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Epitaxial two-dimensional membranes under intrinsic and extrinsic strains
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Two-dimensional (2D) materials naturally form moiré patterns with other crystalline layers, such as other
2D materials or the surface of a substrate. These patterns add a nanoscale characteristic length in the form of
a superlattice: the moiré wavelength. Understanding the origin and characteristics of these patterns is crucial
to design and interpret moiré-induced physical properties. Here, we use a mixed continuum mechanics plus
atomistic model to study two experimentally relevant epitaxial 2D materials—graphene on Ir(111) and MoS2

on Au(111)—under extrinsic and intrinsic strains. We consider three different scenarios that substantially affect
the lattice constant of the 2D materials, the wavelength, and the corrugation of the moiré pattern. (i) Under
the influence of the interaction with the substrate, bending energy produces nontrivial variations of the moiré
properties, even when the strain is small. (ii) When locked on a progressively strained substrate via the valleys
of the moiré, the membranes’ nanorippling amplitude goes through several jumps related to relatively smaller
jumps in the interatomic distance of the 2D materials. (iii) Finally, with an increasing zero-deformation value
of this interatomic distance (possibly controllable with temperature or illumination in experiments), the moiré
wavelength can either increase or decrease.

DOI: 10.1103/PhysRevB.108.235415

I. INTRODUCTION

Moiré patterns in two-dimensional (2D) materials like
graphene, boron nitride, and transition metal chalcogenides
are a key ingredient for enriching the properties of these flex-
ible, atomically thin membranes [1–4]. Deformations, both at
the atomic scale and at the larger scale of moiré nanorippled
patterns, are relevant here [5,6]. They are actively studied in
twisted bilayers of 2D materials with varying degrees of con-
trol on the geometry of moiré patterns [7–9]. When the layers
have different lattice parameters, which can be adjusted by
strain imposed on one of the layers, considerable modification
of the electronic properties is expected [10], giving rise to the
concept of moiré gravity within a cosmology viewpoint and
even to gauge fields experienced by the electronic states in
the presence of out-of-plane deformations [11]. The role of
moiré patterns in bilayer systems is also possibly prominent
in relation to the relative interfacial sliding between the two
layers, bringing peculiar frictional behavior [12,13] and pos-
sibly superlubricity [14].

Epitaxial 2D materials, i.e., 2D materials that have been
synthesized onto crystalline substrates, are also characterized
by moiré nanorippled patterns [15–19]. These patterns in-
troduce a spatial modulation of the 2D material’s electronic
properties [20–22] and superlattice effects, including replicas
of electronic bands [23,24] and mini band gaps [24], whose
positions depend on the moiré structure and its wavelength �

in particular. Understanding the influence of metal/2D mate-
rial moirés is a lively field of research, which has, for instance,
revealed graphene phonon enhancement via top-deposited
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molecules [25], rotational ordering of incommensurate con-
fined monolayers in the presence of competing length scales
[26], a modified interaction between Kondo impurities [27],
and nanoscale charge modulations [28]. Knowledge of � and
of the nanorippling height modulation � is hence crucial to
understand and control moiré-related properties. This moti-
vated us to understand how � and � are selected by the
competition between the elastic, membranelike properties of
epitaxial 2D materials, on the one hand, and the interaction
with their substrate, on the other hand [29]. It is accord-
ingly possible to explain a mechanical instability in epitaxial
graphene on Ir(111), wrinkling, that occurs as the strength of
the graphene-substrate interaction changes [30] and is not due
to only a mismatch of thermal expansion coefficients in the
substrate and the 2D material [31,32].

A more obvious way to modify the moiré topography
is to induce mechanical strain within the 2D material, i.e.,
compression or extension of interatomic bonds. This is ac-
companied by an elastic energy penalty which can be relieved
by either further rippling or unrippling. In principle, this
can be achieved in several practical situations: applying me-
chanical stress to the substrate, varying the temperature to
benefit from the different lattice compressions/expansions in
the substrate and 2D material [31,32], and illuminating the 2D
material [33,34].

