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The Benalcazar-Bernevig-Hughes (BBH) quadrupole insulator model is a cornerstone model for higher-order
topological phases. It requires π -flux threading through each plaquette of the two-dimensional Su-Schrieffer-
Heeger model. Recent studies showed that particular π -flux patterns can modify the fundamental domain of
momentum space from the shape of a torus to a Klein bottle with emerging topological phases. By designing
different π -flux patterns, we propose two types of Klein-bottle BBH models. These models show rich topological
phases, including Klein-bottle quadrupole insulators and Dirac semimetals. The phase with nontrivial Klein-
bottle topology shows twined edge modes at open boundaries. These edge modes can further support second-
order topology, yielding a quadrupole insulator. Remarkably, both models are robust against flux perturbations.
Moreover, we show that different π -flux patterns dramatically affect the phase diagram of the Klein-bottle BBH
models. Going beyond the original BBH model, Dirac semimetal phases emerge in Klein-bottle BBH models
featured by the coexistence of twined edge modes and bulk Dirac points.
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I. INTRODUCTION

The quadrupole insulator model proposed by Benalcazar,
Bernevig, and Hughes (BBH) [1,2] is an important model
for the study of higher-order topological insulators [3–41].
It exhibits a quadrupole insulator phase with quantized
bulk multipole moments. This phase is characterized by
corner states carrying fractional corner charges ±e/2, gen-
eralizing the bulk-boundary correspondence to higher order.
The basic construction unit of quadrupole insulators is the
Su-Schrieffer-Heeger (SSH) model [42]. The SSH model
possesses quantized dipole moments in the bulk. Since a
quadrupole consists of two separated dipoles, one may cou-
ple the SSH models in a particular way to obtain quantized
quadrupole moments in the two-dimensional (2D) bulk. How-
ever, direct coupling of one-dimensional (1D) SSH chains
from two directions does not work. It results in a gapless
2D SSH model with topological properties [43,44]. To get
an insulating phase with quantized quadrupole moments, the
indispensable ingredients are π fluxes threading each plaque-
tte of the entire 2D lattice. The π -flux pattern generates an
insulating phase at half filling. It projectively modifies the mir-
ror symmetry Mx and My from commuting [Mx, My] = 0 to
anticommuting {Mx, My} = 0. This change results in a BBH
model with quantized bulk quadrupole moments [1,2].

In our work, we vary the π -flux pattern of the BBH model.
This modification gives rise to a class of models that we call
Klein-bottle BBH models. The name stems from the shape of
the fundamental domain of momentum space being modified
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from a torus to a Klein bottle in mathematics by particular
π -flux patterns [45–57]. In the first type of Klein-bottle BBH
model, the π fluxes are applied only at the even numbered
columns of plaquettes in the 2D SSH lattice [see Fig. 1(a)].
This model supports nontrivial Klein-bottle quadrupole in-
sulator phases with corresponding boundary signatures such
as quantized edge polarizations and fractional corner charges.
We show that the nontrivial Klein-bottle quadrupole insulator
is robust against flux perturbations. In the second type of
Klein-bottle BBH model, we instead apply π fluxes at the
odd numbered columns of plaquettes [see Fig. 7(a) below].
This subtle difference in π -flux patterns dramatically changes
the phase diagram of the system. The second model does
not support nontrivial Klein-bottle quadrupole insulators any-
more. It shares some features with the first model, such as
the twined edge modes and corner-localized charges, but its
insulator phase is trivial with vanishing bulk quadrupole mo-
ments. Interestingly, we identify emergent Klein-bottle Dirac
semimetal phases in both models, characterized by the co-
existence of twined edge modes and bulk Dirac points. In
particular, four Dirac points are located at high-symmetry
points of the Brillouin zone (BZ). They are related by glide-
mirror symmetry in momentum space. There are no such
Dirac semimetal phases in the original BBH model.

This paper is organized as follows. In Sec. II, we present
the first Klein-bottle BBH model, with an emphasis on the
nontrivial Klein-bottle quadrupole insulator phase. In Sec. III,
we study Klein-bottle Dirac semimetal phases. In Sec. IV,
we show the robustness of Klein-bottle quadrupole insulators
against flux variations. In Sec. V, we consider the properties
of the second Klein-bottle BBH model with a different π -flux
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FIG. 1. (a) Sketch of the lattice for the first Klein-bottle BBH
model with a specific π -flux pattern. The dashed lines indicate a
negative sign to account for the π fluxes. (b) Phase diagram in the
parameter space (tx, ty ). The light blue region indicates the nontrivial
Klein-bottle quadrupole insulators (KBQI); the light green region
indicates the Dirac semimetal (DSM) phase. The region between
the two dashed lines represents phases with nontrivial Klein-bottle
topology. Other regions are normal insulators (NI). (c) Fundamen-
tal domain of momentum space in the BZ (blue). The boundaries
marked with the same colored arrows should be identified in that
sense and thus a Klein bottle. (d) Band structure for the first
Klein-bottle BBH model in the insulating phase. There are four non-
degenerate bands. The parameters are taken as tx = 0.6 and ty = 0.3
in units of t .

pattern. Finally, we conclude our results with a discussion in
Sec. VI.

