a direct calculation shows that

〈x0A|G(ω0)|x0A〉 = t1 + γ1

t1(2t1 + γ1)
,

K1 = d 〈x0A|G(ω)|x0A〉
dω

∣∣∣∣
ω=ω0

=
γ1

√
t2
2 − t2

1

t3
1

(
γ1 + 2i

√
t2
2 − t2

1

) .

(C7)

If 1 − δγ 〈x0A|G(ω0)|x0A〉 �= 0 for a small imbalance δγ ,
the zeroth-order approximation N (ω0) attached to fR/L(ω0 +
δω) does not affect the asymptotic profiles of the integral in
Eq. (B6). Therefore, the steady-state bulk density nB(x) still
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FIG. 5. The steady-state edge burst in the presence of imbal-
anced gain and loss. nB(x) is steady-state particle density at B sites.
The pumping site x0 ranges from x0 = 50 to x0 = 450. γg = 1.0 in
(a) and γg = 0.6 in (b). Other parameters: t1 = 0.5, t2 = 1, γ1 =
γl = 0.8, L = 500. Under these parameters, the critical imbalance is
δγc = 9/13.

exhibits an algebraical decay, and the steady-state edge burst
still presents (Fig. 5).

Since 〈x0A|G(ω0)|x0A〉 is a real number, there exists a
critical δγc that makes 1 − δγc 〈x0A|G(ω0)|x0A〉 = 0. In this
case, the divergence of N (ω0) indicates that the eigenvalue
of the impurity state under OBC touches the imaginary axis
exactly at λ0 = ±i

√
t2
2 −t2

1 . It also means that the system under
OBC becomes unstable when δγ > δγc. Consequently, there
does not exist a well-defined steady state where the number
of particles is expected to be finite. The critical imbalance is
given by

δγc = 1

〈x0A|G(ω0)|x0A〉 = t1(2t1 + γ )

t1 + γ
. (C8)

In conclusion, as long as δγ < δγc, the steady-state edge
burst remains robust in quadratic bosonic open quantum sys-
tems with local imbalanced gain and loss.

To end this part, we briefly remark on the steady-state edge
burst in quadratic fermionic open quantum systems. In such
systems, each site has a fermionic mode, and the anticom-
muting relation between them is given by {c†

i , c†
j } = {ci, c j} =

0, {c†
i , c j} = δi j . In the calculation of the fermionic two-point

correlators, the fermionic damping matrix is given by

XF = iHT
0 − [M (g) + (M (l ) )T ], (C9)

where M (g) = (D(g) )†D(g) and M (l ) = (D(l ) )†D(l ). The ma-
trices D(g) and D(l ) are defined by the single-particle
fermionic gain and loss operators: L(g)

μ = ∑
i D(g)

μ,ic
†
i and

L(l )
μ = ∑

i D(l )
μ,ici. The important feature is that the fermionic

damping matrix XF is always stable.
Specifically, we consider a fermionic open quantum system

with the same setups as in Fig. 1(c) of the main text. The
fermionic damping matrix becomes

XF = X − (γg + γl )|x0A〉〈x0A|, (C10)

where X is equal to the balanced bosonic damping matrix
in Eq. (B3). Interestingly, the fermionic damping matrix XF

is similar to the imbalanced bosonic case X̃ in Eq. (C1)
with δγ = −(γg + γl ) < 0 < γc. Therefore, it is impossi-
ble to have unstable impurity states in fermionic systems.
Following the above discussion, it is easy to find that the

steady-state edge burst always exists in fermionic systems,
as long as XF has NHSE and its dissipative PBC spectrum
is gapless [which are indeed fulfilled by the XF in Eq. (C10)].

APPENDIX D: POSITIVE-P METHOD

In this section, we will provide a self-content tutorial for
the positive-P method. It is a numerical approach to simulate
bosonic many-body open quantum systems. The main idea of
this method is to map a bosonic density matrix to a probabil-
ity distribution function in phase space, where the Lindblad
master equation is transferred into a Fokker-Planck equation.
This Fokker-Planck equation can be efficiently simulated by
a corresponding stochastic process in the phase space. For
concreteness, we show how this method works in the bosonic
open quantum system that consists of a quadratic Hamilto-
nian H0 = ∑

i j b†
i (H0)i jb j , linear Lindblad operators L(g)

μ =∑
i D(g)

μ,ib
†
i and L(l )

μ = ∑
j D(l )

μ, jb j , and two-body loss operators
L2,i = √

�ibibi. (The indices i, j mark the site positions on a
one-dimensional chain.) The model considered in the main
text belongs to this kind.

