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We analyze the electronic structure of twisted bilayer graphene (TBG) nanoribbons close to the magic angle.
We describe a transition from an incomplete to a complete moiré structure. By considering zigzag and armchair
edge terminations, the low-energy bands are strongly modified, and thus, the edge flat-band localization is
sensitive to the type of boundary. By means of a scaled tight-binding model, we calculate the band structure and
find that, for an armchair configuration, an incomplete moiré edge suppresses the edge localization, while for a
zigzag configuration, we find a strong interference of the edge states with the moiré bands. In particular, for the
armchair termination, we observe a competition between the ribbon periodicity and the graphene monolayers,
which we describe with a potential well toy model. Furthermore, for ribbons with widths of multiple moiré cells,
the flat bands of the moirés in the bulk are unperturbed as we change the borders. These results are explained
in terms of the strong electronic localization, nearly Gaussian, in the AA stacking regions, as confirmed by an
inverse participation ratio analysis. Our results demonstrate that the electronic structure of TBG nanoribbons is
sensitive to the edge termination, offering an explanation for recent experimental results.
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I. INTRODUCTION

Due to the interplay between nontrivial band topology and
band flatness, magic-angle twisted bilayer graphene (TBG)
has shown to be an ideal platform for the appearance of a
plethora of topological and correlated phases, including, for
example, nonconventional superconductivity [1,2], correlated
insulators [3–5], ferromagnetism [6], and other many-body
effects [7–24]. For magic angles the flat bands near the
Fermi energy appear due to the localization of the electronic
wave function at the AA stacking sites; this was predicted
[25–27] and then experimentally confirmed [16,28–31]. The
wave-function geometry comes from the modulated interlayer
coupling, which can be seen as an effective moiré potential
well [32–37].

Studies of TBG with reduced translational symmetry, for
example, in flakes, have shown that a single moiré cell may
be enough to localize the wave function in the AA spots
[38], supporting a “moiré quantum well” picture. However,
theoretical [39–42] and experimental [43,44] studies have
demonstrated that in TBG with nanoribbon geometry, there
are states localized at the AA regions in both the bulk and
those near the edges. We refer as “moiré edge states” to the
states localized at the AA regions closest to the borders; these
may have a complete or incomplete moiré cell. On the other
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hand, the term edge states will be used as usual to refer to
the states localized at the zigzag borders of the honeycomb
lattice. In particular, it has been shown that in the presence of
a zigzag termination there is a coexistence of moiré states and
edge states near the Fermi energy [44], and that the edge states
are found at the edges of AB sites [39,40].

On the other hand, recent experiments have shown the
breakdown of moiré flat bands in TBG due to edge termination
[45]. In the experiment, the electronic localization is found
to be persistent even if translational symmetry is broken as
long as the moiré supercell is complete. However, when the
supercell is incomplete, there is a strong suppression of the
electronic localization, resulting in a vanishing of the density
of states near the Fermi energy.

A useful methodology to analyze the transition from
a complete to an incomplete supercell is by introducing
an interlayer sliding between graphene layers, where the
displacement between layers is particularly relevant in ter-
minated TBG due the change in the borders at both the
scales of the moiré lattice and the graphene lattice. This type
of displacement is known to produce a topological charge
pumping in the perpendicular direction of the displacement,
characterized by a topological invariant known as the sliding
Chern number [46–49].

In spite of this, while the topological sliding properties
provide a description of the number of moiré edge states, the
mechanism behind the breakdown of the flat bands as the
portion of the moiré cell is reduced at the edges, as well as
its relationship with electronic localization, is not clear. To
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address these questions, in this work we analyze the elec-
tronic properties of TBG nanoribbons with different unit cells,
ranging from an incomplete to a complete moiré supercell.
We consider two nanoribbon geometries: zigzag and armchair
[50,51]. For each configuration, we monitor the electronic
localization and the group velocity of the bands near the Fermi
energy, and we distinguish between the contributions origi-
nating from the moiré scales of those of the graphene lattice.
We find that the electronic structure is strongly sensitive to
the edge configuration, which may lead to the coexistence or
suppression of edge and bulk moiré electronic localization.
Our work demonstrates the significant dependence of the elec-
tronic structure of twisted bilayer graphene nanoribbons on
the edge termination and may offer an explanation for the
breakdown of the moiré flat bands found in Ref. [45].

