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Magnetic-field periodic quantum Sondheimer oscillations in thin-film graphite
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Materials with mesoscopic scales have provided an excellent platform for quantum-mechanical studies.
Among them, the periodic oscillations of electrical resistivity against the direct and the inverse of magnetic
fields, such as the Aharonov-Bohm effect and the Shubnikov-de Haas effect, manifest the interference of the
wave function relevant to the electron motion perpendicular to the magnetic field. In contrast, the electron motion
along the magnetic field also leads to the magnetic-field periodicity, which is the so-called Sondheimer effect.
However, the Sondheimer effect has been understood only in the framework of the semiclassical picture, and
thereby its interpretation at the quasiquantum limit was not clear. Here, we show that thin-film graphite exhibits
clear sinusoidal oscillations over a wide range of the magnetic fields, where conventional quantum oscillations
are absent. In addition, the sample with a designed step in the middle for eliminating the stacking disorder
effect verifies that the period of the oscillations is inversely proportional to the thickness, which supports the
emergence of the Sondheimer oscillations in the quasiquantum limit. These findings suggest that the Sondheimer
oscillations can be reinterpreted as inter-Landau-level resonances. Our results expand the quantum oscillation
family and pave the way for the exploration of the out-of-plane wavefunction motion.
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I. INTRODUCTION

Oscillatory transport behavior under a magnetic field is
a hallmark of the quantum transport property. For example,
the Shubnikov-de Haas oscillations (SdHOs) have been ex-
plored in a wide class of semimetals or semiconductors [1–3],
in which the electrical conductivity periodically oscillates
against the inverse of the magnetic field. In contrast to the
SdHOs, the Aharonov-Bohm (AB) effect [4–7] is known as
a prototypical example of the direct magnetic-field periodic
oscillations [8,9]. These quantum transport features stem from
the wave nature of electrons along the path perpendicular to
the magnetic field through quantizations or interferences. On
the other hand, such an oscillatory behavior associated with
the electron motion along the magnetic field was absent, since
the electron motion along the magnetic field is, in principle,
not influenced. Exceptional examples were found in very
clean systems with a long mean free path, such as metallic or
semiconducting crystals [10–16], mesoscopic-scale systems
[17,18], and the surface of a topological insulator [19], in
which clear magnetic-field-periodic oscillations are observed.
These oscillations are known as the Sondheimer effect [20],
which is determined by the “extra” momentum of the helical
motion in a finite length scale (thickness of the film), and can
be simply understood as a semiclassical effect [11,21].

Bernal-stacked graphite [Fig. 1(a)] provides an ideal plat-
form in the study of the thickness-dependent features since
it has a simple layered structure of two-dimensional car-
bon sheets (graphene) and hence we can easily obtain a
sample with a well-defined thickness without any surface
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reconstructions. Moreover, the structural disorder is small
enough to study the quantum transport properties. In fact, the
mobility of the graphene isolated from graphite crystals is
outstanding, which is experimentally demonstrated in state-
of-the-art devices such as electron interferometers [22–28] as
well as the confirmation of the hydrodynamic flow [28–32].
Remarkably, its low carrier concentration enables us to reach
the so-called quasiquantum limit at an accessible magnetic
field (around 8 T perpendicular to the plane), where only two
Landau levels (LLs) remain at the Fermi level [33]. In this
quasiquantum limit, the motion of carriers can no longer be
treated in the semiclassical picture.

Here, we present clear sinusoidal oscillations in a graphite
thin film, which is periodic in the magnetic field in the
quasiquantum limit over a wide range of the magnetic fields
(from around 10 T to 30 T). This is clearly distinct from the
Shubnikov-de Haas oscillations, showing a periodic oscilla-
tion against the inverse of the magnetic field. We propose
quantum Sondheimer effect as a cause of this magnetic-field
periodicity. The model is developed by extending the semi-
classical Sondheimer picture to the quasiquantum limit, where
only two Landau levels with discretized energy level owing to
quantum size effect are considered. In contrast to the typical
magnetic-field periodic oscillations attributed to the in-plane
carrier motion, such as the Aharonov-Bohm effect, the quan-
tum Sondheimer effect arises from the out-of-plane motion
and its period is inversely proportional to the sample thick-
ness. Our experimental results show an excellent agreement
with this relation, and verifies the realization of a new family
of the quantum oscillations.

In our study, we prepared thin-film graphite mechanically
exfoliated from Kish graphite crystals, followed by transfer
onto a Si/SiO2 substrate, electron-beam lithography, and a
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FIG. 1. (a) Schematic crystal structure of Bernal-stacked
graphite. (b) Schematic of the thin-film graphite device. Transverse
resistance (R = V/I) was measured by sweeping the magnetic fields
(B) applied perpendicular to the film. (c) Optical microscopy image
of device 1 (d = 70 nm); scale bar, 50 µm. (d) Magnetic field depen-
dence of the transverse resistance R and its second derivative with
respect to the magnetic field. At low magnetic fields (green shaded
region), the SdHOs periodic in the inverse of the magnetic fields
are observed. Above 30 T, the system is in the insulating density-
wave phase (blue shaded region). In between, in 10 − 30 T, clear
B-periodic resistivity oscillations are observed. (e) The oscillatory
components of the resistance estimated by the second derivative
between 10 and 25 T at different temperatures.

deposition of Cr/Au contact to form the field-effect transistors
[Figs. 1(b) and 1(c)]. A heavily doped silicon substrate was
used for applying gate voltage Vg, which did not play an
important role in the present study. Each sample thickness was
determined by AFM analyses. A typical sample dimension is
around 50 × 50 µm2 in the plane, and a thickness is of the
order of 100 nm. The thickness is over a hundred times larger
than the out-of-plane lattice constant, where the quantum size
effect plays an important role [34,35]. The sample was cooled
down to 0.35 K by using a helium-3 refrigerator, and the
transverse magnetoresistance up to 35 T was measured, as
detailed previously [35]. The in-plane electrical resistance R
was measured by dc method with reversing a constant current
or lock-in technique under a magnetic field B along the c
axis. High magnetic fields were generated in a 35 T resistive
magnet at the National High Magnetic Field Laboratory.