Here, we explore strain-induced changes in the moiré to-
pography using a mixed continuum mechanics plus atomistic
model [29]. With this method it is possible to address systems
comprising several hundred atoms, with no need to impose
commensurability between the lattices of the substrate and of
the 2D material as in most density functional theory (DFT) ap-
proaches treating the substrate in a realistic way. It is even pos-
sible, at the expense of relatively large computational times,
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FIG. 1. (a) Graphene and (b) MoS2 single layers on their crys-
talline substrates, each with a distinct nanoundulation pattern (cosine
and sine, respectively). The strength and spatial variations of the
interaction potential between the substrate (lattice constant as) and
the 2D material, which depend on the relative atomic coincidences,
together with the elastic energy stored in the 2D membrane, set the
moiré lattice’s structural parameters (wavelength �, rippling ampli-
tude �, membrane lattice constant aC,MoS2 ). The variations of these
three parameters with as and the zero-deformation values of aC,MoS2 ,
a0

C,MoS2
, are studied here. The top cartoon illustrates a possible local

deformation of the membrane’s surface (first in plane, between the
two gray shaded areas, then out of plane, from the gray shaded area
to the black frame).

to tune different control parameters of the structure, partic-
ularly strain, which cannot be tuned freely with numerical
frameworks requiring commensurability. More specifically,
we consider two prototypical systems, epitaxial graphene on
Ir(111) and MoS2 on Au(111), that are widely studied by
experimentalists (see, e.g., Refs. [25–28]). We first determine
the equilibrium configurations of the moiré patterns in terms
of � and � and the lattice parameter a (within the 2D mem-
branes) as the lattice constant of the substrate is varied—an
experimentally relevant situation with heteroepitaxial stress.
We find that bending effects play an important role in the
precise value of �. Next, we revisit this question by imposing
a constraint on the membrane, namely, locking it on its sub-
strate at the valleys of the moiré, where an atomic coincidence
occurs between the substrate’s and 2D material’s lattices. This
is, once more, an experimentally relevant situation where the
2D membrane is prevented from sliding on its substrate. We
find that the 2D material experiences a series of mechanical
transformations, whereby � abruptly varies for certain sub-
strate strain values. Finally, we study the influence of the
zero-deformation value of the lattice constant within the 2D
material. This quantity, which can vary with temperature or
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FIG. 2. Three-dimensional colored surface representing the min-
imum of the (a) graphene/Ir(111) and (b) MoS2/Au(111) adhesion
energies as a function of the x, y position of a membrane atom with
respect to the substrate atoms’ in-plane positions.

illumination in certain 2D materials, is found to influence the
moiré topography in a different way than substrate strain does.

II. METHODS

Our model considers the 2D materials to be flexible and
deformable membranes, on the one hand, within a continuum
mechanics viewpoint and, on the other hand, atomic lattices
that interact with their crystalline substrates according to the
relative positions of the atoms (Fig. 1). The membranes’ me-
chanical properties are treated within the thin plate theory,
which assumes phenomenological elastic constants. The ad-
hesion to the substrate is modeled by starting with existing
DFT calculations of the interaction potential versus the dis-
tance between the substrate and 2D material. The details of
this potential vary with the relative in-plane positions of the
atoms in the substrate and the 2D material (see Fig. 2). A
parametric analytic form of the potential is then sought, with
parameters varying with the relative atomic positions. Here,
any interfacial lattice mismatch produces a periodic spatial
variation of these relative positions, leading to a periodic
lattice (a superlattice) of (quasi)coincidences.

This superlattice is the well-known moiré pattern, with
wavelength � (its period), and the effect of the adhesion
potential is to create a nanoripple pattern with the same wave-
length and amplitude �. Of course, � and � depend on the
relative values of the lattice constants of the substrate, as,
and of the 2D material, a, and on the twist angle (which we
disregard here but considered in our earlier works [29]). Note
that a is really the lattice constant within the membrane’s local
surface and not its projection along the substrate’s surface
(which we assume is flat, i.e., unperturbed by the presence of
the 2D material). Choosing a simple, yet realistic, 2D shape
for the membranes based on sine or cosine functions, it is
then possible to numerically compute the total energy of the
system, including elastic and adhesion contributions, which
may or may not compete. This is precisely what we did in our
recent work [29] in the spirit of previous works on bilayers
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TABLE I. Elastic constants of freestanding and on-substrate graphene and MoS2 (Lamé parameters λ and μ, Poisson’s ratio ν, and bending
modulus κ) and structural parameters of the 2D materials and of the substrates [lattice constants (LCs) and thermal expansion coefficients α]
from experiments (Expt.) and simulations (Sim.) performed within different theoretical frameworks.

