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Stochastic model of noise for a quantum thermal transistor
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Our focus in this investigation lies in developing a noise model for a quantum thermal transistor model inspired
by its electronic counterpart, with the primary aim of establishing a platform for constructing analogous models.
Previous studies on coupled two-level systems-based thermal transistors were focused on their average energy
exchange. In this paper, we shift our attention to exploring the stochastic behavior of such thermal transistors
due to the disturbances caused to their environment, such as continuous measurements. In the literature, the
master equation for the transistor model is derived using the reduced dynamics method. This way, it masks the
study of the stochastic nature of the energy flows in the system due to disturbances to the environment. In this
paper, we describe a quantum trajectory under measurement theory whose ensemble average unravels the master
equation for a quantum thermal transistor. This allows us to analyze the fluctuations and noise levels in the
transistor model with greater detail. Then, we produce a numerical solution for the transistor dynamics based on
Euler-Maruyama approximation. This helps to establish a model for the thermal transistor, drawing parallels
to the small-signal/noise model in an electronic transistor. We define two parameters, thermal conductance
and output thermal resistance, to describe the small signal-like model for the thermal transistor. Through these
investigations, we seek to gain insights that can help design advanced heat management devices at the quantum
level.
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I. INTRODUCTION

Recently, there has been a growing interest in develop-
ing a quantum thermal transistor that can effectively regulate
heat flow in electronic circuits. The ability to manipulate
quantum resources to build such devices will be fruitful in
revolutionizing how we manage thermal energy. Extensive
research carried out by various research groups proposes
several transistor architectures [1–9], also extending to the
transistor networks [10]. The latest studies explore the utiliza-
tion of environmental effects to improve the amplification of
these transistors [8,11] and implement quantum logic gates
[12]. Despite the progress made, the practical realization of a
quantum thermal transistor requires further investigation and
refinement. With the primary focus of establishing a platform
to create thermal counterparts of electronic devices, we delve
into the study of stochastic behavior of thermal transistors.
As devices continue to shrink, the impact of fluctuations
becomes an eminent feature, and it may offer insight into
different properties in the system [13,14]. While there can
be inherent fluctuations due to thermal noise, they can also
occur as a result of an external disturbance to the environ-
ment, such as a measurement. Characterizing such stochastic
behavior may provide an understanding of the limitations in
the operation of small-scale devices. Hence, establishing a
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stochastic description for existing thermal transistor models
becomes an important analysis. The absence of an equiv-
alent to a small signal or noise model as in an electronic
transistor limits the understanding of its diversion from aver-
age behavior. To address this challenge, this paper presents
a framework to study the stochastic behavior of a thermal
transistor under continuous measurements, providing notable
insight for its future implementation. This field of stochas-
tic thermal machines is still evolving, with foundations laid
by the researchers in Refs. [15–19]. We anticipate that our
modeling and ongoing research in quantum electrodynamics
[20], charge transport [21], Floquet engineering [22,23], meta-
materials [24], nanoparticles [25], superconducting circuits
[26,27], and spasers [28] will contribute to the physical imple-
mentation of quantum devices for various purposes influenced
by electronics in future.

In our earlier transistor models [5,7,10,12], we obtain a
master equation using the reduced dynamics method [29].
This approach, however, masks the changes to the system
when coupled with environments that undergo interference.
Hence, in this paper, we use an alternative approach drawn
from the works in Refs. [16,30–32], known as the quantum
trajectory method, where we establish a stochastic descrip-
tion before deriving the average dynamics. Going back to
the transistor model, it comprises three thermal baths of
distinct temperatures that can carry away information about
the system. According to the literature, it is possible to
use a detector to obtain this information by measuring the
baths. There are two types of such measurements: a selective
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measurement and a nonselective measurement. The detector
retains no information about its measurement records in a non-
selective measurement. Conversely, the detector keeps track
of its measurement records in a selective measurement. As it
keeps on recording, the states of the system change, and this
gets represented in the stochastic Schrödinger equation (SSE).
The solutions to the SSE are called quantum trajectories
that describe the system’s time-dependent state conditioned
on the monitoring [13,29]. The ensemble of such trajecto-
ries unravels the conditioned master equation. This includes
the stochastic components, facilitating examining stochastic
properties within a complex system. If the detector cannot
extract all the information from the baths, we describe the
measurement as inefficient [13].

In this paper, we use the concept of continuous monitor-
ing, a selective but weak measurement scheme [29,33,34],
to study the transistor behavior under quantum and environ-
mental fluctuations. The study in Ref. [35] identifies that
continuous monitoring can modify energy transport in a
nanoscale device. This weak measurement changes the state
of the system but also reveals partial information about it.
The authors achieve this by treating a zero-temperature bath
as a measuring probe that continuously monitors the sys-
tem. They use Born-Markov approximations in the master
equation with additive contributions from the interactions be-
tween the system, thermal baths, and the measurement probe.
Further, Ref. [36], presents a Brownian thermal transistor in
a mesoscopic system to understand quantum transport with
fluctuations. Inspired by these works, we develop a stochastic
description for a thermal transistor under environmental dis-
turbances. The three terminals of our transistor modeled using
two-level systems (TLSs), each connected to three thermal
baths with nonzero temperatures, are monitored via three de-
tectors. We consider a continuous monitoring of the baths with
weak measurements that partially carry away information
about the system. Engineering the baths with a calorimetric
ability, rather than the separate detectors, is also a possibil-
ity. We provide only a brief elaboration of an experimental
setup as our main intention is to study only its impact in a
substantial level. The closest experimental setup is to couple
the TLSs/transistor terminals to a quantum field that interacts
with bath modes with known amplitude and phase. The shift
in the frequency of the field can then be approximated as a
relaxation occurring in the system, which gets detected by a
separate detector or the engineered baths. This can be similar
to a homodyne measurement. For interested readers, similar

measurement techniques are discussed in Refs. [33,37,38] for
various thermal machines.

Our analysis will pave the way for an improved model for
a thermal management system under environment monitor-
ing. We commence our analysis by referring to the works in
Refs. [39–42]. We establish a diffusion-type quantum trajec-
tory since our model involves nonzero bath temperatures [43].
This is based on the weak measurements of the environment
after each of its interactions with the system. We also consider
that the baths are in the Ohmic region and the transistor is
operating in a limit delivering white noise. Hence, an uncorre-
lated white noise gets introduced into the system as a Wiener
increment each time a measurement channel opens. Finally,
we produce a numerical solution for the transistor dynamics
based on Euler-Maruyama approximation [44].