Figure 1(d) represents the magnetoresistance in the thin-
film graphite with a thickness of 70 nm. Below 8 T, the SdHO
patterns are the same as that in bulk crystals [33], which
demonstrates that the three-dimensional band dispersion still
holds.

II. MAGNETIC-FIELD-PERIODIC
RESISTIVITY OSCILLATIONS

In a bulk semimetal or semiconductor, any anomalous
transport behavior is not expected between the SdHOs unless
many-body effects play a crucial role. In fact, once the system

goes into the quasiquantum limit at around 8 T, where the
LL with an index N = 1 escapes from the Fermi energy and
no quantum oscillations occur up to 53 T [36–38], the bulk
graphite does not exhibit any notable structure in the magne-
toresistivity before entering the electron-interaction-induced
phase transition at around 30 T [37,39–41] [Fig. 1(d)]. How-
ever, our thin-film graphite shows a clear oscillatory behavior
with a single period �B ≈ 2.5 T in a wide range of magnetic
fields from 10 T to 30 T, as shown in Fig. 1(d). Although it is
difficult to resolve it owing to the large SdHOs, the present
oscillations might coexist below 10 T in the thin film. As
we measured in a different thickness sample, the period of
the oscillations has different values. For example, device 2
with d = 178 nm has a smaller period of �B ≈ 1 T [35]. As
shown in Fig 1(e), the period and the amplitude, as well as
the phase, are almost unchanged below 4 K. In the case of
the multilayer graphene stacking with a magic twist angle,
correlated effects, such as the superconductivity, are fragile
above 4 K [42–44]. This implies that the present temperature-
insensitive oscillations observed in the less confined graphite
samples than graphene are not attributable to the many-body
effect.

III. SEMICLASSICAL AND QUANTUM
SONDHEIMER EFFECT

Magnetic-field-periodic oscillations are often attributed to
the Aharonov-Bohm (AB) effect [4,5,7]. The AB effect orig-
inates from the interference between two wave functions
propagating along different paths in a ringlike structure (the
so-called AB ring). The AB effect emerges, for example, in
the artificially designed ring shaped or regularly patterned
antidots two-dimensional (2D) devices [45,46]. Hence, for the
appearance of the AB effect, there must exist an AB ring or-
thogonal to the magnetic field in the current three-dimensional
(3D) sample. One possible origin is the formation of the moiré
superlattice at the stacking faults [47]. The lattice mismatch
arising from the misalignment at the stacking faults leads to
the potential variations with a mesoscopic scale, imposing
an interference in the twisted graphene systems [48]. In this
case, however, only the interface would be responsible for
the conductance oscillations, which might be masked by the
majority part of the bulk.

Another possible origin of the magnetic field periodicity
is the Sondheimer effect. The Sondheimer effect has been
explained in the semiclassical picture, and experimentally ob-
served in clean thin films [17,18]. The semiclassical pictures
are schematically illustrated in Figs. 2(a) and 2(b). As the
magnetic field B is applied orthogonal to the conducting thin
film with a thickness d , the charged carrier (red ball) moves
along the helical orbit (blue solid curve), which is composed
of an out-of-plane free motion and an in-plane cyclotron mo-
tion. The out-of-plane motion with a velocity of vF,z is not
perturbed by the magnetic fields, whereas the in-plane cy-
clotron motion is determined by the strength of the magnetic
field B through the angular frequency of ωc = eB/mcyc, where
e is the elementary charge and mcyc is the effective cyclotron
mass. As a result, the helical orbit has the same periodic-
ity as the cyclotron motion with a time period T = 2π/ωc.
Provided that the system is free from any scattering in the
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FIG. 2. (a), (b) Schematics of the semiclassical picture of the
Sondheimer effect. The magnetic field B is applied perpendicular
to the plane equal to an integer (n) multiple of �B (a) and not
equal to it (b) for a clean-limit thin film with a thickness of d .
Under the magnetic field, the carrier (red ball) moves along the
helical orbit (blue curve). At the condition B = n�B (a), the integer
multiple of the helical-motion period fits perfectly into the film (the
black dotted cross at the top surface is located exactly above the
one at the bottom). (c) The dispersion of LLs for graphite along
kz at the quasiquantum limit. At the quasiquantum limit (B > 7.4 T
perpendicular to the plane), only N = 0 and −1 LLs remain on the
Fermi level εF . In contrast to a thick system (conventional crystal),
where the dispersion is continuous (red curves), kz in thin film is
discretized owing to the quantum size effect with a reciprocal-lattice
spacing of �kz = 2π/d (blue solid markers). (d), (e) The quantum
interpretation of the Sondheimer effect. The figures are magnified
views of the dashed green rectangle in Fig. 2(c). The condition
Eq. (2) is satisfied in Fig. 2(d), while not in Fig. 2(e).

bulk, the carrier travels from the bottom to the top (or vice
versa) over a time span of d/vF,z. At some special magnetic
fields [Fig. 2(a)], this time span becomes equal to the integer
multiple of T ; d/vF,z = nT , where n is an integer. We refer
to this special condition as the Sondheimer condition. This
Sondheimer condition is periodically satisfied with a period
�B, which is expressed as [11,21]

�B = 2π

ed
mcycvF,z ∝ 1/d. (1)

The magnetoconductivity varies in accordance with the Sond-
heimer condition fulfilled. It is noteworthy that the period �B
of the Sondhemier effect is inversely proportional to the film
thickness d . The Sondheimer effect is in stark contrast to the
AB effect for its bulk nature. In other words, the Sondheimer
is innately a 3D feature since it arises from the out-of-plane
motion. However, the validity of this picture seems limited

only in the semiclassical regime, namely a substantial number
of the LLs participate in the formation of the wave packets
representing the charged carrier in helical motion [red ball in
Fig. 2(a)]. In fact, the Sondheimer effect was treated in the
framework of the Boltzmann’s theory [11,21].