Graphene Graphene/Ir MoS2 MoS2/Au(111) Ir(111) Au(111)

λ (eV/Å2)
Expt. 3.60 [38] 4.21 [39]
Sim. 2.41, 3.29 [40,41] 3.29 [36]

μ (eV/Å2)
Expt. 9.12 [38] 8.98 [39]
Sim. 9.95, 9.38 [40,41] 3.6 [36]

ν

Expt. 0.19 [39]
Sim. 0.12, 0.149 [40,41] 0.29 [42]

κ (eV)
Expt. 1.17a [43] 6.0 [44]
Sim. 1.1, 1.41 [45,46] 9.61 [47,48]

LCs (Å)
Expt. 2.462a [49] 2.455, 2.462 [50] 3.167a [51] 3.163 [52] 2.715 2.883
Sim. 2.457 [40]

α (10−6 K−1)
Expt. [−8, −5.5] [53–56] [6.7,7.3] [57–59] 6.47 [60] 14.00 [61]
Sim. −3.6 [62] 7.2 [63]

aValues for the bulk material.

of 2D materials [35,36], but taking into account out-of-plane
deformations which can play important roles in the case of
epitaxial 2D materials. Although our model can treat strain
inhomogeneities, for simplicity we assume a uniform a in
the following. This assumption is reasonable in the present
case of small-� (< 10 nm) moirés, for which the variation of
interatomic distances is expectedly very small across a moiré
unit cell [37].

The system’s elastic energy within a moiré unit cell is
written as a continuous sum,

Eel = 1

2

∫∫ [
λ(εxx + εyy)2

+ 2μ
(
ε2

xx + ε2
yy + 2ε2

xy

)]
dxdy

+ κ

2

∫∫
{(∂x∂xuz + ∂y∂yuz )2 + 2(1 − ν)

× [(∂x∂yuz )2 − ∂x∂xuz∂y∂yuz]}dxdy, (1)

where λ and μ are the Lamé coefficients, κ is the bending
constant, and ν is the Poisson ratio. Different values for
these constants are summarized in Table I for graphene and
MoS2 (we disregard their possible variations with the crystal-
lographic direction [64–66]). We do not consider the effect of
temperature, which may change the values of the mechanical
constants in a so far unknown way in the case of on-substrate
2D materials. Whenever possible, in our calculations we use
experimental values for the epitaxial systems. When they do
not exist, we use experimental values for isolated single layers
or, if no other value is available, those for the corresponding
three-dimensional material. Equation (1) combines the com-
ponents of the strain tensor εαβ , with α, β = x, y, and the
spatial derivatives of the z component of the displacement vec-
tor �u (see Fig. 1). The former are defined as εαβ = 1/2(∂βuα +
∂αuβ + ∑

τ=x,y,z ∂αuτ ∂βuτ ), with ∂α,β = ∂/∂α,β . Importantly,

all spatial derivatives of �u implicitly involve the 2D material’s
lattice constant and its deviation from its value in the absence
of deformation of the atomic bonds, the zero-deformation
value a0, whose influence will be studied in Sec. V.

We write the adhesion energy as a sum over all N atoms of
the membrane within the moiré unit cell,

Ead =
∑

i∈[1,N]

ead(xi, yi, uz,i ), (2)

where xi and yi are the in-plane positions of the 2D ma-
terial’s atoms and ead is in the form of a Morse potential,
p × (1 − e−q×(uz,i−r) )2 + s. The parameters p, q, r, and s de-
pend on xi and yi and are determined by seeking the best fit of
the Morse potential with the DFT data. The minimum of ead

and the corresponding distance between the 2D material and
its substrate are represented for epitaxial graphene on Ir(111)
and MoS2 on Au(111) in three-dimensional surface plots in
Fig. 2. For both systems the parameters were determined pre-
viously (see Ref. [29] for details of the DFT data and Morse
parametrization).