We organize our work in this paper as follows. In Sec. II,
we describe the stochastic behavior and the transistor model,
followed by subsections defining the stochastic master equa-
tion for the thermal transistor, noise sources, spectral density
representation, and the formation of stochastic energy flows in
the system. In Sec. III, we visualize our results, closing with
conclusions and limitations in Sec. IV.

II. FORMALISM

A. Stochastic behavior and the quantum trajectory

It is possible to observe the stochastic nature in transistor
dynamics when the thermal baths serve as noise sources,
reflected in dissipation rates denoted by γP(ω) (Sec. II D). We
extend this framework to encompass a stochastic nature in the
description of energy exchange, considering measurements. A
stochastic process can be formulated in an open quantum sys-
tem using the open system’s wave function [13,45–47]. The
basis here is that a measurement describes the evolution of this
wave function [48]. The stochastic representation of a Marko-
vian process can be described using a quantum trajectory,
which is the solution to the stochastic master equation (SME)
evolving via a continuous measurement [29,49]. Heat flow is
presumed to obey a diffusion equation and can be regarded
as the continuum limit of a discrete random walk [50]. Also,
at positive temperatures, only diffusive terms are applicable
[43]. Hence, we start our discussion with an evolution for a
diffusive quantum trajectory r, whose states are represented
by ρr , similar to the one described in Ref. [51] (for the deriva-
tion of this trajectory, refer to Appendix B):

dρr (t ) = − i

h̄
[Ĥ , ρr (t )]dt + L[ρr (t )]dt + √

γ↑[σ̂−ρr (t ) + ρr (t )σ̂+ − (〈σ̂−〉ρr (t ) + ρr (t )〈σ̂+〉)]dW r
1 (t )

+ √
γ↓[σ+ρr (t ) + ρr (t )σ̂− − (〈σ̂+〉ρr (t ) + ρr (t )〈σ̂−〉)]dW r

2 (t ), (1)

where

L[ρr (t )] = γ↑
(
σ̂−ρr (t )σ̂+ − 1

2 {σ̂+σ̂−, ρr (t )}) + γ↓(σ̂+ρr (t )σ̂− − 1
2 {σ̂−σ̂+, ρr (t )}). (2)

Here, σ̂− and σ̂+ represent the system operators that in-
teract with a thermal bath, and Ĥ is the TLS Hamiltonian

(see Appendix A). Also, 〈σ̂+〉 and 〈σ̂−〉 represent the ex-
pected values of the system operators (see Appendix B).
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Moreover, dW r
1 and dW r

2 represent Weiner increments that
satisfy dW r

1 dW r
2 = δ12dt , with δ representing the Kronecker

delta. The Weiner increments correspond to noise introduc-
tion, for each measurement channel in each time increment dt
[37]. The dissipation rates are represented as γ↑ = J (ω)[1 +
N (ω)], and γ↓ = J (ω)N (ω). Here, J (ω) corresponds to the
spectral density function of the thermal bath, and N (ω) cor-
responds to the population of harmonic oscillator mode with
frequency ω in a thermal bath with temperature T approx-
imated by the Planck distribution N (ω) = {exp( h̄ω

kBT ) − 1}−1

[5], respectively. Note that Eq. (1) generates two measurement
records. We describe them as

dy1 = √
γ↑〈σ̂−〉dt + dW1(t ),

dy2 = √
γ↓〈σ̂+〉dt + dW2(t ). (3)

In this paper, our interests are in analyzing the impact of
measurements on transistor dynamics, as such records get
detected in the environment. In a separate study, we will inves-
tigate how we can use these measurement records to realize
feedback control in thermal transistors. While this feedback
control will have different characteristics and outcomes from
electronic feedback, we wanted to explore how control can
help preserve quantum coherence that can be used to realize
a dark state [12] as a targeted state. Next, we approximate
Eq. (1) to an evolution produced by a single measurement
channel. We follow Refs. [14,51,52], to obtain an approx-
imate measurement resembling a homodyne measurement.
Further elaboration on this is in Appendix B. We now use a
stochastic evolution as follows for an ensemble of quantum
trajectories ρr as

dρr (t ) = − i

h̄
[Ĥ, ρr (t )]dt + L[ρr (t )]dt +

√
J (ω)ζ

1 + 2N (ω)
[1 + N (ω)]{σ−ρr (t ) + ρr (t )σ+ − [〈σ−〉ρr (t ) + ρr (t )〈σ+〉]}dW r

+
√

J (ω)ζ

1 + 2N (ω)
[−N (ω)]{σ+ρr (t ) + ρr (t )σ− − [〈σ+〉ρr (t ) + ρr (t )〈σ−〉]}dW r . (4)

with, ζ ∈ [0, 1] controlling the efficiency of the measurement.
Note that the quantum state ρr differs from the previous
system state ρr as the observer’s knowledge about the sys-
tem is now imperfect [52]. However, we visualize that even
under these new states, by appropriately tuning ζ for weak
measurements, we can preserve the transistor dynamics. Now,
we extend this behavior for a transistor model consisting of
three TLSs, as in Fig. 1. It consists of three TLSs as terminals,
each interacting with three baths with temperatures TL, TM ,

TM

TR

TL
TP

TLS

BATH

DETECTOR

JL

JM

- JR

L

M

R

FIG. 1. Transistor arrangement with three TLSs as terminals in-
teracting with reservoirs BL , BM , and BR, each with temperatures
TL, TM , and TR. The interactions of baths with TLSs are shown in
solid lines. The three detectors that monitor the baths are also shown.
The three energy flows at steady state, JL , JM , and JR, are marked in
the diagram.

and TR. Three detectors are placed to monitor the three baths
continuously.

B. System description

The system Hamiltonian Ĥsys takes the following form (as
in previous models [7,12]) :

Ĥsys = h̄

2

(
ωLσ̂ z

L + ωM σ̂ z
M + ωRσ̂ z

R

+ ωLM σ̂ z
Lσ̂ z

M + ωMRσ̂ z
M σ̂ z

R + ωRLσ̂ z
Rσ̂ z

L

)
. (5)

Here, h̄ωP is the energy difference between the two eigenstates
of the TLS P, h̄ representing the reduced Planck constant.
Moreover, h̄ωs

PQ is the interaction energy between a pair of
TLSs, P and Q (P, Q ∈ {L, M, R}). Furthermore, σ̂ z

P are the
expanded Pauli matrices representing the compound system.
The Hamiltonian of the baths takes the form [53]

ĤP
bath =

∑
k

h̄ωP
k b̂P

k
†
b̂P

k , (6)

with b̂P
k representing the annihilation operator for a bath mode

ωk . The system-bath interaction Hamiltonian follows:

ĤP
sys-bath = h̄σ̂ x

P ⊗
∑

k

gP
k

(
b̂P

k + b̂P†
k

)
, (7)

with gP
k representing the coupling constant between TLS P and

the operators in bath P. Hence, the total Hamiltonian ĤT of the
transistor describes:

ĤT = Ĥsys +
∑

P∈{L,M,R}

(
ĤP

bath + ĤP
sys-bath

)
. (8)
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C. Stochastic master equation for the thermal transistor
(three strongly coupled TLSs)

Now, we derive the stochastic master equation for three
strongly coupled TLSs, which are in contact with three heat
baths with distinct temperatures, undergoing weak continu-
ous measurements [39]. A quantum trajectory of a single
TLS coupled to a bath undergoing continuous measure-
ment follows Eq. (4). Thus, we replace the system operators√

γ↑σ−
P and

√
γ↓σ+

P with
√
JP(ω)[1 + NP(ω)]ÂP(ω) and√

JP(ω)NP(ω)Â†
P(ω), P ∈ {L, M, R} respectively to suit our

transistor system. Here,

JP(ω) =
∑

k

2π
∣∣gP

k

∣∣2
δ(ω − ωk ). (9)

For this transistor model we take this function to be Ohmic [5],
and use a modeling constant κP [54] to represent the thermal

bath spectral density as

JP(ω) = κPω. (10)

And also,

ÂP(ω) =
∑

ε′−ε=h̄ω

|ε〉〈ε|σ x
P |ε′〉〈ε′|, (11)

where we decompose the system Hamiltonian as Ĥsys =∑
i εi|εi〉〈εi|. We select Ĥsys that is already diagonalizable

in the bare states. Hence, the first term vanishes as there is
no Hamiltonian evolution. Then, we arrive at Eq. (12) from
Eq. (4) that represents the stochastic master equation for the
transistor system, for a realization r. (for a detailed derivation
refer to Appendix B):

dρr (t ) =
∑

P∈(L,M,R)

LP[ρr (t )]dt +
∑

P∈(L,M,R)

MP[ρr (t )]dW r
P (t ), (12)

where

LP[ρr (t )] =
∑
ω>0

[
JP(ω)[1 + NP(ω)]

(
ÂP(ω)ρr (t )Â†

P(ω) − 1

2
{Â†

P(ω)ÂP(ω), ρr (t )}
)

+ JP(ω)NP(ω)

(
Â†

P(ω)ρr (t )ÂP(ω) − 1

2
{ÂP(ω)Â†

P(ω), ρr (t )}
)]

(13)

and

MP[ρr (t )] =
∑

ω

√
JP(ω)ζ

1 + 2NP(ω)
[1 + NP(ω)](ÂP(ω)ρr (t ) + ρr (t )Â†

P(ω) − [〈ÂP(ω)〉ρr (t ) + ρr (t )〈Â†
P(ω)〉])

+
∑

ω

√
JP(ω)ζ

1 + 2NP(ω)
[−NP(ω)](Â†

P(ω)ρr (t ) + ρr (t )ÂP(ω) − [〈Â†
P(ω)〉ρr (t ) + ρr (t )〈ÂP(ω)〉]) . (14)

Here, dW r
P (t ) represents the Wiener increments, with a Wiener process having zero mean and dt variance. Next, we need

a numerical method to solve ρr (t ). We first find the Ito-Taylor expansion of ρr (t ), and then consider its Euler-Maruyama
approximation as described in Refs. [44,55]. For a particular realization r, we expand the solution for the state dynamics as

ρr (t + �t ) = ρr (t ) +
∑

P∈(L,M,R)

LP[ρr (t )]�t +
∑

P∈(L,M,R)

MP[ρr (t )]�W r
P (t ) + 1

2

∑
P∈(L,M,R)

M2
P[ρ̂(t )]

[
�W 2,r

P (t ) − �t
] + R̃. (15)

Here, R̃ represents

R̃ =
∑

P∈(L,M,R)

(∫ t

t0

∫ τ1

t0

L0
PLP[ρr (τ2)] dτ2 dτ1 +

∫ t

t0

∫ τ1

t0

L1
PLP[ρr (τ2)] dW r

P (τ2) dτ1 +
∫ t

t0

∫ τ1

t0

L0
PMP[ρr (τ2)] dτ2 dW r

P (τ1)

+
∫ t

t0

∫ τ1

t0

∫ τ2

t0

L0
PL1

PMP[ρr (τ3)] dτ3 dW r
P (τ2) dW r

P (τ1)

+
∫ t

t0

∫ τ1

t0

∫ τ2

t0

L1
PL1

PMP[ρr (τ3)] dW r
P (τ3) dW r

P (τ2) dW r
P (τ1)

)
, (16)

where we define linear operators such that

L0
PGP[X ] = LP[X ]

∂

∂X
GP[X ] + 1

2
M2

P[X ]
∂2

∂X 2
GP[X ],

L1
PGP[X ] = MP[X ]

∂

∂X
GP[X ], (17)

235421-4



STOCHASTIC MODEL OF NOISE FOR A QUANTUM … PHYSICAL REVIEW B 108, 235421 (2023)

for any function GP[X ]. We consider �t long compared to the
reservoir memory time τc but short compared to the relaxation
time of the system τR. Applying the Euler approximation [29],
Eq. (15) reduces to

ρr (t + �t ) ≈ ρr (t ) +
∑

P∈(L,M,R)

LP[ρr (t )]�t

+
∑

P∈(L,M,R)

MP[ρr (t )]�W r
P (t ). (18)

This is similar to the technique used in deriving the
small-signal model for an electronic transistor, where we ap-
proximate a nonlinear function by its first-order derivatives.
The density matrix, which is the ensemble average of the
system, can be reproduced from the expectation value of the
stochastic ensemble [29,56,57] as

dρ̂ ≡ 〈dρr〉r, (19)

which removes the Wiener increments. Thus, we unravel the
quantum master equation

dρ̂(t )

dt
=

∑
P∈(L,M,R)

LP[ρ̂(t )]. (20)

This shows that monitoring the baths prompts to similar sys-
tem dynamics when ignored the results of the monitoring [13].