Following the standard procedure of the positive-P method
[62], we can represent the density matrix of N bosonic modes
as a probability distribution function in a 2N-dimensional
complex phase space

ρ(t ) =
∫

d2Nαd2NβP(α,β, t )�(α,β), (D1)

where α = {α1, . . . , αN } and β = {β1, . . . , βN } are 2N in-
dependent complex phase-space variables and d2Nαd2Nβ is
a 4N-dimensional real integral. In the above, �(α,β) =⊗

i �i(αi, βi ) is the double-phase-space basis of the positive-
P representation, where �i(αi, βi ) = |αi〉〈β∗

i |
〈β∗

i |αi〉 = e−αiβi |αi〉 〈β∗
i |

is formed by the bosonic coherent states |αi〉 = eαib
†
i |vac〉

and 〈β∗
i | = 〈vac| eβibi . We take the normalization Tr �i = 1.

P(α,β, t ) is the function of probability distribution in the
phase space, encoding the information of the density matrix
ρ(t ). In the basis of �(α,β), P(α,β, t ) can be made positive
real everywhere for any density matrix [58].

With the representation Eq. (D1), the operations acting on
the density matrix in the Lindblad master equation are con-
verted to the corresponding multipliers and derivatives acting
on the coherent basis �(α,β). This can be done by utilizing
the following identities:

bi�(α,β) = αi�(α,β), b†
i �(α,β) =

[
βi+ ∂

∂αi

]
�(α,β),

�(α,β)b†
i = βi�(α,β), �(α,β)bi =

[
αi + ∂

∂βi

]
�(α,β).

(D2)

These identities stem from the definition of bosonic coherent
states. Based on them, we can rewrite the Lindblad master
equation in the language of positive-P representation ρ(t ) =∫

d4N �vP(�v, t )�(�v) where �v = {α,β}.
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As a result, the time evolution of the density matrix under
the Lindblad master equation is equivalent to∫

d4N �v ∂P

∂t
�

=
∫

d4N �vP

{ ∑
v

Av (�v)
∂

∂v
+

∑
vv′

Dvv′ (�v)

2

∂2

∂v∂v′

}
�

=
∫

d4N �v�

{
− ∂

∂v

∑
v

Av (�v) +
∑
n,′

∂2

∂v′∂v

Dvv′ (�v)

2

}
P.

(D3)

In the second line, we perform integration by parts and as-
sume that boundary terms vanish at |αi|, |βi| → +∞. The
drift coefficients Av (�v) and the diffusion matrix Dvv′ (�v) are
model-dependent. Their specific forms for the model in which
we are interested in this section are

Aj (�v) =
(∑

i X ∗
jiαi − 2� jα

2
j β j∑

i Xjiβi − 2� jα jβ
2
j

)
;

Di j (�v) =
(

−2�iα
2
i δi j 2M (g)

ji

2M (g)
i j −2� jβ

2
j δi j

)
, (D4)

where X = iHT
0 + ∑

μ(D(g)
μ )†D(g)

μ − ∑
μ(D(l )

μ )T (D(l )
μ )∗ and

M (g) = ∑
μ(D(g)

μ )†D(g)
μ .

A direct solution to Eq. (D3) yields a Fokker-Planck equa-
tion for P(α,β, t ):

∂P

∂t
=

{
− ∂

∂v

∑
v

Av (�v) +
∑
n,′

∂2

∂v′∂v

Dvv′ (�v)

2

}
P. (D5)

It is known that the Fokker-Planck equation is equivalent to
a set of stochastic differential equations in phase space �v =
{α,β} [56,57]. These stochastic differential equations are

∂�v
∂t

= A(�v) + B(�v)�ξ (t ), (D6)

where �ξ (t ) are 2N uncorrelated real Gaussian white noises
with 〈ξv (t )〉 = 0 and 〈ξv (t )ξv′ (t ′)〉 = δ(t − t ′)δvv′ . The ma-
trix B(�v) is defined such that D = BBT . Numerically, these
stochastic differential equations can be simulated by

d�v = A(�v)dt + B(�v)d
−→
W . (D7)

d
−→
W = �ξ (t )dt is the standard Wiener increments at each time

step of length dt , which are implemented by Gaussian random
variables with variance dt . Now the physical observables can
be calculated in a stochastic manner. For example, the two-
point correlator �i j (t ) = 〈b†

i b j〉 = Tr[ρ(t )b†
i b j] and the four-

point correlator Ci jkl (t ) = 〈b†
i b†

jbkbl〉 = Tr[ρ(t )b†
i b†

jbkbl ] can
be expressed as

�i j (t ) =
∫

d4N �vP(�v, t )βiα j = lim
S→+∞

〈〈βi(t )α j (t )〉〉,

Ci jkl (t ) =
∫

d4N �vP(�v, t )βiβ jαkαl

= lim
S→∞

〈〈βi(t )β j (t )αk (t )αl (t )〉〉. (D8)

In the above, 〈〈· · ·〉〉 represents the average over stochastic
trajectories generated by Eq. (D7) and S denotes the to-
tal number of samples. While only an infinite S can make
Eq. (D8) exact, a finite S is often sufficient to obtain reliable
results. Furthermore, steady-state correlators can be achieved
by taking the limit t → ∞ in Eq. (D8).