In the present work, using a home-made multiprocessor
PYTHON code running on a 10-core Intel Xeon W-2150B
3.00 GHz CPU, we sought low-total-energy (i.e., Eel + Ead)
configurations among extended sets of configurations where
�, �, a, a0, and as were varied, in some cases imposing
specific constraints on the system, which will be the case in
Sec. IV. We considered height variations with the position
�r in the form of �/3 + �/9(cos �k1 · �r + cos �k2 · �r + cos �k3 ·
�r) for graphene and �/2 + �

√
3/3(sin �k1 · �r + sin �k2 · �r +

sin �k3 · �r) for MoS2, with �k1, �k2, and �k3 being three vectors
forming 120◦ angles and having a norm of 4π/(�

√
3).
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III. MEMBRANE DEFORMATIONS VERSUS
SUBSTRATE STRAIN

In-plane compressive or tensile strain in the substrate, i.e.,
a variation of as with respect to a reference value (usually, the
bulk equilibrium value at a given temperature), is one of the
structural parameters that can be controlled experimentally.
This is the case, for example, when graphene grown on a sub-
strate at elevated temperature wrinkles upon cooling down due
to the distinct thermal expansion (Table I) in the two materials
[31,32]. Another possible implementation of substrate strain
could be mechanical stress applied macroscopically to the
substrate. In all these situations, substrate strain can typically
reach 1%, rarely more.

An interesting question concerns the equivalence of posi-
tive (negative) substrate strain with negative (positive) strain
within the 2D material. In our framework, where the lattice
constant within the 2D material is assumed to be spatially uni-
form, the two situations are equivalent. A follow-up question
is whether, experimentally, it is possible to directly control
the strain of an epitaxial 2D material, i.e., to stress it indepen-
dently from the substrate. In fact, this seems to be challenging.
Another way to generate strain in the 2D material, probably
more relevant experimentally, will be discussed in Sec. V.

For both graphene/Ir(111) and MoS2/Au(111), we ex-
plored 7000 configurations with varying values of {�,�, a}.
For each a value, we determined the minimum of the total-
energy 2D surface versus � and � and finally identified the
a value, yielding the global energy minimum (and the corre-
sponding � and � values) [29]. The procedure was repeated
for 11 substrate strain εs values.

The result is represented in Fig. 3 for the two systems.
As expected, the moiré wavelength � increases as the lattice
mismatch between the 2D material and its substrate decreases,
i.e., towards increasing negative εs for graphene/Ir(111) (aC

remains smaller than aIr) and positive εs for MoS2/Au(111)
(aMoS2 remains larger than aAu).

Qualitatively, the general trend is similar to what a ba-
sic calculation of � = 1/|1/a‖ − 1/as| [67], neglecting any
nanorippling, predicts (dotted curves in Fig. 3, calculated
with a‖ values of the in-plane projections of a measured in
high-resolution diffraction experiments [50,52]). There are,
however, significant deviations from this purely 2D viewpoint,
as our model systematically predicts larger � values. This
confirms one of the key conclusions of our previous work [29],
namely, that the accumulation of the bending energy penalty
in the membrane is mitigated by increasing �. This is here put
in evidence by studying the effect of substrate strain, whereas
only the influence of ead was addressed previously.

Beyond the sign of the � versus εs slope, whose ori-
gin is rather trivial, there are noticeable differences between
graphene/Ir(111) and MoS2/Au(111). The former adjusts not
only its � value but also its nanorippling amplitude � (0.35–
0.45 Å) and its lattice constant (0%–0.04%). The variations of
� are nonexistent for MoS2/Au(111).

Interpreting these different behaviors is not straightfor-
ward. Obviously, pure 2D strains are more costly for graphene
than for MoS2 (stronger interatomic bonds and larger Lamé
parameters; see Table I), while bending graphene is less costly
[graphene is thinner, and although Poisson’s ratio is smaller,

FIG. 3. Influence of in-plane biaxial deformation of the substrate
lattice. The variations of �, �, and aC,MoS2 in the graphene and
MoS2 moiré lattices are represented as a function of the substrate’s
in-plane deformation εs, with respect to the room-temperature equi-
librium lattice constant [Ir(111): 2.715 Å; Au(111): 2.883 Å]. The
aC,MoS2 values are coded by the color of the symbols; the � values
are represented by the size of the disks. Dotted lines show values
calculated disregarding the influence of nanorippling for two sets
of room-temperature experimental values of the in-plane projection
of the 2D material’s lattice constant (values from Refs. [50,52] for
graphene/Ir(111) and MoS2/Au(111), respectively).

κ is much smaller; see Eq. (1) and Table I]. This does not,
however, explain the outcome of our calculations. More rele-
vant here are the differences in the values of the minimum of
ead at different sites of the moiré. They are significantly larger
in the case of MoS2 [29] (Fig. 2). Hence, for MoS2 there is a
stronger tendency to adopt a well-defined value of � (0.45 Å,
with no variations in the εs range explored): there is a strong,
substrate-induced selection of the nanorippling. In contrast, in
the case of graphene � can vary.

