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Quantum electronic circuits for multicritical Ising models
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Multicritical Ising models and their perturbations are paradigmatic models of statistical mechanics. In two
space-time dimensions, these models provide a fertile testbed for investigation of numerous nonperturbative
problems in strongly-interacting quantum field theories. In this work, analog superconducting quantum electronic
circuit simulators are described for the realization of these multicritical Ising models. The latter arise as pertur-
bations of the quantum sine-Gordon model with p-fold degenerate minima, p = 2, 3, 4, . . .. The corresponding
quantum circuits are constructed with Josephson junctions with cos(nφ + δn) potential with 1 � n � p and
δn ∈ [−π, π ]. The simplest case, p = 2, corresponds to the quantum Ising model and can be realized using
conventional Josephson junctions and the so-called 0-π qubits. The lattice models for the Ising and tricritical
Ising models are analyzed numerically using the density matrix renormalization group technique. Evidence
for the multicritical phenomena are obtained from computation of entanglement entropy of a subsystem and
correlation functions of relevant lattice operators. The proposed quantum circuits provide a systematic approach
for controlled numerical and experimental investigation of a wide range of nonperturbative phenomena occurring
in low-dimensional quantum field theories.
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I. INTRODUCTION

Quantum simulation [1,2] is an indispensable technique for
investigation of strongly interacting quantum field theories
(QFTs) [3,4]. With the advent of noisy intermediate-scale
quantum simulators and algorithms, gate-based digital quan-
tum simulation has been used to investigate lattice models for
a wide range of nonperturbative QFT problems. These include
simulation of quantum many-body dynamics [5], topologi-
cal phase transitions [6], and confinement in perturbed Ising
models [7–9]. However, given the number of available qubits
and the coherence properties of existing quantum simulators,
generalization of the aforementioned simulation protocols to
investigate generic QFTs with thousands, potentially millions,
of qubits remains a daunting challenge in the near term. Such
large system sizes are necessary for most QFT problems since
the convergence of the lattice model to the scaling limit is usu-
ally slow, examples being QFTs describing quantum critical
points and their vicinities.

Analog quantum simulation [10–14] provides a near-term,
more tractable alternative to the aforementioned digital ap-
proach. This is particularly relevant for the investigation of
those QFT problems which require probing properties at
longer length scales than that permitted using current digital
quantum simulators. Indeed, analog simulation has had con-
siderable success in probing complex quantum many-body
systems with simulators based on trapped atoms [15–20],
trapped ions [21,22]. and superconducting quantum electronic
circuits (QECs) [23–26]. In this work, we focus on QEC-
based quantum simulators in two space-time dimensions.
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These QEC simulators rely on the robust, tunable, dispersive
Josephson nonlinearity to give rise to strongly interacting
nonlinear QFTs [27,28]. In fact, investigation of arrays with
thousands of quantum Josephson junction have already been
experimentally performed [24,25].

In a QEC array, the fundamental lattice degree of freedom
is the superconducting phase at a lattice site. This provides
a convenient starting point for discretization of a wide range
of bosonic QFTs realizable as perturbations of the free bo-
son QFT. The latter occurs naturally as a long-wavelength
description of a one-dimensional Josephson junction array in
the limit of large Cooper-pair tunneling strength [29,30]. In
the continuum limit, the bosonic field arises from the corre-
sponding lattice superconducting phase after coarse graining.
This approach has been utilized to give rise to the quantum
sine-Gordon (sG) model [27], a nonintegrable, two-frequency
sG model [28], and a multifield generalization of the sG model
[14].