II. KLEIN-BOTTLE QUADRUPOLE INSULATORS
INDUCED BY Z2 GAUGE FIELDS

A. The first Klein-bottle BBH model

We consider the first model as sketched in Fig. 1(a). Com-
pared with the original BBH model, there are no uniform π

fluxes in the whole 2D lattice. The π fluxes apply only at the
even numbered columns of the plaquettes. The tight-binding
Hamiltonian reads

H1 =
∑

R

[tx(C†
R,1CR,3 + C†

R,2CR,4)

+ ty(C†
R,1CR,4 + C†

R,2CR,3)

+ (−tC†
R,1CR+x̂,3 + tC†

R,4CR+x̂,2)

+ t (C†
R,1CR+ŷ,4 + C†

R,3CR+ŷ,2)] + H.c., (1)

where tx/y and t are the corresponding hopping amplitudes
along the x and y directions, as indicated in Fig. 1(a). The
operators C†

R,ζ (CR,ζ ) are creation (annihilation) operators at
unit cell R, with ζ ∈ {1, 2, 3, 4} being orbital degrees of free-
dom. Note that the minus sign from the π fluxes is encoded

in the term −tC†
R,1CR+x̂,3 + H.c. We set the lattice constant

as a = 1. In momentum space, the corresponding Bloch
Hamiltonian reads

H1(k) = txτ1σ0 + [−t cos kxγ3 + t sin kxγ4

+ (ty + t cos ky)γ1 − t sin kyγ2], (2)

where γ j = τ1σ j and γ4 = τ2σ0 are the gamma matrices.
The Pauli matrices τ and σ correspond to different orbital
degrees of freedom in the unit cell; k = (kx, ky) is the mo-
mentum in two dimensions. Different from the original BBH
model, in addition to the four anticommuting Dirac matrices
in Eq. (2), there is an extra term, txτ1σ0. The Hamilto-
nian respects chiral symmetry γ5H1(k)γ −1

5 = −H1(k), with
the chiral symmetry operator defined as γ5 ≡ −γ1γ2γ3γ4 =
τ3σ0. It has time-reversal symmetry T H1(k)T −1 = H1(−k)
as well, where T = K is just the complex conjugate operation.
Therefore, particle-hole symmetry is also preserved.

With the help of chiral symmetry, the energy spectra can
be obtained as

E±
η (k) = ±

√
ε2

y (ky) + t2 + t2
x + 2ηtx

√
ε2

y (ky) + t2 cos2 kx,

(3)

where ε2
y (ky) ≡ t2

y + 2tyt cos ky + t2 and η = ±1. The two
lower (upper) bands are no longer degenerate unless tx = 0
[see Fig. 1(d)]. We find that there are insulating phases as
well as semimetal phases, as shown in the phase diagram in
Fig. 1(b), different from that in the BBH model. We focus on
the insulating phases in this section and delegate the discus-
sion of the semimetal phases to Sec. IV.

B. Klein-bottle nontrivial phases, glide edge spectra,
and Wannier bands

Due to the gauge degrees of freedom from π fluxes, the
hopping amplitudes are allowed to take phases of ±1. Thus,
the π fluxes endow the system with a Z2 gauge field. This
gauge field can projectively modify the algebra of certain
symmetry operators [58]. The Klein-bottle BBH model has
mirror symmetry along the x direction as MxH1(k)Mx =
H1(−kx, ky), with Mx = τ1σ0. However, along the y direc-
tion, the system does not have exact mirror symmetry; it has
mirror symmetry only after a gauge transformation acting
on the Z2 gauge fields [2]. That is, My = G(My)My with a
gauge transformation G(My). However, we see that the gauge
transformation G(My) is not compatible with the translation
operation Lx. The relation between My and Lx becomes pro-
jectively modified as {My,Lx} = 0 due to Z2 gauge fields
[45], instead of [My,Lx] = 0 without the gauge field. This
fundamental change in the commutation relation introduces
nonsymmorphic symmetry in momentum space and makes the
fundamental domain of momentum space a Klein bottle [45].
Specifically, we find

MyH1(k)M−1
y = H1(kx + π,−ky ), (4)

where My = τ1σ1 in the chosen basis. This corresponds
to glide-mirror symmetry in momentum space. Hence, the
momentum at (kx, ky) is equivalent to (kx + π,−ky ). Conse-
quently, the original BZ (torus) is reduced to two equivalent
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FIG. 2. (a) Spectra of a ribbon along the x direction. The blue
and red lines indicate the twined edge modes. (b) Wave function
distribution of the twined edge modes along the y direction of the
ribbon. (c) Similar to (a), but in a topological trivial case without
edge modes. (d) The Wannier spectrum νy(kx ) of the lowest energy
band. The parameters are taken as tx = 0.6, ty = 0.3 for (a), (b), and
(d) and tx = 1.2, ty = 2 for (c) in units of t .

fundamental domains [Klein bottles in Fig. 1(c)]. In the
following, we use the term Klein-bottle BZ to indicate the
fundamental domain of momentum space.