D. Noise representation

We model the thermal baths, which act as the primary
noise source in the system, using Eq. (6). The bath op-
erators b̂P

k hence contribute to the inherent noise in the
system. We describe a separate noise operator for each bath
P ∈ {L, M, R} as

B̂P(t ) = gP
k

(
e−iωkt b̂P

k + eiωkt b̂P†
k

)
. (21)

We now use the fluctuation-dissipation theorem to analyze
the transistor system behavior to small perturbations [58–60]
due to their connection to thermal baths. These baths are
the main source of noise in the system [8], apart from the
measurement noise that gets introduced. The measurement
noise can relate to the Wiener increments and is treated as
shot noise in Ref. [61] as long as there is an interface between
the measurement and its detection. In our case, we term this
as a measurement noise as we do not elaborate on such an
interface. In this section, we explore thermal noise and express
thermal noise power SP(ω) for each bath P, by considering the
correlation of the bath operators [62] as

SP(ω) =
∫ ∞

−∞
eiωτ TrB[B̂†

P(t )B̂P(t − τ )ρB] dτ = γP(ω). (22)

with ρB representing bath thermal state, and TrB representing
the partial trace over the bath. The noise power SP(ω) is equal
to the dissipation rate of the system γP(ω), which is the two-
sided Fourier transform of the bath correlation function [54].
We take ω to represent all the transition frequencies happening
between the energy levels of the system. Let us simplify the

bath correlation by taking the baths mode as ωk:

TrB[B†
P(t )BP(t − τ )ρ̂B]

= 〈B†
P(t )BP(t − τ )〉

= ∣∣gP
k

∣∣2(
e−iωkτ

〈
b̂P

k b̂P†
k

〉 + eiωkτ
〈
b̂P†

k b̂P
k

〉)
= ∣∣gP

k

∣∣2
(e−iωkτ [1 + NP(ωk )] + eiωkτ NP(ωk )). (23)

Note that 〈
b̂P

k b̂P†
k

〉 = NP(ωk ),〈
b̂P†

k b̂P
k

〉 = [1 + NP(ωk )]. (24)

Hence, Eq. (22) simplifies to

γP(ω) =
∑

k

2π
∣∣gP

k

∣∣2{NP(ω)δ(ω + ωk )

+ [1 + NP(ω)]δ(ω − ωk )}. (25)

The spectral density of the thermal bath takes the form in
Eq. (9). For this transistor model, we introduce κP to repre-
sent an Ohmic thermal bath spectral density as in Eq. (10).
Therefore, we represent the noise spectral density function in
Eq. (25) as

γP(ω) = κPω[NP(ω) + (1 + NP(ω))] = γ↑ + γ↓. (26)

In the low frequency limit, we represent

NP(ω) ≈ 1 + NP(ω) = kBTP

h̄ω
, (27)

where, kB is the Boltzmann constant. Hence, we express the
noise power for the bath as

γP(ω) = 2

(
κP

h̄

)
kBTP. (28)

The spectral density exhibits a uniform response to low fre-
quencies, similar to Johnson-Nyquist noise. This noise is
inherently present in the system, and we quantify it using ( κP

h̄ ).
We represent this in Fig. 2. Notably, this parameter is directly
related to the dissipation rate, γP(ω) at bath temperature TP.

Now, let us discuss the input noise modeling during the
measurements. Quantum noise can get introduced to the sys-
tem during measurement via any noisy input field. We can
represent this kind of noise as dB̂in = b̂indt [30,56,63]. Here,

FIG. 2. A thermal transistor representing noise from baths as
( κL

h̄ ), ( κM
h̄ ), and ( κR

h̄ ), and the fluctuating energy flows as jL (t ), jM (t ),
and jR(t ) due to continuous monitoring of baths.
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b̂in can be a bath operator in a vacuum state that interacts with
the system. This noise component satisfies

〈dB̂in(t )〉 = 0,

dB̂in(t )dB̂†
in(t ) = dt . (29)

In our model, we generalize this representation using a Wiener
process having the same properties. Let us introduce noise
given by εP(t, ω) for all transition frequencies ω between the
energy levels happening in the system due to bath P interac-
tion. Hence, we define a real-valued Wiener process

WP(t, ω) =
∫ t

t0

εP(t ′, ω) dt ′, (30)

in order to model the noise introduction to the system, as per
the Lax developments [52]. In Eq. (18), �WP(t ) ≡ �WP(t, ω),
representing a Wiener increment,

�WP(t, ω) = WP(t + �t, ω) − WP(t, ω), (31)

with �t as the variance, defined for all the transitions. These
increments satisfy the conditions

∑
ω〈�WP(t, ω)〉 = 0 and∑

ω �W 2
P (t, ω) = �t . Note that we handle Eq. (12) with

efficiency thresholds based on bath phonon distribution as
discussed in Appendix B, to introduce noise from baths in
thermal states during a measurement. This noise input hence
results in fluctuating energy flow components in Eq. (34).

E. Energy flows at steady state

According to Ref. [35], the total energy flow JP from the
baths into the system as in the thermal transistor relates to

∑
P∈(L,M,R)

JP(t ) = ∂〈Ĥsys〉
∂t

= Tr

{
Ĥsys

dρ̂(t )

dt

}

= Tr

{
Ĥsys

〈
dρr (t )

dt

〉
r

}

=
∑

P∈(L,M,R)

Tr{Ĥsys〈LP[ρr (t )]〉r}

+
∑

P∈(L,M,R)

Tr

{
Ĥsys

〈
MP[ρr (t )]

�W r
P

�t

〉
r

}
,

(32)

with Tr denoting the matrix trace. Let us call JP(t ) the stochas-
tic energy flow in the system. Here, the first term

JP(t ) = Tr{Ĥsys〈LP[ρr (t )]〉r} = Tr{ĤsysLP[ρ̂(t )]} (33)

corresponds to the average heat flow in the system. Further-
more, the second term

jP(t ) = Tr

{
Ĥsys

〈
MP[ρr (t )]

�W r
P

�t

〉
r

}
(34)

represents the fluctuating energy component. Note that
for a collection of realizations, with no coherence terms
in the steady states, this fluctuating energy component
Tr{Ĥsys〈MP[ρr]�W r

P
�t 〉r} = 0. The analysis in Ref. [34] treats

this as a measurement work due to the monitoring from the
detectors. As Eq. (32) consists of two components, the average
energy flow and a time-varying element that has an average of
zero at a steady state, the energy flow restricts to perturba-
tions about an operating point, resembling the behavior of an
electronic transistor small-signal model. Even though stochas-
tic Schrödinger equations are nonlinear, we can approximate
that to express a linear behavior for the system. Hence, just
like the small-signal model used in electronics, our model
is applicable within a narrow range controlled by ζ , around
an operating point, that delivers average energy across the
system. Nevertheless, these models can still be useful to get
an insight when employed beyond their specified range of
validity [64].