For positive εs values, where the graphene/Ir lattice mis-
match increases, � decreases, tending to increase the bending
energy penalty. One way for the membrane to circumvent
this cost is to decrease �. Beyond a certain εs value, further
decreasing � becomes too costly (ead penalty), so a increases
to limit the lattice mismatch, hence the excessive decrease of
� (and bending energy penalty). The same line of thought
explains the increase of a for MoS2 at increasing negative εs

values.

IV. LOW-ENERGY CONFIGURATIONS WITH SUBSTRATE
STRAIN AND WITHOUT INTERFACIAL SLIDING

Until now, we have sought the equilibrium energy con-
figuration of the system, imposing no constraint on the
way the 2D membrane can change its topography and the
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compression/extension of its interatomic bonds. In other
words, we have assumed a total absence of energy barriers
between different membrane configurations on their substrate.
In an experiment where a control parameter varies (more
or less) continuously, this assumption might be too strong.
One can, for instance, think of the Peierls-Nabarro barrier
[68,69] related to the lattices’ discreteness, which opposes
the motion of interfacial dislocations; actually, a moiré lat-
tice is nothing more than a 2D array of dislocations [70].
Experimental evidence exists that � hardly varies over sev-
eral hundred kelvin below graphene’s growth temperature on
Ir(111) [71,72], suggesting that the graphene lattice cannot
glide over the substrate lattice while the latter is compressed,
despite a mismatch of thermal expansion coefficients. In-
stead, the two lattices are “locked in” due to the weak, but
nonzero, covalentlike contribution to the adhesion energy in
graphene/Ir [73] (also present in MoS2/Au [74]).

The lock-in scenario should apply to various 2D
material/substrate systems, as long as the covalentlike con-
tribution to the adhesion energy is non-negligible. This
contribution translates into variations of the adhesion energy
from one moiré site to another [75]. They are especially strong
for metal surfaces like Ni(111) and Ru(0001) in contact with
graphene, for which the lock-in scenario is experimentally
the most relevant one. They are much fainter, but nonvanish-
ing, for Ir(111) and even smaller for Cu(111) and Au(111);
for these graphene substrates the lock-in scenario is expect-
edly relevant within a limited range of substrate strain. The
scenario can be translated into a criterion characterizing the
relative in-plane atomic positions of the 2D material and its
substrate at a specific site of the moiré unit cell. There, the
relative atomic positions must be unchanged (along with the
number of atoms within the unit cell) during the process that
is imposed on the system. In practice, we need to consider
different sites depending on the shape of the nanorippling, es-
pecially depending on whether it is a 2D cosine (graphene/Ir)
or a 2D sine (MoS2/Au). For the former, the site is a moiré
hill, located at the end of the �um moiré unit vector [73]; for the
latter, the site is located at the end of �vm + 1/2�um [52,74] (�vm

is the second moiré unit vector).
Our calculation of the relative atomic positions requires a

2D integration of distances along a nanorippled surface, a task
that we perform numerically; no simple analytical expression
is available in the present case. It is hence not possible to
directly invert the problem, namely, to deduce �, �, and a for
a given value of the relative atomic positions. Instead, we use
extended sets of {�,�, a} values (typically, 106), select those
(a few thousand) yielding relative atomic positions within a
0.4% tolerance range, and calculate their total energies to fig-
ure out which of these has the lowest energy. Strictly speaking,
this is not the system’s equilibrium configuration but is the
most favorable one within the locked-in scenario. The process
is repeated for all εs values. Note that for certain εs values,
a second lowest-energy configuration with close energy is
found (by “close,” we mean that the configuration is only
10% or less higher than the full energy span of the calculated
configurations).

Figure 4 shows the � and a values calculated within
this scenario as the substrate strain εs is varied (�, not
shown, is imposed by the lock-in constraint and has only

FIG. 4. Influence of in-plane biaxial deformation of the substrate
lattice in the absence of interfacial sliding. The variations of � and
aC,MoS2 in the graphene and MoS2 moiré lattices are represented as
a function of the substrate’s in-plane deformation εs, with respect
to the room-temperature equilibrium in-plane lattice constant. In the
calculations, the relative positions of the C or S atoms with respect to
the Ir and Au atoms, respectively, are kept constant within the valleys
when εs varies.

slight variations purely due to the variation of as). Not sur-
prisingly, the variations are markedly different from those in
Fig. 3. The most striking observation is the existence of jumps
in �(εs). Such jumps also occur in a(εs), but they are much
smaller, about 0.15% (graphene) and 0.05% (MoS2).