The magnetic-field periodic oscillations in our graphite
thin-film appear in the quasiquantum limit, where only two
LLs with the indices of N = −1 and 0 remain on the Fermi
level. The labels of these indices are in accordance with the
convention. Here, the semiclassical picture is no longer appli-
cable since we cannot compose the particle nature only from
the two LLs. After translating the semiclassical Sondheimer
effect formula into the quantum one, we obtain the condition
of the quantum Sondhemier effect as follows:

h̄ωc = h̄vF,z(n�kz ). (2)

Here, h̄ = h/2π is the Planck constant divided by 2π , kz is the
wave number along the direction perpendicular to the plane,
vF,z = (1/h̄)dε/dkz is the Fermi velocity along the kz, ε is
the energy band dispersion, �kz = 2π/d is the interval of
the kz points, and n is an integer. Note that �kz is a consid-
erable magnitude for around 100-nm-thick graphite [34,35].
We emphasize that Eq. (2) is mathematically equivalent to the
semiclassical formula Eq. (1), but is expressed in the quantum
formalism. This reformulation leads to the quantum interpre-
tation of the Sondheimer effect at the quasiquantum limit,
as shown in Figs. 2(c)–2(e). We will only consider N = −1
and 0 LLs at the quasiquantum limit in graphite as a special
case. The generalized case is given in Appendix A. There are
two characteristic energy scales in this situation; the cyclotron
energy h̄ωc and the discretized energy separation h̄vF,z�kz

[Fig. 2(d)]. The energy separation between the LLs is char-
acterized by the cyclotron energy h̄ωc, which is proportional
to the magnetic fields. Each LL is evenly discretized along
the kz direction with an interval of �kz owing to the quantum
size effect, which is solely determined by the thickness and
not affected by the magnetic fields. This discretization cor-
responds to a standing wave condition along the z direction.
The limitation on the allowed kz mode leads to the discretized
energy levels around the Fermi energy εF with an energy
gap of �kz(dε/dkz )|ε=εF = h̄vF,z�kz. This separation of the
discretized energy levels becomes sizable only in thin film
having largely dispersive bands. With increasing magnetic
field, only the upper N = 0 LL shifts upwards, whereas the
N = −1 stays behind [49]. A point in the discretized level
belonging to N = 0 LL is horizontally aligned to that in the
other N = −1 LL around the Fermi level when the condition
of Eq. (2) is satisfied, namely the cyclotron energy is equal to
the integer multiple of the discretized energy level separation.
This overlap of the discretized energy levels leads to the res-
onant inter-LL scattering conserving the energy and the spin
of the carriers. The magnetoconductivity enhancement at the
resonance condition is approximately proportional to the form
of �/(�E2 + (2�)2), which corresponds to the semiclassical
picture depicted in Figs. 2(a) and 2(b), where �E and � are
the energy difference between the energy levels responsible
for the resonance and the energy level broadening, respec-
tively. Consequently, the semiclassical Sondheimer effect can
be reinterpreted as the quantum Sondheimer effect at the
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quasiquantum limit. (See Appendix B for the spin degrees of
freedom).

The direct evidence of the quantum Sondheimer effect is
the relation �B ∝ 1/d at the quasiquantum limit. In order to
confirm this relation, the most simple method is to prepare
several samples having various thicknesses and explore the
oscillation periods. However, the results obtained from differ-
ent samples need to be carefully compared, since they might
include unintentional differences, for example, the amount of
disorder. In the present case, stacking faults would play a
crucial role, since those defects obstruct the helical motion.
Although the layered structure of graphite is beneficial to
obtain a well-defined thickness, it is prone to include the
stacking faults [47] as a drawback. The stacking faults seg-
mentize the thickness and break the periodic condition along
the out-of-plane direction, which inhibits the formation of
standing waves over the full thickness of the film. This im-
plies a possible dissociation between the real thickness of the
film and the effective thickness responsible for the observed
oscillations.

In order to avoid ambiguity in the effective thickness, we
designed the sample that enables us to investigate the thick-
ness dependence in a single sample, as shown in Figs. 3(a)
and 3(b). The sample has a step in the middle, which is ac-
cidentally formed during the mechanical exfoliation process.
The step divides the sample into the thinner region (right
part) and the thicker region (left part) with a thickness of
dthin and dthick, respectively. The thicknesses of the thinner
and thicker region in our device were determined from the
atomic-force microscopy (AFM) as shown in Figs. 3(c) and
3(d) as d = 63 nm and d = 85 nm, respectively. It is natural
to assume that the stacking faults, such as twisted interface,
were formed at the crystal growth, so the microcrystal for
the device, which is exfoliated from the as-grown crystal,
includes those stacking faults over its whole region [Fig. 3(e)].
On the other hand, in the mechanical exfoliation process,
the edge parts of the microcrystal are subject to the force
to peel off layers, which could introduce planar cracks that
are concentrated at the edge. Most of these planar cracks are
expected to disappear since the two layers across the planar
cracks can combine via the van der Waals interaction as long
as the gap of the cracks is small enough not to be wedged by
obstacles. A small number of remaining cracks might have no
effect on the transport properties since they exist only at the
sample edges.

If the sample includes a stacking fault over its entire re-
gion, as shown in Fig. 3(e), both the thinner and thicker
regions would have reduced effective thicknesses, denoted as
deff

thin(<dthin) and deff
thick(< dthick), respectively. In the case of

Fig. 3(e), even if we cannot determine the absolute values
of these effective thicknesses, the trend of the thickness-
dependent transport features can be detected since the
thickness relation holds (deff

thin < deff
thick). Another possible con-

figuration is shown in Fig. 3(f), where a stacking fault only
exists in the bump region. Even in this case, although the
thickness difference between thinner and thicker parts be-
comes small or zero, the relation is not inverted (deff

thin � deff
thick).

As a result, the trend of thickness dependence of the transport
property can be observed by using this step-structure sample
even if the stacking faults are included.