III. RESULTS AND DISCUSSION

We compare the average dynamics with the reduced den-
sity matrix approach to validate our results. The importance
of the quantum trajectory method is that it gives insight into
the occurrence of fluctuation in the energy flow. We use
Mathematica V12 to simulate the stochastic process of the
model. We visualize the transistor model energy flow under
weak continuous measurements (please refer to Supplemental
Material [65] for the associated code). We consider a scenario
with the following parameters, consistent with the studies in
Refs. [5,12]: ωL = 0.05�, ωM = 0.1�, ωR = 0, ωLM = �,
ωMR = �, ωRL = 0, κP = 0.01, TL = 0.2T , TM = 0.1T , and
TR = 0.02T , with � and T as scaling factors that can incor-
porate units or change the operation range of the transistor.
If one is working in SI units, � = 1.3×1011 Hz and T =
0.5 mK. For computational simplicity and to reduce memory
and simulation time with the given computer capacity, we

FIG. 3. Transistor dynamics from (a) reduced density matrix approach and (b) using the quantum trajectory method.
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FIG. 4. (a) The stochastic energy flows JL (t ), JM (t ), and JR(t ) from the baths for 100 realizations, keeping ζ = 0.02, and (b) average energy
flows JL , JM , and JR.

work in normalized units. In the trajectory method, we limit
0 < ζ < 0.1, to specify the range of validity that will not
change the original transistor action excessively, and keep the
energy flow variation with temperature approximately linear
up-to a certain temperature limit. Accordingly, in Fig. 3, we
obtain similar transistor states at the steady state when using
both methods. The average dynamics of the quantum trajec-
tory method delivers the same transistor states. Hence, this
approach is suitable for implementing a new transistor model
for the existing thermal transistor that considers external dis-
turbances to the environment such as a measurement. Next,
we visualize how the energy flow varies in the new model
with time. Figure 4 gives a comparison in timescale of a
visualization of stochastic energy flow and the average energy
flow without continuous monitoring (ζ = 0).

The energy flow has fluctuations with time when we
consider the continuous disturbances to the bath. With no
monitoring, these fluctuations subside, giving the average en-
ergy flow. Next, we visualize how the energy flows from the
trajectory method at a steady state vary with the control bath
temperatures TM as in Fig. 5. We make a comparison of this
variation with the average energy flow without continuous
monitoring. Note that the stochastic energy flow and the en-
ergy flow without monitoring have the same variation at a
steady state, with the selected ζ = 0.02.

FIG. 5. The average energy flows JP (solid lines) at steady state
with no monitoring, and the energy flows at a steady state from the
stochastic model JP (dotted lines) considering 100 realizations, and
ζ = 0.02 varying with the control bath temperature TM . Note that
the variation of JL is approximately linear up to TM = 0.15T , which
prompts us to use this gradient to define a new parameter for the
model as thermal conductance(c).

The literature provides various transistor parameters to
analyze the transistor effect. We first introduce transistor
amplification factor α [Eq. (35)] and transistor thermal ef-
ficiency β [Eq. (36)]. We compare these values with our
conditioned system by varying the measurement efficiency
parameter ζ , which significantly changes the conditioning
strength under a fixed Ohmic bath constant κP = 0.01, with
the original model as outlined in Refs. [2,6]. Equations (35)
and (36) are defined for the conditioned thermal transis-
tor under JL ≈ −JR. We select 0 � ζ � 0.09 to investigate
the variations, limiting the drastic change in energy flows
JL and JR due to the introduction of measurement noise.
Under JL = −JR,

α = �JL

�JM

∣∣∣∣∣
TL,TR

= − �JR

�JM

∣∣∣∣∣
TL,TR

, (35)

β = JL

JM
= − JR

JM
, (36)

where

JP = Tr{ĤsysLP[ρ̂]} + Tr

{
Ĥsys

〈
MP[ρr]

�W r
P

�t

〉
r

}

for P ∈ {L, M, R} at a steady state. We visualize these factors
by comparing them to an “original model” as in Refs. [2,3].
We notice that the amplification factor remains constant
at α = 40 within the selected transistor operating range

FIG. 6. The amplification factor variation with the original
model and changing the noise levels in three cases at a fixed κP =
0.01, by varying ζ at 0, 0.02, and 0.09. The amplification factor
usually remains a constant within the selected transistor operating
range 0.05T � TM � 0.1T for lower levels of noise and then it starts
to decrease for 0.1T < TM � 0.15T with a slightly higher rate when
there is conditioning.
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FIG. 7. Thermal efficiency variation with the original model and
changing the noise levels in three cases at a fixed κP = 0.01, by
varying ζ at 0, 0.02, and 0.09. This efficiency factor does not have
significant changes in the selected conditioning strengths. It has an
increase over our selected transistor operating region 0.05T � TM �
0.15T , varying between 10 and 130, diverging at 0.16T when JM hits
a minimum. Then, it starts to decrease as TM gets closer to TL .

0.05T � TM � 0.1T in the original model and in the absence
of conditioning. It will remain nearly constant at ζ = 0.02.
With an increased ζ , amplification starts to change signifi-
cantly due to noise (see Fig. 6). Then, α will begin to decrease
for 0.1T < TM � 0.15T for all cases. Even though we see
such variations in the amplification with the introduction of
noise caused by monitoring, the thermal efficiency β (see
Fig. 7) remains nearly the same. This is because of our con-
sidered limitations on steady-state energy flows to maintain
JL ≈ −JR. Parameter β has an increase over our selected
transistor operating region 0.05T � TM � 0.15T , varying be-
tween 10 and 130, and diverging at 0.16T when JM hits a
minimum. Afterwards, it starts to decrease as TM gets closer
to TL. In a separate study, we will discuss how to use con-
tinuous monitoring to create feedback and improve these
factors.

Let us analyze the rectification factor RM→L(R) under the
heat gradients TM > TL(R), and TM < TL(R). We consider the
heat flows JM→L(R) (for TM < TL(R)), and JM→L(R) (for TM >

TL(R)). The concept of the rectification factor is commonly
discussed in the context of thermal diodes. Given that an elec-
tronic transistor functions as a two-diode system, it is quite
natural to analyze this effect. We define thermal rectification

FIG. 9. Thermal sensitivity variation is visualized by changing
the control bath temperature. We notice that ηL

T M and ηL
T M re-

main nearly constant within the region 0.05T � TM � 0.15T and
ηM

T M ≈ 0. These parameter variations are helpful for establishing a
small-signal model in this region.

factor inspired by Refs. [3,66,67] as in Eq. (37),

RM→L(R) = |JL(R)→M |
|JM→L(R)| . (37)

When RM→L(R) = 1 there is no rectification and when
RM→L(R) = 0 there is perfect rectification. As we see in Fig. 8,
we observe there is not perfect but some rectification between
the input terminal M and L/R terminals for transistor operat-
ing region 0.05T � TM � 0.15T . This rectification variation
demonstrates that realizing a quantum thermal transistor with
characteristics similar to NPN and PNP diode junctions is a
tedious task. Thus, the thermal transistor is not exactly an
electronic transistor but it can have similar characteristics
showing some rectification.