The layout of this paper is as follows. In Sec. II we
present the model used, composed of a minimum tight-
binding Hamiltonian [52] plus a rescaling approximation. In
Sec. III we present our main numerical results concerning
armchair-terminated TBG nanoribbons, where we analyze the
change on the electronic properties as a function of the com-
pleteness of the moiré supercell within the ribbon. In Sec. III C
we discus the change in energy of the bands as we increase
the size of the moiré and explain them qualitatively through a
toy model. We also include a brief analysis regarding zigzag-
terminated TBG nanoribbons in Sec. IV. Finally, in Sec. V we
give our conclusions.

II. MODEL

We consider a TBG lattice as shown in Fig. 1(a). The struc-
ture is defined by rotating layers 1 and 2 of the AA-stacked
bilayer around the common center by ±θ/2, respectively.
The lattice vectors of graphene are a1 = √

3a(0, 1) and a2 =√
3a(

√
3

2 , 1
2 ), where a ≈ 1.42 Å is the distance between car-

bon atoms. Upon rotation, the lattice vectors on each layer
are modified as au/d

1,2 = R(±θ/2)a1,2. We consider a commen-
surate lattice [26,32] such that the mismatch between layer
produces a moiré pattern with lattice vectors given by

T1/2 = 1

2sin(θ/2)
R(−30◦)a1/2. (1)

We employ a minimum tight-binding Hamiltonian [52], which
consists of an intralayer part H|| and an interlayer part H⊥,
given by

H = H|| + H⊥

= −
∑

i �= j,m

γ m,m
i j (c†

m,icm, j + H.c.)

−
∑
i, j,m

γ m,m+1
i j (c†

m,icm+1, j + H.c.),

(2)

where c†
m,i and cm,i are creation and annihilation operators,

respectively, acting on site i and layer m, and γ m,m
i j and γ m,m+1

i j
are the intralayer and interlayer hopping integrals, respec-
tively. For the intralayer hoppings only first neighbors are
considered, which have a constant value γ m,m

i j = t|| = 3.09 eV.

FIG. 1. (a) Lattice structure of TBG with θ = 7.34◦, red dashed
line is the corresponding unit cell. The blue square cell is used to
construct a nanoribbon of width W . (b) Mini-Brillouin zone (red)
resulting from the twist between layers. For the nanoribbon the
Brillouin gets folded into the blue line as the momentum along the y
direction is quantized. (c) Formation of the nanoribbon with the unit
cell shown in (a), here five unit cells are shown.

The interlayer hopping is considered to decay exponentially as

γ m,m+1
i j = t⊥

d2
0

r2 + d2
0

exp

⎛
⎜⎝−

√
r2 + d2

0 − d0

λ⊥

⎞
⎟⎠, (3)

where t⊥ = 0.39 eV is the hopping amplitude, d0 = 3.35 Å is
the distance between layers, and λ⊥ = 0.27 Å is a modulation
of the interlayer hopping.

To reduce the number of atoms and the computational cost
in the numerical calculations, we employ a rescaling approx-
imation [53–55], where the bands in TBG depend only on a
single dimensionless parameter α given by [35]

α =
√

3at⊥
2h̄v f sin(θ/2)

∝ t⊥
t||sin(θ/2)

, (4)

where t⊥ refers to an average of the interlayer hopping and v f

is the Fermi velocity. The importance of this relation is that
the dependence on the ratio of the hopping integrals and angle
allows us to explore the low-energy physics of a TBG system
with a given α using a larger angle and thus reducing the
number of atoms in the unit cell. To do this we use a rescaled
intralayer hopping integral,

t|| → t||
�

, (5a)

where

� = sin(θ ′/2)

sin(θ/2)
. (5b)
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FIG. 2. Low-energy band structure for a TBG nanoribbon of the
width of one moiré cell with twist angle θ = 1.08◦ (black solid
line) and with θ ′ = 2.28◦ using the rescaling to simulate θ (red
dashed line). Above each band structure a schematic of the geom-
etry of each ribbon is shown, where the red circles indicate the
AA stacking regions. For (a) the moiré is complete, with the AA
regions located at the center of the ribbon. As the moiré cell is
complete, states get localized here and flat bands appear around
the Fermi energy. In (b) the moirés are split in halves with the AA
regions at the edges, and the spectrum around the Fermi energy is
dispersive.

In the above equation, θ ′ is the angle used to simulate the
spectrum of a system with angle θ . Furthermore, to preserve
the length of the moiré cell, a rescaling of the distances must
be done as well,

a → �a. (6)

This rescaling approximation allow us to simulate the magic
angle θ = 1.08◦, which has a unit cell of about 11 × 103

atomic sites. In particular, with an angle θ ′ = 2.28◦, which
has 5048 atoms, the low-energy band structure is nearly iden-
tical to that of the magic angle if we use a scaling factor of
� = 2.11 in Eq. (5), thus making computational calculations
more attainable.