FIG. 3. (a) Schematic setup of the device with a step in the
middle. The thicknesses of the left and right part is dthick and dthin,
respectively. (b), (c) The optical micrography (b) and atomic-force
micrography (c) image of the device, respectively. The step is high-
lighted in a white broken line in Fig. 3(b). The scale bars, 5µm.
(d) The line profile along the black line in Fig. 3(c). (e), (f) The
schematic side views of the sample with a stacking fault (red line). If
the system is scattering free except at the stacking fault, the effective
thicknesses of the thick and thin parts are reduced to deff

thick and deff
thin,

respectively. (g) The magnetic-field periodic oscillations for the thin
(light green) and thick (light blue) parts for B = 7 − 13 T. The oscil-
latory components is extracted by the second derivative d2Rxx/dB2.
The bottom gate voltage Vg = −30 V is applied. Other Vg data give
almost the same results. The peak and dip positions are marked
by arrows. (h) The estimation of the period of the oscillations. By
assigning the peak and dip magnetic-field values to the integers
and half integers, respectively, the periods �B of the magnetic-field
periodic oscillations for thin and thick parts are estimated from the
slope of the linear fit as 3.0 T and 2.2 T, respectively.

The observed resistance oscillations (d2Rxx/dB2) for the
thinner (green curve) and the thicker regions (light blue curve)
are plotted in Fig. 3(g). As expected from the quantum Sond-
heimer effect [�B ∝ 1/d , Eq. (1)], a larger period is identified
in the thinner part of the sample. By assigning the peaks and
the dips to integers and half integers, respectively, the period
of each region is determined, as shown in Fig. 3(h). The
slope of the fitting line yields the period of the magnetic-field-
periodic oscillations, with the value of �B = 3.0 T and 2.2 T
for d = 63 nm and 85 nm regions, respectively. The ratio of
the periods 3.0/2.2 ≈ 1.36 is in good agreement with the
inverse-thickness ratio 85/63 = 1.35, which is consistent with
the quantum Sondheimer effect. Note that this quantitative
agreement suggests that the stacking faults are absent in this
device.

The relation between the period �B and the inverse of the
thickness 1/d is summarized in Fig. 4(a) (orange diamonds).
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FIG. 4. (a) Experimentally observed magnetic-field periods as
a function of the inverse of the thickness 1/d . Orange diamond
markers are from the device with a step. The solid line is the guide to
the eye. (b) The consideration of the AB effect scenario. The moiré
period D (bottom axis) is determined by the twist angle θ (left axis)
through the formula D = a/(2 sin(θ/2)) (red line). By assuming
the area of the moiré unit cell S enclosed by an AB ring, the AB
oscillation period �B (right axis) is expressed as �B = φ0/S (blue
line). In order to assign the experimentally observed oscillations to
the AB oscillations, the moiré period should be 35-69 nm, which
corresponds to the limited range of the twist angle θ ≈ 0.2-0.4 ◦. The
inset indicates the moiré superlattice formed at the stacking fault with
a moiré period D.

The periods obtained from step-free samples [35] are also
displayed (black solid circles). Regardless of the sample qual-
ities, almost all the data points fall onto the line determined
by the sample with a step, which is presumably free from
the stacking faults. The consistent linear relation between �B
and 1/d indicates that the magnetic-field-periodic oscillations
in the quasiquantum limit are attributable to the quantum
Sondheimer effect. Although multiple periods with exception-
ally large values are found in the sample with d = 154 nm
(1/d = 0.65 × 10−2 nm−1), the result is reasonably explained
by the segmentation of the thickness by the stacking faults.
If we assume that each segmented part produces the oscilla-
tions, the observed periods are well explained by the same
line in Fig. 4(a), supporting the quantum Sondheimer effect
scenario.

IV. DISCUSSION

Our results indicate that the AB effect originating from
the superlattice at the stacking-fault interface is unlikely to
emerge. First, only a very narrow range of the twist angle θ

is possible to explain the observed oscillations period. The
moiré period D [the period of the so-called AA stacking
region, inset of Fig. 4(b)] formed at the stacking fault of
graphite is determined solely by the twist angle through the
equation D = a/(2 sin(θ/2)) [red curve in Fig. 4(b)], where
a is the in-plane lattice constant of the graphite. On the other
hand, the AB oscillations period �B is determined by the area
S enclosed by the AB ring through the equation �B = φ0/S,
where φ0 = h/e is the magnetic flux quantum. By assuming
that each moiré unit cell [hexagonal cell enclosed by black
solid lines in the inset of Fig. 4(b)] works as a unit of an AB
ring, S can be represented with moiré period D through the
equation S = √

3D2/2, namely the AB oscillations period �B
is determined by the moiré period D [blue curve in Fig. 4(b)].
If the observed magnetic-field-periodic oscillations with a pe-
riod of �B = 1-4 T are attributed to the AB effect, the value

of the moiré period should be D ≈ 35-69 nm [blue shade in
Fig. 4(b)]. This moiré period can be translated into the twist
angle at the stacking fault as θ ≈ 0.2◦-0.4◦ [red shade in
Fig. 4(b)]. Since the twist angle at the stacking fault should
have a random value, it is very unnatural to assume that only a
very limited range of twist angles are formed. In other words,
random �B values should be observed if it was due to the
AB effect mechanism. Although the AB-ring area S would be
quantitatively different from the current estimation when the
crystal reconstruction at the interface occurs, it is difficult to
reproduce such a limited range of oscillation periods by using
the AB effect scenario.