In contrast to the earlier proposals which considered per-
turbations of the free boson QFT that lead to flows to strongly
interacting massive QFTs, this work describes QEC simula-
tors that realize quantum critical points of varying universality
classes. In particular, we analyze QEC simulators which, in
the scaling limit, are described by multicritical Ising models.
The latter are diagonal, unitary, minimal models of conformal
field theories [31]. These have played a central role in the un-
derstanding of two-dimensional, critical, classical statistical
mechanics models [32] and are the starting point for system-
atic analysis of perturbed, integrable or otherwise, conformal
field theories [33,34]. Furthermore, stacks of such critical
models, with appropriate couplings, give rise to a large class
of topological phases [35,36] relevant for topological quantum
computation [37].
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It is well known that these multicritical Ising QFTs arise
in the scaling limit of restricted solid-on-solid (RSOS) mod-
els [38]. The corresponding quantum Hamiltonians, owing to
their integrable construction, have been analyzed extensively
using the Bethe ansatz [39]. The tricritical Ising model has
been shown to occur also in the Blume-Capel model [40,41]
and in interacting chains of Majorana zero modes [42,43].
However, unlike RSOS models, there is no clear path towards
generalization of the Blume-Capel model or the Majorana
chains to generic multicritical Ising models. The goal of this
work is to present QEC lattices that have the same versatility
as the RSOS models while having the merit of being poten-
tially realized in an experiment.

Starting with the QEC lattice model for the quantum sG
field theory with p-fold degenerate minima, p = 2, 3, . . ., per-
turbations of the form cos(nφ + δn) are systematically added.
Here, 1 � n < p and δn ∈ [−π, π ]. As shown in this work,
these lattice models give rise to multicritical Ising models
upon appropriate choice of parameters. In contrast to the
RSOS models, the proposed lattice models are nonintegrable,
even though they give rise to the integrable multicritical Ising
QFTs in the scaling limit. Due to their nonintegrable nature,
these lattice models are analyzed numerically, using the den-
sity matrix renormalization group (DMRG) technique [44].
The relevant details for the DMRG simulation can be found
in Ref. [45] (Appendix B), Ref. [28] (Supplemental Material),
as well as Ref. [46] (Appendix B) [47].

Note that similar nonintegrable lattice models could be
conceived starting with the XY Z spin chain regularization of
the quantum sG model [48,49]. In comparison to the models
proposed in this work which use only nearest-neighbor inter-
actions, the generalizations of the XY Z chain would require
longer-range interactions between the spins. Furthermore, the
generalized XY Z models suffer from larger corrections to
scaling compared to the proposed models (see Ref. [27] for
a numerical demonstration). As a result, QEC circuits are a
more suitable platform for realization of the perturbed sG
models considered in this work.

The article is organized as follows. Section II describes
the general scheme for realizing arbitrary multicritical Ising
models. Sections III and IV are devoted to the Ising and
the tricritical Ising models respectively. Section V provides
a concluding summary and outlook.

II. GENERAL SCHEME

The main idea behind the QEC realization of multicriti-
cal Ising models is based on the well-known notion that the
diagonal, unitary minimal models of conformal field theories
arise as multicritical points of an effective Ginzburg-Landau
action [50]. To arrive at this effective action, we consider
perturbations of the euclidean quantum sG action with p-fold
degenerate minima describing the scalar field ϕ:

A =
∫

d2x

[
1

16π
(∂νϕ)2 − 2μ cos(βϕ)

]

−
p−1∑
n=1

2λn

∫
d2x cos

(
nβϕ

p
+ δn

)
, (1)

FIG. 1. Quantum circuit scheme for realization of multicritical
Ising models. The latter occur as infrared fixed points of the renor-
malization group flow trajectory (black arrows) starting from the
free compactified boson QFT in the ultraviolet. The blue arrows
indicate the logic of the circuit construction. The corresponding unit
cells of the quantum circuit are shown. In all cases, the horizontal
link contains a Josephson junction (junction energy EJ and junction
capacitance CJ ). The node flux at the ith site is indicated. The circuit
element on the vertical link determines the nature of the QFT. The
latter element is a capacitor [cos(pφ) Josephson junction] for the
free boson model [sine-Gordon model with p degenerate minima]. A
parallel circuit of cos(nφ) Josephson junctions with n = 1, 2, . . . , p
on the vertical link realizes the p-critical Ising model. The p − 1
phase differences between the different circuit elements, denoted by
δn, n = 1, . . . , p − 1, are selected depending on the specific model.
A nonzero phase offset δn arises due to the presence of a nonzero
magnetic flux threading the loop formed by the cos[(n + 1)φ] and
the cos(nφ) junctions.