III. ARMCHAIR-TERMINATED TBG NANORIBBONS

A. Electronic structure

By using the methodology described in the previous
section, we first consider the case of armchair-terminated
TBG nanoribbons. This configuration is the same as that in
Fig. 1(c), where the periodicity is along the horizontal di-
rection. In Fig. 2 we show the corresponding spectrum with
a single moiré ≈11.3 nm considering different moiré ter-
minations. In Fig. 2(a) the AA regions at the moiré center
coincide with the ribbon center and the moiré cell is mostly
complete; thus the usual localization at the AA regions occurs
and flat bands can be seen, in agreement with previous re-
sults in TBG flakes [38]. Since the graphene monolayers are

armchair-terminated, the low-energy sates are a mixture of
the valley degree of freedom and thus four flat bands appear
instead of the usual two. Meanwhile, in Fig. 2(b) the moiré
cells are split in halves with the AA regions at the edges. These
half-moiré cells are not sufficient to localize the wave function
at low energies, and the resulting spectrum is dispersive. In
Fig. 3 we further study this transition in ribbons of width W =
22.6 nm, around the length of two moirés, ensuring that there
is always at least one complete moiré within the ribbon. We
characterize different moiré terminations with a sliding pa-
rameter δ [46–49], such that it translates the ribbon cell within
the TBG lattice, starting from δ = 0, cf. Fig. 3(g), where the
moiré is centered with the ribbon, to δ = 0.25W , cf. Fig. 3(l),
where the center of the ribbon is between two moirés. In
Figs. 3(a)–3(f) we show the energy spectrum around the Fermi
energy (E f ) for six different configurations. For each band
structure, we show in blue the four lowest energy bands and
the next four in red. Note that the sliding structure is periodic
in δ such that δ = 0.3W corresponds to Fig. 3(e) with the unit
cell upside down. In Figs. 3(g)–3(l) and Figs. 3(m)–3(r) we
show the corresponding total charge density of the bands for
each system.

In Fig. 3(a) for δ = 0, there are four narrow bands near E f

which correspond to states mainly localized at the AA regions
within the whole moiré cells. There is also localization at the
incomplete moirés, but it occurs at higher energies, as shown
in Fig. 3(m). Interestingly, by following the sequence of pan-
els in Fig. 3, as we increase δ, the half-moiré cell at the bottom
starts to disappear while the upper one grows. Intuitively,
the increase in the upper portion of the moiré allows the
localization of the wave function in a greater area, lowering
its energy towards E f and also reducing its group velocity.
This effect is clearly seen in Figs. 3(a)–3(d), where four red
dispersive bands are flattened and pushed towards the center
of the energy spectrum, thus increasing their localization in
the AA centers, as shown in Figs. 3(g)–3(r).

However, although there is an increase in the size of the
incomplete moiré, the red band closer to E f in Fig. 3(d)
is further away in Fig. 3(e), which is also reflected in the
absence of hybridization between states of the two moirés
in Figs. 3(k) and 3(q). This indicates that the decreasing of
the moiré bands energy towards E f is nonmonotonous. We
further explore this behavior in Fig. 4, where we plot the
spectrum at the boundary of the Brillouin zone as a function
of δ. We observe an oscillatory behavior of the energy bands,
which we found to be influenced by the sliding parameter in
two distinct ways. Firstly, there is a general tendency of the
remote bands to transition from being dispersive to becom-
ing narrow and merge with the flat bands. This occurs near
δ = 0.25W . By continuing to increase the sliding parameter, it
is equivalent to moving backward in the plot. This large-scale
wavelength oscillation has been described as a topological
sliding effect in Refs. [46–49]. Secondly, the bands display
a short-wavelength oscillation not described before, which
we attribute to an interference effect at the atomic scale (cf.
Sec. III C).