V. SUMMARY AND OUTLOOK

Finally, we summarize the necessary condition to observe
the quantum Sondheimer effect. First, a clean bulk with a
well-defined thickness is necessary. This condition was real-
ized in a clean semimetal fabricated using a focused-ion beam
method [17], but it is easily satisfied in layered materials. Sec-
ond, the energy spacing arising from the quantum size effect
h̄vF,z�kz needs to be resolved. This condition requires a large
Fermi velocity vF,z = (1/h̄)dε/dkz, i.e., a large bandwidth.
Third, only a few LLs should remain at the Fermi level at
the accessible magnetic fields in order to reach the quantum
Sondheimer regime. In the graphite case, only two LLs remain
above B = 7.4 T neglecting the spin degrees of freedom. As
a result, graphite thin film turns out to be an ideal platform
to satisfy these conditions. The quantum Sondheimer effect
should be generically observed as long as these conditions are
satisfied. Even below the quasiquantum limit, a more com-
plicated quantum Sondheimer effect with multiple resonant
conditions is expected, which would be observed when the Sd-
HOs are killed with elevating temperatures. The combination
with other electronic states, such as the density-wave state,
could offer new paths to explore the novel physics in quantum
devices.
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APPENDIX A: GENERAL CASE OF THE QUANTUM
SONDHEIMER EFFECT

At the quasiquantum limit in graphite, only two LLs of
N = 0 and N = −1 remain at the Fermi energy. Moreover,
since the N = −1 LL is insensitive to the magnetic field, it is
easy to derive the Sondheimer condition Eq. (2). Here we will
consider the general case, where an arbitrary number of LLs
exist with an equal energy spacing h̄ωc. The key concept of
the quantum Sondheimer effect arises from the resonant states
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FIG. 5. The general case of the quantum Sondheimer effect.
(a) The resonant pair (red markers) on the Fermi energy εF with
p = j − i, and q associated with the quantum Sondheimer effect.
The band dispersions are approximated with a linear one. (b),
(c) The Sondheimer subbands (solid lines) under lower (b) and higher
(c) magnetic fields on the basis of Landau subbands for the free
electron model [Eq. (A2), broken blue lines]. Only the Sondheimer
subbands with p = 1 are shown.

among the discretized energy levels belonging to different
Landau indices. Suppose the resonant pair is found between
the LLs indexed by N = i and N = j = i + p [Fig. 5(a)],
where the integer p = j − i � 1 indicates the Landau index
difference. At one kz, the energy difference between the dis-
cretized levels belonging to N = i and that to N = j is equal
to p(h̄ωc). In addition, another integer q � 1 is introduced
so as to minimize the energy difference p(h̄ωc) − h̄vF,zq�kz,
where the Fermi velocity along the kz direction, vF,z gives
the slope of the Landau subband through h̄vF,z. If this energy
difference goes zero, a resonant pair is formed [red markers in
Fig. 5(a)]. As a result, the general formulation of the quantum
Sondheimer effect is described as

p

q
h̄ωc = h̄vF,z�kz. (A1)

For each Landau-level configuration, multiple resonant modes
indexed by a ratio p/q > 0 are allowed. The quasiquantum
limit is the special case, where at most one resonant mode
(p/q = 1/n) survives at a fixed magnetic field [Eq. (2)].

In order to unify the quantum and the semiclassical pic-
tures, the fully quantum calculation of the conductivity is
required in the semiclassical regime, which is beyond the
scope of this paper. Instead, hereafter we will see a trace of the
semiclassical characteristics by using the quantum picture. In
the semiclassical Sondheimer picture, illustrated in Figs. 2(a)
and 2(b), the dominating contributions for the oscillatory part
of the conductivity �σ arise from the local Gaussian curva-
ture of the Fermi surface at the limiting points (extreme kz) for
the elliptic Fermi surface [11,12,21]. The Landau quantization
and the concomitant quantum Sondheimer resonance are con-
sidered in the situation where substantial Landau levels exists.
For simplicity, we focus on the free electron model, where
each LL dispersion is written as

εN (kz ) =
(

N + 1

2

)
h̄ωc + h̄2k2

z

2m
. (A2)

By introducing the quantum size effect, kz is discretized with
a unit of �kz = (2π )/d . The discretized Landau subbands for
lower and higher magnetic fields are shown in Figs. 5(b) and
5(c), respectively [blue broken lines are the guide of Eq. (A2)].
The conventional quantum oscillations arise from the bottom
of these Landau subbands passing through the Fermi energy
εF . In addition to the Landau subbands, other subbands (re-
ferred to as the Sondheimer subbands), exemplified by solid
lines, are visualized in Figs. 5(b) and 5(c). For a substantial
number of LLs, a series of p/q Sondheimer subbands satisfies
the Sondheimer condition Eq. (A1). The analytical expression
of the solid lines in Figs. 5(b) and 5(c) is

ε
(p/q)
{N0, j}(kz ) =

(
N0 + 1

2
+ j

p

q

)
h̄ωc

+ h̄2

2mz

(
kz − k(p/q)

z,min

)2 − h̄2

2mz

(
k(p/q)

z,min

)2
, (A3)

where j is an integer such that 0 � j � q − 1, mz is
the effective mass along the z direction, k(p/q)

z,min = p
q

deB
2π h̄ =

p
q

1
(h̄2/2mz )�kz

h̄ωc
2 is the wave number giving the Sondheimer

subband minimum, and {N0, j} is the Sondheimer subband
indices. It is noteworthy that the minimum location k(p/q)

z,min for
each p/q mode linearly shifts toward higher kz by sweeping
up the magnetic fields [Fig. 5(c)]. If both consecutive points

FIG. 6. Comparison between the quantum Sondheimer oscilla-
tions and the MIS oscillations. (a) Subband configurations. In the
Sondheimer effect, two discretized Landau levels [LL1 and LL2
(N = −1 and N = 0 in graphite, respectively)] with an interval of
h̄vF �kz have an energy offset, linearly increasing with the magnetic
field. In MIS oscillations, on the other hand, the energy spacing of the
lower-energy band (LB) and the higher-energy band (HB) linearly
increases with the magnetic field with a fixed offset �12. (b), (c) The
magnetic-field evolution of the discretized levels [shown in Fig. 6(a)]
for the Sondheimer oscillations (b) and the MIS oscillations (c). The
resonant condition (vertical dashed lines) appears periodically in B
and 1/B for the Sondheimer and the MIS oscillations, respectively.
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in one p/q subband locate together around the Fermi energy,
then p/q mode satisfies the Sondheimer condition Eq. (A1).
Therefore, only the p/q modes satisfying k(p/q)

z,min < kF,z are rel-
evant. Among these modes, the largest p/q mode, which gives
the largest k(p/q)

z,min, plays a main role, since it is the first one to be
excluded from them by increasing the magnetic field. Every
time the largest p/q mode goes beyond the limiting point,
namely k(p/q)

z,min � kF,z, the contribution of that p/q mode is
eliminated from the sum of the resonant modes. This quantum
picture emphasizes the importance of the behavior around
the limiting point, which corresponds to the semiclassical
picture.