where μ, λn’s are coupling constants and δn’s are suitably
chosen phases. The case λn = 0 ∀n corresponds to the ordi-
nary sG model with p-fold degenerate minima with coupling
constant β, where we consider the case 0 � β2 � 1. Appro-
priate choices of {λn, δn} induce a flow to the quantum critical
points of multicritical Ising universality class. The latter are
characterized by the central charges

cp = 1 − 6

(p + 1)(p + 2)
, p = 2, 3, . . . . (2)

The perturbed sG action of Eq. (1) describes the scaling
limit of the QEC lattice shown in Fig. 1 (top right). Each
unit cell has a Josephson junction on the horizontal link with
junction energy EJ and junction capacitance CJ . The vertical
link contains the most crucial circuit element. When the latter
is an ordinary capacitor with capacitance Cg, the QEC array
can be in a superconducting phase [29,30]. This happens when
EJ > Ec, where Ec = (2e)2/2Cg [45]. The long-wavelength
properties of the array are described by the free, compact-
ified boson QFT [51]. Choosing the circuit element on the
vertical link to be a cos(pφ) Josephson junction gives rise to
the quantum sG model with p-fold degenerate minima (see
Ref. [28] for the analysis of p = 2). Finally, the parallel circuit
configuration shown in Fig. 1 (top right) gives rise to the
perturbed sG model of Eq. (1) in the scaling limit.
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The Hamiltonian of the QEC array with L sites and peri-
odic boundary conditions is given by

H = Ec

L∑
j=1

n2
j + εEc

L∑
j=1

n jn j+1

− Eg

L∑
j=1

n j − EJ

L∑
j=1

cos(φ j − φ j+1)

−
p∑

n=1

L∑
j=1

EJn cos(nφ j + δn), (3)

where δp is set to 0. Here, n j , the excess number of Cooper
pairs on each island, and φk , the node-flux with respect to the
virtual ground plane [52], are canonically conjugate, satisfy-
ing [n j, e±iφk ] = ±δ jke±iφk . The nearest-neighbor interaction
proportional to ε � 1 arises due to the capacitance CJ [30].
In this work, we chose ε = 0.2 and Eg/Ec = 1.2 [27,28],
but similar results could be obtained for other choices. Fur-
thermore, the numerical computations were performed by
choosing Ec = 1.0. The third and fourth terms arise due
to a gate voltage at each node taken to be uniform and
the coherent tunneling of Cooper pairs. The last term in
Eq. (3) arises from the parallel circuit arrangement shown in
Fig. 1 (top right). There are two important aspects of the last
potential term. First, the presence of the nφ within the cosine
represents the coherent tunneling of n Cooper pairs through
the corresponding Josephson junction into the ground plane.
Such Josephson junctions can be realized by recursively using
the circuit for the theoretically proposed [53] and experimen-
tally demonstrated [54–56] n = 2 case. Second, the phase
shifts δn, when nonzero, would arise when a magnetic flux
is threading the corresponding loop [57].

Setting EJn = 0 for 1 � n � p and 1 � n � p − 1 in the
Eq. (3), in the scaling limit, gives rise to the free boson
and the quantum sG model with p-fold degenerate minima
respectively. In general, tuning the EJn ’s and δn’s leads to the
QEC array being in a gapless state with the universality class
of the critical point determined by p. The Ising and tricritical
Ising cases are described below.