We now introduce the thermal sensitivity [7,68] to under-
stand how sensitive is the change in the stochastic energy
flows to small changes in the control temperature TM as
in Eq. (38). We notice, referring to Fig. 9, that ηL

T M and
ηR

T M remain nearly constant within the region 0.05T �
TM � 0.15T and ηM

T M ≈ 0. These sensitivity variations are
why we establish a small-signal model for our thermal
transistor:

ηP
T M = �JP

�TM
. (38)

FIG. 8. Transistor rectification factor (a) between terminals M and L (RM→L) and (b) between terminals M and R (RM→R). We observe that
there is not perfect but some rectification between the input terminal M and L/R terminals for the transistor operating region. This behavior
indicates the challenging nature of achieving a quantum thermal transistor with characteristics exactly similar to those found in NPN and
PNP diode junctions. Thus, the thermal transistor is not exactly an electronic transistor but it can have similar characteristics showing some
rectification.
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FIG. 10. The diagram expresses the variation of the thermal con-
ductance c between hot and cold baths with the input temperature
TM , keeping temperatures TL and TR constant when ζ = 0.02, and
κP = 0.01.

A. Small-signal model

A small-signal model is used in an electronic transistor
to analyze how it responds to small variations in its input
signal. We obtain a similar model for the quantum thermal
transistor by considering the stochastic energy flow from the
quantum trajectory approach. With regards to Fig. 5, we notice
that |JL| ≈ |JR| and has an approximately linear increase from
0.05T to 0.15T and |JM | ≈ 0. By referring to Fig. 9, we
notice how these energy flows vary due to a slight change
in input temperature TM via thermal sensitivity parameters.
We notice that ηL

T M and ηR
T M remain nearly constant within

the region 0.05T � TM � 0.15T . As ηM
T M ≈ 0, we establish

the input terminal resistance to be very large. We then define
the following parameters for the transistor operating region
0.05T � TM � 0.15T :

(i) thermal conductance

c = JL

TM − TR
, (39)

(ii) output thermal resistance

re = TL − TR

JL
, (40)

and we visualize the variation of c (Fig. 10) with the control
bath temperature TM . Here, we keep TL and TR fixed. We
now vary TL to understand the variation of re by keeping
TM and TR constant as in (Fig. 11). The variation of c, with
respect to TM , shows a behavior similar to the variation of
transconductance with the gate voltage of an electronic field
effect transistor (FET). As the temperature of the hot bath TL

increases, thermal resistance re decreases. This can be further
reduced by keeping TL fixed but increasing TM . The behavior
of these parameters helps one to develop a small-signal model
similar to FET. Hence, we express these parameters in an
electronic-like circuit diagram as in Fig. 12 for more clarity.

IV. CONCLUSION

The investigations in this paper are carried out to de-
velop a quantum thermal transistor model using the quantum
trajectory method, drawing inspiration from its electronic

FIG. 11. The diagram expresses the variation in thermal resis-
tance re between hot TL and cold TR baths at ζ = 0.02 and κP = 0.01,
with constant input temperatures TM = 0.05T, 0.1T, 0.15T . Note
that as we increase the control temperature TM the resistance for the
heat flow reduces further.

counterpart. Our previous work analyzed thermal transistor
models to investigate average dynamics and energy flows. We
further extended our research to examine the environmental
effects of these models. This paper explored the stochastic
behavior resulting from continuous monitoring in the baths.
By performing weak measurements, we derived a stochastic
master equation. Then, we solved it using the Euler-Maryuma
approximation to find a numerical solution and get the ap-
propriate quantum trajectories for the transistor model. Even
though this technique is commonly used in classical systems,
we approximated it to be used in a quantum system. We
demonstrated the possibility of establishing a small-signal
model with appropriate tuning for weak measurements. We
then identified thermal conductance and output thermal re-
sistance parameters for our thermal transistor small-signal
model. We also visualized how continuous monitoring can
introduce fluctuations in the average energy flow. This type
of analysis helps us understand the impact of noise during
conditioning. In future work, we will be investigating how to
incorporate feedback control into this system. Our model’s
limitations stem from selecting the particular measurement
scheme and the approximations used. Here, we considered
a diffusion trajectory based on a modified measurement
strategy inspired by the homodyne measurement technique.

JR

JL

re
c TM 

TM

TR

TL

FIG. 12. The diagram expresses the parameters c and re. This is
the small-signal equivalent of the quantum thermal transistor.
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FIG. 13. The visualization of the detection process.

Consequently, the dynamics and energy flows revolve around
this selected quantum trajectory. Nevertheless, the main goal
of this paper is to establish a platform for constructing ther-
mal analogous models to electronic components while giving
prominence to their possible nonlinear/stochastic behavior,
due to the disturbances in the surrounding environment. Thus,
we hope our findings will contribute to realizing a more prac-
tical design of a quantum thermal transistor.
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APPENDIX A: TWO-LEVEL SYSTEM

We adopt the simplest system [54] for our analysis, which
is the two-level system whose energy levels are placed h̄ω

apart, with h̄ representing the reduced Planck constant. The

Hamiltonian for this system has the form

Ĥ = h̄ω

2
σ̂z, (A1)

where σ̂z is the Pauli matrix in the z direction. We define the
raising and lowering operators for the system that interacts
with the thermal baths as

σ̂− =
(

0 1
0 0

)
,

σ̂+ =
(

0 0
1 0

)
. (A2)

We assume that the baths’ interactions are along in the x
direction, hence the selection of these as our system operators
to describe the quantum trajectory in Eq. (1). The Hamiltonian
for the TLS-bath interaction can then be described as

ĤTLS-bath =
∑

k

h̄(σ̂−gkb̂k + σ̂+gkb̂†
k ). (A3)

with gk as the coupling constant between TLS and the cor-
responding bath operator, and b̂k , and b̂†

k as bath annihilation
and creation operators.