APPENDIX B: SPIN DEGREES OF FREEDOM

We discuss the quantum Sondheimer effect in graphite by
neglecting the spin degrees of freedom. In the realistic band
structure of graphite, there are four spin-split Landau bands at
the quasiquantum limit: (N =0,↑), (N = 0,↓), (N = −1,↑),
and (N = −1,↓). However, this spin splitting is not important
since the resonance condition requires the coupling between
the energy and spin conserved states. The spin degrees of free-
dom can be taken into account by considering two distinctive
pairs of (N = 0,↑) ↔ (N = −1,↑) and (N = 0,↓) ↔ (N =
−1,↓).

APPENDIX C: COMPARISON TO
MAGNETOINTERSUBBAND OSCILLATIONS

It is interesting to compare the quantum Sondheimer oscil-
lations and magnetointersubband (MIS) oscillations. The MIS
oscillations arise when two series of Landau subbands [lower-
energy band (LB) and higher-energy band (HB)] are formed
under high magnetic fields. Here these two subbands have an
energy offset �12 at zero magnetic field and are discretized
with an equal energy interval of h̄ωc under the magnetic field.
The energy intervals for both subbands increase proportion-
ally to the magnetic field (h̄ωc ∝ B), and the two energy levels
belonging to the opposite subband sequentially come in align-
ment with a period of the inverse of the magnetic field (1/B
periodic) [50,51]. Recently, the twisted bilayer graphene has
been known to show the MIS oscillations under the interlayer
displacement field [52].

By comparison, in the quantum Sondheimer effect, there
are only two Landau levels (LL1 and LL2) with an energy
offset of h̄ωc and each of them is discretized by the quantum
size effect with a spacing of h̄vF �kz. This energy interval is
solely determined by the thickness and the Fermi velocity and
does not vary with the magnetic field, which is clearly distinct
from the MIS oscillations. This different setup produces the
magnetic-field periodicity in the Sondheimer oscillations, in
contrast to 1/B periodicity in the MIS oscillations. These two
setups are depicted in Fig. 6.

[1] S. B. Hubbard, T. J. Kershaw, A. Usher, A. K. Savchenko, and
A. Shytov, Millikelvin de Haas–van Alphen and magnetotrans-
port studies of graphite, Phys. Rev. B 83, 035122 (2011).

[2] J. M. Schneider, B. A. Piot, I. Sheikin, and D. K. Maude,
Using the de Haas–van Alphen effect to map out the closed
three-dimensional fermi surface of natural graphite, Phys. Rev.
Lett. 108, 117401 (2012).

[3] D. Shoenberg, Magnetic Oscillations in Metals, Cambridge
Monographs on Physics (Cambridge University Press, 1984).

[4] Y. Aharonov and D. Bohm, Significance of electromagnetic
potentials in the quantum theory, Phys. Rev. 115, 485 (1959).

[5] Y. Aharonov and D. Bohm, Further considerations on electro-
magnetic potentials in the quantum theory, Phys. Rev. 123, 1511
(1961).

[6] R. G. Chambers, Shift of an electron interference pattern by
enclosed magnetic flux, Phys. Rev. Lett. 5, 3 (1960).

[7] A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo,
S. Yano, and H. Yamada, Evidence for Aharonov-Bohm effect
with magnetic field completely shielded from electron wave,
Phys. Rev. Lett. 56, 792 (1986).

[8] A. Bachtold, C. Strunk, J.-P. Salvetat, J.-M. Bonard, L. Forró,
T. Nussbaumer, and C. Schönenberger, Aharonov–Bohm oscil-
lations in carbon nanotubes, Nature (London) 397, 673 (1999).

[9] S. Russo, J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. S.
Sobhani, L. M. K. Vandersypen, and A. F. Morpurgo, Observa-
tion of Aharonov-Bohm conductance oscillations in a graphene
ring, Phys. Rev. B 77, 085413 (2008).

[10] M. Toda, H. Tanaka, H. Kiyooka, and Y. Mizushima, Exper-
imental verification of the Sondheimer-effect in thin metallic
films, J. Phys. Soc. Jpn. 19, 2353 (1964).

[11] J. A. Munarin, J. A. Marcus, and P. E. Bloomfield, Size-
dependent oscillatory magnetoresistance effect in gallium,
Phys. Rev. 172, 718 (1968).

[12] P. D. Hambourger and J. A. Marcus, Size-dependent oscil-
latory magnetoresistance in cadmium, Phys. Rev. B 8, 5567
(1973).

[13] I. Sakamoto, Sondheimer oscillation in copper, Phys. Lett. A
53, 227 (1975).

[14] I. Sakamoto and T. Sato, Temperature dependence of electronic
relaxation time in the Sondheimer size effect of copper, J. Low
Temp. Phys. 36, 79 (1979).

[15] H. Sato, Sondheimer oscillation in aluminium single crystals,
Phys. Status Solidi B 94, 309 (1979).

[16] H. Sato, Phonon-limited mean free path in the Sondheimer
oscillation of aluminum, J. Low Temp. Phys. 38, 267
(1980).

[17] M. R. van Delft, Y. Wang, C. Putzke, J. Oswald, G. Varnavides,
C. A. C. Garcia, C. Guo, H. Schmid, V. Süss, H. Borrmann, J.
Diaz, Y. Sun, C. Felser, B. Gotsmann, P. Narang, and P. J. W.
Moll, Sondheimer oscillations as a probe of non-ohmic flow in
WP2 crystals, Nat. Commun. 12, 4799 (2021).