III. THE ISING MODEL

The simplest realization of the Ising model from a per-
turbed sG model is obtained by choosing p = 2 and δ1 = π/2.
For the continuum model, this phase transition has been an-
alyzed using form factors [58], semiclassical methods [59],
and truncated conformal space approaches [60]. The existence
of the Ising critical point can be straightforwardly inferred
already from the classical potential. The latter is obtained by
rescaling the fields ϕ̃ = βϕ in the limit β → 0. The poten-
tial is V (ϕ̃) = −2μ cos ϕ̃ − 2λ1 sin(ϕ̃/2). For λ1 < 4μ, the
V (ϕ̃) has two degenerate minima characteristic of the fer-
romagnetic phase of the Ising model. The minima occur at
ϕ0 and 2π − ϕ0, where ϕ0 is some classical field minima.
The latter two values are related by a Z2 symmetry operator
(see below for the construction of this operator for the QEC
model). These two minima coalesce at λ1 = 4μ indicating an
Ising-type phase transition. Further increase of λ1/μ results in

a nondegenerate potential minimum, as is expected from the
paramagnetic phase of the Ising model. Obviously, the actual
value of the ratio λ1/μ when the phase-transition occurs is
different for finite β2 (see Fig. 3 for DMRG results).

The corresponding circuit Hamiltonian to realize the Ising
model is obtained by setting p = 2, δ1 = π/2 in Eq. (3). The
circuit element on the vertical link is a parallel circuit of a
conventional Josephson junction (junction energy EJ1 ) and
a cos 2φ Josephson junction (also known as the 0-π qubit
[53–56,61–63]) with a magnetic flux threading the loop [64].
The different couplings are chosen as follows. First, EJ/Ec

and Eg/Ec are chosen such that the QEC array is in the
superconducting (free boson) phase when EJn = 0 ∀n. Sub-
sequently, the parameters EJ1 , EJ2 are chosen to give rise to
the perturbed sG model in the scaling limit. The sG coupling
is given by β2 = K/2, where K is the Luttinger parameter of
the free boson theory. The relationship between the lattice
and the continuum parameters can be summarized as (see
Supplementa Material of Ref. [28] for details):

μ = C EJ2 E1−2β2

c , λ1 = C′ EJ1 E1−β2/2
c , (4)

where C,C′ are nonuniversal functions of β2, which can,
in principle, be determined numerically. Note that the Z2

symmetry for the potential term [the last term of Eq. (3)]
is φ j → π − φ j , j = 1, . . . , L. The corresponding symmetry
operator that performs the transformation φ j → π − φ j is

O =
⎛
⎝ L∏

j=1

eiπn j

⎞
⎠C, (5)

where C is the charge-conjugation operator that acts as

Ce±iφ jC = e∓iφ j , Cn jC = −n j . (6)

That the operator O does indeed lead to the transforma-
tion φ j → π − φ j can be straightforwardly checked using
the commutation relation given below Eq. (3) and the action
of the relevant operators in the tensor product space |ni〉⊗L.
The latter is the space where the operator ni is diagonal.
Using Eq. (6), it is straightforward to show that O is indeed
a symmetry of the potential term. Notice, however, that it
is not a symmetry of the lattice Hamiltonian unless Eg = 0.
Nevertheless, as will be numerically demonstrated below, the
symmetry associated with O emerges in the scaling limit also
for Eg 	= 0. In the scaling limit, the QEC lattice operators that
correspond to the primary fields of the Ising model are

σ ∼ cos φ j + · · · , ε ∼ sin φ j + · · · , (7)

where the dots correspond to subleading corrections. The two
fields have scaling dimensions 1/8 and 1 respectively. This
is verified below in the numerical analysis. In addition to the
spin and energy operators for the Ising model, one can also
identify the nonlocal fermionic quantum circuit operator for
this Ising model. The latter is given by (

∏
k< j eiπnk )eiφ j . It is

straightforward to check the fermionic nature of these non-
local operators using the commutation relation of φ j and nk

given below Eq. (3). Notice that these nonlocal operators are
the soliton creation operators of the parent sine-Gordon model
with twofold degenerate minima. These soliton-creation oper-
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FIG. 2. DMRG results for the Ising transition. The different cou-
plings were chosen as shown on the top left panel. (a) A QEC array of
L = 128 sites with periodic boundary conditions was analyzed. The
entanglement entropy S as a function of subsystem size r exhibits a
characteristic logarithmic dependence [Eq. (8)]. The obtained central
charge is close to the expected value of 1/2 [set p = 2 in Eq. (2)]. The
discrepancy with the expected value is due to the finite-size effect.
(b) The product of the central charge and the “Fermi” velocity is
determined from the scaling of the Casimir energy [Eq. (9)]. The
ratio of this product is close to 1/2 as expected. (c), (d) Infinite
DMRG results for the algebraic decay of the lattice operators cor-
responding to the Ising field operators σ, ε [see Eq. (10)]. The small
discrepancy with the expected values of (
σ , 
ε ) = (1/8, 1) is due
to the difficulty of locating the exact critical point as well as finite
truncation errors occurring in the infinite DMRG simulation.