What is the origin of these jumps? Let us first invoke a
purely mechanical argument: a membrane subjected to com-
pressive (tensile) biaxial heteroepitaxial stress is expected
to have an increased (decreased) � value. The membrane,
however, is here also subjected to the interaction with the
substrate, and as we saw earlier, ead favors a specific � value.
A reduction or increase of � too far from this value, promoted
by the mitigation of elastic energy accumulation, will hence
become unfavorable at some point. In this case the membrane
can increase (decrease) its nanorippling if a increases (de-
creases).

At this point, a few remarks can be made. The abrupt
change in � and a appears to be discontinuities in Fig. 4
(they are marked by vertical dotted lines connecting an upper
branch and a lower branch). For these jumps, the two sets
of � and a values correspond to slightly different total ener-
gies, and one should expect that repeating the calculations for
slightly lower or larger (few 0.01%) εs values will change the
hierarchy between the two branches; that is, the jumps are ex-
pectedly less abrupt than is apparent in Fig. 4. We note that the
calculation results presented in Fig. 4 represent considerable
computation time, several full weeks. Anyway, the observed
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FIG. 5. Influence of the zero-deformation value a0
C,MoS2

of the
lattice constant of the membrane. The variations of �, �, and
aC,MoS2 in the graphene and MoS2 moiré lattices are represented as
a function of the variations of a0

C,MoS2
and �a0

C,MoS2
/a0

C,MoS2
. The

aC,MoS2 values are coded by the color of the symbols; the � values
are represented by the size of the disks. Dotted lines show values
calculated disregarding the influence of nanorippling for two sets of
room-temperature experimental values of the in-plane projection of
the 2D material’s lattice constant (values are from Refs. [50,52] for
graphene/Ir(111) and MoS2/Au(111), respectively).

jump recalls a well-known instability of membranes, namely,
their sudden strain-induced buckling, here controlled by the
interaction with the substrate.

V. MEMBRANE DEFORMATION BY INTERNAL STRAIN

In this section, we turn to the influence of another parame-
ter which may be seen as the source of what we call “internal
strain.” So far we have assumed fixed zero-deformation values
of the lattice constant within the membrane a0 (2.462 Å for
graphene and 3.167 Å for MoS2, values measured at 300 K
for the flat layers within the bulk version of the materials; see
Table I). If by some process a0 varies, then the ε strain within
the membrane varies too. The membrane might tend to limit
the corresponding elastic energy penalties with changes in �

and �. Several processes may lead to a0 variations. Temper-
ature, for instance, can have this effect in relation to phonon
anharmonicity [40,57,62,76], and nontrivial variations can be
expected, possibly altered by the presence of a substrate [77].
Illumination can also be relevant, as envisaged so far in 2D
materials other than graphene and MoS2, for example, via
photostriction [33] or light-induced electronic states [34].

Figure 5 shows the calculated �,�, and a variations as
a function of a0. There is a global increase of � as a0

increases in the case of graphene/Ir and a global decrease
for MoS2/Au, at variance with the �(εs) trend observed in
Fig. 3. This is actually expected, at least qualitatively: here,
increasing a0 tends to effectively decrease ε (strain within the

membrane). Although the extent of the � variations is close
to that in Fig. 3, close inspection reveals several differences.
More importantly, the a variations are very different: in both
graphene and MoS2, a increases similarly to a0 but with some
small differences, i.e., ε ∼ �a0/a0. This is accommodated
in different ways in graphene and MoS2: in the former, �

steadily increases with �a0/a0, and the membrane adjusts �,
while in the latter, � occasionally decreases and � is constant.
This is, once more, a manifestation of the strong driving force
of ead to select a well-defined value of � in the case of MoS2.
Said differently, � is not, for this material and in this range of
�a0/a0 values, a free parameter that the membrane can adjust
to minimize its energy.