[18] S. Mallik, G. C. Ménard, G. Saïz, I. Gilmutdinov, D. Vignolles,
C. Proust, A. Gloter, N. Bergeal, M. Gabay, and M. Bibes, From
low-field Sondheimer oscillations to high-field very large and
linear magnetoresistance in a SrTiO3-based two-dimensional
electron gas, Nano Lett. 22, 65 (2022).

[19] H.-J. Kim, K.-S. Kim, M. D. Kim, S.-J. Lee, J.-W. Han, A.
Ohnishi, M. Kitaura, M. Sasaki, A. Kondo, and K. Kindo,
Sondheimer oscillation as a signature of surface Dirac fermions,
Phys. Rev. B 84, 125144 (2011).

235411-7

https://doi.org/10.1103/PhysRevB.83.035122
https://doi.org/10.1103/PhysRevLett.108.117401
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/PhysRev.123.1511
https://doi.org/10.1103/PhysRevLett.5.3
https://doi.org/10.1103/PhysRevLett.56.792
https://doi.org/10.1038/17755
https://doi.org/10.1103/PhysRevB.77.085413
https://doi.org/10.1143/JPSJ.19.2353
https://doi.org/10.1103/PhysRev.172.718
https://doi.org/10.1103/PhysRevB.8.5567
https://doi.org/10.1016/0375-9601(75)90417-X
https://doi.org/10.1007/BF00174913
https://doi.org/10.1002/pssb.2220940136
https://doi.org/10.1007/BF00114325
https://doi.org/10.1038/s41467-021-25037-0
https://doi.org/10.1021/acs.nanolett.1c03198
https://doi.org/10.1103/PhysRevB.84.125144


TAEN, KISWANDHI, AND OSADA PHYSICAL REVIEW B 108, 235411 (2023)

[20] E. H. Sondheimer, The influence of a transverse magnetic field
on the conductivity of thin metallic films, Phys. Rev. 80, 401
(1950).

[21] V. L. Gurevich, Oscillations in the conductivity of metallic films
in magnetic fields, Sov. Phys. JETP 8, 464 (1959).

[22] A. F. Young and P. Kim, Quantum interference and Klein
tunnelling in graphene heterojunctions, Nat. Phys. 5, 222
(2009).

[23] P. Rickhaus, R. Maurand, M.-H. Liu, M. Weiss, K. Richter,
and C. Schönenberger, Ballistic interferences in suspended
graphene, Nat. Commun. 4, 2342 (2013).

[24] T. Taychatanapat, K. Watanabe, T. Taniguchi, and P. Jarillo-
Herrero, Electrically tunable transverse magnetic focusing in
graphene, Nat. Phys. 9, 225 (2013).

[25] A. Varlet, M.-H. Liu, V. Krueckl, D. Bischoff, P. Simonet,
K. Watanabe, T. Taniguchi, K. Richter, K. Ensslin, and T.
Ihn, Fabry-Pérot interference in gapped bilayer graphene with
broken anti-Klein tunneling, Phys. Rev. Lett. 113, 116601
(2014).

[26] T. Machida, S. Morikawa, S. Masubuchi, R. Moriya, M. Arai,
K. Watanabe, and T. Taniguchi, Edge-channel transport of Dirac
fermions in graphene quantum Hall junctions, J. Phys. Soc. Jpn.
84, 121007 (2015).

[27] D. S. Wei, T. van der Sar, J. D. Sanchez-Yamagishi, K.
Watanabe, T. Taniguchi, P. Jarillo-Herrero, B. I. Halperin,
and A. Yacoby, Mach-Zehnder interferometry using spin- and
valley-polarized quantum Hall edge states in graphene, Sci.
Adv. 3, e1700600 (2017).

[28] Y. Ronen, T. Werkmeister, D. Haie Najafabadi, A. T. Pierce,
L. E. Anderson, Y. J. Shin, S. Y. Lee, Y. H. Lee, B.
Johnson, K. Watanabe, T. Taniguchi, A. Yacoby, and P.
Kim, Aharonov–Bohm effect in graphene-based Fabry–Pérot
quantum Hall interferometers, Nat. Nanotechnol. 16, 563
(2021).

[29] D. A. Bandurin, I. Torre, R. K. Kumar, M. B. Shalom, A.
Tomadin, A. Principi, G. H. Auton, E. Khestanova, K. S.
Novoselov, I. V. Grigorieva, L. A. Ponomarenko, A. K.
Geim, and M. Polini, Negative local resistance caused by
viscous electron backflow in graphene, Science 351, 1055
(2016).

[30] J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim, A. Lucas,
S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe, T. A. Ohki, and
K. C. Fong, Observation of the Dirac fluid and the breakdown
of the Wiedemann-Franz law in graphene, Science 351, 1058
(2016).

[31] R. Krishna Kumar, D. A. Bandurin, F. M. D. Pellegrino, Y.
Cao, A. Principi, H. Guo, G. H. Auton, M. Ben Shalom, L. A.
Ponomarenko, G. Falkovich, K. Watanabe, T. Taniguchi, I. V.
Grigorieva, L. S. Levitov, M. Polini, and A. K. Geim, Su-
perballistic flow of viscous electron fluid through graphene
constrictions, Nat. Phys. 13, 1182 (2017).

[32] J. A. Sulpizio, L. Ella, A. Rozen, J. Birkbeck, D. J. Perello, D.
Dutta, M. Ben-Shalom, T. Taniguchi, K. Watanabe, T. Holder,
R. Queiroz, A. Principi, A. Stern, T. Scaffidi, A. K. Geim, and
S. Ilani, Visualizing Poiseuille flow of hydrodynamic electrons,
Nature (London) 576, 75 (2019).

[33] J. M. Schneider, M. Orlita, M. Potemski, and D. K. Maude,
Consistent interpretation of the low-temperature magneto-
transport in graphite using the Slonczewski-Weiss-McClure

3D band-structure calculations, Phys. Rev. Lett. 102, 166403
(2009).