ators have Lorentz spin 1/2 and thus also exhibit fermionic
statistics [65].

To unambiguously obtain the critical point, entanglement
entropy S was computed using DMRG for a QEC array of
L = 128 sites with periodic boundary conditions (see Fig. 2
for lattice parameters). At the critical point, standard results
of conformal field theory predict [66]

S(r) = c

3
ln

[
L

πa
sin

πr

L

]
+ S0, (8)

where a is the lattice spacing and S0 is some nonuniversal con-
stant. Here, c is the central charge and equals 1/2 [set p = 2 in
Eq. (2)]. The obtained value of c is close to 1/2 [see Fig. 2(a)]
with the discrepancy arising due to rather strong finite-size
effects. This was verified by simulating different system sizes
L = 40, 64, and 128. The rather large onsite Hilbert space of
the quantum circuit model prevented investigation of larger
system sizes to the same precision. This could be improved in
a larger scale numerical investigation.

As an additional check of the numerical results, the scaling
of the ground-state energy is computed with system size. For
periodic boundary conditions, this obeys [31]

E = E0L − πcv

6L
+ o(1/L), (9)

where v is the “Fermi” velocity. Since the additional sine
and cosine perturbations do not renormalize v, the ratio of
vc computed for the Ising and the free boson critical points

FIG. 3. DMRG results for the phase-diagram associated with the
Ising transition as a function of the dimensionless coupling η =
EJ1/Eα

J2
and β2. Here, α = (1 − β2/4)/(1 − β2). The results were

obtained for a periodic QEC array with L = 128 and EJ2/Ec = 0.175.
The solid markers correspond to the numerically obtained location
of the phase transition, while the black dashed line is a guide to the
eye. The magenta dotted line corresponds to the free-fermion point
(β2 = 1/2) of the sG model. For a fixed β2, increasing η induces an
Ising phase transition from the ferromagnetic to the paramagnetic
phase. The locations of the critical points are determined with a
precision of EJ1/EJ2 = 0.001 (the corresponding error bars are too
small to be visible).

should be 1/2. This is verified in Fig. 2(b). Note that the
simulating the QEC lattice Hamiltonian requires manipulating
Hilbert space dimension of 17 at each site (see Supplemental
Material of Ref. [28] for details), which made analysis of
larger system sizes rather challenging. The single-site DMRG
implementation of the TENPY package was used throughout
this work.

At the critical point, the correlation functions of lattice op-
erators cos φ j and sin φ j are computed using infinite DMRG.
These correlation functions are algebraic:

〈cos φ j cos φ j+r〉 ∝ 1

r2
σ
, 〈sin φ j sin φ j+r〉 ∝ 1

r2
ε
. (10)

The obtained results for the above correlation functions are
shown in Figs. 2(c) and 2(d). The small discrepancy between
the obtained values of 
σ ,
ε and the predicted ones is due to
the uncertainty in the location of the critical point as well as
finite entanglement truncation [67].