In summary, the application of the positive-P method in-
cludes these key steps: (i) finding the drift coefficients Av (�v)
and the diffusion matrix Dvv′ (�v) for the model; (ii) generating
stochastic samples according to Eq. (D7); (iii) calculating
the correlators by averaging the samples. In our stochastic
simulation of Figs. 3(a)–3(d), we set the initial conditions as
αi(0) = βi(0) = 0. The time step is dt = 2 × 10−3 and we
extract steady states at t = 200. Due to a redundancy in the
definition of the B matrix, we take the following form in our
simulation:

Bi j (�v) =
∑

x

δi,xBδ j,xB

⎛
⎝

√
−2γ2α

2
i 0

0
√

−2γ2β
2
i

⎞
⎠

+
√

γg

2
δi,x0Aδ j,x0A

(
1 + i 1 − i
1 − i 1 + i

)
, (D9)

APPENDIX E: MEAN-FIELD APPROXIMATION IN
DISSIPATIVE MANY-BODY SYSTEMS

In this section, we provide a detailed discussion of the
mean-field approximation in systems with two-body loss.
To do this, we introduce the two-point correlator �i j (t ) =
〈b†

i b j〉 = Tr[ρ(t )b†
i b j] and the four-point correlator Ci jkl (t ) =

〈b†
i b†

jbkbl〉 = Tr[ρ(t )b†
i b†

jbkbl ] with i, j, k, l denoting {(x, s)}.
We focus on the balanced case γg = γl in this section.

By utilizing the Lindblad master equation under the condi-
tions γ1 = 0 and γ2 �= 0, we can derive the hierarchy of time
evolution of these correlators:

d�xA,yA(t )

dt
= (X0�(t ) + �(t )X †

0 + 2M (g) )xA,yA,

d�xA,yB(t )

dt
= (X0�(t ) + �(t )X †

0 + 2M (g) )xA,yB

− 2γ2CxA,yB,yB,yB(t ),

d�xB,yA(t )

dt
= (X0�(t ) + �(t )X †

0 + 2M (g) )xB,yA

− 2γ2CxB,xB,xB,yA(t ),

d�xB,yB(t )

dt
= (X0�(t ) + �(t )X †

0 + 2M (g) )xB,yB

− 2γ2(CxB,xB,xB,yB(t ) + CxB,yB,yB,yB(t )). (E1)

In the above, X0 ≡ X |γ1=0 where X is given by Eq. (B3) under
the condition γg = γl . The numerical simulation based on the
positive-P method yields an approximated relation

CxB,xB,xB,xB(t → +∞)

�xB,xB(t → +∞)2
≈ O(1) (E2)

of the steady state. The result is shown in Fig. 6, where we de-
fine CB(x) = CxB,xB,xB,xB(t → +∞) and nB(x) = �xB,xB(t →
+∞) as the steady values. This approximated relation
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FIG. 6. The ratio CB(x)/n2
B(x) of the steady state in two-body

loss systems. We take the steady values CB(x) and nB(x) from
Figs. 3(a) and 3(b) of the main text.

motivates us to consider the following substitutions:

CxB,xB,xB,yB(t ) ≈ �xB,xB(t )�xB,yB(t );

CxB,yB,yB,yB(t ) ≈ �xB,yB(t )�yB,yB(t );

CxB,xB,xB,yA(t ) ≈ �xB,xB(t )�xB,yA(t );

CxA,yB,yB,yB(t ) ≈ �xA,yB(t )�yB,yB(t ). (E3)

Since the density at the B sites is defined as nB(x, t ) =
�xB,xB(t ), putting these relations back into Eq. (E1) gives rise
to

d

dt
�MF(t ) = XMF(t )�MF(t ) + �MF(t )XMF(t )† + 2M (g),

(E4)
where the mean-field damping matrix XMF in real space is
given by replacing XxB,xB = −γ1 in Eq. (B3) with

[XMF(t )]xB,xB = −2γ2nB,MF(x, t ) = −2γ2[�MF(t )]xB,xB.

(E5)
This mean-field substitution introduces a nonlinear evolution
equation to the mean-field two-point correlator �MF(t ). The
steady-state results at the mean-field level, shown in Figs. 3(e)
and 3(f) of the main text, are obtained by simulating this
nonlinear equation from the null initial state �MF(0) = 0 for
a sufficiently long time.