Consider a ribbon geometry along the x direction with
open boundary conditions along the y direction. We find that
there are edge modes residing within the bulk bands. If we
resolve their spatial distributions, we find that the two pairs
of edge modes emerge at different boundaries. Similar to
those in the BBH model, those edge modes are gapped, as
shown in Figs. 2(a) and 2(b). However, there are essential
differences. The two pairs of edge spectra have a relative
momentum shift δkx = π , which is due to the glide-mirror
symmetry, as stated above. Due to the relative momentum
shift δkx = π , two branches of edge modes from differ-
ent pairs twine around each other from kx = −π to kx =
π . We call them twined edge modes. Moreover, the edge
spectra cross the bulk continuum without hybridization. The
energy spectra of the twined edge modes can be obtained
as [29,59]

Eb(kx ) = ±
√

t2
x + t2 + 2txt cos(kx + θ ), (5)

where θ = 0/π parametrizes the two different pairs of edge
modes.

The existence of twined edge modes can be attributed to
a topological invariant. In Ref. [45], the corresponding topo-
logical invariant is defined at the boundary of the Klein-bottle
BZ as w = 1

2π
[γy(kx = 0) + γy(kx = π )] mod 2, where γy(kx )

is the Berry phase for the reduced 1D Hamiltonian h(ky) at
a specific kx. This topological invariant is closely related to
1D charge polarization [45]. Note that this invariant becomes
ill defined once the Klein-bottle BZ is broken. This happens

when the value of magnetic flux deviates from π because in
that case the relation {My,Lx} = 0 does not hold anymore.
However, the twined edge modes, which serve as a practical
indicator of Klein-bottle insulators, may survive under such
flux deviations.

We alternatively employ the method of Wilson loops to
characterize the topology of Klein-bottle phases. At half fill-
ing, we find that the bulk polarization of the system vanishes.
Since the two lowest bands are not degenerate in this model
and the twined edge modes reach the gap between these
two bands, we consider the polarization of the lowest energy
band (similar results can be obtained for the second band).
We consider a ribbon geometry along the x direction. Thus,
the bulk polarization pκ

y along the y direction determines the
existence of twined edge modes. In the nontrivial phase with
pκ

y = 1
2 , there are twined edge modes. In the trivial phase

with pκ
y = 0, no edge modes exist. The polarization pκ

y is
closely related to the Wannier center. We obtain the Wan-
nier center from the Wilson loop method. To this end, we
define the Wilson loop along the y direction at specific kx

in the Klein-bottle BZ, i.e., Wy(kx ). Then the eigenvalues of
Wy(kx ) yield the Wannier center νy(kx ). The Wannier center
indicates the average position of electrons relative to the cen-
ter of the unit cell. The set of Wannier centers along the y
direction as a function of kx forms the Wannier bands νy(kx ).
The topological invariant for the Klein-bottle insulator can be
defined as

pκ
y = 2

Lx

0∑
kx=−π

νy(kx ), (6)

which is the bulk polarization of the lowest energy band. Note
that we can take the sum with respect to kx from −π to 0. The
other range from 0 to π can be obtained by symmetry. Here, Lx

is the number of unit cells in the x direction. The topological
invariant pκ

y should not be changed by flux perturbations as
long as chiral symmetry is preserved.

The Wannier band νy(kx ) for the lowest energy band is
plotted in Fig. 2(d). For the nontrivial Klein-bottle insulator
phase, the Wannier band νy(kx ) has to cross νy = 1

2 . Due
to the periodicity of the BZ, νy(kx ) crosses νy = 1

2 an even
number of times. Therefore, we obtain the bulk polarization
pκ

y = 1
2 from the lowest energy bands as a topological invari-

ant for Klein-bottle insulators. Note that the Wannier band
crosses νy = 1

2 once within the domain kx ∈ [0, π ], consis-
tent with the winding number defined in Ref. [45]. For the
trivial insulator case, it does not cross the value νy = 1