Figure 3 shows the phase diagram around the Ising tran-
sition as a function of a dimensionless variable η = EJ1/Eα

J2

and β2. Here, α = (1 − β2/4)/(1 − β2). The values of EJ/Ec

corresponding to the different choices of β2 are shown on
the right y axis. For a given choice of β2, increasing η in-
duces the Ising phase transition from the ferromagnetic to
the paramagnetic phase (see also Fig. 12 of Ref. [60] for a
truncated conformal space analysis performed for β2 < 1/2).
The location of the critical point was obtained by sweeping
the coupling ratio EJ2/EJ1 for different choices of EJ/Ec for
a periodic chain of L = 128 sites and computing the central
charge as in Fig. 2.
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FIG. 4. DMRG results for the boundary renormalization group
flows for the free boson (left) and the Ising (right) models. The
parameters EJ , Eg were chosen as in Fig. 2. In contrast to the rest
of the paper, in this computation, the interaction terms of Eq. (3)
between sites L and 1 are absent. Choosing EJn = 0 ∀n realizes the
free boson model with free boundary condition with β2 ≈ 0.326.
The corresponding entanglement entropy is shown in dark green
for different sizes of the subsystem. To realize the fixed boundary
condition, we chose EJb/Ec = 1 in the numerical simulations. The
corresponding entanglement entropies are shown in maroon. The
change in the boundary entropy in the infrared is obtained by taking
the difference between the two curves at the center of the chain.
The obtained and expected results are shown. Now, turning on the
couplings EJ1 , EJ2 throughout the array realizes the Ising model (see
Fig. 2). This Hamiltonian without (with) the same boundary potential
realizes the Ising model with free (fixed) boundary condition. The
corresponding entanglement entropies with the change associated
with the change in the boundary condition are shown in the right
panel.

With the aforementioned phase diagram determined, it is
straightforward to consider the different perturbations of the
Ising critical point. The “thermal” perturbation has been ana-
lyzed here and involves tuning the ratio EJ1/EJ2 away from the
Ising critical point. The “magnetic” perturbation [34] could be
analyzed by adding a “longitudinal field” to the Hamiltonian
of Eq. (3). This involves adding an extra −∑L

j=1 cos φ j term
to the QEC Hamiltonian. As a simple application, consider
the case of the free boson and the Ising models with bound-
ary fields [68,69]. First, in the QEC Hamiltonian [Eq. (3)],
with EJn = 0 ∀n, boundary fields −EJb cos φ j are turned on
at sites j = 1, L. In the continuum limit, this corresponds
to the boundary sine-Gordon model, with a boundary po-
tential cos βϕ/2 added to the euclidean action of Eq. (3).
The boundary potential induces a flow from the free to the
fixed boundary condition. The change in the boundary con-
dition manifests itself in a change in the boundary entropy
[70]. The latter can be measured by computing the change in
the subleading O(1) term in the entanglement entropy. The
change for the free boson case is well known and given by
−(ln β2)/2 (see, for example, Refs. [45,71]). The DMRG
results are shown in Fig. 4, left panel for β2 ≈ 0.326. Next,
upon turning on EJ1 , EJ2 to the values which realize the critical
Ising model in the bulk while keeping all other parameters the
same, the QEC array realizes the Ising model with or without
a longitudinal boundary field. The corresponding change in
boundary entropy is (ln 2)/2 [70]. The DMRG results are
shown in Fig. 4, right panel.

IV. THE TRICRITICAL ISING MODEL

The tricritical Ising model is the next in the series of mod-
els that can be realized with QECs. Consider the case p = 3
and δ1 = 0, δ2 = π in Eqs. (1) and (3). For EJ1 = EJ2 = 0, the
lattice model of Eq. (3) realizes the sine-Gordon model with
three degenerate minima. Similar analysis as in the Ising case
leads to β2 = 9K/8, where K is the Luttinger parameter of the
parent free boson theory. First, consider the classical potential:

V (ϕ̃) = −2μ cos ϕ̃ − 2λ1 cos
ϕ̃

3
+ 2λ2 cos

2ϕ̃

3
. (11)

Straightforward computation yields a critical Ising line

λ2 = λ1

4
+ 9μ

4
(12)

terminating at a tricritical Ising point for λ1 = 15μ, λ2 = 6μ.
The phase transition turns first order after the tricritical point.
A pictorial depiction of the change in the potential landscape
for this model can be found in Fig. 1 of Ref. [72]. The ac-
tual tricritical point for the quantum Hamiltonian is located
numerically using DMRG (see below).