Intuitively, the mean-field damping matrix XMF is equiv-
alent to employing the density-dependent single-body loss
operator

LMF,xB = √
2γ2nB,MF(x, t )bxB. (E6)

It qualitatively imitates the two-body loss operator L2,xB =√
γ2bxBbxB at the mean-field level. The prefactor 2 arises from

the operator exchange during the derivation of Eq. (E1), but it
does not influence the discussion of the steady-state edge burst
and bulk-edge scaling relation. Therefore, we have justified
the validity of the mean-field approximation employed in the
main text.

The mean-field approximation provides an intuitive picture
of the dissipative many-body system. In the case of 0 < t1 <

t2 where the condition t1 + t2 cos k0 = 0 can be satisfied, the
mean-field damping matrix XMF(t ) on a circular chain always
possesses some gapless eigenmodes, which are related to the

dark states |φn〉 = 1√
n!

(b†
k0

)n |0〉 mentioned in the main text.
These dark states indicate the absence of a dissipative gap
under PBC. Consequently, particles incoherently pumped into
the system from site A at x0 can travel long distances along
the A chain before escaping to the environment from sites
B or being scattered by the boundaries. This intuitive picture
supports the notion of long-range algebraic decay of steady-
state correlators on B sites.

The mean-field theory shows that the loss strength at x
is determined by the local particle density 2γ2nB,MF(x). It is
important to note that 2γ2nB,MF(x) in the bulk region (1 �
x � x0) is very small compared to the values of t1 and t2
[Fig. 3(f) in the main text]. From a local perspective, particles
traveling along the dissipationless A chain do not suffer the
loss effect on the B sites until they jump to the B chain at x. In
the vicinity of x, we can approximately treat particle motion as
occurring in a uniform system with a local mean-field damp-
ing matrix X̃MF(x) ≡ X |γ1→2γ2nB,MF(x). X is given by Eq. (B3).
Interestingly, X̃MF(x) also exhibits gapless states in a periodic
system and has NHSE under OBC. To capture the effect of
the small density-dependent loss, we need to reconsider the
expansion presented in Eq. (B8) for both a small δω and a
small γ̃ ≡ γ1 → 2γ2nB,MF(x):

fL(ω0 + δω) ∼ (γ̃ )0(δω)1,

ln |βL(ω0 + δω)| ∼ (γ̃ )1(δω)2. (E7)

Here, we use the fact that K defined below Eq. (B8) is propor-
tional to γ̃ ≡ γ1 when γ̃ is very small. These expansions lead
to

nB,MF(x) ∼
∫

dω(δω)2e−2K ′γ̃ (δω)2|x−x0| ∼ (γ̃ )−
3
2 |x − x0|− 3

2 ,

(E8)
where K ′ is an irrelevant constant that is independent of γ̃ .
With γ̃ ∼ 2γ2nB,MF(x), we can obtain

nB,MF(x) ∼ [nB,MF(x)]−
3
2 |x − x0|− 3

2 , (E9)

which leads to

nB,MF(x) ∼ |x − x0|− 3
5 = |x − x0|−0.6. (E10)

Remarkably, the mean-field approximation in the two-body
loss system leads to an algebraic decay of the steady-state bulk
density nB,MF(x). Additionally, this scaling behavior gives rise
to n2

B,MF(x) ∼ |x − x0|−1.2.
At the mean-field level, the steady-state condition dNtot

dt = 0
provides a constraint as follows:

L∑
x=1

n2
B,MF(x) = γg

2γ2
. (E11)

As explained in the main text, in a finite system with bound-
aries, many-body NHSE induced by two-body loss causes
the remaining particles outside of this system to accumulate
predominantly at the left boundary. This accumulation results
in

n2
B,MF,edge = n2

B,MF(x = 1)

∼
∫ 1

−∞
dx|x − x0|−1.2 ∼ |x0 − 1|−0.2, (E12)

which further provides nB,MF,edge ∼ |x0 − 1|−0.1.
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In conclusion, by applying the mean-field approxima-
tion, we have successfully identified the scaling factors
associated with the bulk and edge values of nB,MF(x) and
n2

B,MF(x). Comparing these theoretical results with the nu-
merical findings presented in Figs. 3(c)–3(f) of the main
text, we observe a reasonable agreement between the mean-
field estimations and the numerical results. Additionally,
the scaling factors derived from the mean-field analysis

align well with the results obtained by the positive-P
method. These results demonstrate the bulk-edge scal-
ing relations of the steady-state edge burst in dissipative
many-body systems. In the dissipative many-body sys-
tem with two-body loss, we obtain two bulk-edge scaling
relations: αe = αb − 1 for the steady-state four-point corre-
lators CB(x) and αe = αb − 0.5 for the steady-state density
distribution nB(x).
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