The comparison between Figs. 3 and 5 illustrates that di-
rectly changing a (in Fig. 3 changes in as are considered,
but as mentioned earlier, they are equivalent to changes in a)
does not have the same effects as changing a0. The reason is
that a change in a0 directly translates into an in-plane elastic
energy penalty or gain, varying like ε2, while the direct effect
of a change in a is to alter the relative atomic coincidences
between the substrate and membrane atoms, leading to an
ead penalty or gain (which can then be mitigated with elastic
energy changes).

VI. SUMMARY

Using a model mixing a continuum mechanics description
of 2D membranes and an atomistic description accounting
for the interaction of these membranes with crystalline sub-
strates, we have explored how epitaxial graphene/Ir(111)
and MoS2/Au(111) adapt to different forms of strain, im-
plemented in different situations. We explored the regime of
small strains, which seems to be the most relevant experimen-
tally.

First, we considered planar, biaxial strain within the sub-
strate (which is somehow equivalent to a strain within the
membranes). In this situation the membranes were allowed
to adopt a lowest-energy configuration, their equilibrium con-
figuration, and we found that nanorippling, and the related
energy cost, causes a departure from the purely geometrical
standard estimate of the moiré wavelength usually assumed
in the literature (� = 1/|1/a‖ − 1/as|). We also found that
MoS2 is more strongly influenced by its Au substrate and
therefore does not readily change its nanorippling amplitude,
while graphene has more freedom in this respect on an Ir
substrate. Both materials can also adapt their lattice parameter
to manage the substrate biaxial strain.

We then turned to another situation in which the 2D mem-
brane is no longer free to find its equilibrium state when the
substrate is strained but, rather, is locked on it via the moiré. In
this experimentally relevant situation, the membrane is pinned
on its substrate at the valleys of the moiré (where the 2D
material has the strongest interaction with its substrate), and
the moiré wavelength is not a free parameter. The membrane
experiences a series of transformations, with jumps in its
nanorippling amplitude and its lattice parameter as the sub-
strate strain varies, and overall, its lattice constant increases
with increasing substrate strain.

Finally, we considered a situation in which the zero-
deformation value a0 of the lattice constant in the 2D material
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varies and sought the minimum-energy configurations once
more. Reminiscent of the effect of substrate strain, a global
increase of the moiré wavelength with a0 was obtained. The
2D material’s lattice constant tends to follow, at least to some
extent, the a0 variations; the membrane can now change its
nanorippling amplitude (in the case of graphene/Ir), and when
it cannot, on the contrary, it needs to adjust its moiré wave-
length, which complexifies the evolution of the latter.

Our analysis could serve as a starting point to quantitatively
understand certain mechanical instabilities of on-substrate 2D
materials. Strains, induced by temperature, for instance, al-
ter the at-equilibrium mechanical state of the membranes.
Certain hinderances can prevent the material from adopting
this low-energy state, and processes such as the buildup of
lateral compressive stress due to a lattice locking onto the
substrate might be relevant in practice. The 2D material it-
self might change its (internal) mechanical properties under
external stimuli (e.g., via photostriction or with a change in
temperature [76,78,79] in relation to flexural modes that are
strongly influenced by the presence of the substrate [77]).
Carefully studying the relative importance of these differ-
ent effects could allow us to quantitatively understand the
formation, density, and morphology of wrinkles in epitaxial
2D materials in the future. Intuitively at least, one expects
wrinkles to locally introduce what resembles open boundary
conditions for the moiré lattice, acting as more or less free-
to-move edges letting the moiré lattice expand or unripple in
response to planar stress.

After earlier works focused on the influence of the inter-
action potential between the 2D membrane and the substrate
[29], the present work analyzed the role of strains, external
ones from the substrate and internal ones within the mem-
brane itself. We have so far disregarded the effect of the
twist angle between the two materials, which would require
a dedicated study. Considering substrates with a small lattice
mismatch with the 2D material, e.g., Cu(111) for graphene,
would lead to the interesting question of the reconstruction
of the moié lattice, possibly producing a spatially nonuni-
form lattice constant, as observed in other large-� systems
[80,81], which can be treated using the theoretical framework
we used. Systematically investigating the influence of each of
the mechanical constants of the membranes, which can vary
with temperature, for example, is another possible direction
for future investigations. Our results can serve as a basis to
understand and conceive experimental endeavors toward en-
gineering moiré patterns—their wavelength and nanorippling
amplitude—for instance, via mechanical stress, temperature,
light, or the presence of imperfections in the substrate (e.g.,
step edges, dislocations emerging at the surface).
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