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Effect of finite spin-orbit splitting on the electron-hole exchange interaction
in excitons confined in semiconductor nanocrystals
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We derive an effective spin-Hamiltonian accounting for the exciton fine structure in quasi-spherical zinc-
blende semiconductor nanocrystals within the k · p formalism explicitly taking into account the spin-orbit split-
off valence band. It is shown that, for excitons in nanocrystals made of III-V and II-VI semiconductors with
fairly small spin-orbit splitting, the scaling of the electron-hole exchange interaction with the nanocrystal size
insignificantly differs from the inverse nanocrystal volume law predicted within the model neglecting the spin-
orbit split-off band. Numerical calculations are performed for InP nanocrystals.
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I. INTRODUCTION

Colloidal semiconductor nanocrystals, such as CdSe quan-
tum dots, have been used in many applications including
optical imaging in biology and medicine. However, in recent
years, their less toxic analogs such as InP-based core/shell
quantum dots have emerged [1]. Synthesis of high-quality
luminescent InP-based core/shell nanocrystals with emission
frequencies covering the entire visible spectrum range have
been reported and their potential for applications in opto-
electronics has been demonstrated [2,3]. Investigation of their
fundamental properties has been launched and several studies
of exciton fine structure in InP-based core/shell nanocrystals
have been performed [4–7].

The fine structure of exciton levels in CdSe nanocrystals
has been understood [8,9] within the k · p approximation
when the valence-band hole is described in the two-band
model neglecting the spin-orbit split-off band [10]. However,
in InP the spin-orbit splitting amounts to 108 meV [11], which
becomes comparable with the energy of the confined hole
for InP core diameters below 80 Å [12]. Recently it has
been shown [13] that taking into account the admixture of
the spin-orbit split-off band is crucial for calculation of the
effective g factor of top hole levels in InP nanocrystals. The
dark exciton states resulting from the fine-structure splitting
can only be revealed in external magnetic fields mixing bright
and dark zero-field states and leading to the brightening of the
latter [7,14]. Thus a consistent description of the exciton fine
structure in InP nanocrystals within the k · p approximation
should use the three-band model. For nanocrystals, whose
overall symmetry is not lower than the cubic symmetry of the
underlying crystal lattice, the exciton fine structure is entirely
determined by the electron-hole exchange interaction. In this
paper, we will assume a quasispherical shape of the nanocrys-
tals and derive an effective spin-Hamiltonian accounting for
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the electron-hole exchange interaction within the three-band
model.

II. HOLE STATES IN THE THREE-BAND MODEL

The isotropic three-band model describing valence band
structure of III-V semiconductors utilizes the generalized Lut-
tinger Hamiltonian [15–17]

Ĥ (k) = − h̄2k2

2m0
(γ1 + 4γ ) + 3h̄2γ

m0
(kÎ)2 + �

3
(σ̂ Î) − �

3
,

(1)

where h̄ is Planck’s constant, m0 is the free electron mass,
γ1 and γ ≡ (2γ2 + 3γ3)/5 are the Luttinger parameters, Îα
(α = x, y, z) are the matrices of angular momenta I = 1, �

is the spin-orbit splitting, and σ̂α are the Pauli matrices. The
bands in a bulk semiconductor resulting from this Hamilto-
nian are shown in Fig. 1 for the case of InP (the parameters
are taken from Ref. [12]). The most intuitive method of con-
structing states of a particle described by such a Hamiltonian
and confined in a spherically symmetric potential was de-
veloped by Sercel and Vahala [18] for the two-band model
and applied to the three-band model by Richard et al. [12].
It has also been demonstrated that the same method proves
to be very efficient in describing vibrational Lamb modes
of spherical particles [19]. The formalism is based on the
fact that the differential operator Ĥ (−i∇) commutes with the
operator of the total angular momentum F̂ = L̂ + Ĵ, where
L̂ = −ih̄ r × ∇, and Ĵα (α = x, y, z) are the matrices of an-
gular momenta which can refer to both J = 3/2 and J = 1/2.
In what follows, however, we will only use the notation Ĵα for
J = 3/2 and use the Pauli matrices for the case of J = 1/2.
The orbital angular momentum L̂ does not commute with
Ĥ (−i∇). Thus, while the total angular momentum F serves
as a good quantum number along with its projection Fz onto
the z axis and the parity, several values of L, determined by the
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FIG. 1. In the two-band model, levels of size quantization of
the valence-band hole originate from the parabolic bands of light
(blue dashed line) and heavy (red solid line) holes. In the three-
band model, the parabolic band of heavy holes is complemented
by nonparabolic bands of the light (blue solid line) and spin-orbit
split-off (green solid line) bands. The isotropic energy dispersion
is shown in a vicinity of the � point of the Brillouin zone as a
function of the dimensionless wave number ka0, where a0 is the
lattice constant. The Bloch functions at the � point transform under
the �8 (J = 3/2) and �7 (J = 1/2) irreducible representations of the
point group Td . Within the two-band (three-band) model, to each
energy there correspond two (three) wave numbers from different
bands.