To analyze these oscillatory effects, in Fig. 4(a) we show
the bands for two different ribbon widths (black and blue
lines). One thing to notice is that the moiré edge states behave
equally for both widths, suggesting that they mainly depend
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FIG. 3. Low-energy band structure for armchair-terminated TBG nanoribbons simulating a twist angle θ = 1.08◦ with constant width
W = 22.6 nm. We consider different moiré terminations by translating the unit cell of the ribbon by (a) δ = 0, (b) δ = 0.05W , (c) δ = 0.1W ,
(d) δ = 0.15W , (e) δ = 0.2W , and (f) δ = 0.25W . The blue bands are the four lowest energy bands, and these states are localized at the
complete moiré. The next four energy bands are shown in red. These correspond to the incomplete moiré, and as we change the termination,
increasing the size of the incomplete moiré, the bands get flatter and go towards Ef . In (g)–(l) we show the total charge density of the blue
bands respectively to (a)–(f) within the unit cell, while in (m)–(r) for the red bands.

on the completeness of the moiré supercell near the edges.
We show a comparison for more widths in Appendix. On
the other hand, Fig. 4(b) displays the same bands without
the scaling approximation. Thus a comparison between both
figures indicates that the long-wavelength oscillations remain
unchanged, but the short-wavelength oscillations are different.
This suggests that the transition of the bands from being dis-
persive to becoming narrow is a moiré scale effect and is well
captured within the rescaling approximation. Furthermore, we
notice that without the rescaling of the atomic distances, the
short-wavelength oscillation in Fig. 4(b) is invariant and has
a value of λ = √

3a/2. This associates the oscillatory effect
to the edges of the microscopic graphene lattice and can-
not be effectively mapped with the rescaling approximation.
Thus in Fig. 4(a), due to the rescaling the oscillation has
a larger wavelength given by λ′ = �λ in comparison with
Fig. 4(b) without rescaling. We further describe this effect in
Sec. III C.

B. Charge localization

The effect of an incomplete moiré cell at the edge is
depicted in Fig. 5(a), where we show the density of states
(DOS) near E f for the six borders considered in Fig. 3. As δ

increases more states move towards E f due to the completion
of the second moiré. In Fig. 5(b) the local density of states
(LDOS) for the blue bands in Figs. 3(a)–3(f) is plotted against
their y component, with an explicit representation of δ. The
black highlighted columns show the location around the AA
centers of the moiré. As the partial moiré becomes complete,
cf. red LDOS in Fig. 5(b), there is a sudden localization of the
electrons in the AA sites, in agreement with the experiment in
Ref. [45].

The previous numerical results suggest that electronic
localization plays a paramount role around E f . To further
elucidate its role, we perform a localization analysis using
the inverse participation ratio (IPR), which is widely used
as a measure of wave-function localization [56–59]. It is
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FIG. 4. Spectrum at the edge of the Brillouin zone as a function
of δ. (a) The rescaling is used, and we show in black the spectrum
for a ribbon of the width of one moiré and in blue for a width of two
moirés. It can be seen how the four bands go towards Ef as we in-
crease δ. Furthermore, these bands lower their energy independently
of the width of the ribbons, as these bands only depend on the moiré
that is being formed at the border. The complete moirés in the bulk
will just result in more flat bands around Ef . In (b) for the width
of one moiré without rescaling, the wavelength of the oscillation
increases as these come from the microscopic borders, which is not
equal within the rescaling, but the overall behavior is retained. The
dashed red vertical lines indicate the values of δ used in Fig. 3.

defined as

IPR(E ) =
∑

i

|ψi,k (E )|4, (7)

where the sum runs over the atomic sites. For extended states,
the IPR(E ) scales as 1/N , where N is the number of atoms,
while for localized states it scales as IPR(E ) ∝ 1/N0. A
clearer description is obtained by using the normalized IPR,
which is defined as [58]

α(E ) = log(IPR(E ))
log(N )

, (8)

and thus its range is between −1 and 0. In Fig. 6 we display
α(E ) for the bands near E f , using the same color code (blue
and red) as in Figs. 3(a)–3(f). Panels (a) and (b) show α(E )
for δ = 0 (a whole moiré at the center and moiré halves at

FIG. 5. (a) Density of states near Ef for the ribbons shown in
Fig. 3, denoted in different colors for δ = 0 (purple), δ = 0.05W
(blue), δ = 0.1W (green), δ = 0.15W (yellow), δ = 0.2W (orange),
and δ = 0.25W (red). The horizontal black lines indicate the offset
between the densities. (b) Local density of states (LDOS) of the four
nearest bands to Ef [blue bands in Figs. 3(a)–3(f)], plotted against
the y component of each site. The ribbons are aligned such that the
moiré centers (AA regions) are located at y = 0.

the edges) and δ = 0.25W (two complete moirés), respec-
tively. As expected, the highest α(E ) is located around E f ,
corresponding to the flat bands (indicated in blue). It is even
greater for δ = 0, as states are localized around just one moiré.
The α(E ) corresponding to the bands that merge with the
flat bands (red bands) change their localization behavior, be-
coming technically localized as flat bands for δ = 0.25W . All
these results suggest that states do have peculiar localization
properties around E f . This is further corroborated in Figs. 6(c)
and 6(d), where we display the logarithm of the electron den-
sity projected along the nanoribbon cross section. The density
tracks the centers of the moiré unitary cells as expected.