2 at
all; thus, pκ

y = 0.
We emphasize that at kx = ±π

2 , the Wannier center is fixed
at 0 or 1

2 . This is because at these special points the Hamil-
tonian H1(±π

2 , ky) has space-time inversion symmetry, which
can quantize the Wannier center [60]. From the topological
invariant pκ

y , we find that the nontrivial Klein-bottle phase
exists for

|ty| < 1 ⇒ pκ
y = 1

2 , (7)

as indicated in Fig. 1(b). Note that this phase regime con-
tains Klein-bottle insulators (an insulating phase characterized
by twined edge modes) and Klein-bottle Dirac semimetals
(semimetals with twined edge modes).
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C. Nontrivial Klein-bottle quadrupole insulators

Twined edge modes exist in the nontrivial Klein-bottle
phases as a consequence of first-order topology. In our model,
the twined edge modes are gapped as well. However, there is
a relative momentum shift of the spectra at different edges.
These spectra can touch, cross, or be hidden in the bulk con-
tinuum. An intriguing question is whether such twined edge
modes can support second-order topology, characterized by
corner states and fractional charges.

To characterize the system, we first calculate the
quadrupole moment qxy. Afterwards, we check the corre-
sponding edge and corner signatures. The quadrupole moment
can be obtained in real space as [18,29,34,61,62],

qxy = 1

2π
Im log[det(U †Q̂U )

√
det(Q†)], (8)

where Q̂ ≡ exp[i2π q̂xy], with q̂xy = x̂ŷ/(LxLy) being the
quadrupole momentum density operator per unit cell at po-
sition R = (x, y). Here, x̂ (ŷ) is the position operator along
the x (y) direction, and Lx(y) is the corresponding system
size. The matrix U is constructed by packing all the occupied
eigenstates in a columnwise way. The quantization of qxy is
protected by chiral symmetry [29,34]. For an insulating phase,
it is a nontrivial quadrupole insulator when qxy = 1

2 . We find
the nontrivial Klein-bottle quadrupole insulator phase in the
regime |tx| < 1 and |ty| < 1 [see Fig. 1(b)], similar to the BBH
model.

The edge polarizations pedge
x and pedge

y can also help us
to detect the topologically nontrivial phase. Take pedge

x as an
example. Consider a ribbon along the x direction with width
Ly along the y direction. With the Wilson loop method, the
edge polarization is calculated as [1,2,32]

pedge
x =

Ly/2∑
y=1

px(y), (9)

where px(y) is the distribution of polarization along the y
direction. We calculate this spatially resolved polarization as

px(y) =
2Ly∑
j=1

ρ j (y)ν j
y (kx ), (10)

where ρ j (y) = 1
Lx

∑
kx,ζ

| ∑n[un
kx

]y,ζ [ν j
kx

]n|2. Here, [ν j
kx

]n is the

nth component of the jth Wilson loop eigenstate |ν j
kx
〉 cor-

responding to the eigenvalue ν
j
y (kx ), while [un

kx
]y,ζ is the nth

eigenstate of the Hamiltonian Hy(kx ) on the ribbon with inte-
ger number n ∈ {1, 2, 3, . . . , 2Ly}. The edge polarization pedge

y

in the y direction can be calculated in a similar way. For a
nontrivial quadrupole insulator, (pedge

x , pedge
y ) = ( 1

2 , 1
2 ).

Consider a ribbon along the x direction with open bound-
aries in the y direction. In Figs. 3(a) and 3(b), two topological
states are localized on the edge with half-integer Wannier
values, while the other states are distributed over the bulk. The
edge polarization px(y) becomes nonzero at the sample edge.
The spatially resolved polarization yields quantized edge
polarization pedge

x = 1
2 (pedge

y = 1
2 ). Similar results appear for

a ribbon along the y direction, as shown in Figs. 3(c) and 3(d).

FIG. 3. (a) Edge polarization px along y. (b) Wannier center νx

for different eigenstates. (c) Edge polarization py along x. (d) Wan-
nier center νy for different eigenstates. The parameters are taken as
tx = 0.6, ty = 0.3 in units of t .

Moreover, there are zero-energy corner modes carrying
fractional corner charges. We show in Fig. 4(a) that there
are fourfold-degenerate zero-energy modes whose wave func-
tions are sharply localized at corners of the sample. It is
also found that the corner charges are fractionalized at ±e/2
[see Fig. 4(b)].

III. KLEIN-BOTTLE DIRAC SEMIMETALS
ON SQUARE LATTICES

Besides the Klein-bottle insulating phase, a Dirac
semimetal phase also exists, as shown in Fig. 5. There are four
Dirac points residing in the BZ. From the energy band solu-
tions in Eq. (3), to obtain band touching at zero energy (due
to chiral symmetry), we require cos2 kx = 1, i.e., kx ∈ {0, π}.