summation rules for angular momenta, usually contribute to
each state of the confined hole. The lowest optically active
exciton state is composed of the even hole state with the total
angular momentum F = 3/2 and the ground electron state.
The hole state is contributed by L = 0, 2 for J = 3/2 and by
L = 2 for J = 1/2. Therefore this state is labeled 1SDD3/2

[12]. In this paper, we will be concerned with only this hole
state. It can be written as

|1SDD3/2, Fz〉 =
∑
J,μ

RJ,μ;Fz (r)|J, μ〉, (2)

where |J, μ〉 is the Bloch state at the top of the band �8

when J = 3/2 or at the top of the band �7 when J = 1/2
(cf. Fig. 1),

RJ,μ;Fz (r) =
∑

L

(−1)J−L+Fz RJ
L(r)

× 2
∑

M

(
J L 3

2
μ M −Fz

)
iLYLM

(
r
r

)
, (3)

(J L 3
2

μ M −Fz
) is the Wigner 3 jm symbol which restricts

possible values of L and M, YLM ( r
r ) are the spherical

harmonics satisfying Y ∗
LM ( r

r ) = (−1)M YL−M ( r
r ), and RJ

L(r)
are the hole radial wave functions satisfying zero bound-
ary conditions at the nanocrystal surface and defined as
follows:

R3/2
L (r) = C

[
jL(khhr) + (−1)L/2 k2

lh(ρso + χso)

k2
lh(ρso + χso) + k2

so(ρlh − χlh)

j2(khha)

j2(klha)
jL(klhr) + (−1)L/2 k2

so(ρlh − χlh)

k2
lh(ρso + χso) + k2

so(ρlh − χlh)

j2(khha)

j2(ksoa)
jL(ksor)

]
,

(4)

R1/2
2 (r) = C m0

γ h̄2

(ρlh − χlh) (ρso + χso)

k2
lh(ρso + χso) + k2

so(ρlh − χlh)
j2(khha)

[
j2(klhr)

j2(klha)
− j2(ksor)

j2(ksoa)

]
. (5)

Here a is the nanocrystal radius, jL(x) is the spherical Bessel
function of the order L and we adapted notations of Ref. [12]:

ρ(k) = 1

2 m0

√
9 γ 2 h̄4 k4 − 2 γ m0 � h̄2 k2 + m2

0 �2,

χ (k) = �

2
− γ h̄2 k2

2 m0
,

ρν ≡ ρ(kν ), χν ≡ χ (kν ), ν = lh, so. The wave number of the
heavy holes is related to the hole energy through

k2
hh = 2m0|E |

h̄2 (γ1 − 2γ )
,

while these of the light and spin-orbit split-off holes satisfy
the equation

h̄4k4

4m2
0

(γ1 − 2γ )(γ1 + 4γ ) + h̄2k2(γ1 + 2γ )

2m0
�

− h̄2k2(γ1 + γ )

m0
|E | + |E |(|E | − �) = 0. (6)

One can see from Fig. 1 that, for E < 0, k2
lh is always positive

while, from Eq. (6),

k2
so = |E |(|E | − �) 4 m2

0

h̄4k2
lh(γ1 − 2γ )(γ1 + 4γ )

and becomes negative for |E | < �, as seen in Fig. 1.
In this case, one should make the following substitutions
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FIG. 2. Non-normalized radial functions C−1 RJ
L (r) of the three-

band model (solid lines) and their counterparts for the two-band
model (dashed lines) for an InP core-only nanocrystal of radius a =
16 Å. A spherical hard wall confinement potential is assumed. The
functions with L = 0(2) describe radial parts of the s-like (d-like)
envelope functions of the 1SDD3/2 hole state.

in Eqs. (4) and (5): kso → i κso, jL(ksor) → iL i(1)
L (κsor),

jL(ksoa) → iL i(1)
L (κsoa), where i(1)

L (x) is the modified spher-
ical Bessel function.