Moreover, a recent analysis of TBG continuous models
suggests that flat-band states are akin to coherent-Landau
states [60–62]. Also, flat-band states in strained graphene
nanoribbons have been proved to be pseudo-Landau-level

235418-5



ANDRADE, PANTALEÓN, GUINEA, AND NAUMIS PHYSICAL REVIEW B 108, 235418 (2023)

FIG. 6. Normalized inverse participation ratio α(E ) for (a) δ = 0
and (b) δ = 0.25W . As expected, the peaks occur around Ef where
we have the highly localized states at the AA regions. We show in
black dots the logarithm of the numerical probability densities for
states near Ef against their y coordinate for (c) δ = 0 and (d) δ =
0.25W . The red line corresponds to a Gaussian probability density in
which the standard deviation is chosen to match the IPR of the corre-
sponding state. We can see a good agreement around the localization
centers.

states akin to soliton states due to topological boundaries in
the Jackiw-Rebbi model [62]. In both cases a nearly Gaussian
envelope of the flat-band states was found. This has also been
confirmed in calculations that allow factorization of a lowest-
Landau-level part in the flat-band wave function [63–66].

Here a nearly Gaussian type of localization can be seen
in Figs. 6(c) and 6(d), as the maximal log|ψ (r)|2 for a given
y seems to be limited by downwards parabolas centered at
AA sites. Thus we propose a nearly Gaussian wave function
with a standard deviation σ such that their IPRs match, i.e.,
to equate the IPRs of the numerical results we use a Gaussian
wave function with σ given by

σ =
√

1

2π IPR(E)
. (9)

For each case we pick a state near E f and plot log|ψ (r)|2
against its corresponding Gaussian fit, indicated by the red
curves in Figs. 6(c) and 6(d) for δ = 0 and δ = 0.25W , re-
spectively. The excellent matching between the red curves and
the numerical results near the AA regions indicates a Gaussian
behavior in such parts. However, there are clearly fat tails

in Fig. 6(c) when compared with a Gaussian, indicating the
particular shape and properties of flat-band functions. These
fat tails are a result of the hybridization of the flat bands with
the remote bands [67]; they are responsible for the overlap
between different AA regions and highlight the interesting
nature of flat-band states. Also, the strong tendency for Gaus-
sian localization in AA regions shown here explains why the
nanoribbon width does not affect the spectrum very much but
instead breaks the AA regions by edges, in agreement with the
experiment in Ref. [45]. The strong localization can also be
used to estimate the effects of edges using a toy model based
on confinement effects, as will be explained in the following
section.

C. Toy model: Moiré potential well

As shown in Fig. 4, the lowering of the band energy to-
wards E f as δ increases is composed of two effects. The
first one is the global tendency associated to the confinement.
This effect can be explained within the moiré-quantum-well
picture, as confined states mainly localized in a quantum well
have an energy dependence of E (L) ∝ 1/L2, where L is the
length of the well. Thus when we increase the parameter δ, the
size of the well is increased, and this lowers the energy due to
less quantum confinement. We then propose that the energy of
the bands localized at the partial moiré have the following δ

dependence:

EAA(δ) = E0 + AW 2

(δ − δ0)2
, (10)

where A and E0 are coefficients to be determined, and δ0 =
−0.25W is the value where the partial moiré cell vanishes
completely. With the numerical data we can use the conditions
at EAA(δ = 0) = 0 and EAA(δ = 0.25W ) = 88 meV to obtain
the coefficients in Eq. (10), which give A = 7.33 meV and
E0 = −29.33 meV. In Fig. 7(a) we plot the curve given by
Eq. (10) using these parameters alongside the numerical re-
sults. Clearly, Eq. (10) correctly describes the energy lowering
without the oscillating component. As we stated in the pre-
vious section, the oscillation wavelength is invariant prior to
the rescaling, and this indicates that its origin comes from the
graphene lattice. One thing to notice is that due to the rotation
angle, the graphene lattice is not aligned with the ribbon’s
periodicity, and thus there is a discontinuity in the armchair
edge at which a small zigzag border appears. We found that
the values of δ at which the oscillation has its local maximums
occur when this zigzag border lies in the AB regions, while
the local minimums occur when it is in the AA regions. In
Figs. 7(b) and 7(c) we display the bands and corresponding
edges for two values of δ indicated by a square and a circle,
respectively, in Fig. 7(a). Both ribbons have moiré cells of
roughly the same size.