In the Ginzburg-Landau formulation, the six primary fields
of the tricritical Ising model can be identified with various
(normal ordered) powers of a field � [with Kac label (2,2)]
[31]. Two of the six fields are odd under the Z2 symmetry in
the tricritical Ising model associated with the transformation
� → −�, while the others are even (see Sec. 6.1 of Ref. [73]
for a recent summary). For the quantum circuit model, this
translates to the symmetry of the lattice operator φ j under the
transformation φ j → −φ j . Note that this is different from the
Z2 symmetry in the Ising case [see around Eq. (5)]. In the
current model, the Z2-symmetry operator is simply the charge
conjugation operator [Eq. (6)].

The lattice operators corresponding to the two Z2-odd
fields of the tricritical Ising model are given by

σ ∼
∑

k=1,2,...

ck sin(kφ j ) + · · · ,

σ ′ ∼
∑

k=1,2,...

c′
k sin(kφ j ) + · · · , (13)

while the same for the Z2-even fields are

ε ∼
∑

k=1,2,...

dk cos(kφ j ) + · · · ,

ε′ ∼
∑

k=1,2,...

d ′
k cos(kφ j ) + · · · ,

ε′′ ∼
∑

k=1,2,...

d ′′
k cos(kφ j ) + · · · . (14)

Here ck, c′
k, dk, d ′

k, d ′′
k are nonuniversal lattice-dependent co-

efficients and the dots indicate subleading contributions.
The DMRG analysis for this model is computationally

more challenging due to the larger local Hilbert space dimen-
sion that needs to be manipulated to avoid truncation errors.
In contrast to the Ising case, the local Hilbert space dimension
was truncated to 27 and system sizes between 44 and 80 were
simulated. Figure 5 presents the results obtained using DMRG
for β2 ≈ 0.376 (similar results were obtained for β2 ≈ 0.481,
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FIG. 5. DMRG results for the tricritical Ising point. The sine-
Gordon coupling was chosen to be β2 ≈ 0.376. Left: The tricritical
Ising point (filled triangle) located at the end of an Ising critical
line (horizontal line markers). The critical points are located by
computing the scaling of the entanglement entropy S as a function of
the subsystem size r [Eq. (8)]. Top right: Scaling of the entanglement
entropy at the tricritical point for a system size L = 80. The obtained
value of the central charge is close to the expected value of 0.7 for the
tricritical Ising field theory. Similarly to the Ising case (see Fig. 2),
the discrepancy is due to the finite-size effect. This was checked by
computing the central charge for L = 44 to 80 in steps of 2. Bottom
right: The scaling of the Casimir energy as a function of 1/L [see
Eq. (9)]. The obtained central charge is close to the expected value.
The discrepancy occurs due to the slow convergence of energy with
increasing bond dimension. Note that the precision of the simulation
is lower than the Ising case due to the larger local Hilbert space
dimension (27 instead of 17). The critical points were located with
an accuracy of 0.002 (the Ising markers should be not confused with
error bars).

but are not shown for brevity). The left panel shows the
location of the Ising phase-transition line (red dashes). The
orange triangle indicates the location of the tricritical point.
The central charge at the critical point was computed in two
ways. First, the scaling of the entanglement entropy [Eq. (8)]
is shown on the top right panel for L = 80. The obtained result
is close to the expected value of 7/10. The discrepancy is
due to the finite-size effect. This was verified by simulating
system sizes between L = 44 to 80 in steps of 2. Second, the
scaling of the Casimir energy with system size [Eq. (9)] is
computed and compared with that for the free boson. As in
the Ising case, the ratio of the product vc for the tricritical
Ising to the free boson case should yield the central charge
of the tricritical Ising model. This is computed to be ≈0.681,
which is close to the expected value. The discrepancy is due
to the slow convergence of the energy with increasing bond
dimension. With larger scale computations, the precision of
these computations could be improved. The Ising transition
line continues further as EJ2/Ec is increased, but the numerical
simulations were restricted to the region shown in Fig. 5.