The energy of the confined hole state is determined from
the dispersion equation [12]

j0(khha) j2(klha) j2(ksoa)
[
k2

lh(ρso + χso) + k2
so(ρlh − χlh)

]
+ j2(khha)

[
k2

lh(ρso + χso) j0(klha) j2(ksoa)

+ k2
so(ρlh − χlh) j0(ksoa) j2(klha)

] = 0 (7)

for |E | > � and

j0(khha) j2(klha)i(1)
2 (κsoa)

[
k2

lh(ρso + χso) − κ2
so(ρlh − χlh)

]
+ j2(khha)

[
k2

lh(ρso + χso) j0(klha)i(1)
2 (κsoa)

+ κ2
so(ρlh − χlh)i(1)

0 (κsoa) j2(klha)
] = 0 (8)

for |E | < �. The normalization constant C in Eqs. (4) and (5)
is found from the condition∑

J,L

∫ a

0
dr r2

[
RJ

L(r)
]2 = 1.

Non-normalized radial functions, C−1 RJ
L(r), are shown in

Fig. 2 for an InP nanocrystal of radius a = 16 Å, close to the
size of the InP core of nanocrystals featured in the single-dot
experiments of Refs. [6,7].

The results of the two-band model can be regained in
the limit � → ∞. In particular, in this limit, ρso + χso ∼ �,
ρlh − χlh ∼ 2γ 2h̄4k4

lh/�m2
0. Therefore Eq. (7) yields [10,18]

j0(khha) j2(klha) + j2(khha) j0(klha) = 0,

while from Eq. (4), we obtain [10]

R3/2
L (r) → C

[
jL(khhr) + (−1)L/2 j2(khha)

j2(klha)
jL(klhr)

]
.

As emphasized in Refs. [9,10], in the two-band model,
R3/2

L (r) = a−3/2 fL(r/a), where fL(x) is the function intro-
duced in Ref. [9] and depending on the ratio r/a. For this
reason, in the two-band model the electron-hole exchange
interaction in nanocrystals, where exciton is in the strong
confinement regime, scales with the nanocrystal size as a−3

[8,9,20]. In the three-band model, one can expect a departure
from this dependence.

Since, in the two-band model, for the hole state under
consideration, F = J = 3/2, the 4 × 4 matrix (3) becomes a
spherical invariant [8,9]. In the three-band model, the matrix
(3) has dimension 6 × 4.

The lowest conduction band in III-V semiconductors is the
twofold spin-degenerate band �6. The lowest-energy state of
the confined electron in this band can be written as

|1Se, m〉 = ψe(r) |m〉,
where ψe(r) = a−3/2 φ(r/a) is the electron envelope function
which, for the ground state, depends only on the radial co-
ordinate, m is the electron spin index, and |m〉 is the Bloch
function at the bottom of the band �6.

III. LONG-RANGE ELECTRON-HOLE
EXCHANGE INTERACTION

In the effective mass approximation, the matrix element
of the electron-hole long-range exchange interaction can be
written as [21,22]

H(long)
m′n′,mn(r′

e, r′
h, re, rh) = δ(re − rh) δ(r′

e − r′
h)

× Um′n′,mn(re − r′
e), (9)

where

Um′n′,mn(r − r′) = − h̄2e2

m2
0E2

g

∑
αβ

pα
m′n̄′ p

β∗
mn̄

∂2

∂rα∂rβ

1

ε1|r − r′| ,

(10)

Eg is the band gap (for InP, Eg 	 �), e is the electron charge,
ε1 is the background dielectric permittivity on the frequency
of the excitonic resonance, m and m′ are the electron spin
indices, n ≡ J, μ and n′ ≡ J ′, μ′ are the composite hole in-
dices, so that Eqs. (9) and (10) represent 12 × 12 matrices;
pmn̄ ≡ 〈m|p̂|n̄〉 is the matrix element of the momentum opera-
tor calculated between the electron Bloch states |m〉 and |n̄〉 at
the band extrema (the hole state |n〉 and the electron state |n̄〉
are related via the time-inversion operation).

A correction to the energy of the 1Se × 1SDD3/2 exciton
state due to the long-range electron-hole exchange interaction
is found in the first order of the perturbation theory:

H (long)
m′F ′

z ,mFz
=

∑
n,n′

∫
dr′

e

∫
dr′

h

∫
dre

∫
drh ψ∗

e (r′
e)

× R†
F ′

z ,n′ (r′
h)H(long)

m′n′,mn

(
r′

e, r′
h, re, rh

)
× Rn,Fz (rh) ψe(re). (11)

Introducing

Cn,Fz (r) = ψe(r)Rn,Fz (r)
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and substituting Eq. (9) into Eq. (11), we obtain

H (long)
m′F ′

z ,mFz
=

∑
n,n′

∫
dr′

∫
dr

× C†
F ′

z ,n′ (r′)Um′n′,mn(r − r′)Cn,Fz (r).