Therefore we recognize that the position of the zigzag bor-
der moves periodically as a function of δ, and its periodicity
corresponds to λ, the wavelength of the small oscillation in
the spectrum. Thus we propose that the zigzag edges are
responsible for the oscillating perturbation to the spectrum,
and we model them as

�E (δ) = B(e−(δ+δ0 )/γ − 1)cos

(
2πδ

λ

)
. (11)
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FIG. 7. (a) Energy near Ef of the bands at the Brillouin zone
borders for θ = 1.08◦ and W = 11.3 nm (one moiré cell). The black
lines show the numerical results, while the red lines show a fit
obtained by considering a change in energy akin to a quantum well
as a function of the well’s width (blue line), plus an oscillating
perturbation originated by the zigzag borders. The square and circle
markers respectively show the local minimum and maximum for
similar values of δ. The low-energy spectrum and the edges of the
ribbon are shown for both cases indicated by the markers. In (b) the
bands are nearer to Ef and the zigzag edges are at AA stacking sites,
while in (c) the bands are further away from Ef and the zigzag edges
are at AB sites.

Here, B is the amplitude of the perturbation, and γ modulates
an exponential decay that we included to control the strength
of the perturbation. As the moiré becomes mostly complete,
the spectrum is predominantly governed by the moiré well.
The energy of these states, mainly localized at the partial
moiré, as a function of δ is then

E (δ) = EAA(δ) + �E (δ). (12)

We found that B = −32 meV and γ = 0.4W fit the numerical
results as shown in Fig. 7(a). Interestingly, the large-scale

FIG. 8. Energy spectrum for TBG nanoribbons with (a) armchair
termination and a width WAC = 22.6 nm and (b) zigzag termination
and a width WZZ = 13 nm. Both ribbons are considered with δ = 0
such that each ribbon has a complete moiré at the center and moiré
halves at the borders. The red highlighted areas in (a) and (b) show
the energy windows at which the spectrum is shown in Fig. 3 and
Figs. 9 and 10, respectively.

oscillations that we found are consistent with those reported
in Ref. [49]. However, it seems that the impact of the small
oscillations was not fully considered. This perturbation of the
moiré flat bands has not been reported to our knowledge,
and the exact form of the coupling between moiré and edge
states still requires further research [42,44]. Furthermore, in a
real sample, in regions with zigzag edges this coupling will
inevitably emerge. Therefore, to complement this work, in
the following section we provide a similar analysis to the one
shown in Fig. 3 but for zigzag-terminated nanoribbons.

IV. ZIGZAG-TERMINATED TBG NANORIBBONS

In this section we investigate the scenario of zigzag-
terminated TBG nanoribbons. The ribbon’s unit cell is
illustrated in Fig. 1(c). Unlike the armchair case in the previ-
ous section, the zigzag configuration can be achieved through
a translation of a single shaded cell along the y direction.
Figure 8 depicts a comparison of the band structure for the
nanoribbons of the two considered configurations. The energy
bands for the zigzag configuration in Fig. 8(b) indicate the
presence of low dispersive states even at high energies. In
contrast, for the armchair configuration in Fig. 8(a), apart
from the localized states in the middle of the spectra, there
are fewer low dispersive energy states.

In the previous section we found that the states in the small
regions with zigzag edges, as shown in Figs. 7(b) and 7(c),
are responsible for the small oscillations of the moiré bands,
as seen in Fig. 7(a). However, the perturbation at the moiré
scale is minor and the spectrum is dominated by bulk bands;
in this situation, the spectrum for the armchair termination
clearly shows the flat-band structure of TBG. In contrast, for a
zigzag nanoribbon, the boundaries generate several edge states
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FIG. 9. Low-energy band structure for zigzag-terminated TBG
nanoribbons simulating a twist angle θ = 1.08◦ with constant width
W = 13 nm but for different moiré terminations obtained by trans-
lating the ribbon unit cell by (a) δ = 0, (b) δ = 0.05W , and (c) δ =
0.1W . We color the bands near Ef according to their localization:
blue for states localized near the AA regions of the mostly complete
moiré cells near the center of the ribbon, green for the states localized
near the AA regions of the incomplete moiré cells near the ribbon
edges, red for edge states, and purple for states localized at both AA
regions and edges. Below each set of bands we plot the correspond-
ing charge density indicated with the same color code.

that significantly impact the moiré spectrum, as depicted in
Fig. 8(b).