FIG. 4. (a) Energy spectrum of the model with open boundaries
in both direction. There are four zero-energy corner modes at zero
energy. (b) Electron charge density distribution on the lattice. It
gives fractional corner charges ± e

2 . The parameters are taken as
tx = 0.6, ty = 0.3 in units of t .
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FIG. 5. (a) Four Dirac points in the band structure. (b) Coex-
istence of edge Dirac points and bulk edge Dirac points in the
spectra of a ribbon along the x direction. The parameters are taken as
tx = 1.2, ty = 0.6 in units of t .

In this case, the energy spectra are simplified as

E±
η (k) = ±(√

ε2
y (ky) + t2 + 2ηtx

)
. (11)

Therefore, four Dirac points are located at

(Kx, Ky ) =
(

0/π, ± arccos

[
t2
x − t2

y − 2t2

2tyt

])
. (12)

The valid solutions for Ky give rise to the Klein-bottle Dirac
semimetal phase, determined by the overlap of two hyperbolas
in the parameter space (tx, ty) as

(ty ± t )2 − t2
x = t2, (13)

as shown in Fig. 1(b). The Dirac semimetal phase that appears
in this model has no counterpart in the original BBH model.

The Dirac points are located at the boundary of the Klein-
bottle BZ. They come in two dual pairs related by glide-mirror
symmetry My as {(0,±Ky) ⇔ (π,∓Ky)}. We know that the
topological protection of Dirac points is typically related to a
winding number defined on a path enclosing the Dirac points.
Due to chiral symmetry, rewriting the Hamiltonian Eq. (2) in
an off-diagonal form leads to

H1(k) =
(

0 q(k)

q†(k) 0

)
, (14)

where

q(k) =
(−tx + teikx ty + teiky

ty + te−iky tx + te−ikx

)
. (15)

The winding number for the Dirac points is defined as ω =
1

2π i

∮
�

dk · Tr[q−1(k)∇kq(k)] [63,64], where the loop � is
chosen such that it encloses a single Dirac point.

The twined edge modes from nontrivial Klein-bottle topol-
ogy also appear in the Dirac semimetal phase, as shown in
the Fig. 5(b). The bulk Dirac points coexist with edge Dirac
points, located at different energies. For certain parameters,
they are hidden in the bulk bands but do not directly merge
with the continuum. From the wave function distribution, we
find that the edge modes are well localized at boundaries even
if they coexist with bulk bands. In the Dirac semimetal phase
with a trivial Klein-bottle topology for |ty| > 1, the twined
edge modes disappear.

FIG. 6. (a) Energy spectrum on a ribbon along the x direction
when φ = 0.95π . (b) Quadrupole moment qxy as a function of flux
deviation �φ = π − φ. (c) Eigenstates around zero energy for dif-
ferent �φ. (d) Quadrupole moment qxy as a function of random
flux strength Ud . The parameters are taken as tx = 0.6, ty = 0.3 in
units of t .

IV. ROBUSTNESS OF NONTRIVIAL QUADRUPOLE
INSULATORS AGAINST FLUX PERTURBATIONS

In the previous section, we showed that the realization of
Klein-bottle quadrupole insulators relies on exact threading
of π fluxes on even numbers of plaquettes in the 2D lattice.
We now address the question of how robust nontrivial Klein-
bottle quadrupole insulators are against flux deviations from
the value of π . We check the stability of the nontrivial Klein-
bottle quadrupole insulators in two cases: In the first one, the
flux φ deviates from π but is still uniform in the lattice. This
helps us to determine how general the nontrivial phases are. In
the second one, the flux value is chosen randomly, fluctuating
around π .

A. Uniform flux deviations

Let us first check the evolution of twined edge modes for a
model with flux φ deviating from π uniformly. In the original
case, the well-localized twined edge modes cross the bulk
bands without hybridization [Fig. 2(a)]. When φ = 0.95π ,
the twined edge modes almost keep their form [Fig. 6(a)],
but the overlapping parts start to hybridize. In this case, the
Klein-bottle BZ manifold is broken because the glide-mirror
symmetry does not hold anymore. We define �φ = π − φ.
As �φ increases further, the twined edge modes hybridize
with the other bands stronger. This may be explained as the
hybridization of Landau levels (flat bands) and twined edge
modes.

Now, we check the robustness of Klein-bottle quadrupole
insulators against flux perturbations. To this end, we employ
the quadrupole moments qxy and the corresponding corner
states. To be specific, we take tx = 0.6 and ty = 0.3 in the
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FIG. 7. (a) Sketch of the lattice for the second Klein-bottle BBH
model with a different π -flux pattern. The dashed lines indicate a
negative sign to account for the π fluxes. (b) Phase diagram in the
parameter space (tx, ty ). The light blue region indicates the Dirac
semimetal (DSM) phase; the light green region indicates the trivial
quadrupole insulators (TQI). The region between the two dashed
lines represent phases with nontrivial Klein-bottle topology. Other
regions are the normal insulators (NI).

calculations. Figure 6(b) demonstrates that qxy stays at qxy =
1
2 even if �φ grows to a relatively large value. This re-
sult indicates that the Klein-bottle quadrupole insulator is
robust against flux deviations. It also suggests that nontriv-
ial quadrupole insulators exist in an extended range of flux
values φ, not just at φ = π . Correspondingly, there are four
zero-energy corner states in the gap of the spectrum [see
Fig. 6(c)] with quantized fractional charge at each corner. The
robustness of nontrivial Klein-bottle quadrupole insulators
can be attributed to the persistence of twined edge modes un-
der flux perturbations. They remain almost intact and gapped
[Fig. 6(a)].