As Um′n′,mn(r, r′) = Um′n′,mn(r − r′), it is natural to apply the
Fourier transform. An additional simplification comes from
the fact that the angular dependence of the Fourier transform
of Cn,Fz (r) is identical to that of its original. We, therefore,
obtain

H (long)
m′F ′

z ,mFz
= V −1

∑
k

∑
n,n′

C†
F ′

z ,n′ (k)Um′n′,mn(k)Cn,Fz (k), (12)

where V is the normalization volume,

Cn,Fz (k) =
∫

dr Cn,Fz (r) e−ikr, (13)

Um′n′,mn(k) = 4πe2h̄2

ε1m2
0E2

g

(kpm′n̄′ )(kpmn̄)∗

k2
. (14)

Calculation of the momentum matrix elements in Eq. (14) can
be done using explicit form of the Bloch wave functions which
may be found in Refs. [16–18]. Otherwise, one can use [9]

〈m| p̂σ |n̄〉 = √
2J + 1 pcv (−1)3/2+J−σ

(
1
2 J 1
m μ −σ

)
,

(15)

where p̂σ is the covariant cyclic component of the momentum
operator and pcv = −i〈S| p̂x|X 〉 is the interband momentum
matrix element. Performing angular integrations and summa-
tions in Eq. (12), one obtains

Ĥ (long) = −η(long)[(σ̂Ĵ) − 3
2

]
, (16)

where

η(long) = πa3
B

9
ζ h̄ ωLT , (17)

ζ = 1

(2π )3

∫ ∞

0
dk k2

[
I3/2
0 (k) + I3/2

2 (k) + I1/2
2 (k)

]2
, (18)

IJ
L (k) = 4π (−1)L/2

∫ a

0
dr r2 ψe(r) RJ

L(r) jL(kr), (19)

h̄ωLT = 4

ε1a3
B

(
eh̄pcv

m0Eg

)2

is the longitudinal-transverse splitting of the bulk exciton po-
lariton [23,24], aB is the bulk exciton Bohr radius. We note
that the integral in Eq. (19) originates from the radial integral
in Eq. (13).

Since the long-range electron-hole exchange interaction is
equivalent to the interaction of the bright exciton with the
longitudinal electric field induced by its polarization [25], this
interaction must vanish for the dark excitonic states. This is
guaranteed by the presence of the second term in the square
brackets in Eq. (16). However, this constant term only leads to

Γ6 × Γ8
ΔΓ8

SR

S = 2

S = 1

Γ6 × Γ7
ΔΓ7

SR

S = 0

S = 1

1Se × 1SDD3/2
4η

F = 2

F = 1

(a)

(b)

(c)

FIG. 3. The short-range electron-hole exchange interaction splits
bulk excitons �6 × �8 (a) and �6 × �7 (b) into bright and dark
excitons characterized by the exciton spin S. In case of the exciton
1Se × 1SDD3/2, confined in a spherical nanocrystal, (c) the bright
and dark exciton states are characterized by the values of the total
exciton angular momentum F = 1 and F = 2, respectively, while
the splitting between them is contributed by both the long-range and
the short-range parts of the electron-hole exchange interaction.

the shift of the excitonic level and does not affect its splitting.
For this reason, this constant term is usually omitted [8,9].

The two main differences of the three-band model result
compared to that of the two-band model [8,9] are appearance
of the last term in the square brackets in Eq. (18) and the
complex dependence of the functions RJ

L(r) entering Eq. (19)
on the nanocrystal size.

In a nanocrystal, the long-range electron-hole exchange
correction to the exciton energy has an additional contribu-
tion due to the difference in the dielectric constants of the
nanocrystal and its environment [9]. As shown in Ref. [9], it is
determined only by the s-part of the hole wave function. For
this reason, the function R1/2

2 (r) does not affect this correction
which turns out to be very similar to that of the two-band
model. Since, for the two-band model, its detailed derivation
was given in Ref. [9], here we will only present the result:

�η(long) = 2 π h̄ωLT

3

(aB

a

)3 ε1 − ε2

ε1 + 2 ε2

×
[∫ a

0
dr r2 ψe(r) R3/2

0 (r)

]2

, (20)

where ε2 is the dielectric constant of the nanocrystal’s envi-
ronment.