APPENDIX B: DERIVING THE STOCHASTIC MASTER
EQUATION FROM STOCHASTIC SCHRÖDINGER

EQUATION

As we study a continuously fluctuating signal like an en-
ergy flow and having nonzero temperature thermal baths,
the most intuitive way is to approximate that as a diffu-
sive stochastic equation. At strictly positive temperatures,
only pure diffusion-type equations remain [39]. In compar-
ison to the most general nonlinear stochastic Schrödinger
equation (SSE) for a diffusive case, it is possible to build
an Ito-type stochastic differential equation to a TLS as in
Refs. [13,14,33,34,52,69–73]:

d|ψ〉 =
[

dW1(t )
√

γ↑(σ̂− − 〈σ̂−〉) + dW2(t )
√

γ↓(σ̂+ − 〈σ̂+〉) − i

h̄
Ĥdt

− dt

2
γ↑(σ̂+σ̂− − 2〈σ̂+〉σ̂− + 〈σ̂+〉〈σ̂−〉) − dt

2
γ↓(σ̂−σ̂+ − 2〈σ̂−〉σ̂+ + 〈σ̂−〉〈σ̂+〉)

]
|ψ〉, (B1)

where the dissipation rates are represented as γ↑ = J (ω)[1 + N (ω)] and γ↓ = J (ω)N (ω). Here, J (ω) corresponds to the
spectral density function of the thermal bath, and N (ω) corresponds to the population of harmonic oscillator mode with
frequency ω in a thermal bath with temperature T approximated by the Planck distribution N (ω) = {exp( h̄ω

kBT ) − 1}−1. Also,
〈σ̂+〉 = 〈ψ |σ̂+|ψ〉 and 〈σ̂−〉 = 〈ψ |σ̂−|ψ〉. Moreover, dW1(t ) and dW2(t ) satisfy dW1(t )dW2(t ) = δ12dt , with δ representing the
Kronecker delta. This shows the input noise from uncorrelated channels. For an ensemble, we can represent the evolution of
states [52] as

dρ(t ) = |dψ (t )〉〈ψ (t )| + |ψ (t )〉〈dψ (t )| + |dψ (t )〉〈dψ (t )|. (B2)

Next, we use the following Ito rules:

(dt )2 = 0,

[dW1,2(t )]dt = 0,

[dW1,2(t )]2 = 0, (B3)
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and expand Eq. (B2) using Eq. (B1) as

dρ(t ) =
[

dW1(t )
√

γ↑(σ̂− − 〈σ̂−〉) + dW2(t )
√

γ↓(σ̂+ − 〈σ̂+〉) − i

h̄
Ĥdt − dt

2
γ↑(σ̂+σ̂− − 2〈σ̂+〉σ̂− + 〈σ̂+〉〈σ̂−〉)

− dt

2
γ↓(σ̂−σ+

j − 2〈σ̂−〉σ̂+ + 〈σ̂−〉〈σ̂+〉)

]
ρ(t )

+ ρ(t )

[
dW1(t )

√
γ↑(σ̂+ − 〈σ̂+〉) + dW2(t )

√
γ↓(σ̂− − 〈σ̂−〉) + i

h̄
Ĥdt − dt

2
γ↑(σ̂−σ̂+ − 2〈σ̂−〉σ̂+ + 〈σ̂−〉〈σ̂+〉)

− dt

2
γ↓(σ̂+σ−

j − 2〈σ̂+〉σ̂− + 〈σ̂+〉〈σ̂−〉)

]

+ dtγ↑[σ̂−ρ(t )σ̂+ − 〈σ̂+〉σ̂−ρ(t ) − ρ(t )〈σ̂−〉σ̂+ + 〈σ̂−〉〈σ̂+〉ρ(t )]

+ dtγ↓[σ̂+ρ(t )σ̂− − 〈σ̂+〉σ̂−ρ(t ) − ρ(t )〈σ̂−〉σ̂+ + 〈σ̂−〉〈σ̂+〉ρ(t )]. (B4)

Simplifying, we arrive at the stochastic master equation (SME):

dρ(t ) = − i

h̄
[Ĥ , ρ(t )]dt + L[ρ(t )]dt + √

γ↑[σ̂−ρ(t ) + ρ(t )σ̂+ − (〈σ̂−〉ρ(t ) + ρ(t )〈σ̂+〉)]dW1(t )

+ √
γ↓[σ̂+ρ(t ) + ρ(t )σ̂− − (〈σ̂+〉ρ(t ) + ρ(t )〈σ̂−〉)]dW2(t ), (B5)

where

L[ρ(t )] = γ↑
(
σ̂−ρ(t )σ̂+ − 1

2 {σ̂+σ̂−, ρ(t )}) + γ↓
(
σ̂+ρ(t )σ̂− − 1

2 {σ̂−σ̂+, ρ(t )}). (B6)

Here, the two measurement channels can occur simultaneously, with independent Wiener noise for the two channels. As per
discussions in Refs. [14,52], we approximate the two measurement strengths of the two channels, k1 and k2, to a single
measurement channel, similar to that of a homodyne measurement process. A simple schematic of this measurement is given
in Fig. 13. This removes the independence of the Wiener noise for the two channels, invoking some correlation between them.
Thus, we represent with a single noise source, representing the conditioned evolution as

dρ(t ) = − i

h̄
[Ĥ, ρ(t )]dt + L[ρ(t )]dt +

[√
k1

k1 + k2
γ↑{σ−ρ(t ) + ρ(t )σ+ − [〈σ−〉ρ(t ) + ρ(t )〈σ+〉]}

−
√

k2

k1 + k2
γ↓{σ+ρ(t ) + ρ(t )σ− − [〈σ+〉ρ(t ) + ρ(t )〈σ−〉]}

]
dW (t ). (B7)

Note that this type of an inefficient and approximated measurement now changes the overall knowledge of the system. Hence,
we introduce a new quantum state ρ for the system. Then, we represent Eq. (B7) as

dρ(t ) = − i

h̄
[Ĥ, ρ(t )]dt + L[ρ(t )]dt + √

η1γ↑{σ̂−ρ(t ) + ρ(t )σ̂+ − [〈σ̂−〉ρ(t ) + ρ(t )〈σ̂+〉]}dW (t )

− √
η2γ↓{σ̂+ρ(t ) + ρ(t )σ̂− − [〈σ̂+〉ρ(t ) + ρ(t )〈σ̂−〉]}dW (t ), (B8)

We define a threshold for the measurement strengths to approximate a quantum trajectory in a thermal state inspired by the works
in [51]. We consider the measurement strengths as k1 = J (ω)[1 + N (ω)] and k2 = J (ω)N (ω), where ω represents the angular
frequency between the two levels [51,52]. Thus,

η1,T = 1 + N (ω)

1 + 2N (ω)
,

η2,T = N (ω)

1 + 2N (ω)
(B9)

Hence, we rearrange Eq. (B8), introducing an efficiency parameter ζ [0, 1], as

dρr (t ) = − i

h̄
[Ĥ , ρ(t )]dt + L[ρ(t )]dt +

√
J (ω)ζ

1 + 2N (ω)
[1 + N (ω)]{σ̂−ρ(t ) + ρ(t )σ̂+ − [〈σ̂−〉ρ(t ) + ρ(t )〈σ̂+〉]}dW (t )

+
√

J (ω)ζ

1 + 2N (ω)
[−N (ω)]{σ̂+ρ(t ) + ρ(t )σ̂− − [〈σ̂+〉ρ(t ) + ρ(t )〈σ̂−〉]}dW (t ). (B10)