B. Random flux

The magnetic flux can also be chosen randomly at each
plaquette [65]. We assume that the magnetic flux φ fluctuates
around π . The flux deviation at each plaquette takes a random
value from the uniformly distributed range [−Ud ,Ud ], with
Ud being a disorder strength. We also check the quadrupole
moments qxy under random flux. From Fig. 6(d), qxy remains
at 1

2 as Ud increases from 0 up to 0.2π . When calculating
qxy, we can also investigate a single disorder configuration.
We then find that the zero-energy midgap states and corner
charges remain robust. Together with qxy, these findings
suggest strong robustness of nontrivial quadrupole insulators
against random flux.

V. TRIVIAL KLEIN-BOTTLE QUADRUPOLE
INSULATORS WITH CORNER STATES

Now, we consider the second Klein-bottle BBH model
sketched in Fig. 7(a). The π fluxes apply only to the odd
numbered columns of plaquettes, instead of the even num-
bered columns. This subtle change in applying π -flux patterns
makes a strong difference. It gives rise to a totally different
Hamiltonian. The nontrivial quadrupole insulators do not ap-
pear anymore. There are also insulators and Dirac semimetals
in the phase diagram [Fig. 7(b)], but the insulator is a trivial
insulator with qxy = 0, although it supports corner charges.

The tight-binding Hamiltonian of the second Klein-bottle
BBH model reads

H2 =
∑

R

[(−txC
†
R,1CR,3 + txC

†
R,2CR,4)

+ ty(C†
R,1CR,4 + C†

R,2CR,3)

+ t (C†
R,1CR+x̂,3 + C†

R,4CR+x̂,2)

+ t (C†
R,1CR+ŷ,4 + C†

R,3CR+ŷ,2)] + H.c., (16)

where the minus sign from the π fluxes is taken into account in
the term −txC

†
R,1CR,3 + H.c. In momentum space, the Bloch

Hamiltonian corresponding to Eq. (16) becomes

H2(k) = − txτ1σ3 + t cos kxτ1σ0 − t sin kxτ2σ3

+ (ty + t cos ky)τ1σ1 − t sin kyτ1σ2. (17)

The bulk spectrum of Eq. (17) reads

E±
η (k) = ±

√
ε2

y (ky) + t2 + t2
x + 2ηt

√
ε2

y (ky) + t2
x cos2 kx,

(18)

where ε2
y (ky) ≡ t2

y + 2tyt cos ky + t2 is defined in the same
way as before. This model also respects chiral symmetry
γ5H1(k)γ −1

5 = −H1(k). The π -flux gauge field gives rise to
nonsymmorphic symmetry in momentum space as

M′
yH2(k)M′−1

y = H2(kx + π,−ky), (19)

where M′
y = τ2σ2 in the chosen basis.

The phase diagram of the second Klein-bottle BBH model
is plotted in Fig. 7(b). The Dirac semimetal phase is located
inside the two circles in parameter space (tx, ty),

t2
x + (ty ± t )2 = t2. (20)

The Dirac points are at

(Kx, Ky ) =
(

0/π, ± arccos

[
− t2

x + t2
y

2tyt

])
. (21)

In the Klein-bottle Dirac semimetal phases, there are twined
edge modes on a ribbon geometry with an open boundary.
The other regions are insulating phases. The nontrivial Klein-
bottle phase is bounded by |ty| < 1. Compared with the first
model in Eq. (2), the different π -flux pattern in the sec-
ond Klein-bottle BBH model leads to totally different matrix
structures in Eq. (17). Thus, the corresponding energy bands
are quite different, giving rise to significantly different phase
diagrams. Moreover, we notice the exchange of variables
t ←→ tx in the energy bands compared to Eq. (3). This can
be effectively viewed as the exchange of dimerized hopping
strength of the SSH model along the x direction, which makes
the topological properties different from those of the first
model.

In an insulator phase, we find that the edge polarizations
take the values (pedge

x , pedge
y ) = ( 1

2 , 0). This anisotropic prop-
erty of edge polarizations bears similarity to weak topological
insulators. In Fig. 8(a), we plot the edge polarizations pedge

y ,
together with the Wannier values of eigenstates. The edge po-
larization pedge

y is zero [the nontrivial pedge
x = 1

2 is not shown
here].
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FIG. 8. (a) Edge polarization py along x (left panel) and the
Wannier center νy for different eigenstates (right panel) in the second
Klein-bottle BBH model. (b) Electron density distribution in the
lattice. The parameters are taken as tx = 0.8, ty = 0.2 in units of t
for all plots.