[34] T. Taen, K. Uchida, and T. Osada, Thickness-dependent phase
transition in graphite under high magnetic field, Phys. Rev. B
97, 115122 (2018).

[35] T. Taen, K. Uchida, T. Osada, and W. Kang, Tunable magne-
toresistance in thin-film graphite field-effect transistor by gate
voltage, Phys. Rev. B 98, 155136 (2018).

[36] Y. Takada and H. Goto, Exchange and correlation effects in the
three-dimensional electron gas in strong magnetic fields and
application to graphite, J. Phys.: Condens. Matter 10, 11315
(1998).

[37] B. Fauqué, D. LeBoeuf, B. Vignolle, M. Nardone, C. Proust,
and K. Behnia, Two phase transitions induced by a magnetic
field in graphite, Phys. Rev. Lett. 110, 266601 (2013).

[38] K. Akiba, A. Miyake, H. Yaguchi, A. Matsuo, K. Kindo, and M.
Tokunaga, Possible excitonic phase of graphite in the quantum
limit state, J. Phys. Soc. Jpn. 84, 054709 (2015).

[39] S. Tanuma, R. Inada, A. Furukawa, O. Takahashi, Y. Iye, and
Y. Onuki, Electrical properties of layered materials at high
magnetic fields, in Physics in High Magnetic Fields, edited by
S. Chikazumi and N. Miura (Springer Berlin Heidelberg, Berlin,
Heidelberg, 1981), pp. 316–319.

[40] H. Yaguchi and J. Singleton, Field-induced reentrant electronic
phase transitions in graphite, Phys. B: Condens. Matter 256-
258, 621 (1998).

[41] H. Yaguchi and J. Singleton, A high-magnetic-field-induced
density-wave state in graphite, J. Phys.: Condens. Matter 21,
344207 (2009).

[42] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi,
E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated
insulator behaviour at half-filling in magic-angle graphene su-
perlattices, Nature (London) 556, 80 (2018).

[43] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional superconduc-
tivity in magic-angle graphene superlattices, Nature (London)
556, 43 (2018).

[44] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K.
Watanabe, T. Taniguchi, M. A. Kastner, and D. Goldhaber-
Gordon, Emergent ferromagnetism near three-quarters
filling in twisted bilayer graphene, Science 365, 605
(2019).

[45] F. Nihey and K. Nakamura, Aharonov-Bohm effect in antidot
structures, Phys. B: Condens. Matter 184, 398 (1993).

[46] R. Yagi, M. Shimomura, F. Tahara, H. Kobara, and S. Fukada,
Observing Altshuler–Aronov–Spivak oscillation in a hexagonal
antidot array of monolayer graphene, J. Phys. Soc. Jpn. 81,
063707 (2012).

[47] W.-T. Pong and C. Durkan, A review and outlook for an
anomaly of scanning tunnelling microscopy (STM): Super-
lattices on graphite, J. Phys. D: Appl. Phys. 38, R329
(2005).

[48] C. W. Rischau, S. Wiedmann, G. Seyfarth, D. LeBoeuf, K.
Behnia, and B. Fauqué, Quantum interference in a macro-
scopic van der Waals conductor, Phys. Rev. B 95, 085206
(2017).

[49] K. Nakao, Landau level structure and magnetic breakthrough in
graphite, J. Phys. Soc. Jpn. 40, 761 (1976).

235411-8

https://doi.org/10.1103/PhysRev.80.401
https://doi.org/10.1038/nphys1198
https://doi.org/10.1038/ncomms3342
https://doi.org/10.1038/nphys2549
https://doi.org/10.1103/PhysRevLett.113.116601
https://doi.org/10.7566/JPSJ.84.121007
https://doi.org/10.1126/sciadv.1700600
https://doi.org/10.1038/s41565-021-00861-z
https://doi.org/10.1126/science.aad0201
https://doi.org/10.1126/science.aad0343
https://doi.org/10.1038/nphys4240
https://doi.org/10.1038/s41586-019-1788-9
https://doi.org/10.1103/PhysRevLett.102.166403
https://doi.org/10.1103/PhysRevB.97.115122
https://doi.org/10.1103/PhysRevB.98.155136
https://doi.org/10.1088/0953-8984/10/49/020
https://doi.org/10.1103/PhysRevLett.110.266601
https://doi.org/10.7566/JPSJ.84.054709
https://doi.org/10.1016/S0921-4526(98)00584-5
https://doi.org/10.1088/0953-8984/21/34/344207
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26160
https://doi.org/10.1126/science.aaw3780
https://doi.org/10.1016/0921-4526(93)90388-M
https://doi.org/10.1143/JPSJ.81.063707
https://doi.org/10.1088/0022-3727/38/21/R01
https://doi.org/10.1103/PhysRevB.95.085206
https://doi.org/10.1143/JPSJ.40.761


MAGNETIC-FIELD PERIODIC QUANTUM SONDHEIMER … PHYSICAL REVIEW B 108, 235411 (2023)

[50] O. E. Raichev, Magnetic oscillations of resistivity and absorp-
tion of radiation in quantum wells with two populated subbands,
Phys. Rev. B 78, 125304 (2008).

[51] I. A. Dmitriev, A. D. Mirlin, D. G. Polyakov, and M. A. Zudov,
Nonequilibrium phenomena in high Landau levels, Rev. Mod.
Phys. 84, 1709 (2012).

[52] I. Y. Phinney, D. A. Bandurin, C. Collignon,
I. A. Dmitriev, T. Taniguchi, K. Watanabe, and P.
Jarillo-Herrero, Strong interminivalley scattering in
twisted bilayer graphene revealed by high-temperature
magneto-oscillations, Phys. Rev. Lett. 127, 056802
(2021).

235411-9

https://doi.org/10.1103/PhysRevB.78.125304
https://doi.org/10.1103/RevModPhys.84.1709
https://doi.org/10.1103/PhysRevLett.127.056802