We introduce ζ to keep the measurement strength as weak as possible so that continuous monitoring does not affect the overall
transistor dynamics. Now, let us extend Eq. (B5) to incorporate three TLSs that are strongly coupled. We need to derive the
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stochastic master equation, which describes the evolution of a system with three strong TLSs coupled in contact with a heat bath
undergoing indirect measurements [39]. We take the interaction to link the energy of the TLS P to the position of each harmonic
oscillator that comprises the bath as

ĤP
sys-bath = h̄σ̂ x

P

∑
k

gP
k

(
b̂P

k + b̂P†
k

)
. (B11)

Here, σ̂ x
P , are expanded Pauli matrices such that

σ̂ x
L = σ̂ x ⊗ Î ⊗ Î,

σ̂ x
M = Î ⊗ σ̂ x ⊗ Î,

σ̂ x
R = Î ⊗ Î ⊗ σ̂ x. (B12)

Then, we define the system jump operators as

ÂP(ω) =
∑

ε′−ε=h̄ω

|ε〉〈ε|σ x
P |ε′〉〈ε′| = σ̂−

P , (B13)

Â†
P(ω) =

∑
ε′−ε=−h̄ω

|ε〉〈ε|σ x
P |ε′〉〈ε′| = σ̂+

P , (B14)

defined for P ∈ {L, M, R}, considering the system Hamiltonian Ĥsys = ∑
i εi|εi〉〈εi|. This replaces the operators

√
γ↑σ− and√

γ↓σ+ in Eq. (B5) as
√
JP(ω)[1 + NP(ω)]ÂP(ω) and

√
JP(ω)NP(ω)Â†

P(ω) respectively to suit the complex system of three
TLSs. Now, ω represents all the possible energy transitions that can happen in the system. Here, we consider the spectral density
of the baths as,

JP(ω) =
∑

k

2π
∣∣gP

k

∣∣2
δ(ω − ωk ), (B15)

with |gP
k| representing the coupling strength between kth bath mode ωk and TLS P. We select a system Hamiltonian that is already

digonalizable in the bare states. Hence, the first term vanishes as there is no Hamiltonian evolution. This results in the master
equation

dρ(t ) =
∑

P∈(L,M,R)

LP[ρ(t )]dt +
∑
ω>0

√
JL(ω)[1 + NL(ω)][ÂL(ω)ρ(t ) + ρ(t )Â†

L(ω) − [〈ÂL(ω)〉ρ(t ) + ρ(t )〈Â†
L(ω)〉]]dW1(t )

+
∑
ω>0

√
JL(ω)NL(ω)[Â†

L(ω)ρ(t ) + ρ(t )ÂL(ω) − [〈Â†
L(ω)(t )〉ρ + ρ(t )〈ÂL(ω)〉]]dW2(t )

+
∑
ω>0

√
JM (ω)[1 + NM(ω)][ÂM (ω)ρ(t ) + ρ(t )Â†

M (ω) − [〈ÂM (ω)〉ρ(t ) + ρ(t )〈Â†
M (ω)〉]]dW3(t )

+
∑
ω>0

√
JM (ω)NM(ω)[Â†

M (ω)ρ(t ) + ρ(t )ÂM (ω) − [〈Â†
M (ω)〉ρ(t ) + ρ(t )〈ÂM (ω)〉]]dW4(t )

+
∑
ω>0

√
JR(ω)[1 + NR(ω)][ÂR(ω)ρ(t ) + ρ(t )Â†

R(ω) − [〈ÂR(ω)〉ρ(t ) + ρ(t )〈Â†
R(ω)〉]]dW5(t )

+
∑
ω>0

√
JR(ω)NR(ω)[Â†

R(ω)ρ(t ) + ρ(t )ÂR(ω) − [〈Â†
R(ω)〉ρ(t ) + ρ(t )〈ÂR(ω)〉]]dW6(t ), (B16)

where

LP[ρ(t )] =
∑
ω>0

[
JP(ω)[1 + NP(ω)]

(
ÂP(ω)ρ(t )Â†

P(ω) − 1

2
{Â†

P(ω)ÂP(ω), ρ(t )}
)

+ JP(ω)NP(ω)

×
(

Â†
P(ω)ρ(t )ÂP(ω) − 1

2
{ÂP(ω)Â†

P(ω), ρ(t )}
)]

. (B17)

Reference [51] describes a similar continuous measurement of the environment as the optimal strategy. Here, we have six
measurement channels, happening simultaneously. In order to quantify weak measurements, and for computational simplicity,
we obtain an approximate measurement as per the discussions above for a single TLS-bath inefficient measurement trajectory.

235421-12



STOCHASTIC MODEL OF NOISE FOR A QUANTUM … PHYSICAL REVIEW B 108, 235421 (2023)

Hence, we modify Eq. (B16) to

dρ(t ) =
∑

P∈(L,M,R)

LP[ρ(t )]dt +
∑

P∈(L,M,R)

∑
ω>0

√
ηP,1JP(ω)[1 + NP(ω)](ÂP(ω)ρ(t ) + ρ(t )Â†

P(ω)

− [〈ÂP(ω)〉ρ(t ) + ρ(t )〈Â†
P(ω)〉])dWP(t ) −

∑
P∈(L,M,R)

∑
ω>0

√
ηP,2JP(ω)NP(ω)(Â†

P(ω)ρ(t ) + ρ(t )ÂP(ω)

− [〈Â†
P(ω)〉ρ(t ) + ρ(t )〈ÂP(ω)〉])dWP(t ). (B18)

Further, introducing measurement thresholds and control parameter ζ , we represent Eq. (B18) as

dρ(t ) =
∑

P∈(L,M,R)

LP[ρ(t )]dt +
∑

P∈(L,M,R)

∑
ω>0

√
JP(ω)ζ

1 + 2NP(ω)
[1 + NP(ω)](AP(ω)ρ(t ) + ρ(t )Â†

P(ω)

− [〈AP(ω)〉ρ(t ) + ρ(t )〈Â†
P(ω)〉])dWP(t ) +

∑
P∈(L,M,R)

∑
ω>0

√
JP(ω)ζ

1 + 2NP(ω)
[−NP(ω)](Â†

P(ω)ρ(t ) + ρ(t )ÂP(ω)

− [〈Â†
P(ω)〉ρ(t ) + ρ(t )〈AP(ω)〉])dWP(t ) , (B19)

where 〈ÂP(ω)〉 = Tr[ρ(t )ÂP(ω)] and 〈Â†
P(ω)〉 = Tr[ρ(t )Â†

P(ω)].
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