Consider open boundary conditions along both the x and
y directions. Then, the edge polarizations are terminated at
corners. This leads to charges Qcorner = ± e

2 localized at the
corners [see Fig. 8(b)]. There are four zero-energy midgap
states in the energy spectra when (tx, ty) is located in the light
green region of the phase diagram in Fig. 7(b). However, if we
calculate the topological invariant qxy, we find that the second
Klein-bottle BBH model is a trivial Klein-bottle insulator.
Remarkably, it exhibits twined edge modes (first order) and
corner-localized charges, but it has a vanishing quadrupole
moment qxy = 0 (second-order topological invariant). The
defining properties of a quadrupole insulator |qxy| = |pedge

x | =
|pedge

y | = |Qcorner| are not satisfied [2]. The corner charges
follow Qcorner = pedge

x + pedge
y . Thus, the corner charges and

edge polarizations are pure surface effects, unrelated to bulk
quadrupole moments [2].

We further analyze the robustness of twined edge modes
in the Klein-bottle phases when the magnetic flux deviates
from π . Consider a ribbon along the x direction. In the Klein-
bottle Dirac semimetal phases, the twined edge modes reside
between the bulk bands and can be detached from them. When
we gradually change φ from π , the twined edge modes persist
and are detached from the bulk modes even up to a relatively
large �φ, as shown in Fig. 9(b).

VI. DISCUSSION AND CONCLUSIONS

We showed that the variation of π -flux patterns changes
the topology of the considered system dramatically. Hence,
particular π -flux patterns may help us to search for novel

FIG. 9. (a) Energy spectrum of the second Klein-bottle BBH
model on a ribbon along the x direction. The edge and bulk Dirac
points coexist. (b) Same as (a), but with flux φ = 0.9π . The parame-
ters are taken as tx = ty = 0.2 in units of t .

topological phases. The Klein-bottle quadrupole insulator re-
quires only half of the total π fluxes compared to the original
BBH model, simplifying experimental realizations of non-
trivial quadrupole insulators. The manipulation of magnetic
flux is possible in different synthetic systems. Therefore, our
predictions are experimentally relevant.

In summary, we have proposed the existence of nontrivial
Klein-bottle quadrupole insulators and Dirac semimetals in
two dimensions. The twined edge modes, which support the
second-order topology, appear to be a characteristic signature
of Klein-bottle systems. We have verified the robustness of the
nontrivial quadrupole insulators against flux perturbations. In
the Klein-bottle Dirac semimetal phases, we discovered the
coexistence of edge Dirac points and bulk Dirac points.
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APPENDIX A: REVISITING THE KLEIN-BOTTLE
INSULATOR MODEL

For a better understanding of our results, we revisit the
Klein-bottle insulator proposed in Ref. [45]. The Hamiltonian
in two dimensions reads

H0(k) =

⎛
⎜⎜⎜⎜⎝

ε
[
qx

1(kx )
]∗

[qy
+(ky)]∗ 0

qx
1(kx ) ε 0 [qy

−(ky)]∗

qy
+(ky) 0 −ε

[
qx

2(kx )
]∗

0 qy
−(ky) qx

2(kx ) −ε

⎞
⎟⎟⎟⎟⎠,

(A1)

where the parameters are defined as qx
�(kx ) = t x

�1 + t x
�2eikx ,

with � = 1, 2 and qy
±(ky) = t y

1 ± t y
2 eiky . The staggered on-site

potential ±ε opens a band gap at the finite-energy Dirac
points. The inclusion of the term H ′(k) = λ cos kyσ1τ2 +
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FIG. 10. (a)–(e) and (g) Energy spectra of the model specified in
Eq. (A1) on a ribbon along the y direction. The red lines indicate
the twined edge modes. (f) Wannier bands of the lowest energy band
(blue) and the second energy band (red) corresponding to (c). (h)
and (i) correspond to (g), but with the flux deviation from π . The
other parameters are t x

11 = t x
22 = 1, t x

12 = t x
21 = 3.5, t y

1 = 2, and t y
2 =

1.5, the same as in Ref. [45]. The values of ε and λ are labeled on
each plot.

λ sin kyσ2τ2 breaks time-reversal symmetry. In Fig. 10, we plot
the spectrum of the model.