The correlation functions of the primary fields can be ver-
ified by choosing the coefficients in Eqs. (13) and (14) such
that the resultant correlation function yields a scaling expo-
nent that is close to the predictions for the model. However,
it is not immediately clear how to infer these coefficients
without imposing that the critical exponents be correctly
obtained. Notice that the renormalization group flow from
the tricritical Ising to the Ising critical point (left panel of

Fig. 5) is induced by changing the couplings EJ1 and EJ2 .
The corresponds to perturbing the lattice Hamiltonian at the
tricritical point by a superposition of operators cos φ j and
cos 2φ j . This is compatible with the identification of the field
ε′ [with Kac label (1,3)] in Eq. (14), which is known to
induce this flow. Finally, we note that in addition to the listed
primary fields the tricritical Ising model contains supersym-
metric fields. The latter could be constructed for the quantum
circuit by considering the fermionic operators built out of
eiα1πn j , eiα2φk by appropriately choosing α1, α2. We leave a
more detailed analysis of the supersymmetric fields for a later
work.

V. SUMMARY AND OUTLOOK

In summary, a set of QEC lattices are described to real-
ize multicritical Ising models in two space-time dimensions.
The QEC lattices are based on circuit elements which are
generalizations of ordinary Josephson junctions and give rise
to potentials of the form cos(pφ), p ∈ N. The elements for
p = 1, 2 are well known with the elements for p > 2 being
straightforwardly realizable using recursive application of the
scheme of Ref. [53] with the elements for p = 1, 2. Starting
with the QEC realization of the quantum sine-Gordon model
with p-fold degenerate minima, systematic perturbations are
constructed using QEC elements to give rise to the multicrit-
ical Ising models. The cases of the Ising and the tricritical
Ising models were analyzed. The next model in the series
is the tetracritical Ising model corresponding to p = 4. The
corresponding phases should be chosen as

δ1 = −π

4
, δ2 = π

2
, δ3 = −3π

4
. (15)

The location of the tetracritical point can, in principle, be
obtained by tuning the three couplings EJn , n = 1, 2, 3.

In this way, quantum circuits can be used to systematically
probe bulk and boundary perturbations of the multicritical
Ising models, venturing beyond the usually analyzed case of
perturbed free boson theory [74,75] (see also Ref. [76] for a
recent work). Further generalizations can give rise to topo-
logical or perfectly transmissive defects of conformal field
theories [77–80]. These defects commute with the generators
of the conformal transformations and are deeply intertwined
with the symmetries of the theory; for the Ising case, see
Ref. [81] for the spectrum of the lattice Hamiltonian and
Refs. [82,83] for the entanglement properties of the ground
state. Despite their importance in conformal field theories and
2+1-dimensional topological quantum field theories [84], no
systematic scheme is currently available for realizing these
topological defects in a physical system. Their realization
with QECs together with computation of transport signa-
tures of the topological defects would serve as a crucial step
towards solving this problem. Finally, stacks of multicriti-
cal Ising chains with appropriate couplings can give rise to
topologically ordered phases [35,36], which are a precious re-
source for the realization of topological quantum computation
[37]. This amounts to stacking the one-dimensional chains of
Fig. 1 with suitable interactions and can lead to a systematic
scheme for realization of topological matter with quantum
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circuits. We hope to return to some of these questions in the
future.

Before concluding, we note that the current experimen-
tal works [24,25] (see Refs. [85,86] for related theoretical
works) have been performed on systems where disorder plays
a dominant role. It is conceivable that engineering a clean
enough system with a suitable number of Josephson junc-
tions will permit investigation of the multicritical phenomena

described in this work (see Ref. [87] for a related experimental
work).
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Vuletić, and M. D. Lukin, Probing many-body dynamics on a
51-atom quantum simulator, Nature (London) 551, 579 (2017).

[19] R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, and S.
Sachdev, Quantum phases of Rydberg atoms on a kagome lat-
tice, PNAS 118, e2015785118 (2020).

[20] S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini,
A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho,
S. Choi, S. Sachdev, M. Greiner, V. Vuletić, and M. D. Lukin,
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