In Figs. 9 and 10 we characterize different moiré termina-
tions by modifying the sliding parameter δ. We ensure that
there is always at least one complete moiré within the ribbon.
Our focus is on the energy range marked by the red-shaded
region in Fig. 8(b). It is worth noting that this energy range
is narrower than that of the armchair case due to the denser
spectrum near the Fermi energy. Figures 9(a)–9(c) and 10(a)–
10(c) depict the band structure for different sliding values.
We classify the bands according to their localization: blue
for bands mostly localized at the AA regions, red for edge
states, green for (mixed) states that are a mixture between
AA-localized and moiré edge states, and purple for those that
are a mixture between AA-localized and edge states. We notice
the difference between moiré edge state and edge state: while
the first one is an state mainly localized in an incomplete
moiré along the edge (green), the second one is an state mainly

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 10. Low-energy band structure for zigzag-terminated TBG
nanoribbons simulating a twist angle θ = 1.08◦ with constant width
W = 13 nm. We consider different moiré terminations by translating
the unit cell of the ribbon by (a) δ = 0.15W , (b) δ = 0.2W , and
(c) δ = 0.25W . We color the bands near Ef according to their lo-
calization, blue for states localized near the AA regions, red for edge
states, and purple for states localized at both AA regions and edges.
Below each set of bands we plot the total charge density in the bands
of the respective color.

localized on the zigzag sites along the boundary (red). The
evolution of the states as the sliding parameter is modified is
not as straightforward as in the armchair case, as each edge
and bulk state has a different energy due to the border geome-
try. This complexity makes it challenging to differentiate them
solely based on their energy and reveals the impact of the edge
microscopic boundary in the electronic spectrum.

In Figs. 9(d)–9(m) and Figs. 10(d)–10(l) we show the total
charge density for the corresponding band structures. This
helps us distinguish the localization of states in the different
energy bands. Below each band structure we show the charge
density for the bulk, edge, and mixed bands. It is important to
note that this classification is not strict; we are using it solely
to differentiate the states based on their maximum localiza-
tion. Under this criterion, as shown in Figs. 9 and 10, is clear
that the bulk moiré bands (blue) are mainly localized in the AA
centers, while the edge states (red) mainly appear at the AB
regions. These edge states are reminiscent of the monolayer
zigzag configuration [50,51], and their localization in the AB
sites is in agreement with experiments in moiré structures of
graphite [39,40].

To characterize the different bulk and edge charge contri-
butions, we now perform a localization analysis. Figure 11
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(a) (b) (c)

(d) (e) (f )

FIG. 11. Normalized inverse participation ratio α(E ). Panels (a)–
(c) correspond to the bands shown in Fig. 9 and (d)–(f) for the
bands in Fig. 10. The color code is the same as in Figs. 9 and 10.
As expected, the most localized states usually correspond to edge
states (red), as they are distributed between a small number of atoms,
especially in (a) and (b). Notice the different scales used between (a)–
(c) and (d)–(f). On the contrary, states that are distributed between the
AA regions and the edges (purple) usually have the lowest value of
α(E ).

shows the parameter α(E ) in Eq. (8) around E f . In the top
panels, the mixed states (green) mostly occupy the incomplete
moiré cells with a small contribution from the AA centers, cf.
Figs. 9(g)–9(i), resulting in a low value of α(E ). The values of
α(E ) for the blue states are just slightly above the green ones,
as they are mostly contained within the complete moiré cells.
Both blue and green states have a similar value of their α(E )
to those of the armchair case, as they arise from the moiré
pattern. However, the red edge states show a clear difference
in magnitude, as they are distributed in a smaller number
of atomic sites. In the bottom panels, Figs. 11(d)–11(f), the
edge states are not as localized as in the previous case; most
of them are partially hybridized with moiré states (notice
the difference in the scales). The purple states are highly
hybridized moiré and edge states, and thus have the lowest
values of α(E ) in most cases. The blue states, on the other
hand, have their maximum value of α(E ) for δ = 0.25W , as
this is the point where the two different moiré cells present are
mostly complete. Thus the wave function becomes maximally
localized within the AA regions.