In the limit ε = 0 and λ = 0, there is an energy gap close
to zero energy. Then, Dirac points, formed by the first and
second (third and fourth) bands, emerge. In this case, the
nontrivial polarization gives zero-energy edge modes on a
ribbon along the y direction [see Fig. 10(a)], similar to the
zero-energy modes in zigzag graphene ribbons [66,67]. When
considering the ribbon along the x direction, the energy spec-
trum shows a trivial gap without edge modes. This anisotropic
property is the same as in the inclined 2D SSH model [44].

If we turn on the λ term, the flat edge modes become
dispersive. If we turn on the on-site potential ε, we find
the Dirac points at finite energy are gapped out. Then, there
are two pairs of twined edge modes: one pair close to zero
energy and the other pair at finite energy. The appearance
of twined edge modes can be understood from the Wannier
spectrum in Fig. 10(f). One branch of Wannier bands exhibits
nontrivial winding around νx = 1

2 , and the other one exhibits
trivial winding around νx = 0 instead. The total polarization
is px = 1

2 .
In Fig. 10(d), we turn on both the λ and ε terms. This

yields the same result as that shown in Ref. [45], but now we
observe two pairs of twined edge modes within a larger energy
window. Tuning the parameter ε, this can change the position
of the twined edge modes [see Fig. 10(e)].

FIG. 11. (a) Energy spectra for the BBH model with a π -flux
defect. There are six zero-energy modes in the gap in total in the
topological nontrivial phase. The π -flux defect bounds two extra
zero-energy modes. (b) The wave function distribution corresponds
to the bound state in (a). Here, tx = ty = 0.5 for (a) and (b). (c) The
same as (a), but the two bound states are away from zero energy.
(d) The wave function distribution corresponds to the bound state in
(c). Here, tx = 0.3, ty = 0.6 for (c) and (d).

The twined edge modes also show robustness against flux
perturbations. We consider a case in Fig. 10(g) in which one
pair of twined edge modes is detached from the bulk bands
close to zero energy and the other pair is attached to the bulk
continuum at finite energy. When the flux gradually deviates
from π , we find the detached twined edge modes persist in the
spectra, as shown in Figs. 10(h) and 10(i). The other pair of
edge modes at finite energy starts to hybridize with the bulk
bands.

APPENDIX B: OVERVIEW OF THE
BENALCAZAR-BERNEVIG-HUGHES MODEL

For the convenience of comparison with Klein-bottle BBH
models presented in the main text, let us first briefly review
the BBH model in two dimensions [1,2]. The tight-binding
Hamiltonian in real space is described as

H0 =
∑

R

[tx(C†
R,1CR,3 + C†

R,2CR,4)

+ ty(C†
R,1CR,4 − C†

R,2CR,3)

+ t (C†
R,1CR+x̂,3 + C†

R,4CR+x̂,2)

+ t (C†
R,1CR+ŷ,4 − C†

R,3CR+ŷ,2)] + H.c. (B1)
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The corresponding Bloch Hamiltonian in momentum space is

H0(k) = [tx + t cos kx]�4 + t sin kx�3

+ [ty + t cos ky]�2 + t sin ky�1. (B2)

The gamma matrices are defined as � j ≡ −τ2σ j and �4 ≡
τ1σ0. The bulk bands of Eq. (B2) are gapped unless ts/t = ±1
(s = x, y). Hence, it is an insulator at half filling. The non-
spatial symmetries of the BBH model are chiral symmetry,
time-reversal symmetry, and particle-hole symmetry.

The nontrivial phase of the quadrupole insulator is char-
acterized by quantized quadrupole moments qxy = 1

2 , which
induces quantized corner charge Qcorner and edge polarization
pedge of equal magnitude, |qxy| = |pedge

x | = |pedge
y | = |Qcorner|.

The quantization of qxy relies on chiral symmetry [29,34]. The
quadrupole insulators in two dimensions have boundaries that
are stand-alone 1D topological insulators. The nontrivial topo-
logical quadrupole phase is located in the parameter region
|ts/t | < 1 [1,2].

APPENDIX C: STATES BOUND BY π-FLUX
DEFECTS IN THE ORIGINAL BENALCAZAR-

BERNEVIG-HUGHES MODEL

In this Appendix, we demonstrate that a single π -flux de-
fect in the original BBH model may trap two bound states. The
original BBH model needs π fluxes on all plaquettes of the
2D lattice. A π -flux defect means that at a specific plaquette
the π flux is removed. Consider a single π -flux defect in the
2D BBH model lattice. In the nontrivial quadrupole insulator
phase, the π -flux defect can induce bound states in the energy
gap. As shown in Fig. 11(a), there are six zero-energy modes
in total in the bulk gap: four of them are corner modes and
the extra two are bound states at the π -flux defect. These
two bound states are degenerate at zero energy. Their wave
function is shown in Fig. 11(b). Another possibility is that the
bound states have finite energy, as shown in Fig. 11(c). Their
wave function localizes at the position of the π -flux defect
[see Fig. 11(d)].
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