IV. SHORT-RANGE ELECTRON-HOLE
EXCHANGE INTERACTION

The operators of the short-range electron-hole exchange
interaction in the bulk semiconductor of the crystal class Td

should be written separately for the �6 × �8 and �6 × �7
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FIG. 4. Size dependencies of the values η(long) (a/aB )3 (red solid
line) and η(short) (a/aB )3 (blue solid line) compared to their counter-
parts calculated within the two-band model (dashed lines) for InP
core-only nanocrystals.

excitons (while their Bohr radii are approximately the same):

H(short)
�8

(
r′

e, r′
h, re, rh

) = − �
�8
SR π a3

B

4
δ(re − r′

e)

× δ(rh − r′
h) δ(re − rh) (σ̂eĴ),

(21)

H(short)
�7

(
r′

e, r′
h, re, rh

) = �
�7
SR π a3

B

4
δ(re − r′

e)

× δ(rh − r′
h) δ(re − rh) (σ̂eσ̂h),

(22)

where �
�8
SR and �

�7
SR are the splittings between the exciton

bright and dark states in a bulk semiconductor (in the isotropic
model), see Fig. 3, and we distinguished between the Pauli
matrices referring to the electron and hole spin degrees of free-
dom by the corresponding subscripts. The form of Eqs. (21)
and (22) is dictated by the symmetry. The last delta-function
in the right-hand sides of Eqs. (21) and (22) reflects the
short-range character of the interaction. The two extra delta
functions are needed to make Eqs. (21) and (22) compatible
with Eq. (11), i.e., to employ the same formalism [21,22]
which was used for Eqs. (9), (10). The constants in the right-
hand sides of Eqs. (21) and (22) are chosen to match the
resulting splittings for the excitons in the bulk. Eqs. (21) and
(22) represent 8 × 8 and 4 × 4 matrices, respectively. They
can be combined to form a 12 × 12 block-diagonal matrix
which may be inserted into an analog of Eq. (11). This will
yield

Ĥ (short) = −η(short)(σ̂Ĵ), (23)

where

η(short) = �
�7
SR π a3

B

10

∫ a

0
dr r2 ψ2

e (r)
[
R1/2

2 (r)
]2 + �

�8
SR π a3

B

4

×
∫ a

0
dr r2 ψ2

e (r)

([
R3/2

0 (r)
]2 + 1

5

[
R3/2

2 (r)
]2

)
.

(24)

The two main differences of the three-band model result com-
pared to that of the two-band model [8,9,20] are appearance
of the first term in the right-hand side of Eq. (24) and the
complex dependence of the functions RJ

L(r) entering Eq. (24)
on the nanocrystal size.

V. NUMERICAL RESULTS

For numerical calculations, we consider a core-only
InP nanocrystal with the electron envelope wave function
given by

ψe(r) = 1√
2 π a

sin π r
a

r
.

The values of �
�8
SR = 40 µeV [23,24] and h̄ωLT = 170 µeV

[24] are taken from the experiment and the values of �
�7
SR =

9.26 µeV [26] and aB = 96 Å [26] were calculated. All the
other parameters are taken from Ref. [12]. In Fig. 4, we plot
the values of η(long) (a/aB)3 (red solid line) and η(short) (a/aB)3

(blue solid line) calculated according to Eqs. (17) and (24),
respectively, as functions of the nanocrystal size and compare
them to their counterparts calculated within the two-band
model (dashed lines). One can see that both parameters
demonstrate very weak size dependence and are very close
to the results of the two-band model.

VI. CONCLUSIONS

We have derived an effective spin-Hamiltonian accounting
for the exciton fine structure in quasispherical zinc-blende
semiconductor nanocrystals within the k · p formalism ex-
plicitly taking into account the spin-orbit split-off valence
band. Although this leads to a difference in the scaling law
of the electron-hole exchange interaction with the nanocrys-
tal size from that predicted within the two-band model, the
quantitative difference turns out to be small. In other words,
even within the three-band model, for excitons, strongly con-
fined in nanocrystals made of III-V and II-VI semiconductors
with fairly small spin-orbit splitting, the scaling of electron-
hole exchange interaction with nanocrystal size insignificantly
differs from the inverse nanocrystal volume law. In the mean-
time, the three-band model is more general and contains the
results of the two-band model in the limit � → ∞. Therefore
analytical expressions for exchange splittings obtained in this
work for arbitrary � can prove to be useful.
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