A recent experiment [45] has reported that the low-energy
flat band can exist as long as the moiré cell remains complete.
Tunneling spectra revealed moiré AA spots when the tip was
inside the sample. However, an absence of localization due
to an incomplete moiré was observed at the boundary. As
previously described for an armchair configuration, we have
found that the nearly Gaussian localization of the moiré bulk
states survives if the moiré is complete, cf. Figs. 6(c) and 6(d),
and is suppressed if the moiré is incomplete, cf. Fig. 5(b).
This effect is also present in a zigzag geometry, where the
maximum localization is when the moiré is completed, cf.
Fig. 11(f). Interestingly, we found that if the moiré is incom-
plete, there is an strong hybridization with less localized edge
states.

In the experiment described in Ref. [45], the edge ori-
entation predominantly features a zigzag termination. Their
results indicated a breakdown of the localized flat bands for
an incomplete moiré, and they also reported the presence of
edge states in their LDOS maps, aligning with our findings
in Fig. 9. These edge states, represented by the red and green
states in Fig. 9, manifest as residual LDOS peaks in incom-
plete moirés and rapidly decay with distance from the edges.
The AA-localized states only appear in complete moirés, in
agreement with the blue states in Fig. 10. Given that the
bulk localization is linked to the TBG flat bands, our results
demonstrate their sensitivity near the boundaries. Further-
more, for ribbons with widths spanning multiple moiré cells,
the flat bands in the bulk remain unperturbed as we modify the
borders. We believe that our work comprehensively captures
the essential characteristics of both bulk and edge states in
TBG nanoribbons, and it offers a detailed explanation for the
experimental results in Ref. [45].

V. CONCLUSIONS

In this work we have examined the effects of edges on the
electronic properties of twisted bilayer graphene nanoribbons.
Using a tight-binding model, we characterized the edge and
bulk states in nanoribbons with zigzag and armchair edge
terminations. We found that the flat bands in ribbons with
widths spanning multiple moiré cells remain insensitive to
edge modifications. However, near the boundaries flat-band
localization is sensitive to the edge termination. We observed
that the flat band exhibits nearly Gaussian localization, which
is suppressed if the moiré is incomplete. Additionally, depend-
ing on the edge orientation, bulk states can hybridize with the
edge states.

In armchair-terminated nanoribbons, the low-energy spec-
trum is determined by the completeness of the moiré cells at
the ribbon’s edge, transitioning from dispersive to flat bands
as the moiré cell becomes complete. This behavior aligns with
a moiré-quantum-well picture. There is also a perturbation
in the band’s energy due to the appearance of small regions
with zigzag termination. Depending on whether these zigzag
borders appear on AA or AB stacking regions, the band en-
ergy is either lowered or raised, while the main Gaussian-like
localization in the AA regions remains. These zigzag regions
will inevitably appear due to the mismatch between the ribbon
alignment and the armchair direction.

In zigzag-terminated nanoribbons, there is a more pro-
nounced impact on the low-energy spectrum due to the edge
states, as they can become hybridized with the moiré states.
However, some states remain predominantly localized within
the AA regions. The influence of the edge states is expected
to be diminished in real samples as translational symmetry is
reduced, resulting in a mixture of armchair and zigzag bound-
aries. As in the armchair case, the behavior should primarily
be described by the bands localized within the AA regions.
Consequently, regardless of the edge termination, we expect
AA localization when the moiré is complete and delocalization
when it is not. Our findings provide an explanation for the
breakdown of flat bands and the coexistence of bulk and edge
states in recent experiments with twisted bilayer graphene
nanoribbons [45].
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APPENDIX: SIZE INVARIANCE OF MOIRÉ EDGE STATES

To further elucidate the independence of the moiré edge
states to the ribbon’s width, in Fig. 12 we show a comparison
of the spectrum at the Brillouin zone borders, for different
widths, for up to six moiré supercells. It is evident how the
four bands converge towards E f as the moiré supercell at the
borders is completed. For widths greater than two moiré cells,
there will always be bands at E f corresponding to the bulk
moiré supercells that are complete in the bulk. The spectrum
was obtained through a rescaling of a system with θ ′ = 4.41◦,
and once again, we observe an impact on the oscillation
wavelength. This reinforces the argument that this effect arises
from the microscopic graphene lattice.

FIG. 12. Spectrum at the edge of the Brillouin zone as a func-
tion of δ for multiple nanoribbon widths. Here the spectrum was
obtained through a rescaling of a system with θ ′ = 4.41◦ and thus
the oscillation wavelength is greater. The figure shows how the moiré
edge states behave equally independent from the ribbons width. As
the width is increased more supercells can be found within the bulk,
resulting in more flat bands at Ef .
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